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Abstract
Simulation-based engineering has become a cornerstone when designing new systems or products. This approach is coupled with anoptimization phase in which the result of the engineering is tailored to optimize different aspects of the design (sizing components,minimizing cost, etc.). In the case of complex systems, such as cyber-physical systems, their modeling and simulation calls formulti- domains expertise. As a consequence, a simulation-based approach that integrates different simulators is needed, this is calledco-simulation. This article presents a framework situated in the co-simulation basis for implementing optimization, the objectiveis to sustain the robustness of the multi-disciplinary approach and benefit from the large variety of simulation-based optimizationalgorithms. This framework will be proposed based on existing applications in engineering as well as some study cases to show thebenefits of reusing architectural patterns. The implementation allows users to change optimization methods and/or co-simulationelements with the modification of fewer than 10 lines of code.
Keywords: Co-simulation; optimization; multi-disciplinary; complex systems; modeling.

1. Introduction
The growing product complexity in the industry is pushingthe current design process to improve. The study of thesecomplex systems relies on efficient multi-level compre-hension that simultaneously ensures product specification(Rüdenauer et al., 2012). Furthermore, it is not enough toachieve an abstraction of the system, the idea is to be ableto interact with the model as a stakeholder, this meanshaving the opportunity to test, validate, alter, or generallyunderstand the model before a full system deployment(Graja et al., 2020). Currently, truly complex engineeredsystems that also involve Cyber-Physical Systems (CPS)are emerging (Lee, 2008) and several fields of researchhave already shown interest and benefits from this kindof research, such as energy (Bharati et al., 2021), mobil-ity (Zhao and Ioannou, 2019) and robotics (Ahmed et al.,2010).

Usually, the study of systems is done using modeling

and simulation, which will provide an environment to un-derstand and/or predict its behavior (Ramat, 2006). Also,the availability of a computational representation allowsthe generation of digital tests that otherwise would requirethe fabrication of potentially expensive or faulty proto-types. Nevertheless, with most complex systems, simula-tion architecture is not enough to represent the differentdetail levels and domains that can be present in a com-plex system. For this reason, co-simulation is presentedas an approach to deal with the complexity (Chavalariaset al., 2009). Co-simulation is the composition of cou-pled simulations using synchronized computation tasksto achieve a global simulation (Gomes et al., 2017; Schirrerand Kozek, 2008). This architecture supports heteroge-neous sub-models in terms of software or domains in orderto maintain several levels of detail.
In 1997, the most significant emerging technologywithin the simulation field was optimization (Fu, 2001;Law and Kelton, 2000), this is, the problem of finding a

https://creativecommons.org/licenses/by-nc-nd/4.0/.
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value that minimizes or maximizes some specific functionamong all possible values that satisfies some conditions orconstraints given (Boyd et al., 2004). The interest in thiscombination occurred when many companies started todevelop an orchestrator of simulations that could be ableto schedule several system configurations so that even-tually an optimal or near-optimal solution was obtained(Law and McComas, 2002). Consequently, fields such asagriculture are profiting from the wide range of applica-bility of simulation-based optimization techniques in dif-ferent domains and scales (Plà-Aragonés, 2015) as well asmany widely different, albeit related, areas of operationsresearch (Gosavi et al., 2015).This paper is focused on making tangible the promisingcombination of co-simulation with optimization. Start-ing from the already-known benefits of the combina-tion of optimization and simulation, and continuing withthe exploration of new advantages that complex systemscan bring to the table. For this reason, this article pro-poses a framework for the implementation of optimiza-tion in co-simulations. Alongside this proposal, the co-simulation software MECSYCO (Multi-agent Environmentfor Complex SYstem CO-simulation) is presented as a co-simulation tool where the framework is implemented.The paper’s organization is as follows. A review of theworks relating to co-simulation and optimization is pre-sented in Section 2 to understand the relevance and perti-nence of this proposal, highlighting the emerging patternsthat can help create a general framework. In Section 3 theframework proposed is described in detail as well as thestudy cases and the optimization algorithms implemented.In Section 4 the results of the study cases are presented andanalyzed including a discussion regarding the contribu-tions done and the challenges remaining. Finally, Section5 contains the conclusions of the framework proposed.
2. Related work
The combined use of co-simulation and optimization is al-ready present in the literature. In bibliographic databases,64 publications are found linking these two concepts(search done in Web of Science, Scopus, and DBLP onNovember 2022 using the following equation: TITLE ("co-simulation" AND optimization )). These articles con-tain different examples of optimization applied to a com-plex system abstraction, which in these cases is the defi-nition of some constraints on the parameters of a modelto explore and find an optimal behavior of a co-simulation(Boyd et al., 2004). The domains present in the search in-clude city mobility cases (Zhao and Ioannou, 2019), math-ematical science problems (Sun et al., 2021; Wang and Ma,2018), among others. This multidisciplinary applicabil-ity underlines the relevancy and usefulness of the topicamong scientific and engineering domains.This section contains a literature survey that revealssome general patterns that could guide any co-simulationuser to include an optimization process in a complex sys-

tem representation. Articles provide a description of theimplementation used for the application, without any con-cern of reuse, or any guidelines for someone wanting toredo the same kind of work in another domain or context.However, among the papers, few are related to generalcontributions to co-simulation architectures coupled withoptimization tools. In subsection 2.1, we describe the twoarticles found that have a general architecture proposalfor the problem. Section 2.2 presents the different waysthat parameter variation is managed in the optimizationprocess. Section 3.5 presents some examples of optimiza-tion methods used in the literature. Finally, Section 2.4discusses all the patterns found in the optimization of co-simulations that can be generalized and reused.
2.1. Frameworks

Figure 1. Robotic systems co-simulation framework, adapted from (Ahmedet al., 2010).

A Framework is a form of software that promotes thereuse of architectures within a defined application domain(Pasetti, 2002). In the literature can be found 2 examplesof frameworks within the domain of this research, whichare described as follows:
• A framework proposed to help design and test roboticsystems using co-simulation is proposed by Ahmedet al. (2010). The architecture connects the co-simulation sub-systems (coupled simulations) with theoptimization tool (in this case MATLAB/SIMULINK) asshown in Figure 1. The framework implements a loop-based communication between the co-simulation andthe algorithm that allows sending feedback informa-tion from the co-simulation to the optimization tooland then commands to the co-simulation to carry outthe scenario executions.• The COSMO methodology is proposed in a domain-specific cluster of mobility scenarios (Zhao and Ioan-nou, 2019). This is a layer-based methodology to con-nect the different components that a co-simulation in-tegration with optimization could present. As shownin Figure 2 the general structure proposes an upstreamand downstream information flow between several lay-ers, this communication handles the transition be-tween the levels of abstraction of the problem. The
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bottom part is the most tangible and concrete of thelayers, containing physical systems in place, and at theother end, at the top of the layers is the most abstractone with the optimization algorithm. This hierarchy re-quires that the intermediate layers work as interpretersof information in a staggered manner.

Figure 2. COSMO methodology, adapted from (Zhao and Ioannou, 2019).

These 2 frameworks show the importance of the bidirec-tional communication between the co-simulation and theoptimization algorithm as the two main elements presentin the architecture. The communication is generally con-cerned with providing co-simulation feedback to the opti-mization algorithm and then passing back instructions asa response to the feedback. The feedback part is presentas co-simulation output data and the commands as newsetups of the parameters or modifications to the initialstate of the co-simulation.
2.2. Setup configuration in co-simulations
In simulation-based optimization, there are two elementsalways present that model the optimization process: thesetup parameters and the outputs of the simulation model.In the case of co-simulation-based optimization, the com-position of several simulations offers the opportunity ofextending these elements in the process of optimization.
2.2.1. Parameter variationThe first element is the parameter variation which is usedin the same way as simulation-based optimization. A gen-eral view of a co-simulation structure is shown in Figure 3where a multi-model X has some sub-models A,B,C cou-pled between each other. A part of the optimization processis the variation of some parameters that are set at the be-ginning of the execution, these parameters can be a mixof one or several of the sub-models. This means that theco-simulation architecture must have the capability to

determine a setup configuration changing one or severalparameters located in one or several of the sub-models.

Figure 3. General co-simulation structure.

2.2.2. Output valuesThe second element is the outputs of the co-simulationsthat will be used as performance indicators to describe theobjective function to be optimized. There are two possiblescenarios for the use of outputs on optimization methods:
• The objective function of the optimization is the rawvalues of one of the outputs, in these cases, the opti-mization algorithm can be directly connected to theco-simulation. For example in the context of Figure 3,it could be executed as an optimization with an objectivefunction defined asmin(f(x)) = outc.• The objective function is a combination of several out-puts, for this case, there is a necessity for an interme-diate step to interpret the raw information and passfeedback suitable for the optimization algorithm. Thiswas handled by the framework on mobility (COSMOmethodology) by using intermediate elements thatmade the calculations necessary (Zhao and Ioannou,2019).

2.3. Optimization methods in co-simulation
Another subject of interest for general architectures is thetype of optimization algorithms used in co-simulationproblems, in the literature, are many existing methodsand we can find some specific examples, such as:
• Simulation-based Optimization (Zitney, 2009; Ahmedet al., 2010; Schirrer and Kozek, 2008) where some fewcases are defined, simulated, and compared to deter-mine the optimal.• The stopping criterion method (Haodong et al., 2021)which is an iterated method that modifies the param-eters until the objective value variation is impercepti-ble or lower than a previously define a threshold, thismethod requires performance feedback to the algo-rithm in order to determine the marginal differencebetween each simulation.• Artificial intelligence search algorithms for explorationand optimization methods in co-simulations (Sun et al.,2021; Wang and Ma, 2018; Massat et al., 2014; Prabakar
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and Li, 2015; Hamiti et al., 2011), such as genetic algo-rithms and particle swarm algorithms, among others.• Exhaustive optimization (Ma et al., 2018; Mou and Shen,2017; Lu et al., 2019) where all the possible scenariosare run and the optimal parameters are found. Usually,exhaustive optimization is avoided due to the compu-tational cost of this concept, but in some cases withsome constraints, is possible to do a complete explo-ration of the parameters. This method is referred to asCo-optimization in some articles.• Gradient-based optimization uses constant feedbackto adjust the parameters in the right direction (Denget al., 2015; Tuli et al., 2021).

2.4. Discussion
Despite the availability of framework proposals, one of themain drawbacks of the applied examples is the absence ofa multi-disciplinary architecture. The most challengingaspect of this proposal is the generality of the idea, never-theless, there are some patterns in the literature that canbe included.As described in Section 2.1, the COSMO methodologyproposes a general structure to couple complex systemswith optimization algorithms in a formal structure includ-ing intermediate layers to handle the interpretation of in-formation for different levels of abstraction.The revision carried out in section 3.5 shows that thereis no preferred or dominant optimization algorithm thatcan cover all the fields using co-simulation, this poses arequirement for any general architecture proposal. Theframework needs to allow access to parameter setup andoutput feedback in order to support as many optimizationalgorithms as possible as well as an intermediate elementthat supports the interpretation of the output informationfor the algorithm.The proposal of a general framework for combiningco-simulation and optimization could unify the efforts ofthe research community toward the progress in the studyand manipulation of complex systems. This is an opportu-nity to propose a framework that will help users quicklyimplement optimization in co-simulation problems.
3. Software framework for co-simulation basedoptimization
In this section, we propose a software framework that in-corporates the patterns found in Section 2.4 as a generalarchitecture. This framework can guide users to imple-ment optimization into any co-simulation problem to beused for solving engineering problems through testingand validation of configurations of the complex system.
3.1. General architecture
In Figure 4 is presented the framework proposed to imple-ment optimization in co-simulations. It is structured in

a layer-based general disposition with downstream andupstream information flow. Each layer will be describedin this section, as well as the kind of information that ispast from module to module.

Figure 4. Software framework proposed.

3.1.1. Base Co-simulation LayerThe lower layer is composed of the initial co-simulationthat has to be optimized. In this layer, the multi-model isdefined as the representation of a complex system. Figure5 shows a general structure of a co-simulation, which hasas inputs the initial parameters setup and the output dataof the multi-model. This layer contains the multi-modelthat describes the simulated part of the system and cancontain Cyber-physical Sources (CPS).

Figure 5. Base co-simulation layer.

3.1.2. Analysis layerThe middle layer will be the intermediary between thebase-co-simulation layer (i.e. the raw output data of the co-simulation) and the high-level decisions over the model.As discussed in section 2.4, there is a necessity for an in-terpretation of the results of the co-simulation which isoften represented as an objective function, but in generalis an interpretation of the behavior of the model in a quan-titative manner. In Figure 6, the outputs enter the analysislayer in order to produce an indicator of the co-simulationthat will summarise the performance of the model.
3.1.3. Optimization layerThe optimization layer contains the optimization algo-rithm to be used, which depends on the necessities andcharacteristics of the problem. As mentioned in Section



Vega and Chevrier | 

Figure 6. Analysis layer connected with base co-simulation.

3.5 there are many methods of optimization used in co-simulations, this demands an architecture that supportsall kinds of algorithms, providing feedback channels andcontinuous performance reports interpreted by the Analy-sis layer.As seen in Figure 7, this layer will provide the param-eters setup of the base co-simulation depending on theoptimization algorithm policies. Additionally, this layerreceives the indicators of the co-simulations to make deci-sions and has the capacity to decide when the optimizationprocess is finished, giving as a response the optimal valueaccording to the optimization method.

Figure 7. Optimization layer connected with the other layers.

3.2. Implementations with MECSYCO
In this section, the implementation of the architectureproposed previously is implemented in an existing co-simulation software to then propose some study cases. Theobjective is to use these study cases to test different config-urations and possible changes that eventually could lead toimprovement proposals, this will be done with optimiza-tion algorithms.
3.2.1. Co-simulation softwareMECSYCOA software capable of implementing the proposed frame-work needs to have compatibility with the modular andbidirectional communication bases of the proposal. Thesoftware MECSYCO is presented due to its rigorous ap-proach to co-simulation, using a formalization of theAgents and Artifacts paradigm in DEVS (Discrete EventSystem Specification) as a pivotal formalism (Camus et al.,2018). This conception allows the integration of hetero-geneous formalisms within one global multi-model, thisadvantage can be extended to the multiple-layer structure

where each layer can belong to a different domain but needto communicate constantly. Another principle that can beexploited is the idea of a DEVS wrapping for each elementin order to easily handle the execution and communicationof the coupled layers using the DEVS simulation protocol(Camus et al., 2018).The software implementation is translated into DEVS-wrapped sub-models added to the co-simulation that willact as the Analysis and optimization layers shown in Figure4. This means that using the already existing tools for thecreation of sub-models in MECSYCO is possible to createeach layer and establish the information flows required,as well as the execution logic that allows trying severalscenarios until an optimal value is found. This softwarealso uses DSL (Domain Specific Languages) to facilitatethe programming of models for the user. The functionalimplementation of the framework is available through thepublic repositories available at http://www.mecsyco.com/.
3.3. First study case: house thermal control
In order to understand the way this framework will work,a study case is carried out where the idea is to use the toolsof abstraction and definition present in the framework tostructure and execute an optimization process. The firststudy case is a House’s Air conditioning control problem,that is, a co-simulation that represents the interactionsbetween a house, the outside temperature (weather), andan air conditioning system. This complex system is ab-stracted in a co-simulation that aims to optimize energyconsumption and the occupants’ comfort.
3.3.1. Base Co-simulationAs shown in Figure 8, the multi-model contains 4 inter-connected systems which represent all the systems in-volved in the thermal regulation problem. Each system isdescribed as follows:

Figure 8. Study case 1: Framework application on house air conditioningco-simulation.

• The weather model is a CSV file generated using the
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Open Weather Map API to collect data on the tempera-ture weather of Nancy, France (data-set from December13th to 19th, 2021), this is a Cyber-physical source as itis a direct link to the physical environment of the city.• The house is a model that consists of 3 rooms, each roomhas different coefficients of outside temperature absorp-tion and artificial heating power (controlled by an A/Csystem). This house model comes from the BuildSysPro/MODELICA library (state-of-the-art dedicated ther-mal library) (Plessis et al., 2014; Junghanns et al., 2021).• The air conditioner controller is a Java-based model ar-tifact that will take the decisions of turning on or offthe acclimatization system based on the logic flow rep-resented in Figure 9. The internal temperature of thehouse and the occupancy will trigger a new decision de-pending on the interval of accepted temperature (tmin,
tmax). This decision will change the power the heatersystem uses in each room due to the energy required toheat up or cold down.• The occupancy is a report of the occupancy of a housein Nancy, France (data-set from December 13th to 19th,2021). This report actualizes the state of a house interms of the absence of occupants (0) or the presenceof one or more occupants (1).

Figure 9. Air conditioner controller logic flowchart.

3.3.2. IndicatorsThe first indicator is energy consumption, this is directlyrelated to the decisions of the air-conditioned system ofturning ON and OFF as well as the power (in Watts) thatis used in order to heat up or cool down the rooms. Thepower outputs will be accumulated to determine the over-

all energy use of the model, represented by the objectivefunctionmin f(x) = ∑
t |Pt|, where Pt represents the powerused in the timestamp t of the co-simulation.The second indicator is the Comfort of the occupant, forthe quantification of this thermal perception, the Ther-mal Comfort Standard ASHRAE 55 Comfort Zone (Olesenand Brager, 2004) will be used. This standard simplifiesthe many thermo-physical variables present in a thermalperception problem in order to determine a general goaltemperature for the 2 common seasons that require inter-nal temperature control in buildings. As the input weatherdata collected corresponds to the winter season of the year(December), the optimum temperature is 24.5°C with anacceptable range of 23-26°C. With this goal, Equation 1 isproposed as a second objective function. Where TOpt is theoptimal temperature and Tt is the temperature at moment

t of the co-simulation. Thus maintaining the minimiza-tion premise for the optimization objective.

min
∑
t

∣∣TOpt – Tt∣∣ (1)

3.4. Second study case: electrical network
The second study case is a network of Houses connectedto an energy supply and storage system, that is, a co-simulation that represents the interactions between 4houses and a smart storage system, using as an interme-diate a coupling operator to handle the internal communi-cation. This co-simulation is the result of a doctoral thesisregarding energy exchanges in microgrids done by Wiart(2023).
3.4.1. Base Co-simulationAs shown in Figure 10, the multi-model contains 3 mainsystems interconnected and described as follows:

Figure 10. Study case 2: Framework application on microgrid co-simulation.
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• Autonomous House: This component is by itself a com-plex system, as it is a multi-model involving a houseenergy consumption model, weather data, a smart en-ergy generation source composed of a wind turbine, andphotovoltaic cells.• The Smart Storage System is in charge of helping withthe energy supply process by storing the energy surplusand then supplying it in moments of high demand.• Coupling operator: Handles the equilibrium seekingin terms of energy for the system using a bidirectionalconstant communication between all the components,in this case, the balance of energy between the au-tonomous houses and the energy storage system.
3.4.2. IndicatorsThe indicator is the final state of charge (SoC), as thismodel is conceived as a self-balanced co-simulation, thereis no long-term objective function to optimize. Never-theless, the matter of the optimal energy capacity of thestorage system is relevant, as it would prevent oversizedstorage facilities. For the co-simulation scenario defined,the objective is to find the energy capacity that will haveat the end of the co-simulation the minimum remainingcharge in the storage system.
3.5. Optimization methods
The two optimization methods implemented in theMECSYCO framework are the basic simulation-based op-timization method and the gradient descent optimizationalgorithm. These methods are described as follows.
3.5.1. Simulation-based optimizationSimulation-based optimization refers to the parametricoptimization of an objective function, that is, the variationof some parameters to achieve an optimal value (Gosaviet al., 2015). In the case of the first study case, the defini-tion of some parameter values is done by extending theinterval of accepted temperature (Tmin,Tmax) and observ-ing the optimization results. The 10 simulation scenarioschosen for this experiment are shown in Table 1.

Case Tmin [º Celsius] Tmax [º Celsius]1 24.4 24.62 24.3 24.73 24.2 24.84 24.1 24.95 24.0 25.06 23.9 25.17 23.8 25.28 23.7 25.39 23.6 25.410 23.5 25.5
Table 1. Simulation scenarios for study case 1.

Regarding the second study case, the only parame-ter to be set is the maximum capacity of the batteryto be charged starting from the default value of the co-

simulation (280.000) and gradually reduced to approachthe optimal value, the scenarios are displayed in Table 2.
Case Charge capacity [W] Case Charge capacity [W]1 280000 11 2300002 275000 12 2250003 270000 13 2200004 265000 14 2150005 260000 15 2100006 255000 16 2050007 250000 17 2000008 245000 18 1950009 240000 19 19000010 235000 20 185000

Table 2. Simulation scenarios for study case 2.

3.5.2. Gradient descend
The gradient descent optimization algorithm is a methodto minimize an objective function by updating the param-eters using the gradient of the objective function, whichin this case depends on the results of the co-simulation(Ruder, 2017). The gradient descent algorithm allows toperform parametric optimization to more than 1 parame-ter, this makes the gradient updating process use partialderivatives in mathematical problems and partial execu-tions in simulation problems. For the application in thestudy cases, only an initial value of the parameters anda learning rate are necessary to launch the optimizationprocess, the values used for the study cases are shown inTable 3.

Study case Parameter Initial value Learning rate1 Tmin, Tmax 24.4, 24.6 0.32 Charge capacity 280000 0.001
Table 3. Gradient descend parameters.

4. Results and discussion
The results of the optimization process for each experi-ment done with MECSYCO to the study cases are presentedand analyzed in this section. The source code for the studycases and optimization algorithms are available in therepository Vega (2023).
4.1. Optimization results

Study case Optimization method Results Runtime[seconds]1 Simulation-based Figure 11 3.10256121 Gradient descend Figure 12 19.91217192 Simulation-based Figure 13 175.70245632 Gradient descend Figure 14 217.3359421
Table 4. Study cases results.
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Following the simulation scenarios defined in Section3.5 the results are presented as shown in Table 4. In Figure11 a Pareto graph compares the comfort with the consump-tion final values, the 10 cases show a non-linear behav-ior that gives a minimization result of Tmin = 24.4◦ and

Tmax = 24.6◦ which is the case 1.

Figure 11. Pareto graph of the scenarios on study case 1.

The next results concern the same study case, but withthe use of the Gradient descend algorithm, which in thiscase is a multi-parametric optimization, as 2 parametersare being variated at the same time a 3-dimension graphis presented in Figure 12 to show the different combina-tions of parameters (horizon axes) compare with the per-formance in terms of comfort (vertical axe). The resultsshow that the optimal minimization result is Tmin = 24.4◦

and Tmax = 24.6◦, this is the same result as the previousmethod but 13 iterations were executed.

Figure 12. Comfort results of the gradient descent algorithm for study case1.

The second study case results using the simulation-base optimization algorithm are shown in Figure 13 wherecan be seen that the optimal minimization value of charge

capacity was achieved in several of the cases, as can beseen, any value under 220.000 will give a complete use ofthe battery storage, for this reason, 8 of the simulationresults are redundant.

Figure 13. Simulation-based optimization results for study case 2.

For the second study case with the gradient descentalgorithm, Figure 14 shows a similar approximation to theresponse as the previous method, but it is done at a fasterrate, also after reaching the optimal point the algorithmrecognized the convergence and stopped the process.

Figure 14. Gradient-based optimization results for study case 2.

4.2. Discussion
The results obtained by the several experiments done,show the usual advantages of simulation-based optimiza-tion, that is, to show the impact of the parameter variationover the performance of the system which allows us totake decisions to improve it. The experiments also showthe advantages of using one general framework for sev-eral cases, such as the capacity of changing from one opti-
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mization method to another with only a few parametersto set. Also, these optimization algorithms are using thesame source code, which means that the layered approachallows the algorithms to be interchangeable with manyoptimization problems. In Figures 15 and 16, it is possibleto see that using the same file dedicated to simulation-based optimization, it is only required to change 6 lines ofcode and remove 2 lines to alternate between study caseapplications. For the gradient descent configuration file,it is required the modification of 6 lines and the removalof 1 line as shown in Figures 17 and 18. On one hand, thetransition between study cases depends only on settingthe corresponding parameters, while on the other hand,the transition between optimization methods requires adifferent dedicated configuration file for each optimiza-tion method, a generalization of the optimization methodparameters would simplify the process of optimizationeven more.

Figure 15. Simulation-based configuration in study case 1.

Figure 16. Simulation-based configuration in study case 2.

This general framework performance is expected to beof benefit to all co-simulation users in the optimizationimplementation process in any field of application. Par-ticularly, the co-simulation methodology is relevant formulti-disciplinary problems, where the communicationand global analysis of complex systems is the key to pro-posed improvements.

Figure 17. Gradient descent configuration in study case 1.

5. Conclusions
The contribution of this paper is a general architecturethat will be able to contain any co-simulation problem tothen connect an optimization process, this means that

Figure 18. Gradient descent configuration in study case 2.

the users will be able to exchange optimization methodsto explore and compare the many existing algorithms interms of performance and velocity. This architecture isimplemented in MECSYCO.
In this work, several examples of co-simulation-basedoptimization were used to build the bases of the frame-work as well as 2 study cases for testing the capabilities ofthe proposal. For future work, we are working on more ex-amples from different domains that will help validate themulti-disciplinary approach of the model as well as revealmore advantages of the framework, we plan to work onan Electric Car Co-simulation study case. Also, the imple-mentation of more optimization algorithms could revealmore requirements for the optimization layer.
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