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Simulation-based engineering has become a cornerstone when designing new systems or products. This approach is coupled with an optimization phase in which the result of the engineering is tailored to optimize different aspects of the design (sizing components, minimizing cost, etc.). In the case of complex systems, such as cyber-physical systems, their modeling and simulation calls for multi-domains expertise. As a consequence, a simulation-based approach that integrates different simulators is needed, this is called co-simulation. This article presents a framework situated in the co-simulation basis for implementing optimization, the objective is to sustain the robustness of the multi-disciplinary approach and benefit from the large variety of simulation-based optimization algorithms. This framework will be proposed based on existing applications in engineering as well as some study cases to show the benefits of reusing architectural patterns. The implementation allows users to change optimization methods and/or co-simulation elements with the modification of fewer than 10 lines of code.

Introduction

The growing product complexity in the industry is pushing the current design process to improve. The study of these complex systems relies on efficient multi-level comprehension that simultaneously ensures product specification [START_REF] Rüdenauer | Optimization of the development process of mobile machines using a standardized co-simulation[END_REF]. Furthermore, it is not enough to achieve an abstraction of the system, the idea is to be able to interact with the model as a stakeholder, this means having the opportunity to test, validate, alter, or generally understand the model before a full system deployment [START_REF] Graja | A comprehensive survey on modeling of cyber-physical systems[END_REF]. Currently, truly complex engineered systems that also involve Cyber-Physical Systems (CPS) are emerging [START_REF] Lee | Cyber physical systems: Design challenges[END_REF] and several fields of research have already shown interest and benefits from this kind of research, such as energy [START_REF] Bharati | A cosimulation-based hardware-in-the-loop architecture for validating power systems optimization with largescale grid models[END_REF], mobility [START_REF] Zhao | A co-simulation, optimization, control approach for traffic light control with truck priority[END_REF] and robotics [START_REF] Ahmed | A cosimulation framework for design, test and parameter optimization of robotic systems[END_REF].

Usually, the study of systems is done using modeling and simulation, which will provide an environment to understand and/or predict its behavior [START_REF] Ramat | Introduction à la simulation: principaux concepts[END_REF]. Also, the availability of a computational representation allows the generation of digital tests that otherwise would require the fabrication of potentially expensive or faulty prototypes. Nevertheless, with most complex systems, simulation architecture is not enough to represent the different detail levels and domains that can be present in a complex system. For this reason, co-simulation is presented as an approach to deal with the complexity [START_REF] Chavalarias | French roadmap for complex systems 2008-2009[END_REF]. Co-simulation is the composition of coupled simulations using synchronized computation tasks to achieve a global simulation [START_REF] Gomes | Co-simulation: State of the art[END_REF][START_REF] Schirrer | Co-simulation as effective method for flexible structure vibration control design validation and optimization[END_REF]. This architecture supports heterogeneous sub-models in terms of software or domains in order to maintain several levels of detail.

In 1997, the most significant emerging technology within the simulation field was optimization [START_REF] Fu | Simulation optimization[END_REF][START_REF] Law | Simulation modeling and analysis[END_REF], this is, the problem of finding a value that minimizes or maximizes some specific function among all possible values that satisfies some conditions or constraints given [START_REF] Boyd | Convex optimization[END_REF]. The interest in this combination occurred when many companies started to develop an orchestrator of simulations that could be able to schedule several system configurations so that eventually an optimal or near-optimal solution was obtained [START_REF] Law | Simulation-based optimization[END_REF]. Consequently, fields such as agriculture are profiting from the wide range of applicability of simulation-based optimization techniques in different domains and scales [START_REF] Plà-Aragonés | Handbook of operations research in agriculture and the agri-food industry[END_REF] as well as many widely different, albeit related, areas of operations research [START_REF] Gosavi | Simulation-based optimization[END_REF].

This paper is focused on making tangible the promising combination of co-simulation with optimization. Starting from the already-known benefits of the combination of optimization and simulation, and continuing with the exploration of new advantages that complex systems can bring to the table. For this reason, this article proposes a framework for the implementation of optimization in co-simulations. Alongside this proposal, the cosimulation software MECSYCO (Multi-agent Environment for Complex SYstem CO-simulation) is presented as a cosimulation tool where the framework is implemented.

The paper's organization is as follows. A review of the works relating to co-simulation and optimization is presented in Section 2 to understand the relevance and pertinence of this proposal, highlighting the emerging patterns that can help create a general framework. In Section 3 the framework proposed is described in detail as well as the study cases and the optimization algorithms implemented. In Section 4 the results of the study cases are presented and analyzed including a discussion regarding the contributions done and the challenges remaining. Finally, Section 5 contains the conclusions of the framework proposed.

Related work

The combined use of co-simulation and optimization is already present in the literature. In bibliographic databases, 64 publications are found linking these two concepts (search done in Web of Science, Scopus, and DBLP on November 2022 using the following equation: TITLE ( "co-simulation" AND optimization )). These articles contain different examples of optimization applied to a complex system abstraction, which in these cases is the definition of some constraints on the parameters of a model to explore and find an optimal behavior of a co-simulation [START_REF] Boyd | Convex optimization[END_REF]. The domains present in the search include city mobility cases [START_REF] Zhao | A co-simulation, optimization, control approach for traffic light control with truck priority[END_REF], mathematical science problems [START_REF] Sun | Optical optimization of ultrathin crystalline silicon solar cells by a co-simulation approach of fem and ga[END_REF][START_REF] Wang | Unidirectional coupler optimization of surface plasmon polaritons based on cosimulation of genetic algorithm and comsol[END_REF], among others. This multidisciplinary applicability underlines the relevancy and usefulness of the topic among scientific and engineering domains.

This section contains a literature survey that reveals some general patterns that could guide any co-simulation user to include an optimization process in a complex sys-tem representation. Articles provide a description of the implementation used for the application, without any concern of reuse, or any guidelines for someone wanting to redo the same kind of work in another domain or context. However, among the papers, few are related to general contributions to co-simulation architectures coupled with optimization tools. In subsection 2.1, we describe the two articles found that have a general architecture proposal for the problem. Section 2.2 presents the different ways that parameter variation is managed in the optimization process. Section 3.5 presents some examples of optimization methods used in the literature. Finally, Section 2.4 discusses all the patterns found in the optimization of cosimulations that can be generalized and reused.

Frameworks

Figure 1. Robotic systems co-simulation framework, adapted from [START_REF] Ahmed | A cosimulation framework for design, test and parameter optimization of robotic systems[END_REF].

A Framework is a form of software that promotes the reuse of architectures within a defined application domain [START_REF] Pasetti | Software frameworks and embedded control systems[END_REF]. In the literature can be found 2 examples of frameworks within the domain of this research, which are described as follows:

• A framework proposed to help design and test robotic systems using co-simulation is proposed by [START_REF] Ahmed | A cosimulation framework for design, test and parameter optimization of robotic systems[END_REF]. The architecture connects the cosimulation sub-systems (coupled simulations) with the optimization tool (in this case MATLAB/SIMULINK) as shown in Figure 1. The framework implements a loopbased communication between the co-simulation and the algorithm that allows sending feedback information from the co-simulation to the optimization tool and then commands to the co-simulation to carry out the scenario executions. • The COSMO methodology is proposed in a domainspecific cluster of mobility scenarios [START_REF] Zhao | A co-simulation, optimization, control approach for traffic light control with truck priority[END_REF]. This is a layer-based methodology to connect the different components that a co-simulation integration with optimization could present. As shown in Figure 2 the general structure proposes an upstream and downstream information flow between several layers, this communication handles the transition between the levels of abstraction of the problem. The bottom part is the most tangible and concrete of the layers, containing physical systems in place, and at the other end, at the top of the layers is the most abstract one with the optimization algorithm. This hierarchy requires that the intermediate layers work as interpreters of information in a staggered manner. These 2 frameworks show the importance of the bidirectional communication between the co-simulation and the optimization algorithm as the two main elements present in the architecture. The communication is generally concerned with providing co-simulation feedback to the optimization algorithm and then passing back instructions as a response to the feedback. The feedback part is present as co-simulation output data and the commands as new setups of the parameters or modifications to the initial state of the co-simulation.

Setup configuration in co-simulations

In simulation-based optimization, there are two elements always present that model the optimization process: the setup parameters and the outputs of the simulation model. In the case of co-simulation-based optimization, the composition of several simulations offers the opportunity of extending these elements in the process of optimization.

Parameter variation

The first element is the parameter variation which is used in the same way as simulation-based optimization. A general view of a co-simulation structure is shown in Figure 3 where a multi-model X has some sub-models A, B, C coupled between each other. A part of the optimization process is the variation of some parameters that are set at the beginning of the execution, these parameters can be a mix of one or several of the sub-models. This means that the co-simulation architecture must have the capability to determine a setup configuration changing one or several parameters located in one or several of the sub-models. 

Output values

The second element is the outputs of the co-simulations that will be used as performance indicators to describe the objective function to be optimized. There are two possible scenarios for the use of outputs on optimization methods:

• The objective function of the optimization is the raw values of one of the outputs, in these cases, the optimization algorithm can be directly connected to the co-simulation. For example in the context of Figure 3, it could be executed as an optimization with an objective function defined as min(f(x)) = outc. • The objective function is a combination of several outputs, for this case, there is a necessity for an intermediate step to interpret the raw information and pass feedback suitable for the optimization algorithm. This was handled by the framework on mobility (COSMO methodology) by using intermediate elements that made the calculations necessary [START_REF] Zhao | A co-simulation, optimization, control approach for traffic light control with truck priority[END_REF].

Optimization methods in co-simulation

Another subject of interest for general architectures is the type of optimization algorithms used in co-simulation problems, in the literature, are many existing methods and we can find some specific examples, such as:

• Simulation-based Optimization [START_REF] Zitney | Advanced co-simulation for computer-aided process design and optimization of fossil energy systems with carbon capture[END_REF][START_REF] Ahmed | A cosimulation framework for design, test and parameter optimization of robotic systems[END_REF][START_REF] Schirrer | Co-simulation as effective method for flexible structure vibration control design validation and optimization[END_REF] where some few cases are defined, simulated, and compared to determine the optimal. • The stopping criterion method [START_REF] Haodong | A cooling capacity distribution method for liquid cooling cycle based on co-simulation and optimization of amesim and modefrontier[END_REF] which is an iterated method that modifies the parameters until the objective value variation is imperceptible or lower than a previously define a threshold, this method requires performance feedback to the algorithm in order to determine the marginal difference between each simulation. • Artificial intelligence search algorithms for exploration and optimization methods in co-simulations [START_REF] Sun | Optical optimization of ultrathin crystalline silicon solar cells by a co-simulation approach of fem and ga[END_REF][START_REF] Wang | Unidirectional coupler optimization of surface plasmon polaritons based on cosimulation of genetic algorithm and comsol[END_REF][START_REF] Massat | Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools[END_REF][START_REF] Prabakar | Proportional integral controller gain tuning using real time digital simulation models and multi-objective optimization based cosimulation[END_REF][START_REF] Hamiti | Weight optimisation of a surface mount permanent magnet synchronous motor using genetic algorithms and a combined electromagnetic-thermal co-simulation environment[END_REF], such as genetic algorithms and particle swarm algorithms, among others. • Exhaustive optimization [START_REF] Ma | A cosimulation method of power amplifier for reliability optimization[END_REF][START_REF] Mou | Co-simulation and cooptimization strategy for active absorber with periodic structure[END_REF][START_REF] Lu | High power wireless power transfer efficiency and emi co-optimization based on fast fieldcircuit co-simulation[END_REF] where all the possible scenarios are run and the optimal parameters are found. Usually, exhaustive optimization is avoided due to the computational cost of this concept, but in some cases with some constraints, is possible to do a complete exploration of the parameters. This method is referred to as Co-optimization in some articles. • Gradient-based optimization uses constant feedback to adjust the parameters in the right direction [START_REF] Deng | Cosimulation of stabilization accuracy optimization of overhead weapon station[END_REF][START_REF] Tuli | Cosco: Container orchestration using co-simulation and gradient based optimization for fog computing environments[END_REF].

Discussion

Despite the availability of framework proposals, one of the main drawbacks of the applied examples is the absence of a multi-disciplinary architecture. The most challenging aspect of this proposal is the generality of the idea, nevertheless, there are some patterns in the literature that can be included.

As described in Section 2.1, the COSMO methodology proposes a general structure to couple complex systems with optimization algorithms in a formal structure including intermediate layers to handle the interpretation of information for different levels of abstraction.

The revision carried out in section 3.5 shows that there is no preferred or dominant optimization algorithm that can cover all the fields using co-simulation, this poses a requirement for any general architecture proposal. The framework needs to allow access to parameter setup and output feedback in order to support as many optimization algorithms as possible as well as an intermediate element that supports the interpretation of the output information for the algorithm.

The proposal of a general framework for combining co-simulation and optimization could unify the efforts of the research community toward the progress in the study and manipulation of complex systems. This is an opportunity to propose a framework that will help users quickly implement optimization in co-simulation problems.

Software framework for co-simulation based optimization

In this section, we propose a software framework that incorporates the patterns found in Section 2.4 as a general architecture. This framework can guide users to implement optimization into any co-simulation problem to be used for solving engineering problems through testing and validation of configurations of the complex system.

General architecture

In Figure 4 is presented the framework proposed to implement optimization in co-simulations. It is structured in a layer-based general disposition with downstream and upstream information flow. Each layer will be described in this section, as well as the kind of information that is past from module to module. 

Base Co-simulation Layer

The lower layer is composed of the initial co-simulation that has to be optimized. In this layer, the multi-model is defined as the representation of a complex system. Figure 5 shows a general structure of a co-simulation, which has as inputs the initial parameters setup and the output data of the multi-model. This layer contains the multi-model that describes the simulated part of the system and can contain Cyber-physical Sources (CPS). 

Analysis layer

The middle layer will be the intermediary between the base-co-simulation layer (i.e. the raw output data of the cosimulation) and the high-level decisions over the model. As discussed in section 2.4, there is a necessity for an interpretation of the results of the co-simulation which is often represented as an objective function, but in general is an interpretation of the behavior of the model in a quantitative manner. In Figure 6, the outputs enter the analysis layer in order to produce an indicator of the co-simulation that will summarise the performance of the model.

Optimization layer

The optimization layer contains the optimization algorithm to be used, which depends on the necessities and characteristics of the problem. As mentioned in Section 3.5 there are many methods of optimization used in cosimulations, this demands an architecture that supports all kinds of algorithms, providing feedback channels and continuous performance reports interpreted by the Analysis layer.

As seen in Figure 7, this layer will provide the parameters setup of the base co-simulation depending on the optimization algorithm policies. Additionally, this layer receives the indicators of the co-simulations to make decisions and has the capacity to decide when the optimization process is finished, giving as a response the optimal value according to the optimization method. 

Implementations with MECSYCO

In this section, the implementation of the architecture proposed previously is implemented in an existing cosimulation software to then propose some study cases. The objective is to use these study cases to test different configurations and possible changes that eventually could lead to improvement proposals, this will be done with optimization algorithms.

Co-simulation software MECSYCO

A software capable of implementing the proposed framework needs to have compatibility with the modular and bidirectional communication bases of the proposal. The software MECSYCO is presented due to its rigorous approach to co-simulation, using a formalization of the Agents and Artifacts paradigm in DEVS (Discrete Event System Specification) as a pivotal formalism [START_REF] Camus | Co-simulation of cyber-physical systems using a devs wrapping strategy in the mecsyco middleware[END_REF]. This conception allows the integration of heterogeneous formalisms within one global multi-model, this advantage can be extended to the multiple-layer structure where each layer can belong to a different domain but need to communicate constantly. Another principle that can be exploited is the idea of a DEVS wrapping for each element in order to easily handle the execution and communication of the coupled layers using the DEVS simulation protocol [START_REF] Camus | Co-simulation of cyber-physical systems using a devs wrapping strategy in the mecsyco middleware[END_REF].

The software implementation is translated into DEVSwrapped sub-models added to the co-simulation that will act as the Analysis and optimization layers shown in Figure 4. This means that using the already existing tools for the creation of sub-models in MECSYCO is possible to create each layer and establish the information flows required, as well as the execution logic that allows trying several scenarios until an optimal value is found. This software also uses DSL (Domain Specific Languages) to facilitate the programming of models for the user. The functional implementation of the framework is available through the public repositories available at http://www.mecsyco.com/.

First study case: house thermal control

In order to understand the way this framework will work, a study case is carried out where the idea is to use the tools of abstraction and definition present in the framework to structure and execute an optimization process. The first study case is a House's Air conditioning control problem, that is, a co-simulation that represents the interactions between a house, the outside temperature (weather), and an air conditioning system. This complex system is abstracted in a co-simulation that aims to optimize energy consumption and the occupants' comfort.

Base Co-simulation

As shown in Figure 8, the multi-model contains 4 interconnected systems which represent all the systems involved in the thermal regulation problem. Each system is described as follows: • The weather model is a CSV file generated using the Open Weather Map API to collect data on the temperature weather of Nancy, France (data-set from December 13 th to 19 th , 2021), this is a Cyber-physical source as it is a direct link to the physical environment of the city.

• The house is a model that consists of 3 rooms, each room has different coefficients of outside temperature absorption and artificial heating power (controlled by an A/C system). This house model comes from the BuildSysPro /MODELICA library (state-of-the-art dedicated thermal library) [START_REF] Plessis | Buildsyspro: a modelica library for modelling buildings and energy systems[END_REF][START_REF] Junghanns | The functional mock-up interface 3.0-new features enabling new applications[END_REF]). • The air conditioner controller is a Java-based model artifact that will take the decisions of turning on or off the acclimatization system based on the logic flow represented in Figure 9. The internal temperature of the house and the occupancy will trigger a new decision depending on the interval of accepted temperature (t min , tmax). This decision will change the power the heater system uses in each room due to the energy required to heat up or cold down. • The occupancy is a report of the occupancy of a house in Nancy, France (data-set from December 13 th to 19 th , 2021). This report actualizes the state of a house in terms of the absence of occupants (0) or the presence of one or more occupants (1). 

Indicators

The first indicator is energy consumption, this is directly related to the decisions of the air-conditioned system of turning ON and OFF as well as the power (in Watts) that is used in order to heat up or cool down the rooms. The power outputs will be accumulated to determine the over-all energy use of the model, represented by the objective function min f(x) = t | P t| , where P t represents the power used in the timestamp t of the co-simulation.

The second indicator is the Comfort of the occupant, for the quantification of this thermal perception, the Thermal Comfort Standard ASHRAE 55 Comfort Zone [START_REF] Olesen | A better way to predict comfort: The new ashrae standard 55-2004[END_REF]) will be used. This standard simplifies the many thermo-physical variables present in a thermal perception problem in order to determine a general goal temperature for the 2 common seasons that require internal temperature control in buildings. As the input weather data collected corresponds to the winter season of the year (December), the optimum temperature is 24.5°C with an acceptable range of 23-26°C. With this goal, Equation 1 is proposed as a second objective function. Where T Opt is the optimal temperature and T t is the temperature at moment t of the co-simulation. Thus maintaining the minimization premise for the optimization objective.

min t T Opt -T t
(1)

Second study case: electrical network

The second study case is a network of Houses connected to an energy supply and storage system, that is, a cosimulation that represents the interactions between 4 houses and a smart storage system, using as an intermediate a coupling operator to handle the internal communication. This co-simulation is the result of a doctoral thesis regarding energy exchanges in microgrids done by [START_REF] Wiart | Approche hierarchique de cosimulation pour l'etude des echanges d'energie des micro-reseaux[END_REF].

Base Co-simulation

As shown in Figure 10, the multi-model contains 3 main systems interconnected and described as follows: • Autonomous House: This component is by itself a complex system, as it is a multi-model involving a house energy consumption model, weather data, a smart energy generation source composed of a wind turbine, and photovoltaic cells. • The Smart Storage System is in charge of helping with the energy supply process by storing the energy surplus and then supplying it in moments of high demand. • Coupling operator: Handles the equilibrium seeking in terms of energy for the system using a bidirectional constant communication between all the components, in this case, the balance of energy between the autonomous houses and the energy storage system.

Indicators

The indicator is the final state of charge (SoC), as this model is conceived as a self-balanced co-simulation, there is no long-term objective function to optimize. Nevertheless, the matter of the optimal energy capacity of the storage system is relevant, as it would prevent oversized storage facilities. For the co-simulation scenario defined, the objective is to find the energy capacity that will have at the end of the co-simulation the minimum remaining charge in the storage system.

Optimization methods

The two optimization methods implemented in the MECSYCO framework are the basic simulation-based optimization method and the gradient descent optimization algorithm. These methods are described as follows.

Simulation-based optimization

Simulation-based optimization refers to the parametric optimization of an objective function, that is, the variation of some parameters to achieve an optimal value [START_REF] Gosavi | Simulation-based optimization[END_REF]. In the case of the first study case, the definition of some parameter values is done by extending the interval of accepted temperature (T min , Tmax) and observing the optimization results. The 10 simulation scenarios chosen for this experiment are shown in Table 1. Regarding the second study case, the only parameter to be set is the maximum capacity of the battery to be charged starting from the default value of the co-simulation (280.000) and gradually reduced to approach the optimal value, the scenarios are displayed in Table 2. 

Gradient descend

The gradient descent optimization algorithm is a method to minimize an objective function by updating the parameters using the gradient of the objective function, which in this case depends on the results of the co-simulation [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF]. The gradient descent algorithm allows to perform parametric optimization to more than 1 parameter, this makes the gradient updating process use partial derivatives in mathematical problems and partial executions in simulation problems. For the application in the study cases, only an initial value of the parameters and a learning rate are necessary to launch the optimization process, the values used for the study cases are shown in Table 3. 

Results and discussion

The results of the optimization process for each experiment done with MECSYCO to the study cases are presented and analyzed in this section. The source code for the study cases and optimization algorithms are available in the repository Vega (2023). Following the simulation scenarios defined in Section 3.5 the results are presented as shown in Table 4. In Figure 11 a Pareto graph compares the comfort with the consumption final values, the 10 cases show a non-linear behavior that gives a minimization result of T min = 24.4 • and Tmax = 24.6 • which is the case 1. The next results concern the same study case, but with the use of the Gradient descend algorithm, which in this case is a multi-parametric optimization, as 2 parameters are being variated at the same time a 3-dimension graph is presented in Figure 12 to show the different combinations of parameters (horizon axes) compare with the performance in terms of comfort (vertical axe). The results show that the optimal minimization result is T min = 24.4 • and Tmax = 24.6 • , this is the same result as the previous method but 13 iterations were executed. The second study case results using the simulationbase optimization algorithm are shown in Figure 13 where can be seen that the optimal minimization value of charge capacity was achieved in several of the cases, as can be seen, any value under 220.000 will give a complete use of the battery storage, for this reason, 8 of the simulation results are redundant. For the second study case with the gradient descent algorithm, Figure 14 shows a similar approximation to the response as the previous method, but it is done at a faster rate, also after reaching the optimal point the algorithm recognized the convergence and stopped the process. 

Optimization results

Study case

Discussion

The results obtained by the several experiments done, show the usual advantages of simulation-based optimization, that is, to show the impact of the parameter variation over the performance of the system which allows us to take decisions to improve it. The experiments also show the advantages of using one general framework for several cases, such as the capacity of changing from one opti-mization method to another with only a few parameters to set. Also, these optimization algorithms are using the same source code, which means that the layered approach allows the algorithms to be interchangeable with many optimization problems. In Figures 15 and16, it is possible to see that using the same file dedicated to simulationbased optimization, it is only required to change 6 lines of code and remove 2 lines to alternate between study case applications. For the gradient descent configuration file, it is required the modification of 6 lines and the removal of 1 line as shown in Figures 17 and18. On one hand, the transition between study cases depends only on setting the corresponding parameters, while on the other hand, the transition between optimization methods requires a different dedicated configuration file for each optimization method, a generalization of the optimization method parameters would simplify the process of optimization even more. This general framework performance is expected to be of benefit to all co-simulation users in the optimization implementation process in any field of application. Particularly, the co-simulation methodology is relevant for multi-disciplinary problems, where the communication and global analysis of complex systems is the key to proposed improvements. 

Conclusions

The contribution of this paper is a general architecture that will be able to contain any co-simulation problem to then connect an optimization process, this means that the users will be able to exchange optimization methods to explore and compare the many existing algorithms in terms of performance and velocity. This architecture is implemented in MECSYCO.

In this work, several examples of co-simulation-based optimization were used to build the bases of the framework as well as 2 study cases for testing the capabilities of the proposal. For future work, we are working on more examples from different domains that will help validate the multi-disciplinary approach of the model as well as reveal more advantages of the framework, we plan to work on an Electric Car Co-simulation study case. Also, the implementation of more optimization algorithms could reveal more requirements for the optimization layer.
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 12 Figure 12. Comfort results of the gradient descent algorithm for study case 1.
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 14 Figure 14. Gradient-based optimization results for study case 2.
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Figure 18 .

 18 Figure 18. Gradient descent configuration in study case 2.

Table 1 .

 1 Simulation scenarios for study case 1.

	Case	T min [º Celsius]	Tmax [º Celsius]
	1	24.4	24.6
	2	24.3	24.7
	3	24.2	24.8
	4	24.1	24.9
	5	24.0	25.0
	6	23.9	25.1
	7	23.8	25.2
	8	23.7	25.3
	9	23.6	25.4
	10	23.5	25.5

Table 2 .

 2 Simulation scenarios for study case 2.

	Case	Charge capacity [W]	Case	Charge capacity [W]
	1	280000	11	230000
	2	275000	12	225000
	3	270000	13	220000
	4	265000	14	215000
	5	260000	15	210000
	6	255000	16	205000
	7	250000	17	200000
	8	245000	18	195000
	9	240000	19	190000
	10	235000	20	185000

Table 3 .

 3 Gradient descend parameters.

	Study case	Parameter	Initial value	Learning rate
	1	T min , Tmax	24.4, 24.6	0.3
	2	Charge capacity	280000	0.001

Table 4 .

 4 Study cases results.

		Optimization method	Results	Runtime
				[seconds]
	1	Simulation-based	Figure 11	3.1025612
	1	Gradient descend	Figure 12	19.9121719
	2	Simulation-based	Figure 13	175.7024563
	2	Gradient descend	Figure 14	217.3359421