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INTRODUCTION

Pour certains physiciens, la philosophie de la physique n'a pas bonne image. De leur point de vue, « comprendre » le réel n'est en rien un enjeu de la physique. C'est une entreprise sans vraie portée, puisqu'il y a tant de choses que nous ne comprendrons jamais, à commencer par le pourquoi de l'existence d'un réel plutôt que le néant. C'est aussi une entreprise subjective, puisque ce qui est jugé éclairant par les uns ne l'est pas forcément pour les autres. C'est un divertissement trompeur, inutile, hors de propos. La seule chose qui compte, selon ce point de vue, c'est de construire des modèles donnant une description finement exacte du réel, c'est seulement cela qui est vérifiable, seulement cela qui a une valeur scientifique.

Certes, cette opinion est dans une certaine mesure soutenable, mais on peut aussi la trouver d'un nihilisme désespérant comme on peut croire qu'elle n'est qu'une position de repli. La physique, de cet autre point de vue, n'a pas vocation à être seulement un corpus dont les formules, quoique fonctionnant éventuellement à la perfection, ne sont en rien corollaires d'une quelconque « compréhension » du réel et n'ont de pertinence que par la magie d'un accident symbolique qu'il est vain de vouloir éclaircir.

Entre ces deux issues, nous choisirons en toute circonstance la seconde. Plus encore, nous faisons le pari que la physique commence par la philosophie, que cette dernière en est l'indispensable accoucheur, et que si on l'oublie, on a toutes les chances de se fourvoyer. Un exemple actuel assez saisissant illustrera ce thème. Il sera en effet démontré dans cet ouvrage, dans un cadre mathématique découlant d'un travail philosophique le plus serré possible sur les fondements des notions spatiotemporelles, qu'un univers plat, homogène, isotrope, obéissant au principe cosmologique, soumis aux plus simples lois du hasard, et -dernière mais non moindre caractéristique -stable, c'est-à-dire sans expansion ni contraction, engendre l'illusion qu'il est en expansion. Le phénomène se fait selon un formulaire qui coïncide avec l'observable et montre en particulier la même prétendue « accélération » de cette illusion d'expansion. On se trouve donc en face de deux explications possibles du décalage vers le rouge des spectres des corps lointains, celle de l'expansion réelle et celle de l'illusion d'optique. Elles ne peuvent pas être renvoyées dos à dos. La première repose sur une pratique où le bricolage et l'approximation sont des coutumes légitimes, où selon le problème qu'on a devant soi on rajoute au petit bonheur la chance dans la marmite des constantes cosmologiques et des énergies de diverses couleurs. Tandis que la deuxième, rivée à l'exigence de rigueur, parvient à une représentation exacte des mêmes apparences sans jamais avoir besoin d'introduire quelque artefact que ce soit.

La physique, cette science vouée à l'étude du réel, s'il en est, a tout au long de son histoire cultivé de nombreuses chimères, allant des sphères de cristal sur lesquelles étaient enchâssés les astres au phlogistique en passant par l'horreur du vide et bien d'autres. C'est que le réel, ce continent infiniment mystérieux, à jamais impossible à comprendre dans sa globalité, est cependant parcouru de sentiers, traversé de lignes de compréhension qui, lorsqu'on ne les voit pas, lorsqu'on ne les cherche pas avec toute la rigueur nécessaire, sont presque automatiquement remplacées par des entités métaphysiques hors de propos. Ainsi, tant qu'on ne comprend pas que c'est le même phénomène qui fait que la pomme tombe de l'arbre et que la Lune ne tombe pas sur la Terre, on ne peut que croire à l'existence de deux contextes différents, deux « réalités » différentes, celle d'en bas et celle d'en haut, et construire en conséquence un « réel » dont le premier plan est occupé par deux chimères appuyées l'une sur l'autre. Leur position centrale, cruciale dans le système du monde qu'elles génèrent les met alors en bonne posture pour se multiplier comme des lapins de Fibonacci. Chaque concept de la physique, en effet, devra être interprété, ou plutôt marié de force avec l'une et l'autre de ces deux chimères, ce qui ne manquera pas d'engendrer toute une tribu de licornes et d'escargots à treize pattes, dont les nécessaires croisements engendreront une jolie ménagerie de l'absurde.

Par bonheur, ou plutôt par malheur, un tel système, en inventant à chaque nouvelle difficulté des licornes adéquates, peut longtemps trouver des moyens de survie. Lorsque le système de Ptolémée arrive à bout de souffle par l'accumulation des discordances entre les trajectoires qu'il prévoit et celles qu'on observe, il se tire d'affaire en créant des chimères supplétives, les équants, ces mouvements circulaires de deuxième ordre ajoutés au mouvement circulaire premier de l'astre. Avec de telles méthodes, il peut sans doute se tirer d'affaire pendant très longtemps, offrant d'artefact d'ordre 𝑛 en artefact d'ordre 𝑛 + 1 une concordance avec le réel convergeant vers la perfection. Ce ne sont ni les mathématiques ni la physique qui ont révoqué les chimères du système de Ptolémée, mais bien la philosophie -la philosophie première et souveraine s'appuyant sur ces deux disciplines.

Des chimères, toutes les époques de la physique ont cultivé les leurs, et la nôtre, ou plutôt celle qui est aujourd'hui en train de s'achever, a rajouté les siennes au cortège. Nous interrogerons méthodiquement dans ce livre des candidats présumés pour ce rôle : l'espace, le temps, l'espace-temps envisagés comme ayant une réalité physique et non comme étant de simples grilles que notre intelligence construit et plaque sur le réel.

PREMIÈRE PARTIE : RÉELS IRRÉELS

La problématique du réel et de l'irréel dans les notions spatiotemporelles

-CHOSISME VERSUS NON-CHOSISME 1.-Mathématiques et comptes de fées 1.1.-Trois contes

Le même vertige inondé de terreur qui s'empare parfois de l'être humain devant le ciel étoilé devrait également le saisir lorsqu'il se penche sur ces nombres qu'on appelle « réels ».

Chacun d'eux -ou presque -a une écriture de longueur infinie, qui irait donc infiniment plus loin, si nous pouvions la dérouler tout droit dans l'espace, que les plus lointains corps célestes visibles. Je dis « presque » car il faut exclure les décimaux, dont l'écriture n'est pas infinie. Mais c'est un cas négligeable, puisqu'ils forment un ensemble de mesure nulle. En oubliant ce cas particulier, chacun de ces nombres, considéré comme un code, renferme en lui plus -infiniment plus -d'informations que ce qu'il faudrait pour encoder tout ce que l'humanité a jusqu'ici produit de numérisable, textes, images, musiques, films, etc. Cet encodage prendrait tellement peu de place, dans la suite illimitée des décimales, qu'il en resterait suffisamment pour encoder de la même manière tout ce que toutes les civilisations existant dans l'univers ont produit de numérisable, même si elles sont en nombre infini.

Le nombre 𝑥 qui encode toutes les productions culturelles de l'univers entier peut sans perte de généralité être choisi dans l'intervalle ]0, 1[. Il lui correspond donc, sur une règle à mesurer géométriquement parfaite, une unique graduation. Tout le savoir, au sens le plus large, de toutes les cultures de l'univers peut être codé par la position exacte de cette graduation sur cette règle.

Autre conte de fées, celui de l'entonnoir, tiré lui aussi du « répertoire populaire » de la géométrie. Cet objet est engendré par la rotation de l'arc d'hyperbole équilatère 𝑦 = 𝑓(𝑥) = 1 𝑥+1 pour 𝑥 ≥ 0 autour de l'axe des 𝑥. Sa surface est infinie, tandis que son volume est fini.

Il suffit donc d'y verser une quantité finie de peinture pour le remplir, et elle recouvrira néanmoins une surface infinie.

Autre exemple, tiré cette fois du répertoire savant de la géométrie, le paradoxe de Banach et Tarski 1 : on peut découper une boule en cinq parties qui, réassemblées convenablement, forment deux boules identiques à la première.

-Irréalité des réels

Un simple trait sur une règle réelle n'aura jamais l'infinie finesse qu'il a dans le conte de fées mathématique. Il aura au moins l'épaisseur d'un atome, environ un angström, soit 10 -10 mètres. Si la règle mesure un mètre, ce trait, loin de pouvoir potentiellement coder tout le savoir de toutes les cultures de l'univers, permettra au mieux de coder les dix chiffres d'un seul numéro de téléphone.

Semblablement, l'entonnoir, dont le diamètre tend vers zéro lorsque sa distance à l'ouverture tend vers l'infini, n'est pas constructible.

Dans le paradoxe de Banach et Tarski, le terme « morceau » est trompeur, qui évoque quelque chose d'analogue à ce que produit le bris d'un objet. Ce n'est en rien le cas. Les « morceaux » sont d'impensables dentelles, s'interpénétrant de partout, elles-mêmes réunions (en nombre infini non dénombrable) de dentelles tout aussi impensables sélectionnées grâce à l'axiome du choix, qui assure certes une existence mathématique à l'objet construit, mais ne va pas plus loin et ne donne aucune information quant à ce qu'il peut être. On ne sait pas ni ne saura jamais comment ces dentelles sont faites et même si on le savait, leur infinie finesse rendrait évidemment leur construction physique impossible. Le théorème de Banach et Tarski ne permet en aucune façon de multiplier les boules effectives comme il est écrit que Jésus l'a fait avec les pains.

Ces trois contes de fées, irréprochables sur le plan mathématique, sont construits sur la même ressource : l'infinie petitesse des points géométriques, ou, ce qui revient au même, l'infinie exactitude des nombres réels.

Ils nous montrent que les mathématiques, quoique maniées selon les règles de l'art, fabriquent aisément de l'irréel dès lors qu'elles utilisent le plein pouvoir qu'ont les nombres réels de plonger dans l'infiniment petit.

Il y a quelque chose d'un peu étrange, voire désespérant dans ce constat. Elles sont nées, avec l'arithmétique et la géométrie, du besoin et de la volonté d'approcher le réel de la manière la plus rigoureuse possible, elles ont à partir de là tracé leur chemin le plus droitement qui soit, élaguant impitoyablement tous les raisonnements douteux, et voilà qu'en dépit de ce parcours sans faille guidé par des intentions impeccables, elles se retrouvent capables de raconter des contes de fées -exactement le contraire de ce qu'elles s'assignaient à être.

-Irréalité de l'infiniment petit

Tant que les connaissances sur l'infiniment petit restent inexistantes, aucun problème n'apparaît. Il est tout naturel de croire que la propriété de divisibilité observée aux échelles macroscopique et microscopique perdure indéfiniment -et donc que l'infiniment petit est infiniment grand. C'est ce que fait par exemple Pascal dans sa célèbre méditation sur les deux infinisautre conte de fées.

Il est intéressant d'observer que le concept d'espace n'y apparaît pas : c'est le réel, l'objet concret qui est divisible à l'infini, le corps du ciron, partie par partie plus petite emboîtée dans la précédente, jusqu'à contenir un univers entier, lui aussi divisible à l'infini.

La preuve définitive de l'existence des atomes et plus généralement de l'aspect corpusculaire de l'infiniment petit devrait logiquement renverser ou écorner ce paradigme. Mais ce n'est pas le cas. La réalité présumée de l'infiniment petit indéfiniment divisible trouve des solutions de survie.

J'y vois diverses raisons :

-Le principe selon lequel la nature est écrite en langage mathématique est puissant. Il a donné maintes preuves de son efficacité ; et ces preuves invoquent toutes, ou presque, le calcul différentiel. En particulier la vitesse instantanée, l'accélération instantanée, concepts fondateurs de la physique moderne. Comment pourrait-on considérer que les variations infiniment petites de la grandeur « position » sont sans signification, alors même que leur émergence dans la théorisation du réel s'est avérée si féconde ?

-Sur le plan mathématique, il n'y a pas d'autre choix pertinent que celui des nombres réels. On peut certes construire des systèmes de nombres « refusant » de pouvoir tendre vers zéro, mais ils posent des problèmes insurmontables : perte de la notion de limite, de continuité, de dérivation, etc. Dès lors qu'on admet sans réserve que la nature est écrite en langage mathématique, on échappe difficilement à la conclusion que ces incontournables nombres réels doivent correspondre à quelque réalité.

-Si le seul instrument de mesure des longueurs était cet instrument premier qu'est la règle à mesurer, nous ne pourrions pas donner de sens à des longueurs inférieures à la taille d'un atome, mais on a découvert des instruments-relais fondés sur divers rayonnements et permettant d'extrapoler la géométrie au monde subatomique. On peut ainsi donner une signification à des longueurs considérablement plus petites que celle de l'atome, par exemple la taille du noyau. Cela renforce l'hypothèse d'une divisibilité à l'infini du réel. n'appartenaient pas au réel, certes, mais faisaient tout de même partie de son « adhérence ». Ce lien est rompu : ces objets théoriques ne peuvent plus être désignés par des suites convergentes d'objets effectifs. Ils sont définitivement trop petits pour pouvoir être atteints d'une quelconque manière. Ils sont à jamais engloutis dans l'irréel. Cela pose problème car ils sont les objets logiques premiers de la physique : sans point ni instant local, on ne peut rien faire.

-On identifie l'espace, le temps ou l'espace-temps à des variétés affines ou différentielles. Mais les variétés sont séparables à l'infini tandis que les premiers ne le sont pas. Les variétés sont faites d'éléments sur lesquels on peut en théorie mettre le doigt, tandis que l'espace, le temps, l'espace-temps sont bordés du côté de l'infiniment petit par une région définitivement hors d'atteinte. L'espace, le temps, l'espace-temps effectifs ne peuvent donc pas coïncider avec les variétés affines ou différentielles auxquelles nous les identifions.

-On peut certes dire de ce défaut de coïncidence qu'il est tellement ténu qu'on peut presque toujours le négliger, et c'est certainement vrai dans bien des cas : 10 -35 mètres ou 10 -44 secondes, ce n'est vraiment pas grandchose. Il est cependant tout aussi vrai, du point de vue de la comptabilité mathématique, que le négligé est infiniment plus vaste que le non-négligé : l'infinité des décimales au regard d'une courte poignée d'entre elles. Le paradoxe de Pascal perdure, à ceci près que ce n'est plus dans le réel qu'il loge l'infiniment grand présent dans l'infiniment petit, mais dans l'irréel qu'engendre l'emploi des nombres réels. L'ennuyeux avec cet irréel-là, c'est qu'il est impossible à évacuer en raison de l'incontournable nécessité mathématique d'utiliser des nombres réels.

-Un point de vocabulaire

Les mots « relativiste » et « relativité » recouvrent un panel hétéroclite de significations. a) « Relativiste » au sens premier est le contraire de ce que nous qualifions de « chosiste ». Selon cette signification, les conceptions relativistes de l'espace et du temps considèrent ces entités comme n'ayant pas d'existence en elles-mêmes, mais étant seulement des constructions par lesquelles nous ordonnons le réel. b) Obéissant au principe de relativité. Dans une physique relativiste selon cette acception, tous les espaces galiléens sont essentiellement identiques, aucun n'est privilégié, et les lois de la physique sont les mêmes relativement à chacun d'entre eux. Une physique relativiste au sens a) ne l'est pas nécessairement au sens b) : tout en n'étant pas des choses, les différents espaces galiléens peuvent avoir des propriétés différentes selon leur situation par rapport au Ciel lointain. c) Conforme à la théorie de la relativité restreinte. Ainsi, le formulaire « relativiste » est le formulaire de la relativité restreinte. Le terme est doublement malencontreux :

-la relativité galiléenne, qui est relativiste aux sens a) et b), n'aboutit pas au même formulaire ;

-des théories non-relativistes (par exemple admettant un espace et un temps absolus identiques à ceux de Newton) peuvent avoir une cinématique lorentzienne et donc un formulaire largement (ou totalement) « relativiste ». d) Se dit de phénomènes ou de vitesses obéissant au formulaire « relativiste » au sens c) et caractérisés par des valeurs significativement différentes de celles que donnerait le formulaire de la relativité galiléenne. Si nous considérons la relativité restreinte comme une théorie géométrique et non comme une théorie physique, cet emploi du mot n'a pas lieu d'être car les effets « relativistes » existent alors même aux toutes petites vitesses.

Pour sortir de cette confusion, nous dirons -d'une théorie n'admettant pas la réalité physique du temps, de l'espace ou de l'espace-temps, et qui est donc relativiste au sens premier du mot, qu'elle est non-chosiste ;

-d'une théorie admettant la validité du principe de relativité, et qui est donc relativiste au deuxième sens du mot, qu'elle est relativiste :

-d'une théorie ayant un formulaire lorentzien, et qui est donc relativiste au troisième sens du mot, qu'elle est lorentzienne.

-Le cadre plat

Nous étudions la question de la réalité ou de l'irréalité des édifices spatiotemporels dans le cadre « plat », le « désert intergalactique », qui joue un rôle central dans la construction des notions d'espace et de temps. En effet, le cadre non plat, où les forces de gravitation modifient l'espace et le temps dans l'hypothèse chosiste, ou, dans l'hypothèse non-chosiste, le comportement des instruments au travers desquels nous les construisons, est partout singulier, sous la dépendance de conditions locales à chaque fois différentes. Si nous ne voulons pas voir la théorie de l'espace et du tempsla cinématique -éclatée en une infinité de théories de portée locale sans lien les unes avec les autres, il nous faut un cadre universel relativement auquel toutes ces occurrences locales pourront se construire dans leur différence avec lui, et ce cadre ne peut-être que le seul universel dont nous disposons, celui du désert intergalactique, qui est aussi celui de la relativité restreinte.

Le cadre plat, préalable à tous les autres, est aussi à la fois cas limite et cas particulier d'une théorie plus générale, exactement comme la relativité restreinte l'est devant la relativité générale. Il est donc logiquement déductible de cette théorie générale, et se trouve ainsi en position de garant logique relativement à elle : tout défaut de consistance d'une théorie du cadre plat grèverait la consistance de la théorie générale.

1.4 -Arguments immédiats en faveur de l'irréalité de l'espace, du temps ou de l'espace-temps -L'espace est une construction culturelle. C'est une notion tardive qui a commencé à se mettre en place avec Descartes et ses coordonnées cartésiennes. Ce premier avatar n'est qu'une commodité analytique, il ne fait pas partie de l'étoffe du monde.

Ce n'est que plus tard que Newton, analysant l'expérience de l'eau qui tourne dans un seau et se creuse en son centre, formulera la conclusion très discutable qu'elle prouve l'existence d'un mouvement absolu et donc d'un espace absolu.

L'espace (ou l'espace-temps) s'est ainsi inscrit dans le conscient et l'inconscient collectifs comme un nécessaire contenant et arrière-plan du monde, imaginé et ressenti avec une telle intensité qu'il nous est devenu difficile de comprendre comment l'Antiquité et les autres cultures ont pu l'ignorer et vivre dans un univers se contentant d'exister en lui-même, sans être contenu dans un espace ou un espace-temps.

-Est réelle la cause d'un phénomène réel. C'est ce principe que Newton applique quand il cherche une cause réelle au creusement réel de l'eau au centre du seau.

-Mais n'est pas réelle, en principe, la cause surabondante. C'est ce qu'on appelle le principe d'économie, de parcimonie, de minimalité ou encore le principe du rasoir d'Okham. Les corps célestes lointains, considérés depuis un point de l'univers, paraissent mutuellement « solidaires » et engendrent une sphère des fixes exactement en place pour assumer le rôle de cause du creusement, c'est donc à eux que devrait être attribuée une action exactement calée sur eux, et non à un éventuel espace newtonien.

Semblablement, le point de vue chosiste ne dispense pas d'avoir des instruments de géométrie et des horloges. Son panel de choses « réelles » contient l'espace-temps, des « objets » et des évènements, alors que pour une description aussi complète du réel le panel non-chosiste ne contient que les mêmes « objets » et évènements. De ce point de vue, l'espace-temps est surabondant et ne peut donc pas être réel.

-Est « réel » ce qui peut être atteint par l'expérience. Alors qu'une expérience sur un morceau de fer est une expérience sur un morceau de fer, une expérience sur l'espace, le temps ou l'espace-temps n'est jamais rien d'autre qu'une expérience sur des objets, des évènements, des instruments. Celui qui n'accepte pas la réalité des « édifices spatiotemporels » ne pourra y voir qu'une confirmation de son point de vue.

-Est suspect d'irréalité un point de vue ou une théorie affligé de contradictions internes. Ainsi la discordance entre l'infinie finesse des points et des instants théoriques et l'impossibilité de séparer leurs homologues concrets dès qu'ils sont suffisamment proches peut nous faire douter de la réalité des édifices spatiotemporels, tandis que s'ils ne sont que des grilles vides posées sur le réel avec les moyens qui sont les nôtres, l'embarras disparaît.

-Les sauts qualitatifs de la portée explicative témoignent d'une meilleure approche du réel. Newton, ramenant la chute des corps et le mouvement des astres à la même loi de gravitation universelle, dévoile un réel pas forcément définitif, mais en tout cas « plus réel » que le paradigme aristotélicien auquel il se substitue. Si nous croyons que le réel peut être non pas compréhensible dans son entier, ce serait une ambition folle, mais traversé par un réseau de lignes de compréhension, alors nous devons croire qu'un progrès dans le domaine de l'explicatif témoigne d'un progrès dans l'approche du réel. S'agissant de la réalité ou de l'irréalité des édifices spatiotemporels, nous allons voir la deuxième hypothèse apporter un gain explicatif sur plusieurs points.

-La propriété d'Euclide 1.5.1 -Le miracle euclidien

Prenons notre costume d'ermite du cosmos et partons installer notre laboratoire dans un désert intergalactique, là où nous postulons que la géométrie est universelle. Faisons alors une petite expérience : traçons un triangle, reportons ses angles sur un des sommets et évaluons l'angle ainsi obtenu.

Nous savons depuis Beltrami et Klein qu'il peut sans contradiction logique prendre une infinité de valeurs. L'une d'elles, toutefois, engendre une géométrie particulière, plus simple que les autres et indépendante de l'échelle à laquelle on considère le monde. Cette valeur, singulière pour cela, l'est également parce qu'elle « tombe juste » : c'est l'angle plat. Si elle est atteinte, la géométrie est euclidienne. Sinon, elle ne l'est pas.

Cette valeur n'est qu'un point isolé parmi l'infinité des possibles. Si on la tirait à la loterie, sa probabilité de sortir serait nulle. Et pourtant c'est elle qui a cours.

(Nous n'avons bien sûr pas les moyens d'aller faire nos expériences dans les déserts intergalactiques ou intersidéraux, mais nous avons les plus solides raisons de penser que la géométrie du cadre plat qui y règne est remarquablement euclidienne. La preuve en est que sur notre Terre, certes massive, mais pas au point de tordre significativement le cadre plat, on n'en utilise concrètement pas d'autre -même pour construire cet objet de très grande précision qu'est un télescope moderne.)

Les hasards trop miraculeux sont trop beaux pour être honnêtes. La propriété d'Euclide, vraie alors même qu'elle peut paraître infiniment improbable, n'est certainement pas accidentelle. Elle devrait donc pouvoir être expliquée.

Mais l'explication ne peut pas être là où elle ne peut se trouver. L'affirmation que l'espace n'a pas d'existence « en lui-même », qu'il n'est rien d'autre qu'une grille vide posée sur le réel, fait que lui attribuer quelque qualité intrinsèque que ce soit est un non-sens. Les « propriétés de l'espace » ne peuvent rien être d'autre que celle de la grille vide.

Cette grille est l'extension virtuelle illimitée d'un corps mémoforme au repos galiléen -c'est-à-dire un corps élastique dans un usage restreint, redevenant par hypothèse identique à lui-même d'une position de repos galiléen à une autre, cette identité étant celle définie par l'expérience de superposition durable. Si l'espace, donc, est euclidien, c'est parce que la matière mémoforme au repos galiléen l'est.

-Propriété d'Euclide et propriétés de la matière

Nous ne parlons pas ici de la matière effective, « réelle », celle qui a une odeur ou même des parfums et des arômes, voire des remugles, ni de celle qui s'encroûte de salpêtre ou suinte des huiles essentielles, ni de celle, purifiée, du chimiste, ni de celle du physicien, dépouillée de la plupart de ces attributs, mais conservant une masse, une densité, un état, solide, liquide, gazeux, plasmatique, etc., une pression, une température, des constantes d'élasticité, une conductivité, etc., etc. Nous parlons ici de la matière du géomètre, variante minimale de celle du physicien, ne conservant, dans cet ultime dépouillement, que -la solidité élastique : lors des expériences, les corps et les instruments ne subissent que des modifications temporaires qui ont disparu lorsqu'on commence une nouvelle expérience, -l'infinie divisibilité, impossible à éliminer si on veut disposer d'un objet utilisable en mathématiques, -l'homogénéité, -l'isotropie, -la continuité, -le caractère euclidien ou non-euclidien, et, si cette matière n'est pas euclidienne, un paramètre la caractérisant, sa courbure ou bien la taille d'une de ses figures simples, par exemple, si sa géométrie est hyperbolique, la longueur du côté d'un pentagone régulier à cinq angles droits.

La matière du géomètre construit des édifices mathématisables mais dont la pertinence s'évanouit à l'échelle subatomique. Tandis que la matière granulaire construirait, si elle le pouvait, des édifices pertinents, mais ne le peut pas, faute d'efficience mathématique. Ce qu'il nous faut faire, en la circonstance, est d'accrocher l'une à l'autre ces deux matières déficientes chacune à sa façon ; autrement dit exprimer dans la matière du géomètre les positions des atomes et en particulier celles de leurs centres, qui sont les noeuds géométriques d'un certain pavage, en général non régulier, et qui est à la fois générateur et témoin de la géométrie dont doit être munie la matière du géomètre.

La question de savoir quelle est la géométrie dont l'espace plat doit être muni est abordée sous les angles chosiste et non-chosiste de deux façons radicalement opposées.

Le point de vue chosiste, qui n'envisage l'univers que dans l'enveloppe ou devant l'arrière-plan de cette entité supposée réelle qu'il nomme « espace » ou « espace-temps », s'appuie sur le fait que les géométries noneuclidiennes se comportent localement comme l'euclidienne. Il en déduit que pour avoir une réponse il faut regarder au loin. Ce n'est d'ailleurs pas si facile, parce que plus on regarde loin, moins on voit. Et la réponse actuelle ressemble à celle qu'aurait pu donner la Pythie : «L'univers est suffisamment plat pour que la question de sa non-platitude ne soit pas tranchée". » .

Le point de vue non-chosiste, qui considère l'espace comme une entité sans réalité physique construite avec des copies imaginaires de la matière effective, va chercher la réponse dans une tout autre direction, celle de savoir quelle est la géométrie qui régit ces copies. C'est la même que celle de la matière effective, granuleuse, dont elles peuvent décalquer les mailles, et donc la même que celle de ses mailles.

Ainsi, tandis que le paradigme chosiste regarde vers l'infiniment grand pour essayer de déterminer quelle est la géométrie plate qui régit les déserts intergalactiques ou intersidéraux, le paradigme non-chosiste regarde vers l'infiniment petit, vers la façon dont la matière se construit en assemblant ses atomes. De ce point de vue, le monde à notre échelle, dont l'infinie petitesse au regard de l'immensité des étendues cosmiques expliquait que sa géométrie soit indiscernable de l'euclidienne, le monde à notre échelle n'est plus un infiniment petit devant la structure qui détient la clé du problème, mais un infiniment grand. Il hypertrophie donc l'éventuel caractère noneuclidien de la géométrie dont il est muni à l'échelle de l'infiniment petit.

Nous connaissons en théorie les structures géométriques qui pavent l'espace dans les géométries euclidienne ou non-euclidiennes. La somme des angles d'un triangle d'une taille donnée est spécifique à une géométrie donnée, et les pavages le sont donc aussi. Ainsi, en géométrie hyperbolique il existe un pavage régulier de l'espace par des dodécaèdres dont les faces pentagonales -et planes -ont toutes cinq angles droits, ce qui n'existe ni en géométrie euclidienne ni en géométrie elliptique. Inversement, en géométrie euclidienne, il existe un pavage régulier de l'espace par des cubes dont les faces ont toutes quatre angles droits, qui n'existe ni en géométrie hyperbolique ni en géométrie elliptique. Ces pavages sont nettement différents les uns des autres et engendrent des géométries qui doivent à notre échelle hypertrophier leurs différences. Or à notre échelle, « dans » notre espace quotidien, dont nous avons des raisons plus que solides de croire que sa géométrie est une excellente approximation de celle des déserts intergalactiques, nous ne voyons que des objets euclidiens. Et la cristallographie nous a permis de dresser la liste des structures cristallines, qui sont toutes, sans une seule exception, euclidiennes. Comme elles ne peuvent pas exister en géométrie noneuclidienne, cela prouve que la géométrie plate n'est pas non-euclidienne.

Est-elle pour autant exactement euclidienne, ou seulement approximativement euclidienne ? Si notre réponse à cette question repose uniquement sur des mesures d'angles et des longueurs, qui sont grevées d'incertitude, nous n'aurons jamais de réponse formelle, mais seulement des présomptions plus ou moins fortes.

Si en revanche, parce que pour faire de la géométrie il faut des axiomes, nous adoptons un point de vue axiomatique, et que nous acceptons les quatre premières demandes d'Euclide, aussi admirablement vraisemblables que peu contraignantes… Demande 1 : Par deux points distincts il passe une droite et une seule.

Demande 2 : Un segment peut être prolongé indéfiniment en un segment plus long. Demande 3 : Étant donné deux points distincts, il existe un cercle ayant le premier pour centre et passant par le deuxième.

Demande 4 : tous les angles droits (c'est-à-dire partageant un angle plat en deux angles égaux) sont égaux.

… alors, la géométrie plate est ou bien exactement euclidienne, ou bien exactement non-euclidienne, et comme nous savons qu'elle ne peut pas être non-euclidienne, elle est exactement euclidienne.

Petit détail, les quatre demandes d'Euclide ne s'appliquent pas à la géométrie elliptique, mais seulement à la géométrie euclidienne ou hyperbolique. Cela n'infirme pas le raisonnement puisque nous savons par l'examen des structures cristallines que la géométrie plate n'est de toute façon pas elliptique.

Le point de vue non chosiste permet de montrer que la géométrie du cadre plat n'est ni hyperbolique ni elliptique ; et que si on admet les quatre premiers postulats d'Euclide, alors elle est exactement euclidienne.

Bien évidemment, ce résultat n'infirme nullement l'indépendance logique du cinquième postulat par rapport aux quatre premiers. Les géométries non-euclidiennes ne sont en rien atteintes dans leur solidité. La démonstration qui vient d'être faite utilise deux leviers non mathématiques, l'inexistence en elles-mêmes des étendues spatiotemporelles et l'examen des structures cristallines effectives.

-Un essai d'explication

Si les structures euclidiennes peuvent être dilatées ou contractées en conservant leur architecture, puisque leurs angles restent inchangés, c'est chose impossible avec les pavages non-euclidiens, dont les angles sont modifiés par cette opération. Pour un même changement de taille des atomes sous l'effet d'un gain ou d'une perte d'énergie, les structures euclidiennes sont les moins déformées de toutes, c'est-à-dire celles dont les déformations consomment le moins d'énergie. Elles sont donc des points d'équilibre stable de la matière, par la même loi qui fait que l'eau dans un récipient, chaude ou froide, se stabilise à l'horizontale, c'est-à-dire au plus bas niveau d'énergie possible. Tandis que les structures non-euclidiennes, dont on peut penser qu'il se crée parfois quelques germes fugitifs, puisqu'aucun espace n'est là pour imposer son moule, sont des points d'équilibre instable.

On peut dire à peu près la même chose, mais sur un autre mode. Les structures non-euclidiennes sont des objets que leur architecture rend plus rigides que les euclidiennes pour ce qui est de la possibilité de se contracter ou de se dilater ; mais elles sont faites d'une matière élastique qui ne peut pas, à ce titre, produire des structures trop rigides. Leur existence, soumise à deux exigences contradictoires, n'est pas viable. Elle ne peut être que fugitive. Les seules structures cristallines pérennes sont par conséquent euclidiennes.

On explique aujourd'hui le caractère euclidien du cadre plat par l'expansion de l'univers. Mais celle-ci, nous le verrons, repose sur un argumentaire erroné.

-La tridimensionnalité de l'espace 1.6.1 -Un rapide survol de l'existant

De nombreux auteurs ont répondu -ou tenté de répondre -à ce problème. Graig Callender dans son article An Answer in Search of a Question: 'Proofs' of the Tri-Dimensionality of Space fait un intéressant survol critique de ces productions 4 . Je m'appuie sur son travail.

La première, semble-t-il, est donnée par Kant, qui observe dans son livre Pensées sur la véritable estimation des forces vives…, en 1746, que la tridimensionnalité de l'espace paraît dériver de la loi de la gravitation universelle inversement proportionnelle au carré de la distance.

Ehrenfest, en 1918, montre que les orbites planétaires ne peuvent être stables qu'en dimension trois [START_REF] Ehrenfest | In what way does it become manifest in the fundamental laws of physics that space has three dimensions?[END_REF] . Toute démonstration s'appuie sur des hypothèses et Ehrenfest fait celle que dans un espace de dimension 𝑛 la loi d'attraction universelle est en 1 𝑟 𝑛-1 ⁄ , propriété dérivée de la loi de Gauss. Quelque naturelle que cette loi puisse paraître -elle correspond à une influence gravitationnelle totale à la distance 𝑟 indépendante de 𝑟 et donc inversement proportionnelle à la « surface » d'une hypersphère ayant ce rayon -elle n'en a pas moins ses points de fragilité.

Elle légifère en effet la gravitation dans un univers où le nombre des dimensions géométriques est postulé différent de trois, c'est-à-dire un univers dans lequel nous n'avons non seulement jamais fait la moindre expérience, mais encore qui n'existe pas. Aussi, que savons-nous des lois de la physique qui y règneraient ? On répondra à cette objection qu'on prolonge à cet univers les lois qui règnent dans le nôtre, tridimensionnel, pour montrer qu'elles n'y sont pas viables, mais en l'occurrence le prolongement n'est pas univoque. En effet (c'est ce que montrent Burgbacher et al. à propos de l'atome d'hydrogène, mais leur raisonnement s'étend aux orbites planétaires [START_REF] Burgbacher | Is there a stable hydrogen atom in higher dimensions[END_REF] ), si l'on fait dériver la force d'attraction d'une énergie potentielle en -1 𝑟 ⁄ , que 𝑛 soit ou non égal à trois, les orbites sont stables. En dimension trois, les deux constructions reviennent au même, aussi pourquoi préférer l'une à l'autre ?

On peut s'interroger aussi sur la loi choisie : la force d'attraction universelle. Pourquoi elle ? Tient-elle -en dehors de l'aspect historiquele rôle central en physique qui devrait être celui d'une loi capable de déterminer la dimension de l'espace ? Le raisonnement fonctionne certes aussi avec l'atome d'hydrogène et l'interaction électromagnétique, mais pourquoi pas l'interaction forte ? L'argument de la stabilité des orbites planétaires ou de l'atome d'hydrogène n'est pas le seul à être employé. On trouve ainsi divers phénomènes dont les lois posent des contraintes sur le nombre de dimensions de l'espace : par exemple la diffraction des neutrons dans un cristal [START_REF] Caruso | On the Physical Problem of Spatial Dimensions: An Alternative Procedure to Stability Arguments[END_REF] , la bonne propagation des ondes électromagnétiques, le spectre de l'atome, la possibilité pour deux atomes ou molécules d'avoir une probabilité non nulle de se rencontrer quand chacun suit une trajectoire brownienne, et ainsi de constituer des polymères [START_REF] Dayantis | Pourquoi l'espace dans lequel nous vivons a trois dimensions et ne peut en avoir davantage ?[END_REF] .

Tous ces arguments ont une structure commune :

Le point fragile est évidemment le 2, celui de l'« extrapolation dimensionnelle ». Nous avons vu qu'elle n'est pas univoque lorsque l'objet est la matière considérée sous l'angle de la gravitation universelle. On peut craindre que ce ne soit pas un cas singulier, et que l'extrapolation dimensionnelle d'une loi soit souvent non-univoque.

Imaginons par exemple la propagation d'une onde plane. Le front de l'onde est un plan (P) auquel la direction 𝛿 de propagation est perpendiculaire.

Comment extrapoler cette situation à un espace de dimension par exemple quatre ? Est-ce la dimension de 𝛿 qui devient deux ou celle de (P) qui devient trois ? Les deux solutions sont a priori recevables, et dans un cas comme dans l'autre, nous n'aurons pas de difficulté à les mathématiser. Comment savoir quelle est la bonne ? Et n'est-on pas alors en train de s'interroger sur le sexe des anges, puisque de toute façon le cas n'existe pas ?

L'argument des trajectoires browniennes donné par Dayantis me semble échapper quelque peu à cette objection. Il y a certes extrapolation, et toute extrapolation peut être équivoque, mais en l'occurrence il faudrait y mettre plus de mauvaise foi qu'il n'est raisonnable : la loi considérée est celle d'un objet ponctuel suivant une trajectoire erratique dont les pas ont tous la même longueur, avec des directions successives tirées au hasard indépendamment des précédentes et uniformément dans l'ensemble (compact) des directions possibles. Si la dimension de l'espace est supérieure à trois, les dimensions (fractales) des trajectoires sont trop petites pour que deux objets aient une probabilité non nulle de se rencontrer, donc de de s'agréger pour former des polymères -et par conséquent d'engendrer la vie. La conclusion est donnée par l'argument anthropique : comme nous existons et que nous sommes vivants, c'est donc que la dimension de l'espace est trois.

Mais la démonstration, quoiqu'ingénieuse et instructive, ne fonctionne que si on suppose les objets, atomes ou molécules, infiniment ponctuels, alors que ce n'est en réalité pas le cas. Dès lors qu'on leur donne une taille non nulle ─ ce à quoi l'extrapolation dimensionnelle oblige ─ et donc un hypervolume non nul, une distribution aléatoire de ces objets à l'intérieur d'un hypercube fournit quelle que soit la dimension 𝑛 une probabilité non nulle que deux d'entre eux soient adjacents.

-Dimensionnalité de la matière étendue, dimensionnalité de l'espace, dimensionnalités externe et interne de l'atome

Aucune de ces tentatives d'explication n'est pleinement satisfaisante. La raison en est peut-être bien qu'elles sont cherchées là où elles ne peuvent pas être. Aucune, en effet, n'adopte le point de vue non-chosiste, qui commencerait par observer que l'« espace », n'ayant pas d'existence réelle, ne peut avoir en propre quelque dimension que ce soit. Il ne peut être tridimensionnel que par héritage. Et cet héritage ne peut lui venir que de ce qui l'engendre, la matière dont il est le prolongement virtuel.

La question de savoir pourquoi l'« espace » est tridimensionnel -ou bien pourquoi l' « espace-temps » est quadridimensionnel -est donc celle de savoir pourquoi la matière au repos galiléen est tridimensionnelle.

Mais la matière, encore une fois, est faite d'atomes, et si elle est tridimensionnelle, c'est que les atomes, lorsqu'ils s'assemblent, le font selon des structures de dimension trois.

Ce serait cependant aller trop vite en besogne que d'en déduire que ce sont des objets tridimensionnels. De la même façon qu'on peut paver un plan avec de minuscules boules tridimensionnelles et obtenir ainsi, à l'échelle macroscopique, une surface, on peut paver un espace euclidien tridimensionnel d''objets de taille infinitésimale et de dimension arbitraire, qui n'est même pas obligée d'être la même pour tous. Il suffit pour cela de tracer dans un espace euclidien de dimension 𝑛 un espace de dimension trois et de le paver.

La physique d'aujourd'hui semble avoir besoin de ces dimensions « repliées ». Ainsi la théorie (ou plutôt les théories) des cordes insèrent leurs particules dans des espaces à 10 ou 11 ou même 26 dimensions. Si nous pensons l'espace comme un « en soi », une « chose », elles entrent en scène à la façon d'un lapin jaillissant du chapeau d'un prestidigitateur. Alors que si nous le pensons comme n'ayant pas de réalité, leur apparition ne relève pas de l'exercice de magie. Si l'espace n'est pas une « chose », son seul domaine de validité certaine commence à l'échelle des assemblages d'atomes. En dessous, il peut être n'importe quoi.

Rien ne nous oblige donc à penser l'atome et plus généralement le monde subatomique comme enfermé dans un carcan tridimensionnel. Cela n'empêche pas que le seul regard concret possible pour nous sur lui soit nécessairement inséré dans le contexte tridimensionnel où nous sommes et où sont nos dispositifs expérimentaux.

Du coup, l'atome et le monde subatomique sont géométriquement ambivalents. Ils ont une géométrie externe, que nous atteignons depuis le contexte tridimensionnel via des instruments-relais, rayons de diverses natures avec lesquels nous extrapolons au monde subatomique la géométrie macroscopique, qui elle est construite sur cet instrument premier qu'est le corps mémoforme. Ce n'est évidemment pas sans résultat, toute la physique depuis la fin du dix-neuvième siècle en témoigne. Mais on peut penser aussi que cette extrapolation, même si elle est efficiente, même si nous n'avons pas d'autre moyen d'« entrer » dans l'atome, nous fournit un cadre grevé d'un certain manque de légitimité et qui installe un hiatus entre cette géométrie tridimensionnelle projetée et la géométrie interne, réelle du monde subatomique. L'émergence dans la pensée d'aujourd'hui des dimensions « repliées » semble confirmer ce point de vue, en même temps qu'elle accrédite la thèse de l'irréalité de l'espace.

Il semble donc que nous soyons à même de proposer une explication de la tridimensionnalité de l'espace assez différente de celles listées plus haut :

1) Ce n'est pas l'espace qui est tridimensionnel, mais la matière qui l'engendre.

2) Les atomes ne sont pas a priori des objets intrinsèquement tridimensionnels. On peut envisager de les considérer -soit comme étant de dimension intrinsèque 𝑛, dépendant peut-être de leur nature, -soit comme étant de dimension indéterminée, dans le cadre d'une géométrie moins contraignante que si sa dimension était fixée, mais cependant suffisante pour qu'on puisse y écrire les lois qui régissent leur comportement. Le paramètre « dimension » est assez secondaire en géométrie. Les notions d'alignement et de distance n'en dépendent pas. La seule différence, c'est que plus la dimension augmente, plus on peut tracer de figures différentes. Le système d'axiomes proposé plus loin dans le chapitre Une axiomatisation de la géométrie fondée sur l'instrument et l'expérience comporte 21 axiomes dont le dernier fixe la dimension de l'espace. En le supprimant, on obtient une axiomatisation d'un espace euclidien de dimension inconnue supérieure ou égale à 2.

3) Quoi qu'il en soit, le monde de l'atome est régi par une combinatoire de nombres quantiques qui déterminent la structure de son nuage électronique et en particulier celles de sa couche la plus externe. Cette combinatoire, en elle-même, n'offre pas de trace d'être attachée à une dimensionnalité plutôt qu'à une autre. Le nombre des boules de rayon 𝑅 qu'on peut placer autour d'une boule de même rayon, tangentes à elle, croît très rapidement avec la dimension de l'espace [START_REF] Mittelmann | High accuracy semidefinite programming bounds for kissing numbers[END_REF] . En dimension 5 il est déjà supérieur ou égal à 40, en dimension 4 il est égal à 24 : ces valeurs outrepassent les possibilités de la couche de valence des atomes déterminée par la combinatoire quantique. En dimension 2 ce nombre est 6, ce qui est au contraire insuffisant. Reste donc la valeur 3. L'hypothèse non-chosiste permet de donner au problème de la tridimensionnalité de l'espace une explication exempte du défaut d'extrapolation dimensionnelle. Elle justifie également l'existence de dimensions « repliées ».

-La contraction de Lorentz et le ralentissement des horloges en mouvement

Le moteur est ici encore le même : il est absurde d'attribuer à un espace et à un temps -ou à un espace-temps -qui n'aurait aucune réalité physique quelque action que ce soit sur les règles et les horloges en mouvement. L'explication de ces phénomènes lorentziens ne peut être cherchée que là où elle peut être, dans les propriétés de la matière.

On sait aujourd'hui -et on ignorait à l'époque où est née la théorie de la relativité restreinte -que l'atome peut être assimilé à un système vibratoire stable possédant une certaine étendue ; en ses divers points des variables physiques prennent des valeurs périodiques, qui sont d'un point à un autre synchronisées par des interactions électromagnétiques, autrement dit par de la lumière.

Soit (E 𝑖𝑠 ) un espace galiléen isotrope, c'est-à-dire considéré comme étant le même dans toutes les directions. Considérons un atome immobile dans cet espace. Il est parcouru en tous sens par des interactions électromagnétiques qui, en vertu de l'isotropie de (E 𝑖𝑠 ), vont toutes à la même vitesse, que nous appelons 𝐶. Les délais mis par la lumière pour parcourir des allers et retours ou des cycles fermés plus ou moins complexes entre les différents points singuliers, noeuds ou ventres, de son système ondulatoire font partie de son architecture rythmique, et sont donc en accord avec elle. 

𝑇 ′ = AB 𝐶 + 𝑣 + AB 𝐶 -𝑣 = 𝐶 𝑇 2 × 2 𝐶 𝐶 2 -𝑣 2 = 𝑇 1 - 𝑣 2 𝐶 2
Quand AB est perpendiculaire à 𝑣 ⃗, la durée objective 𝑇 ′′ du trajet vérifie, par le théorème de Pythagore, (𝐶

𝑇 ′′ 2 ) 2 = 𝐴𝐵 2 + (𝑣 𝑇 ′′ 2 ) 2 , d'où 𝑇 ′′2 = 4 (𝐶 𝑇 2 ) 2 𝐶 2 -𝑣 2 , soit 𝑇 ′′ = 𝑇 √ 1- 𝑣 2 𝐶 2
Quand AB fait avec 𝑣 un angle autre que 0 ou 𝜋 2

, le théorème de la valeur intermédiaire nous assure que la durée du cycle ABA prend toutes les valeurs possibles entre

𝑇 √ 1- 𝑣 2 𝐶 2 et 𝑇 1- 𝑣 2 𝐶 2 .
Ainsi, si les dimensions relatives à (E 𝑖𝑠 ) de l'atome restaient invariables quand change sa vitesse, les cycles électromagnétiques internes, qui sont nécessairement accordés les uns aux autres pour que puisse exister une structure rythmique stable, verraient leurs durées dispersées. Il ne conserverait pas son architecture et cesserait d'exister. Donc les dimensions de l'atome changent quand change sa vitesse. Ce changement de dimensions, outre qu'il permet la survie de l'atome, a pour conséquence que les durées des cycles effectués par la lumière sur son domaine changent elles aussi.

Les dimensions et le rythme de la matière relativement à un espace galiléen isotrope ne sont pas les mêmes lorsqu'elle est immobile ou bien en mouvement par rapport à cet espace.

On trouvera en annexe la démonstration du résultat suivant :

Le raccourcissement lorentzien des longueurs est exactement adéquat à ce que soit conservée à l'identique la structure ondulatoire de la matière au repos.

Cela nous permet de déterminer dans le cas général quelles sont les déformations de la matière en translation uniforme conservant la structure ondulatoire des atomes. La loi qui les régit obéit à une symétrie de rotation autour de toute droite colinéaire à la vitesse de translation, et est partout la même le long d'une telle droite. Cela ne laisse place le long d'elle qu'aux dilatations et aux contractions homogènes. Par symétrie de rotation, les plans perpendiculaires à cette droite sont globalement invariants. Puisque les allers-retours de lumière le long de ces plans doivent être accordés aux allers-retours de lumière le long des droites colinéaires à la vitesse de translation, les uns déterminent les autres et inversement. La valeur de la dilation-ou-contraction colinéairement à la vitesse de translation détermine donc au plus une solution au problème. Or l'homothétique d'une solution est une solution, et nous en connaissons une, la contraction de Lorentz. Ses homothétiques recouvrent l'ensemble des possibles pour les dilatations-oucontractions colinéairement à la vitesse de translation, et forment donc l'ensemble des solutions du problème.

Reste à déterminer, parmi tous ces homothétiques de la contraction de Lorentz qui conservent la structure ondulatoire de la matière, quel est le bon. L'expérience nous apprend que c'est la contraction de Lorentz elle-même.

On peut essayer d'en donner une explication. Le rééquilibrage qu'effectue la matière pour conserver sa structure ondulatoire se fait de la façon la plus économique possible. Or, lorsqu'un atome est en mouvement relativement à un espace isotrope, les tranches successives qu'on peut découper en lui perpendiculairement à sa vitesse n'ont pas à être modifiées dans leur étendue transversale pour conserver leur architecture ondulatoire. Le rééquilibrage se limite donc à des modifications axiales.

Ce qui vaut pour un atome vaut pour tout bloc de matière et pour toutes les particules assimilables à des systèmes périodiques ayant une certaine étendue et dont la synchronisation interne se fait à la vitesse de la lumière.

L'hypothèse non-chosiste, en ramenant les propriétés de l'espacetemps à celles de la matière, explique la contraction de Lorentz et le ralentissement du rythme de la matière en mouvement.

-L'invariance de la vitesse de la lumière

Si l'espace galiléen de référence est l'espace isotrope (E 𝑖𝑠 ), la lumière respecte cette isotropie et a donc la même vitesse relativement à lui dans toutes les directions. Soit (E) un autre espace galiléen, allant à la vitesse 𝑣 ⃗ relativement à (E 𝑖𝑠 ). Soit (B) une boule intrinsèquement de rayon 𝑅 et de centre O, immobile dans (E), intrinsèquement parfaite en ce sens que chacun de ses rayons a la même longueur qu'un alignement de 𝑁 atomes identiques. Elle est aplatie lorsqu'on la considère depuis (E 𝑖𝑠 ). Mais quand on la considère depuis (E), qui est engendré par de la matière mémoforme virtuelle allant à la vitesse 𝑣 ⃗ relativement à (E), et dont les instruments de géométrie, immobiles relativement à lui, sont contractés dans le même rapport et dans la même direction, elle est une boule géométriquement parfaite. Pour tout point M à sa surface, les cycles de lumière OMO ont la même durée, et si nous munissons (E) de la simultanéité-lumière, qui attribue la même durée aux trajets OM et MO, la vitesse de la lumière relativement à (E) est la même dans toutes les directions.

On la calcule facilement le long d'un aller-retour perpendiculaire à 𝑣 ⃗ dans (E). Sa longueur relative à (E 𝑖𝑠 ) est

2𝑅 √ 1- 𝑣 2 𝐶 2 , sa durée relative à (E 𝑖𝑠 )est 2𝑅 𝐶 √ 1- 𝑣 2 𝐶 2
; comme les horloges de (E), fondées sur le rythme de la matière, battent

1 √ 1- 𝑣 2 𝐶 2
fois plus lentement que celles de (E), la durée relative à (E) de cet aller-retour de longueur 2𝑅 dans (E) est 2𝑅 𝐶 . L'hypothèse non-chosiste explique l'invariance de la vitesse de lumière.

-L'impossibilité de dépasser la vitesse de la lumière

Appelons « lorentzien » un objet identifiable à un système vibratoire stable où les valeurs locales de certaines variables sont liées via des interactions allant à la vitesse de la lumière à celles prises en d'autres lieux. Tel est le cas des atomes, mais comme d'autres particules manifestent ce même ralentissement qu'eux, nous n'avons pas de raison de croire que la catégorie des objets ainsi structurés se limite à eux.

Considérons un objet lorentzien (O) en mouvement relativement à (E0), et A et B deux de ses lieux en lesquels battent de telles variables synchronisées. Il faut bien alors, pour que (O) conserve sa structure vibratoire et puisse continuer d'exister, que la lumière partie de A puisse atteindre B, et inversement, ce qui n'est possible que si les vitesses de ces points dans (E0) sont inférieures à celle de la lumière.

L'hypothèse non-chosiste explique l'impossibilité pour la matière en mouvement de dépasser la vitesse de la lumière.

Cette impossibilité est fondée -encore une fois -sur des considérations bien différentes de celles que stipule la relativité restreinte Elle découle en effet des propriétés de la matière, tandis que la relativité restreinte en fait une propriété de l'espace-temps. Elle ne concerne que les objets lorentziens, et il se pourrait qu'il existe des objets non lorentziens pouvant aller plus vite que la lumière, tandis qu'en relativité restreinte cette hypothèse contredirait le sens du lien causal.

-LE CIEL LOINTAIN EST-IL LE PLUS GRAND DES TROMPE-L'OEIL ?

-Le problème du degré zéro de rotation

L'hypothèse non-chosiste, quels que soient les arguments en sa faveur, semble se heurter à une difficulté. Puisqu'elle considère chaque espace comme strictement relatif à un corps qui l'engendre, elle munit l'univers d'un « fouillis » d'espaces auxquels rien d'absolu ne devrait pouvoir être accroché. Or tel n'est pas le cas puisqu'il existe un degré zéro universel -et donc absolu -de rotation.

Dans le cadre chosiste, l'existence de ce zéro ne soulève pas de difficulté puisque l'univers est pensé comme étant inséré « dans » l' « espace » ou l' « espace-temps » dont ce zéro est un des attributs. Mais le cadre non-chosiste, cet espace absolu disparaît et avec lui l'explication qu'il fournit. L'impossibilité d'en donner une ruinerait l'hypothèse hon-chosiste. Montrons que tel n'est pas le cas.

Le principe cosmologique assure que l'univers, considéré à une échelle suffisamment grande, est en tout lieu à peu près le même -homogène -, et d'autant mieux que l'échelle est grande. Nous en avons fait un usage implicite en affirmant que le désert intergalactique est un universel.

Puisqu'un tel univers est nonchosiste, il n'existe pas d'« espace » global a priori « dans » lequel il serait contenu.

Tout ce qui existe, ce sont des espaces particuliers que les différents corps engendrent par prolongement virtuel. Ce sont des grilles vides projetées sur le cosmos, indéfiniment prolongeables par la pensée et le calcul, selon les règles de la géométrie pertinente dans le contexte du cadre plat, la géométrie euclidienne.

Soit (O) un corps en O, engendrant un espace (E). Les vitesses des corps semblent dépendre lourdement du choix du corps (O), puisque le La loi de probabilité donnant la variation de la distance entre deux corps (A) et (B) en un laps de temps 𝜏 ne dépend que de la distance AB.

Il s'agit de la variation algébrique de la distance, positive quand cette variation est un éloignement, négative quand elle est un rapprochement. 

Soit O 0 = O, O

𝐷

est une constante universelle, positive si l'univers est en expansion, négative s'il est en contraction et nulle s'il est stable. Cette formule nous apprend que, dans le cadre de la cinématique galiléenne, lorsque la longueur d'un alignement de corps tend vers l'infini, sa variation relative au cours d'une unité de temps tend vers une certaine constante caractéristique de l'univers étudié. Il en est trivialement de même lorsque la cinématique est lorentzienne car les longueurs des alignements ne sont pas majorées tandis que les vitesses des corps le sont.

Dans un cas comme dans l'autre, les postulats d'homogénéité et d'isotrope font qu'étant donné deux corps (A) et (B) très éloignés l'un l'autre on peut toujours placer entre eux à tout instant avec une précision suffisante une graduation régulière.

Dans un univers non-chosiste obéissant au principe cosmologique, les variations relatives au cours d'une unité de temps de la distance séparant deux corps « infiniment » éloignés sont nulles. Il se crée donc une sphère des fixes. En particulier, puisque les corps « infiniment lointains » forment une sphère des fixes invariable et immobile dans notre espace galiléen de référence, la lumière venant d'eux jusqu'à nous y suit des droites de directions invariables : nous, qui ne sommes pas dans le fauteuil de Dieu, loin s'en faut, voyons néanmoins, avec quelques milliards d'années de retard, les corps « infiniment lointains » former un ensemble mutuellement solidaire.

-

Le paradigme non-chosiste permet d'expliquer l'existence d'une sphère des fixes et d'un degré zéro « absolu » de rotation. Ces deux absolus ne le sont donc qu'en apparence, et leur existence ne contredit pas l'hypothèse non-chosiste selon laquelle espace, temps, espace-temps ne sont pas réels, mais ne sont que des grilles que nous projetons sur le réel.

-Illusion d'expansion dans un univers non-chosiste stable

-Analyse qualitative

Dans un univers invariable obéissant au principe cosmologique et doté d'un espace-chose, les vitesses des corps sont en moyenne partout les mêmes relativement à cet espace-chose. Tandis que dans un univers non-chosiste invariable obéissant au même principe, où il n'y donc pas d'espace-chose, elles sont en moyenne partout les mêmes relativement aux corps de leur voisinage.

Dans le premier cas, les vitesses des corps lointains relativement à un espace galiléen donné sont majorées.

Dans le deuxième cas, semblablement à ce qui se produit lorsqu'on joue indéfiniment à pile ou face, les vitesses résultent d'un cumul où elles ne se compensent qu'imparfaitement. Le défaut de compensation est la vitesse de ces corps relativement à nous. Lorsque leur distance tend vers l'infini, ces vitesses arithmétiques, qu'elles soient celles de corps s'éloignant ou se rapprochant, tendent en probabilité vers l'infini si la cinématique est galiléenne, vers 𝐶 si elle est lorentzienne.

Cette différence a des effets suffisamment importants pour que nous donnions un nom au modèle d'univers concerné. En hommage à celui qui jusqu'au bûcher persista dans l'affirmation de ce qu'il croyait vrai, nous appellerons univers de Bruno un univers plat, infini, non-chosiste, obéissant au principe cosmologique, invariable et isotrope.

« Isotrope » signifie que parmi tous les points historicisés galiléens se croisant en un quelconque instant local il en existe un (et un seul) relativement auquel l'univers est « le même » dans toutes les directions.

En outre, nous attribuons à un univers de Bruno la propriété d'être aléatoire, en ce sens que les raisonnements faits en le supposant aléatoire, analogues par exemple à ceux qu'on peut faire avec un gaz, donnent des résultats pertinents.

Considérons, dans un univers de Bruno, un lieu O marqué par un corps au repos galiléen, tel que l'espace galiléen (E) qu'il engendre soit isotrope en O. À l'instant 𝑡 = 0 de la chronologie de cet espace, un corps céleste générique (K) se trouve en un point M à la distance 𝐷 de O. Ce qu'un observateur en O voit à cet instant de lui n'est pas ce qu'il est à cet instant, puisque la lumière ne se propage pas à vitesse infinie.

Supposons qu'il s'en rapproche. Alors, quand il a émis la lumière que l'observateur reçoit de lui à l'instant 0, il était en un point P de (E) probablement plus éloigné de O que M. Et l'angle solide sous lequel on le voit en P est probablement plus petit que celui qu'il offrirait s'il s'éloignait.

évidemment à faire, et n'est pas immédiat. Il doit notamment prendre en compte les angles solides sous lesquels on voit les corps.

Supposons au contraire que (K), à l'instant 0, s'éloigne de O. Alors l'image qu'en a l'observateur provient d'un point P de (E) en lequel le plus probable est encore qu'il se rapproche de O.

Plus précisément : en prenant pour espace galiléen de référence celui tangent au mouvement de (K) à l'instant 𝑡 = 0 et en faisant aller le temps à rebours, les circonstances particulières du trajet de (K) modifient vitesse, nulle à l'instant 𝑡 = 0, selon une loi de probabilité dont il est raisonnable de penser qu'elle a une symétrie sphérique, et dont l'espérance devrait par conséquent être nulle. La position « moyenne » de (K) à l'instant où on le voit devrait donc être celle qu'il aurait si son trajet était uniforme. Appelons-la encore P.

Dans l'hypothèse chosiste d'un espace absolu en arrière-plan du monde, en vertu du principe cosmologique, le cosmos serait partout statistiquement le même relativement à lui. Cet espace absolu ne serait pas fortuit relativement au cosmos, qui serait « construit » sur lui. Il serait donc isotrope ou quasi isotrope en chacun de ses lieux. Comme notre espace galiléen de référence (E) est isotrope, sa vitesse serait petite relativement à l'espace absolu.

Partout dans l'univers, les vitesses des corps relativement à l'espace de centre isotrope sont censées être plus ou moins ce qu'elles sont « chez nous », donc petites. Les corps lointains vont de même à petite vitesse relativement à leur espace de centre isotrope, qui irait à petite vitesse relativement à l'espace absolu, relativement auquel notre espace isotrope de référence (E) irait à petite vitesse. Les corps lointains iraient donc à petite vitesse relativement à (E). PM serait petit devant 𝐷, et le biais d'observation qui favorise les corps s'éloignant serait en conséquence petit. On verrait donc à toute distance 𝐷, dans cette hypothèse chosiste, sensiblement autant de corps s'éloignant que de corps se rapprochant.

Mais dans l'hypothèse non-chosiste où nous sommes, lorsque 𝐷 tend vers l'infini, les vitesses des corps à cet horizon, quelle que soit leur direction, tendent à devenir presque partout infiniment grandes si la cinématique est galiléenne, infiniment proches de 𝐶 si elle est lorentzienne. La distance MP est alors du même ordre de grandeur que la distance OM. Qu'ils s'éloignent ou se rapprochent, les corps actuellement en M et ayant une vitesse de même norme dans toutes les directions possibles sont, en vertu d'un théorème classique de géométrie, vus sur une même sphère centrée sur [OM). Ceux qui s'approchent aujourd'hui de nous sont vus considérablement plus loin que là où ils sont aujourd'hui, ceux qui s'éloignent considérablement plus près. Quoique les premiers soient plus nombreux dans le Ciel que les seconds, leur cohorte est défavorisée à notre regard.

-Ce phénomène augmente la taille apparente des corps qui s'éloignent et diminue celle de ceux qui se rapprochent. Il rend les premiers plus visibles que les deuxièmes.

-Les corps s'éloignant sont vus au travers d'une plus petite tranche d'univers, qui n'est pas parfaitement transparent (milieux interstellaire et intergalactique, et par endroits totalement opaque (planète, étoiles, …). Leur éclat en est moins affaibli que celui des corps qui se rapprochent.

-Les corps s'éloignant, étant vus plus près que ceux se rapprochant, ont plus de chances de les occulter que d'être occultés par eux. Un corps rouge cache plus de bleus qu'un bleu ne cache de rouges.

-Ces phénomènes sont d'autant plus intenses qu'on regarde loin. À la limite -nous le montrerons ci-dessous -on ne voit plus que des corps s'éloignant. L'univers semble en expansion, alors qu'il ne l'est pas.

-Fuite des corps lointains : le raisonnement « traditionnel », en apparence limpide, est erroné

Le raisonnement « traditionnel »par lequel on infère de la fuite observée des corps célestes lointains l'expansion de l'univers est le suivant : Supposons que l'univers soit stable dans le temps, et donc sans expansion ni contraction. Ce que nous voyons à la distance D de nous est l'image d'un passé qui s'est déroulé à l'instant -D/C. À cet instant, comme l'univers est stable, il y avait, à cette distance D, autant de corps s'éloignant de nous que de corps s'en rapprochant. Donc ce que nous voyons, quand nous regardons à la distance D, est composé pour moitié de corps qui s'éloignent, pour moitié de corps qui se rapprochent. Comme c'est vrai quelle que soit D, nous devons voir dans le Ciel autant de corps s'éloignant que de corps se rapprochant. Or tel n'est pas le cas, puisque nous voyons au contraire à tout horizon D suffisamment grand plus de corps s'éloignant que de corps se rapprochant. C'est donc que notre univers n'est pas stable, mais en expansion.

Pour éprouver ce raisonnement, considérons un modèle très simple d'univers, réduit à une droite sur laquelle les corps vont tous à la même vitesse 𝑣, dans un sens ou dans un autre. Ces deux familles sont faites de corps régulièrement espacés. (Que cet univers soit de dimension un n'interdit pas aux corps de se croiser, ni n'empêche de voir à travers eux.)

Dans un plan rapporté au repère (Ω, 𝑥, 𝑡), où 𝑥 est la variable d'espace et 𝑡 celle de temps, traçons les courbes représentant les mouvements des corps relativement à un lieu O de cet univers. Ce sont deux familles de droites parallèles et régulièrement espacées, de pentes

1 𝑣 et - 1 𝑣 .
Traçons aussi, en pointillés, le cône de lumière arrivant en O à l'instant 0. Il est formé de deux demi-droites issues de Ω, de pentes

1 𝐶 et - 1 𝐶
. Ses interssections avec les courbes précédentes montrent comment sont vus les corps célestes depuis O, à l'instant 0 : en rouge ceux qu'on voit s'éloignant, en bleu ceux qu'on voit se rapprochant.

On voit plus de corps s'éloigner que se rapprocher, alors même qu'ils sont exactement aussi nombreux à faire l'un que l'autre. Le raisonnement rapporté plus haut est donc incorrect.

Il renferme en fait un biais. Lorsque nous nous donnons une distance 𝐷, la probabilité pour qu'il existe un corps céleste à la distance 𝐷 de O est nulle. Ce qui doit être considéré, à un instant donné, ce ne sont pas les corps à la distance 𝐷 de O, mais ceux dont la distance à O est comprise entre 𝐷 et 𝐷 + 𝑑𝐷. Cet ensemble est bien formé d'autant de corps s'approchant que de corps s'éloignant. Cependant, quand on observe depuis O les corps compris entre ces deux distances, ce n'est pas à un ensemble de ce type qu'on a affaire, puisque ce qu'on voit à l'horizon 𝐷 + 𝑑𝐷 est plus ancien que ce qu'on voit à l'horizon 𝐷.

-Un essai de « monstration »

Nous nous plaçons donc dans un univers de Bruno, par définition stable.

Si un corps (K), actuellement en M, s'éloigne de O, alors nous postulons que l'image qu'en a actuellement l'observateur en O est issue d'un point dont la distance à O est inférieure à OM, ou en tout cas plus probablement inférieure que supérieure à OM.

Cette prémisse se ramène à son tour à celle-ci : dans un univers de Bruno, les variations de vitesse des corps célestes sont suffisamment peu importantes et se compensent en moyenne suffisamment bien pour que l'analyse faite en supposant uniformes leurs mouvements ait de la pertinence.

Une autre prémisse est que la vitesse de la lumière vaut partout 𝐶 relativement à (E), que ce soit dans les régions proches de O ou dans les régions lointaines. Ce n'est pas une évidence, et cette prémisse doit être comprise comme la précédente : elle doit être suffisamment vraie pour que l'analyse faite en la supposant parfaitement vraie soit pertinente.

Une troisième prémisse est que la lumière qui nous vient d'un corps lointain témoigne, par sa couleur, de la vitesse avec laquelle il s'éloigne ou se rapproche de nous.

Nous supposerons aussi que les corps célestes que nous considérons (des galaxies ou des amas de galaxies, pour fixer les idées) ont une durée de vie illimitée qui permet d'éliminer le cas où ils pourraient naître ou disparaître en cours d'expérience.

Nous n'utilisons ici aucun changement de référentiel. Aussi nous raisonnons ici dans un cadre cinématique qui peut être aussi bien galiléen que lorentzien. Dans ce dernier cas, nous « oublions » les éventuels corps lointains dont la vitesse relative à l'espace de référence (E) où nous sommes immobiles en O est supérieure à celle de la lumière. L'univers contient non seulement de la poussière, mais aussi de très nombreux corps opaques. Christopher Conselice 10 et al. ont montré que le nombre des galaxies de l'univers observable, auparavant estimé à 200 milliards, devait être multiplié par dix par l'ajout d'un très grand nombre de petites galaxies. Dans une section consacrée au paradoxe de Olbers, les auteurs montrent que le nombre des galaxies est tel que tout point du Ciel appartient presque sûrement à une galaxie lointaine.. Si tel est bien le cas, quand nous regardons le Ciel dans une direction donnée, les premiers corps que nous voyons sont presque tous en train de s'éloigner, et la réunion de ces corps s'éloignant forme, quand grandit la distance à laquelle nous regardons, un ensemble de plus en plus opaque qui nous nous empêche de voir les corps se rapprochant. Dès que la distance est suffisamment grande, nous n'en voyons plus aucun.

Ces raisonnements ne sont toutefois que des « monstrations », pas des démonstrations. Il est assez facile d'établir en en utilisant une simulation à la Monte-Carlo -c'est-à-dire reposant sur un grand nombre de tirages aléatoires -que les corps vus s'éloignant occupent une plus grande part du Ciel que ceux vus se rapprochant. Mais la question cruciale est celle des prémisses.

-Le remplacement des corps allant à des vitesses effectives non constantes par des corps allant à des vitesses uniformes devient de moins en moins pertinent lorsqu'il se fait sur de distances de plus en plus grandes.

-Nous avons raisonné en nous plaçant dans cadre global, dont le paradigme constructiviste nous oblige à nier la réalité « en lui-même » ; ce cadre doit être construit, et sa construction ne peut se faire que par recollement des cadres locaux -qui sont eux-mêmes à construire. Nous verrons que ces derniers doivent être les espaces galiléens isotropes locaux, dont le recollement est rendu difficile par le fait qu'ils dérivent les uns par rapport aux autres. Deux règles à mesurer ou deux horloges immobiles l'une relativement à l'autre ne vont pas à la même vitesse par rapport à leurs espaces isotropes locaux respectifs et n'ont donc pas le même comportement.

-Nous attribuons à la lumière une vitesse invariable C, mais c'est de même une chose que nous ne pouvons au point où nous en sommes faire que relativement aux espaces isotropes locaux .

Notre travail de réflexion sur les questions spatiotemporelle sous l'angle constructiviste ne fait que commencer, et nous avons de nombreux point à explorer avant de pouvoir approcher solidement ce problème. Retenons toutefois comme viatique pour la suite de notre parcours -que le paradigme constructiviste semble bien devoir s'ouvrir sur une tout autre compréhension du phénomène de la fuite de corps lointains que celle d'un univers en expansion ;

-et que ces prémisses du mouvement uniforme des corps et de l'invariance de la vitesse de la lumière dans un cadre global sont celles utilisées dans le raisonnement « traditionnel » « montrant » l'expansion de l'univers à partir de l'observation de l'éloignement des corps lointains. Cela nous donne une bonne raison de douter de la solidité de ce raisonnement puisqu'on peut avec les mêmes prémisses en faire un qui aboutit à de conclusions opposées.

Au terme de ce survol, nous concluons que l'hypothèse de la nonréalité de l'espace et du temps, autrement dit l'hypothèse non-chosiste, a suffisamment d'arguments en sa faveur pour que nous la fassions nôtre au moins dans cet ouvrage. Nous l'adopterons donc et, puisque les étendues spatiotemporelles sont alors des notions construites, nous commencerons par nous attacher à en donner une construction rigoureuse dans le cadre non-chosiste.

DEUXIÈME PARTIE : L'INSTRUMENT ET L'EXPÉRIENCE

La démarche d'axiomatisation dans une approche constructiviste de la physique et en particulier des notions spatiotemporelles

-CAHIER DES EXIGENCES D'UNE CONSTRUCTION DES NOTIONS SPATIOTEMPORELLES

-L'immersion « dans la peau d'un homme préhistorique »

On ne comprend véritablement une construction que quand on la refait soi-même pas à pas. Et pour cela, il faut se débarrasser du déjà construit.

Nous devons donc commencer par jeter par-dessus bord toute conception élaborée de l'espace et du temps, qu'elle nous vienne du sens commun, d'Aristote, de Newton, de Leibniz, de Kant, d'Einstein ou de Bergson.

Nous nous plaçons ainsi devant les notions spatiotemporelles dans un état d'ignorance idéale semblable à celle d'un « homme préhistorique parfait », de même puissance intellectuelle que l'homo sapiens actuel, mais qui n'a pas encore acquis ces notions, du moins pas comme nous l'avons fait, nous qui modélisons les longueurs et les durées avec des nombres « réels » -ces abstractions tellement sophistiquées qu'il faut une infinité de décimales pour les écrire. Aucun instrument de mesure de l'espace ou du temps n'existe dans le monde brut où nous plonge la nécessité philosophique de la table rase, ni règle, ni équerre, ni rapporteur ni horloge, sans parler des merveilles technologiques dont nous disposons aujourd'hui, il n'y a que des cailloux irréguliers et des bouts de bois tordus.

En même temps, bien sûr, que nous avons tout oublié de nos savantes notions spatiotemporelles et perdu tous nos instruments, nous en gardons le souvenir. De même que nous conservons notre « honnête connaissance » des mathématiques et de la physique d'aujourd'hui. L'exercice de la table rase est forcément -aussi -un exercice de schizophrénie philosophique.

-Élargissement au sixième problème de Hilbert

Notre point de départ, dans notre peau d'homme préhistorique, est de vouloir construire une théorie de l'espace et du temps.

Donnons-lui un nom. Nous appellerons cinématique cette partie de la physique vouée à la construction des notions spatiotemporelles. Le mot, créé par Ampère au début du dix-neuvième siècle, désigne l'étude du mouvement dans un cadre achevé d'espace et de temps ; nous lui donnons donc ici une signification différente.

Le problème sur lequel nous nous penchons n'est qu'une partie d'un plus grand : dégager, dans notre monde brut d'« homme préhistorique », une suite d'instruments et d'expériences dont les propriétés, engendrent un modèle mathématique pertinent du réel physique. Aussi, c'est plutôt à ce problème général que nous allons maintenant nous intéresser. C'est celui de l'axiomatisation de la physique. Il a été posé -quoique sous une forme différente, où n'apparait pas l'exigence de fondation sur l'instrument et l'expérience -par Hilbert en 1900 et a rapidement été abandonné. Aujourd'hui, il est presque unanimement considéré comme obsolète. On peut croire que c'est dommage, et qu'il mérite au contraire qu'on s'y intéresse, pour peu qu'on l'aborde sous le bon angle.

Il est vrai que le problème, posé brut, est pour le moins effrayant. À le prendre au pied de la lettre, il paraît réclamer non seulement la connaissance complète de toutes les lois de base du monde physique, dont nous ne disposons encore pas, mais encore de hiérarchiser ce territoire -ou plutôt cette mosaïque de territoires -en définissant des objets premiers -et lesquels ? l'espace, le temps, l'espace-temps, le point, l'instant, les longueurs, les durées, les coordonnées, la métrique, les géodésiques, la masse, la matière, la quantité de mouvement, la force, l'énergie, l'entropie, la lumière, le photon, la particule en général, l'onde en général, chaque particule en particulier, même celles qu'on n'a pas encore découvertes, la charge, les champs, les interactions faibles ou fortes, le spin, l'étrangeté, les cordes, les super-cordes, etc., etc. La liste des objets premiers envisageables est à elle seule un vrai catalogue, voire un inventaire à la Prévert. Comme le nombre des axiomes possibles est forcément démesuré relativement à elle, le Nous verrons cependant que dès lors qu'on adopte le principe de fondation sur l'instrument et l'expérience, que nous formaliserons plus loin, le choix des objets premiers est univoque.

La géométrie, considérée dans sa vocation première, a pour objet un certain aspect de la réalité matérielle, dont elle s'applique à formuler les lois. Elle devrait donc faire partie de la physique. Ce n'est pourtant pas le cas puisqu'on la range dans les mathématiques.

Ce n'est pas un exemple isolé. Les fondements de la notion de nombre sont dans le dénombrement des collections et dans la mesure des grandeurs, et l'arithmétique pourrait être considérée comme faisant partie de la physique, alors qu'on la range dans les mathématiques. On pourrait dire la même chose de la cinématique (au sens donné par Ampère), de la mécanique, du calcul des probabilités, disciplines nées de la confrontation avec la réalité, et donc sur les terres de la physique, mais qui font maintenant partie des mathématiques.

La raison de ces changements de tutelle est toute simple : dès que les lois régissant un domaine ont été dégagées avec une précision et une exactitude suffisantes, comme c'est le cas dans ces exemples, elles fournissent un modèle qui n'est rien d'autre qu'une théorie mathématique. Le recours à l'expérience se renverse alors. Elle cesse d'être l'outil crucial par lequel nous apprenons quelque chose d'essentiel sur le réel pour devenircomme c'est si flagrant en géométrie -relativement accessoire, un moyen empirique et de bas niveau de vérifier que les raisonnements et les calculs ont été correctement conduits.

Autant qu'elle le peut, la physique va vers la mathématisation. C'est-àdire, en fin de compte, vers l'axiomatisation. Mais ce but est aujourd'hui loin d'être atteint. Lorsque Hilbert, en 1900, en a fait le sixième item de sa célèbre liste de problèmes ouverts, la physique triomphante, éblouie par toutes les merveilles qu'elle venait de découvrir et de formaliser, pouvait facilement se croire à la veille d'atteindre le graal de la connaissance parfaite de tout. Encore quelques détails à connaître, pensait-on volontiers, et la physique serait achevée. L'inventaire de ses lois fondamentales était pour ainsi dire fait, le physicien pouvait commencer à laisser la place au mathématicien. Ce qu'est Hilbert, qui considère ce problème comme un problème de mathématiques, le range avec d'autres problèmes de mathématiques, qu'il soumet à un congrès de mathématiciens 11 . En outre, il vient de terminer son ouvrage Les fondements de la géométrie 12 , dans lequel, plus de deux mille ans après Euclide, il propose la première axiomatisation aboutie de la géométrie, en ce sens que tous les axiomes traditionnellement oubliés, comme ceux régissant l'ordre des points sur une droite ou le partage du plan en deux demi-plans par une droite, sont explicités. Le sixième problème de Hilbert s'inscrit dans le prolongement de cette axiomatisation réussie : en faire autant avec la physique, ou au moins de larges pans d'elle.

Mais en quelques années, cette physique, qui croyait avoir tout compris ou presque, découvre la radioactivité, le résultat inattendu de l'expérience de Michelson et Morley, les débuts de la physique quantique, et commence à mieux mesurer, alors qu'elle vient d'apprendre plus que jamais, toute l'étendue de son ignorance. Le difficile problème de l'axiomatisation de la physique devient un problème désuet, coloré de la naïveté des temps révolus, renvoyé aux calendes grecques, au jour en tout cas où la physique aura pour de bon cette connaissance totale de ses lois dont elle se croyait si proche à la fin du dix-neuvième siècle.

C'est un excès qui en remplace un autre. L'inachèvement des connaissances rend évidemment futile le projet d'axiomatiser la physique dans sa totalité. Mais le travail d'axiomatisation en physique, commencé depuis plus de deux millénaires avec l'arithmétique et la géométrie, n'a jamais attendu l'achèvement des connaissances pour se faire. Il est consubstantiel à la physique, il ne peut avoir aujourd'hui perdu tout intérêt.

-Le modèle réel / théorie et le rapport au réel

De façon schématique -mais, justement, un peu trop schématiquece que nous attendons d'une théorie peut se représenter ainsi : La théorie est capable de décrire le réel. C'est la flèche « Modélisation ». À partir de la description qu'elle fait de telle ou telle situation, par une « cuisine » interne, faite « hors du réel », elle fabrique des assertions quant à la situation considérée, qui peuvent être confrontées à la réalité. C'est la flèche « Prédiction ».

Cependant, deux conceptions divergentes du réel sont possibles. On peut accepter l'existence d'une réalité objective, extérieure, pourrait-on dire, à celui qui observe ; ou bien penser que la réalité n'existe qu'inséparablement de l'esprit de l'observateur. Selon la terminologie marxiste entendue dans ma jeunesse, ces deux points de vue sont ceux du matérialisme et de l'idéalisme.

La position matérialiste, telle qu'elle est souvent présentée, se prolonge volontiers par un petit tour de passe-passe. De la prémisse, l'existence d'une réalité objective, on glisse à la conclusion que la pensée est un phénomène purement matériel. Le lien est loin d'être évident, et c'est en fait un deuxième axiome. Affinons notre vocabulaire en appelant matérialistes les théories qui postulent les deux et réalistes celles qui se limitent au premier.

L'idée qu'une physique doive être réaliste paraît incontournable. On voit mal, par exemple, comment les squelettes de dinosaures qu'on retrouve dans des couches sédimentaires pourraient ne pas correspondre à une réalité ayant existé préalablement à nous, et donc autrement qu'au travers notre esprit.

D'un autre côté, il y a quelque chose d'indiscutablement vrai dans l'affirmation idéaliste que la réalité n'existe qu'à travers l'esprit de celui qui l'observe. Cette forme d'existence n'est pas de même nature que la précédente. De l'une à l'autre il y a glissement de sens. Peut-être devrionsnous là aussi affiner notre vocabulaire. Employer par exemple au lieu du mot « exister » la locution « être appréhendé ». Mais elle non plus ne serait pas satisfaisante. Elle ne dit pas en effet ce que cette appréhension peut avoir de sélectif, ne retenant qu'un aspect partiel du réel. Imaginons qu'il soit un lac, dans lequel nous pêchons avec une épuisette percée ne laissant pas entrer les poissons dont le diamètre est supérieur à onze centimètres, et laissant ressortir ceux dont le diamètre est inférieur à neuf centimètres. Nous serons persuadés à tort que tous les poissons ont dix centimètres de diamètre. En outre, l'aspect sélectif peut se doubler d'un aspect perturbateur. Les poissons peuvent mourir dès qu'ils touchent l'épuisette, ou bien se changer en quelque chose de radicalement différent, et nous n'avons pas la moindre idée de ce qu'ils sont quand nous ne les attrapons pas -peut-être de magnifiques sirènes aux cheveux blonds.

Des idées de cette sorte, à l'allégorie près, sont aujourd'hui banales en physique. L'acte d'observation n'est pas sans effet sur la chose observée, et la question de savoir ce qu'elle est « en réalité », lorsque nous ne l'observons pas, n'a dans certaines circonstances guère de sens -si ce n'est aucun.

En somme, la physique doit être réaliste, évidemment. Mais à condition de ne jamais perdre de vue que la réalité n'est pas comme la vérité sortant toute nue du puits, immédiatement offerte aux regards. Elle ne s'appréhende qu'au travers d'expériences qui, d'une façon essentielle, sont indissociables de ce que nous atteignons d'elle.

-L'exigence de fondation sur l'instrument et l'expérience

La prise de conscience de ce que le réel n'est pas un simple objet étalé devant nous, directement et complètement observable « objectivement », sans distorsion aucune, et surtout pas d'ordre essentiel, est devenue massive au vingtième siècle avec l'apparition de la physique quantique.

La question, pour autant, non seulement n'est pas confinée au monde quantique, mais encore n'était pas nouvelle. Elle est au coeur de la divergence entre Newton et Leibniz quant à l'appréciation de ce qui, dans l'espace et dans le temps, « existe » ou « n'existe pas ». Le premier croyait à l'existence d'un espace absolu, assimilable à une sorte de « substance » universelle, intemporelle et parfaite, persistant identique à elle-même indépendamment de tout lien avec la réalité matérielle ; tandis que le deuxième n'acceptait l'espace -et de même le temps -qu'en tant qu'entités relatives, engendrées par les relations entre les objets matériels qui coexistent.

Einstein, deux siècles plus tard, s'opposant à Newton, se borne lui aussi à postuler l'existence d'un espace purement relatif. Dans La relativité [START_REF] Einstein | Über die spezielle und die allgemeine Relativitätstheorie, de nombreuses fois réédité depuis. 14 Einstein[END_REF] , pour désigner la position d'un nuage (implicitement supposé ponctuel ; aujourd'hui il considèrerait sans doute un hélicoptère en vol stationnaire) au-dessus de la place du Panthéon, il dresse dans un premier temps une longue perche verticalement, dont un des points coïncide avec le nuage ; ce point, joint à l'indication du lieu au sol, fournit une indication parfaite de la position du nuage. Dans un deuxième temps, il dit que la désignation fonctionne encore en imaginant seulement que la perche soit dressée en ce lieu, et en se contentant de dire que le nuage coïnciderait alors avec tel ou tel de ses points. L'espace est de ce point de vue l'ensemble des extensions rigides virtuelles de Terre ; et chaque corps au repos galiléen engendre le sien (on néglige ici le mouvement de rotation de la Terre). De façon analogue, en ce qui concerne le temps, Newton le voit comme absolu, coulant uniformément, rivière à la fois réelle et suspendue hors du réel concret, dont le cours remplirait l'univers et dont le flux serait parfaitement constant, tandis qu'Einstein, dans la relativité restreinte, se contente de postuler que c'est tout simplement ce qu'on lit sur une horloge.

L'espace et le temps newtoniens, divinement parfaits et hors de portée de l'expérience, sont des objets à proprement parler métaphysiques, et qui donc ne concernent pas la physique. Ils sont de magnifiques sirènes aux cheveux blonds dont l'existence effective peut à juste titre nous laisser perplexe. La relativité restreinte les remplace par des « objets » qui se veulent directement construits sur l'expérience, et qu'il est bien difficile, dans la perspective newtonienne, de rejeter ; car en fin de compte, pour désigner effectivement un point dans l'espace, Newton n'a d'autre choix que d'employer le procédé d'Einstein ou un procédé similaire, de même que pour connaître une durée il lui faut bien, comme Einstein, lire l'indication que donne une horloge. Ce à quoi ce dernier se cantonne, c'est ce sur l'existence de quoi tout le monde est forcé d'être d'accord, les règles à mesurer et les horloges. Tout le reste est affaire de métaphysique.

Les instruments et les expériences forment entre le réel et le modèle une interface cruciale sur laquelle il est impossible de faire l'impasse, et qui doit au contraire être pleinement explicitée et théorisée.

Le modèle réel / théorie, parce qu'il ignore cette nécessité, et considère en conséquence la réalité comme indépendante des moyens que nous avons de l'atteindre, est un modèle insuffisant, naïf, philosophiquement insoutenable. Il doit être remplacé par un modèle fondé sur l'instrument et l'expérience, dans lequel ces derniers sont théorisés ainsi que les lois physiques en vertu desquelles ils remplissent leur rôle.

-L'exigence d'architecture mathématique correcte

-Les théories doivent être correctement architecturées

Nous disions plus haut que la théorie, à partir de la modélisation de telle ou telle situation est capable de fabriquer, par une « cuisine » interne faite « hors du réel », des assertions qui pourront être confrontées au réel.

Le mot « cuisine » n'est peut-être pas très heureux. Les assertions doivent résulter d'un processus déductif rigoureux, ne laissant place ni à la libre interprétation ni au symbolisme volontaire ou fortuit : la théorie doit être une vraie théorie mathématique.

Nous exigeons d'elle la plus grande solidité possible, et la question est de savoir comment atteindre ce but. Il se trouve pour notre bonheur que les mathématiciens, au terme de deux millénaires de confrontation avec ce problème, ont réussi à très largement le résoudre.

Une première réponse à été donnée dès l'Antiquité. À cette époque, deux conceptions différentes se sont opposées. Il y a eu d'une part ce qu'on appelle les mathématiques « babyloniennes » -qui n'ont pas seulement eu cours en Babylonie. Selon elles, les mathématiques sont essentiellement une collection d'algorithmes permettant de résoudre certains problèmes. La question de savoir pourquoi ils atteignent leur but ne semble pas se poser : on sait qu'ils fonctionnent, et voilà tout.

Il y a eu d'autre part les mathématiques grecques -qui n'ont émergé que dans le monde grec. Elles sont construites autour d'une notion absente chez les babyloniennes, celle de démonstration. Il en résulte qu'elles sont structurées par une double hiérarchisation, dont la raison d'être est d'éviter toute circularité. En effet, quand on définit A à partir de B et B à partir de A, on n'a rien défini du tout ; d'où la hiérarchie des objets manipulés, qui peuvent être premiers, comme les nombres entiers, les points, les distances et les droites, ou bien logiquement définissables à partir des objets premiers, comme les hyperboles, les paraboles et les ellipses. De même, si pour prouver l'énoncé A, on utilise l'énoncé B, qui a lui-même été prouvé grâce à l'énoncé A, ni A ni B ne sont prouvés ; d'où la hiérarchie des énoncés, qui peuvent être premiers, et sont alors des axiomes, ou démontrables à partir d'eux, et sont alors des théorèmes.

Aucun « objet volant non identifié » ne doit exister. Tous les objets manipulés doivent être soit premiers soit logiquement définis à partir d'eux, et tous les énoncés considérés comme vrais doivent être des axiomes ou des théorèmes : la théorie doit être complètement explicitée.

De mathématiques ainsi structurées, nous disons qu'elles sont axiomatisées.

Quelques nuances manquent à cette description faite à traits un peu gros. Les mathématiques grecques n'étaient pas toujours conformes à leur ambition : à côté des axiomes explicites figuraient des axiomes tacites, tellement évidents aux yeux des mathématiciens de l'époque qu'ils n'acquéraient même pas le statut d'axiomes ; par exemple ceux décrivant l'ordre des points sur une droite. Quant aux mathématiques babyloniennes, elles ne pouvaient pas ignorer complètement le concept de preuve, au moins sous une forme embryonnaire, ressortissant plus de la vérification que de l'activité correctement conduite sur le plan de la logique.

Une autre précision à apporter est que si ces deux grandes directions s'opposent, c'est essentiellement parce qu'elles correspondent à deux stades successifs des mathématiques, qui commencent par être babyloniennes avant d'être grecques. Les premières, d'ailleurs, restent très rudimentaires devant les deuxièmes. On le comprend. Des mathématiques où l'on ne démontre pas demeurent nécessairement empiriques et ne peuvent aller loin. Lorsque les énoncés premiers sont encore dans les limbes, les enchaînements logiques ne peuvent être que précaires, et les assertions se perdent vite dans le flou comme les objets même proches un jour de brouillard. Pour en sortir, il faut utiliser toute la solidité du raisonnement déductif, et elle ne peut se déployer qu'en posant à plat les règles du jeu, c'està-dire les lois de la logique, les objets premiers et les axiomes. C'est d'ailleurs -évidemment -ainsi que sont aujourd'hui construites toutes les mathématiques.

-Priorité des concepts spatiotemporels dans une axiomatisation construite sur l'instrument et l'expérience

« Toute » expérience de physique exige un cadre spatiotemporel achevé -à moins bien sûr qu'elle ne soit une des expériences le mettant en place. En vertu du principe de fondation sur l'instrument et l'expérience, la cinématique est donc la partie de la physique qui doit être axiomatisée en premier, autrement dit son noyau :

-L'exigence de minimalité

Elle est au coeur des mathématiques depuis qu'elles ont quitté le stade babylonien, même s'il lui est arrivé de subir quelques entorses. Sa première raison d'être est la prudence quant aux contradictions logiques qu'une théorie même correctement constituée engendre parfois, et dont les effets sont catastrophiques, puisqu'elle devient alors capable de prouver tout et le contraire de tout.

On peut formuler ainsi cette exigence : des objets premiers, certes, puisque c'est inévitable, mais le moins possible ; et de même pour les axiomes. Moins les uns et les autres sont nombreux, en effet, moins ils ont de chances d'engendrer des conflits insoupçonnés.

C'est par exemple une recherche de minimalité que celle faite pendant des siècles pour savoir si l'énoncé affirmant l'existence et l'unicité de la parallèle en un point à une droite est un axiome, ou bien s'il est au contraire déductible des axiomes déjà posés.

C'est aussi une recherche de minimalité que celle qui a abouti à la construction des mathématiques tout entières à l'intérieur de la théorie des ensembles, et donc sur un plus petit système axiomatique possible.

Mais la recherche de minimalité n'est pas seulement guidée par un souci de prudence. En ramenant le champ complexe des énoncés vrais qu'une théorie produit aux conséquences d'un petit nombre d'éléments premiers, c'est aussi un travail de compréhension et d'explication qu'on effectue -et l'une et l'autre sont d'autant meilleures qu'est petit le nombre des éléments premiers.

Aussi voit-on la recherche de minimalité être de même une préoccupation centrale des physiciens. C'est elle qui guide la démarche d'Einstein lorsqu'il énonce son principe d'équivalence entre les champs de pesanteur et d'accélération. Ou bien encore celle qui pousse aujourd'hui à la recherche d'une unification des interactions élémentaires.

C'est pourquoi le principe de minimalité signe les grandes victoires explicatives de la physique. Il triomphe quand Newton montre que la Lune tombe vers la Terre exactement comme une pomme tombe vers elle, ou quand Mayer et Joule énoncent la loi d'équivalence du travail et de la chaleur, ou encore quand Maxwell ramène l'optique à l'électromagnétisme, ou encore quand la spatialisation de l'atome abolit en théorie la frontière entre chimie et physique en faisant découler les propriétés des éléments, jusque-là mystérieuses, de celles de leur structure électronique.

A contrario, le non-respect du principe de minimalité conduit en général à mettre en place des chimères n'existant que dans notre imagination. Ainsi le Ciel des Anciens, avec ses lois différant de celles du monde sublunaire, ou le phlogistique, cette « substance de la chaleur » qui était autre chose qu'une des formes de l'énergie.

-L'exigence de solidité logique

La méthode employée dès l'Antiquité par les mathématiciens pour construire des édifices solides, faire en sorte que leur architecture soit correctement constituée, ne fournit toutefois aucune garantie : elle est nécessaire mais pas suffisante. Une théorie mathématique correctement constituée peut être inconsistante. L'exigence de minimalité -qui date elle aussi de l'Antiquité, comme le montrent les Éléments d'Euclide -lui vient en appui, mais elle non plus n'apporte aucune certitude.

Il a fallu attendre le dix-neuvième siècle pour que soient découvertes des techniques garantissant la solidité logique d'une théorie.

Pour prouver la consistance d'une théorie, il faut être intellectuellement autorisé à considérer l'ensemble des théorèmes qu'elle permet de produire, afin de vérifier qu'on n'y trouve pas à la fois un théorème et son contraire. Il faut donc disposer du concept d'ensemble et de ses règles de fonctionnement : la réunion, l'intersection, etc. -c'est-à-dire disposer de la théorie des ensembles.

Quand la théorie dont on veut prouver la consistance est précisément la théorie des ensembles, le serpent se mord la queue. La preuve est congénitalement impossible à fournir.

Or la théorie des ensembles jouit d'un statut spécial en mathématiques : d'une part elle fait partie des prérequis nécessaires à leur construction, d'autre part elle permet de les construire tout entières en son sein. Elle est le minimum nécessaire et suffisant à leur engendrement. Par conséquent, l'impossibilité de prouver la consistance de la théorie des ensembles implique celle de prouver la consistance des mathématiques.

Certains mathématiciens vivent peut-être dans l'angoisse qu'on finisse par trouver une contradiction dans les mathématiques, qui les ruinerait d'un coup tout entières. Mais ils sont extrêmement rares. La théorie des ensembles ne fait que tirer au clair, poser noir sur blanc, des concepts et des règles qui sont consubstantiels à la possibilité de penser : mettre « ensemble » dans des classes logiques, pouvoir manipuler ces classes en utilisant le « et » et le « ou », les combiner par produit cartésien, en extraire des sous-classes par sélection logique, etc. Si elle devait un jour s'effondrer d'inconsistance, ce serait la possibilité même de penser qui s'effondrerait. Et nous n'en reviendrions pas, d'avoir pu penser aussi loin que nous l'avons fait et d'en avoir tiré tant de choses, alors que c'est une activité qui ne rime définitivement à rien. Si nous croyons un tant soit peu à la possibilité de penser, nous devons croire à la solidité logique de la théorie des ensembles.

Une fois posé ce cadre, et donc celui des mathématiques en général, une méthode existe pour se prémunir de l'inconsistance. Elle a été employée dès 1868 par Beltrami à propos de la question jusque-là ouverte de savoir si on ne finirait pas par découvrir une contradiction dans les nouvelles géométries non-euclidiennes qui venaient d'être développées. Beltrami a montré que la surface appelée pseudosphère, dont on considère les géodésiques comme étant des droites, constitue un modèle localement parfait de la géométrie de Lobatchevski. Par la suite, d'autres modèles ont été donnés. Puisqu'on peut construire dans le cadre de la géométrie euclidienne des modèles de la géométrie de Lobatchevski, si la seconde devait s'écrouler sous le coup d'une contradiction, il en serait de même de la première. Comme la géométrie euclidienne peut à son tour être modélisée dans un espace affine euclidien, l'une et l'autre géométrie sont aussi solides que l'algèbre linéaire. Comme cette dernière est constructible dans le cadre de la théorie des ensembles, nous savons que les deux géométries sont aussi solides que la théorie des ensembles.

Une axiomatisation de la physique ne peut avoir une exigence moindre : la consistance d'une théorie doit être démontrée, soit par la construction d'un modèle à l'intérieur de l'édifice mathématique actuel, c'està-dire, indirectement, à l'intérieur de la théorie des ensembles, soit par une éventuelle autre méthode.

-L'exigence d'universalité

Les résultats d'une expérience dépendent a priori des conditions dans lesquelles on la mène. Rien ne nous garantit, par exemple, que nos horloges délivrent le même temps loin de tout corps massif ou bien à proximité de l'un d'eux. La relativité générale prédit le contraire, et l'expérience lui donne raison sur ce point.

L'idée de construire d'emblée une cinématique dépendant des champs de pesanteur peut nous tenter un instant ; mais les champs de pesanteur, pour être installés, nécessitent une définition de la masse, à la fois gravitationnelle et inertielle, et l'une et l'autre ne peuvent être installées qu'à condition de disposer déjà de notions spatiotemporelles : on tombe sur un cercle vicieux inacceptable dans une théorie mathématique correctement structurée.

Pour sortir de cette difficulté, il nous faut trouver un contexte de référence où les champs de pesanteur sont toujours les mêmes, et ce ne peut pas être à proximité d'un corps massif, puisque les masses des corps ne sont a priori jamais les mêmes, que nous ne savons pas encore les mesurer, et qu'en outre les champs de gravitation varient selon la distance au corps. Le seul contexte de référence que nous puissions trouver est celui de l' « infini » éloignement de tout corps massif, là où les champs de pesanteur disparaissent -ou du moins suffisamment pour que nous puissions les tenir pour nuls -c'est le « désert intergalactique ».

Certes, les corps massifs ne sont « infiniment éloignés » que par abus de langage. Si nous voulons que cet éloignement infini soit en toute rigueur exact, il faudrait faire disparaître tous les corps célestes -expérience de pensée radicalement décrochée de toute faisabilité, et qui, supprimant le Ciel lointain, effacerait du coup le degré zéro de rotation qui marque le contexte galiléen et montre que l'influence globale des corps célestes lointains ne peut être tenue pour nulle. Nous devons nous contenter des déserts sidéraux effectifs, en postulant qu'ils offrent les uns et les autres des conditions cinématiques identiques, ce qui n'est sans doute pas exactement vrai, puisque le Ciel lointain n'y a sans doute pas exactement la même influence.

Du cadre universel parfait dont il nous faut postuler en théorie l'existence, nous ne trouverons jamais que des représentants imparfaits. Nous nous en consolerons en disant que c'est une propriété générale des objets macroscopiques idéaux, et que nous avons en l'occurrence de fortes raisons de croire que l'écart des propriétés spatiotemporelles entre un désert intergalactique et un autre est vertigineusement petit relativement à nos possibilités expérimentales de discernement.

Ainsi, après nous être changés en hommes préhistoriques, nous devons en outre devenir ermites du cosmos et partir avec nos cailloux irréguliers et nos bouts de bois tordus expérimenter au milieu d'un désert intergalactique, afin d'y construire la seule cinématique universelle possible, celle du contexte plat, qui dans un deuxième temps permettra de situer les cinématiques des contextes non plats par la façon dont elles s'en écartent. C'est exactement la démarche suivie par Einstein, qui construit la relativité restreinte avant la générale.

La vie n'est toutefois pas facile dans les déserts intersidéraux, et l'entreprise serait désespérée si nous devions la réaliser autrement que par la pensée, et si nous ne savions, par des indices nombreux et concordants, que les notions spatiotemporelles du cadre plat ne diffèrent que d'une façon presque imperceptible de celles observées sur Terre.

-L'exigence de pertinence

Les géométries d'Euclide, de Lobatchevski, de Riemann, sont des théories axiomatisées qui ont toutes le même niveau de consistance, celui des mathématiques en général. Comme elles diffèrent les unes des autres, une seule au plus peut être adéquate au réel, en un mot, pertinente.

Nous exigeons donc d'une théorie qu'elle soit pertinente : que les expériences qu'elle modélise aient des résultats conformes à l'expérience.

La pertinence et la consistance sont deux exigences bien séparées. La géométrie euclidienne de dimension dix-sept, par exemple, ne soulève en elle-même aucune difficulté logique : elle est consistante. Mais parce que par un point donné de l'espace géométrique où nous vivons on peut faire passer exactement trois droites perpendiculaires deux à deux, et pas dix-sept, elle n'est pas pertinente.

À l'inverse, une théorie inconsistante peut donner toutes les apparences d'être pertinente -du moins pendant un certain temps. C'est le cas d'une géométrie dans laquelle on postulerait, comme les Grecs à une certaine époque, que tous les nombres sont rationnels. Puisqu'il n'y a, pour les mesures géométriques, strictement aucune différence entre un rationnel et un irrationnel, cette théorie peut rester longtemps conforme à l'expérience. Elle est néanmoins inconsistante parce qu'elle prévoit que la longueur de la diagonale d'un carré de côté unité, soit √2, est un nombre rationnel, d'où l'on déduit, par un raisonnement simple connu depuis l'Antiquité, qu'il existe un entier à la fois pair et impair.

Une fois survenue cette catastrophe -dont on dit que le Grec qui la découvrit, victime de la colère des dieux, périt dans un naufrage -la géométrie perd brutalement toute pertinence. En effet, en considérant le reste dans la division par 2 de cet entier à la fois pair et impair, on montre que 0 = 1. Il en découle que tous les nombres sont égaux, puis que toutes les distances sont égales, puis que tous les points sont confondus.

Cela la rend réfutable, au sens que Popper donne à ce mot.

-L'exigence de limitation de l'emploi des objets ponctuels au minimum incontournable

Nous installons les points et les instants comme étant infiniment petits. L'idée n'est ni nouvelle ni originale, puisqu'elle remonte à la nuit des balbutiements des mathématiques, et qu'elle est aujourd'hui le fait de « toutes » les géométries (euclidienne, hyperbolique, elliptique, projective, différentielle…). Nous venons de voir qu'il en découle que les instants eux aussi doivent être infiniment petits. Tel est bien le cas en relativité galiléenne, en non-relativité newtonienne, en relativité restreinte, en relativité générale. Dès qu'un édifice mathématique prétend représenter le réel cinématique avec pertinence, il est fondé sur des points et des instants infiniment petits.

Nous avons étudié cette question dans le premier chapitre de cet ouvrage et mis en évidence le manque de pertinence de ces représentations néanmoins incontournables.

Ainsi, le premier pas d'une axiomatisation de la cinématique respectant l'exigence de fondation sur l'instrument et l'expérience, le premier pas sans lequel aucune expérience ultérieure ne pourra être théorisée, est nécessairement de nous accorder des points et des instants théoriques dont la précision infinie outrepassera toujours infiniment ce que l'expérience nous permettra d'atteindre.

Nous commettons ainsi un « péché originel » qui nous suivra où que nous allions et quoi que nous fassions. Des premiers pas de la physique jusqu'à son achèvement, si tant est qu'il soit possible de l'atteindre, nous traînerons avec nous ces nombres « réels » à la précision infinie vertigineusement et ridiculement trop grande, capables de leurrer leur monde au point de faire croire à un Pascal qu'il y a dans un atome assez de place pour y loger, en enjambant l'anachronisme, des milliards de galaxies.

Nous ne pouvons pas éviter ce « péché originel », pas plus que sa cohorte de conséquences. Tout ce que nous pouvons faire, c'est de ne pas en rajouter. De limiter la chose à sa plus petite émergence possible. Les points historicisés idéaux, infiniment petits, aux instants personnels infiniment courts, et dont l'histoire personnelle est ordonnée selon le lien causal, ne doivent avoir d'autres attributs que ceux-ci.

En particulier, aucun objet ponctuel ne peut avoir de « masse ». Le point matériel est certes un objet commode, utilisable, mais sans jamais perdre de vue que ce n'est qu'une approximation. Seuls des objets de mesure non nulle peuvent en toute rigueur philosophique avoir une masse, définissable au travers des instruments et des expériences qui permettent de l'atteindre.

De même, aucun point historicisé ne peut être doté de la vertu magique de délivrer un temps régulier : ce ne sont pas des horloges, car aucune horloge ne peut être ponctuelle. Il n'empêche évidemment qu'à titre d'approximation, on peut utiliser des horloges ponctuelles ─ mais seulement à ce titre, et donc à la condition d'avoir défini au préalable des horloges non ponctuelles.

-Récapitulation

L'axiomatisation de la cinématique, première étape d'une éventuelle axiomatisation de la physique, doit obéir à sept exigences.

1) Fondation sur l'instrument et l'expérience. Le modèle d'une réalité physique naïve, qui « existerait » en toute indépendance des moyens de l'atteindre, doit être récusé. La modélisation doit porter non sur un espace et un temps traités comme existant « en eux-mêmes », extérieurs à tout recours expérimental, mais intégrer les instruments et les expériences par lesquels nous construisons ces notions à partir du dénuement primitif de l' « homme préhistorique ».

2) Bonne architecture mathématique. La cinématique doit être une théorie mathématique correctement construite, autrement dit axiomatisée. Tous ses objets premiers doivent être explicités, ainsi que ses axiomes.

3) Minimalité. La liste des objets premiers doit être aussi petite que possible, de même que celle des axiomes.

4) Solidité logique. La consistance logique de la théorie doit être prouvée.

5) Universalité. Le premier cadre à axiomatiser est le cadre galiléen parfait, celui du désert intergalactique. C'est lui qui nous fournira la référence relativement à laquelle pourront être décrits les cadres non galiléens. 6) Pertinence. La théorie doit offrir une description précise et exacte du réel.

7) Limitation de l'emploi des objets ponctuels au minimum nécessaire. Les points historicisés ne devront jamais avoir d'autres attributs que ceux de réaliser un marquage infiniment précis des évènements et de l'ordre dans lequel ils s'enchaînent.

-LE NOYAU PREMIER

Nous avons établi dans le chapitre précédent que la cinématique est le noyau de la physique :

Ce noyau a évidemment lui-même une structure.

-Architecture du noyau de la cinématique

-La géométrie précède la chronométrie

Ce n'est pas avec une équerre qu'on mesure des durées, ni avec une horloge qu'on vérifie qu'un angle est droit. La géométrie et la chronométrie, quels que soient leurs liens profonds, ne sont pas la même chose, puisqu'elles ne reposent pas sur les mêmes instruments.

On peut -et on doit -se demander si l'une précède l'autre. Qu'elle soit clepsydre ou horloge atomique, en passant par le sablier, l'horloge à poids et à balancier, le chronomètre à ressort et à roue oscillante et l'horloge à quartz, sans oublier la plus simple de toutes, l'horloge inertielle terrestre, que la nature nous offre sans que nous ayons à la fabriquer, toute horloge est une machine qui produit un mouvement dont nous convenons qu'il est régulier. On ne peut définir une machine que dans un cadre géométrique achevé, et tel est donc le cas de l'horloge.

Il faut se poser la même question à propos du concept de simultanéité. Sans géométrie on se trouve bien démuni pour installer un quelconque protocole expérimental qui la définirait. Celui que propose Einstein, par exemple, demande qu'on sache construire le milieu de deux lieux A et B, où siègera un observateur qui arbitrera la simultanéité entre les évènements qui s'y déroulent au moyen des signaux lumineux qui lui en parviennent.

Pour cela, il faut avoir construit la géométrie. Ce n'est évidemment qu'un exemple, et il existe d'autres techniques instrumentales de définition de la simultanéité à notre échelle temporelle, toutes fondées, d'une manière ou d'une autre, sur une symétrie, et donc utilisant la géométrie.

La construction de la géométrie doit précéder celle de la chronométrie.

─ La construction de la géométrie requiert cependant certaines notions temporelles premières

Faire des expériences de géométrie, par exemple tracer les trois médiatrices d'un triangle pour voir si elles sont ou non concourantes, exige néanmoins qu'on dispose au prélable de certaines notions temporelles : il faut d'abord tracer un arc de cercle de centre A, puis un arc de cercle de même rayon et de centre B, puis repérer leur point d'intersection M, etc.

Nous pouvons ici craindre un cercle vicieux : il faut disposer de la géométrie pour construire les notions temporelles, et néanmoins déjà disposer de notions temporelles pour construire la géométrie.

La pratique de la géométrie se ramène -nous détaillerons ce point ultérieurement -à deux sortes d'actes : d'une part le déplacement des instruments d'un lieu à un autre, d'autre part l'observation des indications qu'ils donnent lorsqu'ils sont immobiles relativement au réel qu'ils mesurent.

Le géomètre peut dans l'une et l'autre opération prendre tout le temps qu'il voudra, si bien que la mesure des durées n'est pas un préalable à la construction de la géométrie.

Mais il faut aussi disposer en préalable d'une certaine forme de simultanéité. Lorsque le géomètre superpose par exemple une règle à mesurer (ou tout autre objet que nous postulons avoir des propriétés géométriques invariables -nous analyserons ultérieurement, également, ce que cela signifie) il fait en sorte que le point A 1 de sa règle, qui est celui où est gravé le zéro, coïncide avec un point A 1 ′ de de l'objet en même temps qu'un autre point A 2 de la règle coïncide avec un point A 2 ′ de cet objet. Ce « en même temps » invoque une simultanéité dont il ne dispose a priori pas, sous peine de cercle vicieux.

On peut certes avoir envie de répondre que vu la longueur d'une règle à mesurer, la question ne se pose pas, et qu'une simultanéité naïve est alors suffisante. La réponse, acceptable en pratique, ne l'est pas en théorie. D'abord parce les règles à mesurer ne sont pas nécessairement petites. Il paraît bien difficile, d'un point de vue axiomatique, d'interdire au géomètre de disposer d'autant de règles à mesurer qu'il le veut, surtout si elles sont seulement virtuelles, et on ne voit pas comment on pourrait lui interdire de les mettre bout à bout pour en fabriquer une plus grande. La longueur des règles à mesurer, du point de vue théorique, peut difficilement avoir un majorant.

En outre, que les règles soient petites ou non est une question hors de propos. Notre démarche, même si elle s'étend aux domaines du temps et de la mécanique, est de nature géométrique, en ce sens qu'elle respecte la précision absolue des mathématiques, pour qui deux nombres « égaux jusqu'à la milliardième décimale » sont des nombres qu'un abîme peut encore séparer, celui de l'infinité des décimales suivantes. La question de ce « en même temps » est exactement la même, de ce point de vue, avec une règle de vingt centimètres qu'avec une de vingt années-lumière.

Pour Notre géomètre, conscient des responsabilités qui sont les siennes, endosse l'habit et le titre de chef-géomètre et envoie deux assistants, l'un en A 1 , l'autre en A 2 . Ce sont eux qui vérifieront la superposition de A 1 et de A 1 ′ d'une part, de A 2 et de A 2 ′ d'autre part. Chacun d'eux, arrivé sur son lieu de travail au terme d'un long voyage, dépêche un sous-assistant en direction du chef-géomètre pour l'informer qu'au point qu'il est chargé de contrôler l'opération vient de commencer. Les assistants rejoignent le chef-géomètre à l'instant 𝑖 de son histoire personnelle, et ce dernier sait alors que l'expérience de vérification de la superposition a débuté en A 1 comme en A 2 . Il laisse passer une durée arbitraire, non mesurable, puis à l'instant 𝑗 de son histoire personnelle renvoie les sous-assistants en leur points d'origine A 1 et A 2 proclamer la fin de l'expérience de superposition. À cette annonce en ces lieux, les assistants, chacun porteur du résultat de sa part de l'expérience, se mettent en route vers le chef-géomètre, qu'ils rejoignent à l'instant 𝑘 de son histoire. Si le premier lui rapporte alors que durant son intervalle temporel particulier d'observation A 1 a toujours coïncidé avec A 1 ′ , et l'autre de même avec A 2 et A 2 ′ , alors le chef conclura que pendant au moins tout l'intervalle [𝑖, 𝑗] de son histoire personnelle les deux règles ont coïncidé en ces deux couples de point.

Il n'y a donc pas besoin de disposer de simultanéité pour conduire une expérience de superposition durable. L'affirmation que les points A 2 et A 2 ′ doivent coïncider en même temps que A 1 et A 1 ′ coïncident n'a cependant rien d'erroné ni de fallacieux, sans elle l'expérience se vide de son sens. Mais parce que cette simultanéité indispensable à la compréhension de l'expérience, quelle qu'elle soit, est nécessairement confinée dans les bornes que lui assigne l'ordre chronologique, ce dernier suffit à la rendre en l'occurrence utilisable, même si nous ne savons pas précisément ce qu'elle est.

La pratique des expériences de géométrie demande des notions temporelles, mais ne requiert ni le concept de durée, ni celui de simultanéité.

Le noyau de la cinématique se décompose donc en trois sous-noyaux emboîtés :

-le noyau de la chronométrie, qui installe les notions de durée et de simultanéité ;

-le noyau de la géométrie, inclus dans le précédent ; -le noyau premier, inclus dans le précédent, qui installe les notions préalables à la géométrie, notamment les notions temporelles dont nous venons de montrer la nécessité.

-L'instrument du noyau premier : le point historicisé

-Points historicisés

Que ce soit de façon abstraite ou concrète, on ne peut penser l'espace et le temps que si on dispose de la capacité de désigner des points et des instants.

L'un ne peut se faire sans l'autre : un point est toujours considéré en un instant (ou des instants) particulier de son existence, en lequel, par exemple, il coïncide ou ne coïncide pas avec tel ou tel autre point. Le point tel qu'il s'offre à la géométrie participe au grand maelstrom universel. C'est une entité historicisée, nous l'appellerons point historicisé -locution peut-être un peu lourde mais claire et qu'il sera toujours possible, dans un contexte sans équivoque, d'abréger en « point ». Il possède une histoire personnelle, ou chronologie personnelle, définie comme étant un ensemble d'instants personnels. Ces instants sont de portée purement locale, même si leur appartenance à l'histoire du point les insère dans le contexte global de l'univers.

Le point historicisé est nécessaire à la désignation du réel spatiotemporel. Il est le premier objet premier de la cinématique, et l'instrument du noyau premier.

Ce ne sont pourtant pas de tels points qui apparaissent dans les diverses géométries, l'euclidienne comme les non-euclidiennes. Dans toutes, les points sont atemporels, aussi atemporels que par exemple les nombres entiers. On peut facilement l'expliquer. La géométrie naît dans l'espace « immobile » des figures qu'on trace sur le sol terrestre et qui restent perpétuellement identiques à elles-mêmes, du moins tant que rien ne vient les altérer, si bien qu'on peut oublier leur perpétuelle dimension temporelle. Mieux que cela, quand elle reconstitue le cadastre après les crues du Nil, elle reproduit à l'identique, au moins en théorie, la configuration d'avant, si bien qu'on peut penser que cette configuration n'a jamais cessé entretemps d'exister. La géométrie superpose au réel un univers immobile qu'il est commode et facile d'identifier à une réalité. L'apogée de ce point de vue est évidemment l'espace absolu newtonien, invisible, impossible à atteindre, mais pensé comme réel, et où les points, comme dans les espaces géométriques, ont perdu toute temporalité.

Parallèlement, l'exigence de fondation sur l'instrument et l'expérience est ignorée, elle qui requiert pour la conduite des expériences de géométrie une séquentialité des travaux et donc une temporalité du contexte impliquant l'historicisation des points.

-Points de l'espace et points des objets.

Comme nous n'accordons pas de réalité à l'espace, l'expression « point de l'espace » n'a pour le moment aucun sens. Ce dont nous disposons, sur lequel tout le monde est forcé de s'accorder, et duquel il est impossible de retrancher quelque contenu que ce soit, ce sont seulement les points des objets.

Un point d'un objet, considéré sous l'angle idéal et non pas concret, c'est le fruit d'un passage à la limite à la fois naïf, audacieux, indispensable et fondateur -c'est d'ailleurs, historiquement parlant, le premier de tous les passages à la limite. Il idéalise en se faisant infiniment petit la plus petite partie que nous pouvons voir ou marquer sur un objet. Par le même passage à la limite, nous pouvons aussi considérer des objets infiniment petits, et donc des points isolés, des points-objets. Ce ne sont pas tout à fait les mêmes que les précédents, mais nous tenons cette différence pour nulle et rangeons les uns et les autre sous la même bannière conceptuelle : les points effectifs. ce que fait Einstein dans la Relativité, quand pour définir un lieu de l'espace au-dessus de la place du Panthéon il utilise une longue perche dressée verticalement depuis le sol. Un certain point de la perche définit alors le lieu. Dans un deuxième temps, on n'utilise plus la perche, on se contente de l'imaginer, et le lieu reste tout aussi bien défini. En dépit des apparences, le point sur la perche n'a donc pas disparu de la figure, puisque c'est lui qui définit le lieu. Il est simplement passé du statut de point effectif à celui de point virtuel.

-Points effectifs et points virtuels

Les points historicisés ne sont pas seulement les points effectifs des objets effectifs ; il faut leur adjoindre les points virtuels qui sont tous leurs possibles non réalisés.

-Les instants locaux

Comme nous n'accordons pas plus de réalité physique au temps qu'à l'espace, la temporalité ne peut pas découler d'un temps tout fait, installé hors de l'expérience constructive.

L'expérience de pensée donnée plus haut, où l'on vérifie la superposition durable de deux objets, suffit à dégager les expériences élémentaires qui, dans le noyau premier, installent les premiers éléments de la temporalité.

Lorsque le point historicisé M rencontre le point historicisé M ′ , l'évènement se déroule pour lui à un certain instant 𝑖 M de son histoire personnelle. Il est « évident » (mais indémontrable : cela fait partie des propriétés de base qui doivent être installées par des axiomes) que la rencontre de M avec M ′ est aussi une rencontre de M ′ avec M. Il existe donc un instant 𝑖 M ′ de l'histoire personnelle de M ′ en lequel cette même rencontre a lieu.

Nous disons alors que les points M et M ′ coïncident aux instants 𝑖 M et 𝑖 M ′ de leurs histoires respectives, ou encore qu'ils sont coprésents à ces instants-là.

Comme les instants personnels d'un point n'appartiennent qu'à lui, et que la donnée de l'un d'eux définit donc le point auquel il appartient, nous pouvons aussi dire que 𝑖 M et 𝑖 M ′ coïncident.

Bien entendu, M et M ′ peuvent coïncider en plusieurs instants, et même en une infinité. Comme chacun des deux instants est alors unique en fonction de l'autre, le lien entre les parties de leurs histoires respectives en lesquelles ils coïncident est une bijection.

Supposons que l'instant personnel 𝑖 M coïncide avec l'instant personnel 𝑖 N , et que 𝑖 N coïncide également avec 𝑖 P . Alors les instants personnels 𝑖 M et 𝑖 P coïncident eux aussi. La relation de coïncidence entre instants personnels, dont nous avons posé plus haut qu'elle est symétrique, est également transitive. Comme tout instant personnel coïncide avec lui-même, elle est également réflexive. C'est donc une relation d'équivalence dont nous appelons instants locaux les classes.

Au lieu de dire que l'instant personnel 𝑖 𝑀 appartient à l'instant local 𝑖, il est plus parlant de dire que M, à l'instant 𝑖 M de son histoire personnelle, participe, assiste, ou prend part à 𝑖.

La première expérience ayant pour instrument les points historicisés est celle de la coïncidence (et donc de la non-coïncidence). Elle permet de construire ce que nous appellerons des instants locaux.

Coïncider, c'est être au même lieu au même instant local. Les instants locaux sont donc tout autant des lieux instantanés. Infiniment petits à la fois dans leur dimension temporelle et dans leur dimension spatiale, ce sont les plus petites entités possibles intervenant en cinématique. Ils sont des « atomes » d'espace-temps, et nous pourrions encore les appeler, comme la relativité restreinte, évènements, car ils sont presque la même chose, avec cette seule différence que les évènements de la relativité restreinte sont installés dans un cadre cinématique très largement préconstruit, où chaque espace galiléen possède déjà sa géométrie et sa chronométrie, et où seule se pose encore la question des passages de coordonnées d'un espace à un autre, tandis que du point de vue de la fondation sur l'instrument et l'expérience les instants locaux sont, avec les points historicisés, les briques premières à partir desquelles doit être construite la cinématique.

-L'ordre chronologique

Il n'a sans doute pas échappé au lecteur que dans les deux figures précédentes, nous avons représenté les histoires des points par des lignes terminées par une flèche -des lignes orientées selon la « flèche du temps ». Il a pu se demander dans quelle mesure cette flèche, qui correspond à une réalité dont nous connaissons tous l'opiniâtreté, n'infirme pas notre position de ne pas faire du temps un réel « en soi ». Si ce n'est pas le cas, en effet, comment comprendre ce mystérieux « sens du temps » selon lequel il se déroule ?

Imaginons que 𝑖 1 soit « le chat, en sautant sur la table, a fait tomber un verre à pied » et que 𝑖 2 soit « le verre en question s'est brisé sur le sol ». J'aurai beau assurer avec des trémolos de sincérité dans la voix que 𝑖 2 est antérieur à 𝑖 1 , personne ne me croira, parce qu'une telle affirmation contredit le lien de causalité entre les deux évènements. Si j'avance à l'appui de mes dires un film montrant la scène dans cet ordre, le verre s'écrasant au sol, puis le chat qui le fait tomber alors qu'il est intact, on croira à un montage, ou à l'extrême rigueur à un bug du logiciel de la caméra. En matière d'arbitrage chronologique, le critère du lien de causalité l'emporte sur tout autre.

Ce serait déroger au principe de minimalité que de fonder le temps chronologique sur une base double, ou plutôt duelle : il n'y a pas d'une part un « temps » qui se déroulerait selon un certain sens, et d'autre part des liens de causalité qui -par un étonnant miracle -auraient toujours lieu dans le sens de déroulement de ce temps, il n'existe rien d'autre que des liens de causalité, à partir desquels nous construisons l'ordre chronologique du noyau premier indispensable aux expériences de géométrie et de chronométrie.

Ce temps premier, donc, s'identifie avec le lien causal. Pourtant, pourrait-on être tenté d'objecter, il existe des évènements qui sont l'un antérieur à l'autre, et entre lesquels il semble n'exister aucun lien de causalité. Ainsi, l'instant 𝑖 1 de la vie d'un papillon où il se pose sur une fleur, le matin, et l'instant 𝑖 2 , le soir, où il est dévoré par un oiseau. C'est oublier qu'à l'instant 𝑖 1 le papillon aurait tout aussi bien pu se faire manger, et qu'il n'aurait alors pas pu l'être à l'instant 𝑖 2 . Le lien causal est ici « en creux », il n'en existe pas moins.

Le lien causal peut être direct, comme dans l'exemple du papillon, mais il peut être aussi porté par une multiplicité de vecteurs successifs : de 𝑖 1 à 𝑖 2 un papillon, de 𝑖 2 à 𝑖 3 une araignée, et ainsi de suite. L'évènement se déroulant en i3 dépend de celui se déroulant en 𝑖 2 , qui dépend de celui se déroulant en 𝑖 1 ; donc il dépend lui-même de celui se déroulant en 𝑖 1 . Autrement dit, la relation « être antérieur à » possède la propriété mathématique de la transitivité -ce qui, sans l'identification du temps chronologique avec le lien causal, reste bien mystérieux.

Nous comprenons également qu'elle soit antisymétrique. Si les instants locaux distincts 𝑖 1 et 𝑖 2 sont tels que 𝑖 1 soit antérieur à 𝑖 2 et 𝑖 2 antérieur à 𝑖 1 , une chaîne de points historicisés peut faire l'aller-retour 𝑖 1 𝑖 2 𝑖 1 dans le délai nul séparant 𝑖 1 et 𝑖 2 ; comme aucune « vitesse » (pour le moment notion naïve, impossible à définir rigoureusement) ne peut être infinie, 𝑖 1 = 𝑖 2 .

En somme, c'est parce qu'il n'est rien d'autre que l'expression du lien causal physique que le classement chronologique est une relation d'ordre.

La deuxième expérience relative au point historicisé est le repérage du lien causal. Elle construit l'ordre chronologique. 

-Homéomorphisme des histoires personnelles avec la droite réelle ordonnée

Que les points historicisés soient infiniment petits nous conduit à ce que leurs instants soient infiniment brefs : la mesure des durées -qui n'est pas du ressort du noyau premier, mais qu'il nous faudra bien installer -peut en effet être ramenée à l'observation de la course cyclique d'un point, laquelle est divisible en parties aussi fines qu'on voudra.

Dès lors, entre deux instants personnels 𝑖 1 et 𝑖 2 de l'histoire d'un point historicisé, il est difficile d'échapper à l'idée qu'il y en a toujours un troisième, effectif ou virtuel, 𝑖 3 . En acceptant ce postulat, l'intervalle ]𝑖 1 , 𝑖 2 [ est un ensemble infini totalement ordonné.

Il se laisse cependant décrire avec la précision qu'on voudra par une suite d'instants finie mais suffisamment dense. En termes mathématiques, c'est un ensemble infini totalement ordonné ayant une partie dénombrable partout dense. L'impossibilité expérimentale de discerner des instants suffisamment proches fait qu'on ne peut discerner cet ensemble de son complété topologique, qui est bien plus commode à utiliser, et qui est isomorphe à un intervalle ]𝑎, 𝑏[ de la droite réelle. L'histoire d'un point historicisé, en postulant qu'elle n'a ni alpha ni oméga, est ainsi, par élargissements successifs, isomorphe à la droite réelle tout entière.

Les diverses bijections croissantes qui réalisent cet isomorphisme sont par théorème continues : elles respectent les notions de voisinage et de limite. Elles sont ce qu'on appelle des homéomorphismes. Les histoires personnelles des points, pour l'ordre comme pour la topologie, sont identiques à la droite réelle. Bien évidemment, elles ignorent la notion de durée. On peut rétrécir ou dilater telle ou telle partie de cette droite, elle conserve exactement son ordre et sa topologie.

-Synthèse

─ Résumé et axiomatisation

L'instrument du noyau premier est le point historicisé, qui dispose d'une histoire ou chronologie faite d'instants personnels. Sur le plan de la modélisation mathématique, il revient au même de dire que le point historicisé est un ensemble d'instants personnels, tous distincts de ceux des autres points historicisés.

Axiome NP1 : L'ensemble des instants personnels d'un point historicisé est muni d'un ordre total, appelé ordre chronologique personnel, qui le rend isomorphe à l'ensemble ordonné des nombres réels.

La première expérience que le point historicisé permet de réaliser est celle de la coïncidence, encore appelée simultanéité locale. Si la suite finie d'instants locaux 𝑖 1 , 𝑖 2 , … , 𝑖 𝑛 est telle que chacun de ses termes soit directement antérieur au suivant, sans pour autant que d'un pas à l'autre cette antériorité soit nécessairement assumée par le même point historicisé, nous disons que 𝑖 1 est antérieur à 𝑖 𝑛 . Cette relation est le prolongement à l'ensemble des instants locaux des ordres chronologiques personnels.

Axiome NP3 : Le prolongement à l'ensemble des instants locaux des ordres chronologiques personnels est une relation d'ordre (stricte ou large selon que les ordres chronologiques personnels sont pris au sens strict ou au sens large).

-Vérification de consistance

Appelons « point historicisé » une quelconque application continue M de ℝ dans ℝ 3 , « instant personnel » de M un quelconque couple (M, 𝑡), où 𝑡 ∈ ℝ, « histoire personnelle » de M l'ensemble {M} × ℝ.

Posons que (M, 𝑡) et (M ′ , 𝑡 ′ ) coïncident si et seulement si 𝑡 = 𝑡 ′ et M(𝑡) = M ′ (𝑡), et ordonnons selon la valeur de 𝑡 l'histoire personnelle de M.

Il est immédiat que les trois axiomes sont vérifiés, et cela prouve la consistance de cette axiomatisation du noyau premier. Remarquons que le modèle ainsi construit diffère profondément de celui que nous croyons être correct, puisque c'est un modèle du temps absolu et de l'espace absolu. Mais au niveau de la vérification de consistance, c'est sans importance : il nous suffit en effet d'exhiber un modèle mathématique, et nous prenons le plus simple qui nous tombe sous la main.

-L'INSTRUMENT ET L'EXPÉRIENCE FONDATEURS DE LA GÉOMÉTRIE

Avant de nous atteler à ce problème, prenons le temps de nous faire une idée imagée d'un univers qui se limiterait aux notions apportées par le noyau premier.

Dans un tel univers, il n'y a pas de corps, mais seulement des « particules » infiniment petites ; ou plutôt, la notion de corps est un concept inexistant, et les corps, s'il y en a, ne sont rien d'autre que des collections de « particules » entre lesquelles nous ne concevons aucun lien. Le seul évènement envisageable est la rencontre de particules, et cet univers, d'une certaine façon, ressemble à un gaz -avec cette étrangeté qu'on est incapable de représenter la position d'une particule, parce qu'il n'existe aucun référentiel.

Une autre image, plus allégorique, mais qui souligne l'ordre chronologique, est celle du cocktail mondain. Des gens vont et viennent, se rencontrent, se séparent, des groupes se font et se défont. Cette somme d'histoires individuelles a une cohérence globale qui dépasse celle de chaque observateur. Mais nulle part il n'y a de plancher, de mur ni quoi ce soit d'analogue sur lequel on pourrait se baser pour désigner un lieu au sens où on l'entend d'habitude. La seule notion de lieu dont nous disposons, c'est le « ici et maintenant » de l'instant local.

-L'instrument et l'expérience fondateurs de la géométrie

Mais l'univers, justement, ne se réduit pas à la logique gazeuse du noyau premier. Il y a autre chose que ces « particules », ces points historicisés, il y a ce dont nous venons de constater l'absence dans le noyau premier, il y a des corps.

La géométrie est fondée sur l'expérience sans cesse renouvelée que certains objets manifestent certaines propriétés d'invariance : ainsi les lieux que je fréquente et un grand nombre d'objets familiers, qui d'un jour à l'autre restent sagement identiques à ce qu'ils sont, sans se déformer ni s'agrandir ni se rapetisser. Nous disons d'eux que les que leurs dimensions restent invariables ; ou que les points dont ils sont faits gardent entre eux des distances constantes.

Ce sont des façons de parler qui pourraient facilement nous inciter à la glissade conceptuelle, et nous faire accorder aux dimensions et aux distances en général le statut d'exister « en elles-mêmes » et donc préalablement aux objets qu'elles caractérisent. Elles existeraient alors indépendamment d'eux et seraient à proprement parler des entités métaphysiques. Les distances ne peuvent avoir d'existence « en elles-mêmes », elles ne sont que des concepts construits par notre intelligence à partir des expériences d'invariance dont nous venons de parler.

Le mot d'invariance est vague. À lui seul, il ne suffit pas pour décrire une expérience. Il faut être plus précis. Comment puis-je constater cette invariance ? Disons celle d'un brin de paille ?

Je le pose dans ma paume et je note que lorsqu'une de ses extrémités est exactement à la pointe de mon majeur, l'autre tombe pile sur le début de ma ligne de vie. Si je recommence plusieurs fois l'expérience, son résultat est toujours le même. J'en déduis l'invariance en question.

Ce qui vient d'être montré, pourra-t-on objecter, c'est tout autant l'invariance de ma main ; plus précisément, les invariances relatives, et non absolues, du brin de paille et de ma main.

Je peux alors refaire une autre expérience, par exemple avec un bâtonnet sur lequel je tracerai deux traits qui coïncideront avec les deux extrémités du brin de paille ; et je vérifierai que cette expérience de superposition peut comme la précédente être reproduite à volonté. Ce que j'ai fait avec le bâtonnet, je pourrai le recommencer avec de nombreux autres objets, bout de ficelle, règle graduée, compas, semelle de chaussure, etc., en repérant sur chacun d'eux des couples de points qui, comme les extrémités de la paille et les traits sur le bâtonnet, viennent se superposer deux à deux lorsqu'on rapproche de façon convenable deux objets quelconques de la collection. C'est d'une véritable société mutuelle d'invariances dont je dispose à présent.

Bien sûr, toutes ces invariances restent relatives, et pas absolues. Mais l'idée d'une invariance absolue est ici dépourvue de sens : que sont en effet des distances absolues, sinon des distances qui existent « en elles-mêmes », hors du recours aux objets ? Ce qui existe véritablement -encore une foisce sont ces objets particuliers parmi lesquels les expériences de superposition durable donnent des résultats reproductibles et compatibles entre eux. Nous dirons d'eux qu'ils sont mémoformes.

Formalisons les expériences que nous venons de faire par l'imagination. Elles consistent à repérer sur des corps mémoformes (K), (K ′ ), (K ′′ ), etc., des couples de points AB, A ′ B ′ , A ′′ B ′′ , etc. Si AB est superposable à A ′ B ′ et que A ′ B ′ l'est à A ′′ B ′′ , alors AB et A ′′ B ′′ sont superposables. Autrement dit, la relation « être superposable », définie entre de tels couples de points, est transitive.

Comme elle est également réflexive (tout couple est superposable à luimême) et symétrique (si A ′ B ′ est superposable à AB, alors AB l'est à A ′ B ′ ), c'est une relation d'équivalence. Elle définit donc des classes d'équivalence, qu'on appelle distances, longueurs ou dimensions. Ainsi, ces dernières ne sont pas des entités métaphysiques préexistant aux objets, mais bien des notions construites à partir du réel et de l'expérience.

Une fois qu'on dispose de la notion de distance, on peut définir et construire des plans, comme ensembles de points situés à égales distances de deux points A et B donnés. On peut sur un tel plan tracer l'ensemble des points équidistants de deux points C et D, et construire ainsi des droites.

Points, distances, plans, droites, nous disposons des notions sur lesquelles se basent diverses axiomatisations de la géométrie, si bien que nous pouvons affirmer que le corps mémoforme, utilisé lors d'expériences de superposition, suffit à la construction de la géométrie.

Nous avons d'autre part observé que la géométrie n'existe, dans une physique fondée sur l'instrument et sur l'expérience, que parce qu'existent ces objets mutuellement invariants que nous avons appelés mémoformes. Ils en sont les instruments nécessaires. Par conséquent : Le corps mémoforme, utilisé lors d'expériences de superposition durable, est l'instrument nécessaire et suffisant de la géométrie.

-Mathématisation de la superposition durable

Qu'un jour mon talon soit immobile à Marseille et qu'un autre mon gros orteil soit immobile à Paris ne prouve pas que la distance entre ces villes soit égale à la longueur de mon pied. Pour être une superposition globale, une somme de superpositions locales doit manifester une certaine synchronie. Elles doivent, d'une certaine manière, se dérouler « au même moment ». C'est un problème que nous avons déjà étudié lors de la construction du noyau premier, et auquel nous avons apporté une solution. Formalisons-la rapidement.

Pour cela, définissons le concept de moment. Soit (E) un ensemble de points historicisés. Soit ℳ un ensemble obtenu en prenant, pour chaque point M de (E), un intervalle (et un seul) de sa chronologie personnelle :

ℳ = { ]𝑖 M , 𝑗 M [ M ⁄ ∈ (E)} On dit que ℳ est un moment de (E) s'il existe deux instants locaux 𝑖 et 𝑗 tels que 𝑖 < 𝑗, et tels que pour tout M appartenant à (E), 𝑖 M < 𝑖 < 𝑗 < 𝑗 M .
Tels que nous venons de le définir, un moment est un ensemble d'intervalles d'instants personnels. On appelle encore moment de (E) l'ensemble obtenu en remplaçant ces instants personnels par les instants locaux dont ils sont les représentants.

Étant donné deux ensembles de points historicisés (E) et (F), 𝑓 une bijection de (E) sur (F), et ℳ un moment de (E), on dit que (F) est superposé à (E) selon 𝑓 durant ℳ si pour tout M de (E), M et 𝑓(M) coïncident durant l'intervalle ]𝑖 M , 𝑗 M [ de ℳ.

Il est immédiat que ℳ est un moment de (F), et que (E) est superposée à (F) durant ℳ selon 𝑓 -1 .

Tout aussi immédiat, si en outre (G) est superposée à (F) selon 𝑔 durant ℳ, alors (G) est superposée à (E) selon 𝑔 𝑜 𝑓 durant ℳ.

Les expériences de superposition durable doivent être conduites lors de moments entiers des corps concernés. Leurs résultats sont compatibles avec le passage à la bijection réciproque et avec la composition des bijections.

-Solidité, mémoformité, élasticité, repos galiléen

Les corps mémoformes, d'une façon essentielle à leur fonctionnement, s'appuient sur l'état solide de la matière, sans lequel il n'existe aucun moyen de faire de la géométrie. Mais ce ne sont pas forcément des solides, puisqu'il y a parmi eux des objets comme la ficelle, le mètre ruban, le papier calque voire le pied qui permet de mesurer de petit pas en petit pas.

De fait, d'ailleurs, aucun corps mémoforme n'est solide, au sens que la géométrie donne ordinairement à ce mot, celui d'objet totalement indéformable. La règle d'acier, lorsque j'agis sur elle pour la transporter d'une position à une autre, se « déforme », comme se « déforment » tous les corps, même les plus rigides. (Les guillemets sont là pour souligner qu'il est pour le moment impossible de donner une signification autre que naïve à ces déformations instantanées : il faudrait disposer d'une géométrie et d'une chronométrie, ce qui est loin d'être le cas au point où nous en sommes, où nous n'avons pas encore construit la géométrie.)

Puisque les corps mémoformes se « déforment » quand on agit sur eux, leur mémoformité ne peut être tenue pour permanente. Elle n'est que récurrente. Elle est sous la dépendance du retour à des conditions expérimentales identiques.

La propriété qu'ont certains corps de retrouver d'eux-mêmes leur forme lorsqu'on les ramène aux mêmes conditions expérimentales s'appelle l'élasticité. Les corps mémoformes sont par conséquent des corps élastiques.

Les mots « mémoforme » et « élastique » ne sont pas pour autant exactement synonymes. Le deuxième renvoie au champ complet de l'élasticité, tandis que le premier se limite aux expériences qui permettent de construire la géométrie.

La mémoformité est donc subordonnée à l'existence d'un moyen de replacer les corps dans les mêmes conditions expérimentales. Puisque nous ne disposons pas des notions de mécanique qui nous permettraient de décrire précisément celles-ci, elles doivent être les plus simples possibles, celles où la matière n'est soumise à aucune action. Ainsi, nous n'acceptons la règle d'acier comme instrument légitime que lorsqu'elle n'est soumise à aucune flexion, torsion, étirement ou compression.

D'une façon générale, lorsqu'un corps mémoforme participe à une expérience de superposition durable, aucune action ne doit être exercée sur lui -du moins aucune action autre que celle, globale et impossible à supprimer, qu'exerce éventuellement l'univers lointain. Il est hors de tout champ de pesanteur et flotte donc dans le vide, loin de tout. Il doit également n'être soumis à aucun « mouvement de rotation » -pour le moment indéfinissable en tant que tel, mais reconnaissable à ce que des objets ponctuels libres peuvent demeurer immobiles relativement à lui. Nous appellerons cet état le repos galiléen.

Nos instruments sont libres de toute contrainte, de toute force d'inertie de toute action gravitationnelle, ils devraient être parfaits. Si ce n'est peut-être qu'ils pourraient varier selon leur température.

Depuis l'Antiquité grecque qui a dégagé ces entités étranges que sont la règle et le compas des mathématiciens, arpenteurs tout-puissants, idéalement exacts et parfaits d'un monde où la perfection n'est qu'une vue de l'esprit, jamais aucun mathématicien raisonnable, et peut-être même aucun mathématicien n'a construit une géométrie dont un des concepts premiers, parmi ceux de point, de droite, de longueur ou d'angle, serait la température locale des figures et des instruments. Ses effets sont considérés comme des contingences à éliminer, ce qui est facile en travaillant implicitement à une température constante. Nous incluons donc ce détail dans notre définition du repos galiléen.

Lors des expériences de superposition durable, les corps doivent être au repos galiléen.

Il est vrai que le fil tendu ne fonctionne pas de la même façon, puisqu'il faut au contraire le tendre pour qu'il devienne instrument de géométrie. Mais c'est seulement parce que la droite qu'il offre alors est indépendante de la tension du fil, qui du coup n'a pas besoin d'être connue : le fil est un instrument dérogatoire, qui ne remet pas en cause le fait que la géométrie est fondée en théorie comme en pratique sur la matière solide sur laquelle on n'exerce aucune contrainte. L'expérience qui permet de reconnaître le repos galiléen est donc également une expérience de superposition durable.

-La géométrie des espaces galiléens est universelle et obéit au principe de relativité

En choisissant le repos galiléen comme l'état dans lesquels les corps mémoformes doivent être pour qu'une expérience de superposition durable soit légitime, nous obéissons clairement au principe d'universalité : nous postulons que les déserts galiléens sont tous les mêmes, et nous fournissent donc un contexte universel.

Mais dans un désert galiléen l'univers lointain ne cesse pas d'exister. Deux états de repos galiléen ne peuvent a priori être considérés comme identiques que s'ils vont à même vitesse relativement à lui, c'est-à-dire à la même vitesse relativement à l'espace isotrope. Cependant, pour ce qui est de la géométrie, seule compte l'incidence du contexte galiléen particulier sur l'expérience de superposition durable : la question est de savoir si deux corps mémoformes superposables dans un certain état de repos galiléen le seront encore quand ils seront placés dans un autre état de repos galiléen.

Lorsque les deux corps sont taillés dans la même matière, c'est une évidence. Mais lorsque les deux corps sont fabriqués dans des matériaux différents, le passage d'un état de repos galiléen à un autre pourrait avoir des effets différents sur les deux matériaux. Si tel était le cas, la chose devrait se constater dans nos laboratoires terrestres, de la même façon que l'expérience de Michelson et Morley, qui devrait en théorie être conduite dans un laboratoire galiléen parfait installé dans le désert intergalactique, rend cependant des résultats significatifs à la surface de notre planète. Si donc le passage d'un état de repos galiléen à un autre avait des effets différents selon les matériaux, on devrait, ayant posé côte à côte dans un laboratoire terrestre deux règles faites de matériaux différents, maintenues à température rigoureusement constante, observer que la longueur de l'une varie relativement à celle de l'autre selon un cycle diurne reflétant celui selon lequel varie la vitesse de l'espace isotrope relativement au laboratoire. Il semble que personne n'ait jamais constaté rien de tel. Corrélativement, personne ne rapporte que le résultat de l'expérience de Michelson et Morley dépende de la nature des matériaux dont sont faits les bras de l'interféromètre. La contraction de Lorentz est la même pour tous les matériaux.

De deux choses l'une :

-Ou bien n'y a aucune modification intrinsèque de la matière lorsqu'elle passe d'un état de repos galiléen à un autre : c'est l'hypothèse que la contraction de Lorentz est relative.

-Ou bien cette matière subit une modification intrinsèque, qui est la même lorsque les matériaux sont différents : c'est l'hypothèse que la modification est objective.

Nous montrerons que c'est la deuxième solution qui doit être retenue. Mais pour le moment, contentons-nous d'observer que ces deux possibilités, en ce qui concerne la géométrie, reviennent au même. Elles nous assurent l'une comme l'autre, en effet, que les modifications que subit la matière mémoforme quand elle est en mouvement relativement à un espace isotrope, qu'elles soient purement relatives ou au contraire objectives, sont invisibles au travers des expériences de superposition durable :

Mais cette deuxième alternative conduit en ce qui concerne la géométrie au même résultat que la première : le résultat des expériences de superposition durable ne dépend pas de la vitesse particulière du repos galiléen dans lequel sont les corps. Et donc, même si le contexte n'obéit pas au principe de relativité, ces expériences se conforment à lui.

L'expérience de superposition durable obéit au principe de relativité. Il en est donc de même de la géométrie des espaces galiléens.

-Le statut géométrique de la lumière

Une fois installé le noyau premier, nous construisons la géométrie sur un seul instrument, le corps mémoforme, et une seule expérience, la superposition durable.

Il en résulte que la lumière est en géométrie un instrument non nécessaire, un instrument dont elle peut se passer, en un mot un instrument facultatif.

Cette conclusion peut heurter des convictions intuitives fortement enracinées en nous, pour qui le monde géométrique est avant tout quelque chose qui s'atteint par la vue. Mais c'est parce que nous sommes des animaux visuels. Rien n'exclut que sur quelques-unes des innombrables exoplanètes de l'univers se soient développées des formes de vie intelligentes et cependant dépourvues d'organes leur permettant de voir. C'est par exemple le cas chez nous avec les chauves-souris, qui connaissent le monde par le toucher et l'écholocation. Rien n'exclut non plus que ces formes de vie soient douées de capacités de comprendre et de manipuler n'ayant rien à envier aux nôtres. Elles ne pourront alors que découvrir la géométrie, tout en ignorant la lumière. Du moins dans un premier temps, car la géométrie n'est que le début de la construction de la physique, et il n'y a aucune raison que ces êtres ne découvrent pas comme nous les ondes électromagnétiques, ni ne finissent par construire grâce à elles des appareils leur permettant d'élargir leurs possibilités de « voir » (je devrais dire « entendre ») en les convertissant en images sonores, à l'inverse de ce que nous faisons avec un sonar, qui transforme des échos sonores en images visuelles.

Il n'est pas nécessaire, au demeurant, de visiter par la pensée les exoplanètes de l'univers pour se convaincre que l'on peut faire de la géométrie sans se servir de la lumière. On voit chez nous des aveugles de naissance être aussi capables que n'importe qui d'accéder à une pratique géométrique élaborée, en se servant notamment de règles à mesurer graduées en Braille.

Un point est venu renforcer l'idée erronée que la lumière aurait en géométrie un statut fondateur, c'est le fait que le mètre est aujourd'hui défini à partir de la longueur d'onde d'une certaine vibration lumineuse.

Cette définition repose sur la possibilité de manipuler la lumière. Or c'est quelque chose que nous ne savons pas faire sans disposer d'objets tels que des lentilles, des miroirs ou des écrans, dont la forme et les positions relatives sont supposées rester invariables. De même, l'oeil, parce qu'il conserve la même forme ou la reproduit lors d'accommodations successives, est un corps mémoforme. De même les appareils photo et les caméras. La lumière ne peut être appréhendée sans le corps mémoforme. Elle n'est pas un instrument à elle seule, et ne peut intervenir qu'accompagnée de lui.

La définition du mètre à partir de la lumière n'est donc qu'une définition de commodité : un unique étalon, comme celui déposé au pavillon de Breteuil, c'est bien peu pour une planète entière ; quel que soit le soin apporté à leur réalisation, les copies ne valent pas l'original, alors que la lumière est partout la même ; les manipulations doivent se faire à température constante, ce qui ne simplifie rien ; enfin, l'original n'est pas à l'abri de mésaventures accidentelles qui nous laisseraient orphelins de sa valeur première. Sur tous ces points cruciaux, la façon moderne de définir le mètre est supérieure à l'ancienne, et permet un gain de précision. Mais il serait absurde d'en conclure que la lumière est en elle-même plus précise que le corps mémoforme. Comme la lumière ne peut être appréhendée sans lui, la précision dépend tout autant de l'invariance mémoforme du dispositif expérimental que de l'invariance des propriétés de la lumière relativement à lui.

La lumière n'est en rien nécessaire à la construction de la géométrie. C'est donc, en vertu du principe de minimalité, un instrument qui ne doit pas intervenir -un instrument hors de propos. La construction de la géométrie doit se faire à l'aveugle.

Le principe de minimalité nous protège ici d'un cercle vicieux. Si la définition de l'alignement se fondait sur la lumière, l'affirmation qu'elle se déplace en ligne droite dans le vide serait une simple tautologie. Elle ne prend sens que parce que nous pouvons définir la ligne droite autrement qu'avec la lumière.

-UNE AXIOMATISATION DE LA GÉOMÉTRIE FONDÉE SUR L'INSTRUMENT ET L'EXPÉRIENCE

Nous venons de montrer que le corps mémoforme, adossé aux concepts de repos galiléen et de superposition durable, permet de construire les notions d'espace galiléen, de longueur et d'alignement, et qu'il est l'instrument nécessaire et suffisant de la géométrie. Sa mise en place mathématique détaillée reste à faire : définir les nouveaux objets, poser de nouveaux axiomes et démontrer un à un, avec patience et minutie, les théorèmes qu'ils génèrent, jusqu'à atteindre ce résultat connu d'avance, que la géométrie du cadre plat ainsi construite, celle dont les espaces galiléens doivent être munis, est la géométrie euclidienne de dimension trois. Une telle entreprise procurera à certains, sans aucun doute, le même plaisir que d'autres trouvent à construire une maquette de cathédrale avec des allumettes ; mais beaucoup, devant la longueur prévisible du projet et son manque absolu de suspense, pourraient être tentés de déclarer entre deux bâillements prémonitoires que nous avons déjà largement répondu à la question, qu'il ne manque que quelques détails sans importance, dont nous pouvons sans regrets enjamber l'étude pour nous pencher sur d'autres problèmes. Ils n'auraient pas entièrement tort. Et leur enjambement serait illico pardonné.

Néanmoins le thème central de notre réflexion est pour le moment la question de l'axiomatisation de la physique, considérée tantôt sous l'angle général de la philosophie et des principes, tantôt sous l'angle particulier, central et premier du noyau de la cinématique. Dans ce contexte, on ne voit pas comment il serait possible de ne pas proposer pour la cinématique -et donc pour la géométrie -un système d'axiomes fondé sur l'instrument et l'expérience. Ne serait-ce que pour en montrer formellement la possibilité. On le voit d'autant moins que nous avons déjà commencé de le faire en installant le noyau premier, qui met en place les notions préalables à la géométrie : points historicisés, chronologies personnelles, instants personnels, simultanéité locale, ordre chronologique, instants locaux, moments -ainsi que les axiomes qui les régissent.

Aussi continuerons-nous ce travail, mais sans entrer dans le détail. Je me contenterai de donner les axiomes en les accompagnant seulement de quelques courts commentaires.

De même que la solution d'un exercice peut-être rédigée de diverses façons, le système d'axiomes proposé ci-dessous pourrait certainement être différent, tout en étant construit sur les mêmes exigences philosophiques et en engendrant le même édifice mathématique. Cela n'a pas d'importance.

L'enjeu n'est pas d'obtenir le système axiomatique parfait, si tant est qu'il existe, mais de montrer que les exigences auxquelles nous a conduits l'analyse philosophique peuvent se concrétiser en un système d'axiomes.

Ses axiomes peuvent être organisés en deux catégories : ceux qui décrivent la « logistique » du corps mémoforme, et ceux qui décrivent certaines de ses propriétés que nous pouvons qualifier de « géométriques ».

-Les axiomes « logistiques » du corps mémoforme

Du point de vue axiomatique, les corps mémoformes sont des ensembles particuliers de points historicisés -en général simplement appelés points, mais qui n'en conservent pas moins leurs chronologies personnelles.

Pour chaque corps mémoforme, il existe des moments, éventuellement éternels, durant lesquels ces corps sont dits au repos galiléen. Axiome Mém1 : Toute partie non vide d'un corps mémoforme (K) est elle-même un corps mémoforme, au repos galiléen quand (K) l'est.

Deux corps mémoformes (K) et (K') sont superposés durant le moment ℳ s'ils sont alors l'un et l'autre au repos galiléen et s'il existe une bijection 𝑓 de l'un vers l'autre qui fait coïncider les points et leurs images.

Axiome Mém2 : Tout corps mémoforme, lors de chacun de ses moments de repos galiléen, est superposé à un corps mémoforme éternellement au repos galiléen. Axiome Mém3 : Si (K) et (K') sont deux corps mémoformes éternellement au repos galiléen, tels qu'une partie non vide de l'un soit durant un certain moment superposée à une partie non vide de l'autre, alors -cette superposition est éternelle ; -la réunion de (K) et de (K') est un corps mémoforme éternellement au repos galiléen. Si (K) est un corps mémoforme éternellement au repos galiléen, on appelle espace galiléen engendré par (K) la réunion de tous les corps mémoformes éternellement au repos galiléen dont une partie non vide est superposée à une partie non vide de (K). Axiome Mém4 : Toute partie finie d'un espace galiléen est un corps mémoforme éternellement au repos galiléen. Il est clair qu'elle est réflexive (tout corps mémoforme est superposable à lui-même) et symétrique (si (K) est superposable à (K'), alors (K') l'est à (K)). Aussi, cet axiome n'affirme en fait que sa transitivité : Si (K) et (K') sont superposables par la bijection 𝑓, et (K') et (K'') par la bijection 𝑔, (K) et (K'') le sont par la bijection 𝑔 𝑜 𝑓.

Axiome Mém7 : Soit (K) un corps mémoforme, O un point de (K), (E) un espace galiléen, O' un point de (E). On peut découper dans (E) des corps mémoformes (K') superposables à (K), de telle façon que O et O' se correspondent.

En d'autres termes, on peut transporter un corps mémoforme donné à tout endroit de tout espace galiléen. Axiome Mém8 : Soit (K) et (K') deux parties superposables de deux espaces galiléens (E) et (E'). Alors (E) et (E') sont superposables, en prolongeant la façon dont (K) et (K') le sont.

Cet axiome demande d'étendre aux espaces galiléens la notion de superposabilité : (E) et (E') sont superposables par la bijection 𝑓 signifie que l'image par 𝑓 de tout corps mémoforme (K) inclus dans (E) est un corps mémoforme superposable à (K) par la restriction à (K) de 𝑓, et de même avec 𝑓 -1 .

-Les axiomes géométriques

On appelle bipoint tout corps mémoforme formé de deux points.

Axiome Géom1 : Les bipoints AB et BA sont superposables.

La relation de superposabilité est une relation d'équivalence entre bipoints. On appelle longueurs ses classes. On note AB la longueur du bipoint AB.

Tout point d'un espace galiléen en forme une partie finie, et est donc un corps mémoforme au repos éternel, superposable à tout autre point. Les bipoints du type AA sont donc tous superposables, et ont donc tous la même longueur, la longueur nulle. On note AA = 0.

On appelle triangle tout corps mémoforme formé de trois points.

Axiome Géom2 : Deux triangles dont les côtés homologues ont deux à deux la même longueur sont superposables.

Si O est un point d'un espace galiléen (E) et R une longueur, on appelle sphère de centre O et de rayon R l'ensemble des points M de (E) tels que OM = R.

Si A et B sont deux points de (E) on appelle chemin de A à B la trajectoire dans (E) d'un point historicisé allant de A à B, c'est-à-dire l'ensemble des points de (E) qui coïncident avec ce point historicisé lors des instants de sa chronologie compris entre celui où il est en A et celui où il est en B.

On dit qu'une partie (F) de (E) est connexe par arcs si, étant donné deux points A et B quelconques de (F), il existe toujours un chemin allant de A à B inclus dans (F).

Soit (S) une sphère tracée dans (E). On dit que deux points A et B de (E) sont du même côté de (S) s'il existe un chemin allant de A à B qui ne rencontre pas (S). Axiome Géom3 : Une sphère (S) de rayon R partage un espace galiléen en deux régions connexes par arc si R est non nul, ne le partage pas sinon.

Autrement dit, la relation « être du même côté de (S) » est, parmi les points de (E) qui n'appartiennent pas à (S), une relation d'équivalence à deux classes si R ≠ 0, à une classe sinon.

Étant donné, dans (E), une sphère (S) de centre O et de rayon R non nul, on appelle boule ouverte de centre O et de rayon R l'ensemble des points de (E) qui sont du même côté de (S) que O. La boule ouverte de centre O et de rayon 0 est l'ensemble vide.

Axiome Géom4 : Deux boules ouvertes d'un espace galiléen, de même centre et de rayons distincts, sont telles que l'une, qui ne dépend que de leurs rayons, est strictement incluse dans l'autre.

Si R est le rayon de la boule qui est incluse dans l'autre, dont le rayon est R', on dit que R est strictement inférieur à R'. On note R < R'.

Axiome Géom5 : Deux boules ouvertes de rayons non nuls et distincts sont disjointes ou incluses l'une dans l'autre si et seulement si les sphères qui les engendrent ont une intersection vide ou réduite à un seul point.

On dit qu'une partie (U) de (E) est ouverte si pour tout M dans (U) il existe une boule ouverte centrée en M, de rayon non nul, et incluse dans (U). (E) est ouvert ; la partie vide également. Axiome Géom6 : Dans un espace galiléen, les deux composantes connexes formant le complémentaire d'une sphère de rayon non nul sont des ouverts.

Axiome Géom8 : Les boules fermées d'un espace galiléen sont compactes.

En d'autres termes, si une famille infinie d'ouverts recouvre une boule fermée, on peut extraire de cette famille une sous-famille finie qui recouvre encore la boule. Cet axiome élimine les géométries de dimension infinie.

Les huit axiomes ci-dessus permettent de munir les espaces galiléens d'une géométrie dans laquelle l'ensemble des longueurs, muni de la relation d'ordre, est homéomorphe à l'ensemble ordonné des nombres réels positifs.

Pour construire l'alignement, on peut commencer par montrer qu'étant donné une sphère (S) et un point A qui n'est pas son centre, il existe sur (S) un unique point à distance maximale de A, et un unique point à distance minimale de A. Trois points distincts A, B et C sont alignés lorsque le point B est à distance extrémale de A sur la sphère de centre C et de rayon BC. L'inégalité triangulaire découle de cette définition ; de même les notions de somme et de différence de longueurs, qui engendrent à leur tour celles de multiplication et de division d'une longueur par un scalaire. On montre que la droite est homéomorphe à l'ensemble des nombres réels.

On définit la symétrie centrale, dont on montre que c'est une isométrie.

On dit que deux demi-droites d'un espace galiléen sont parallèles si la distance à l'une d'un point de l'autre reste bornée quand le point tend vers l'infini. On montre que c'est une relation d'équivalence entre demi-droites d'un espace galiléen ; et qu'à partir d'un point quelconque on peut tracer une et une seule demi-droite parallèle à une demi-droite donnée.

À ce point de la construction de la géométrie, la question qui se pose est de savoir si le parallélisme s'étend aux droites entières : quand deux demi-droites sont parallèles, leurs opposées le sont-elles également ?

Or, dans le système d'axiomes jusque-là mis en place, cette propriété est indécidable. Nous pouvons y répondre positivement, et construire alors une géométrie euclidienne, comme y répondre négativement, et construire une géométrie de Lobatchevski (elle ne peut pas être elliptique à cause de l'axiome Géom3).

Dans la première, les directions de demi-droites -c'est-à-dire leurs classes d'équivalence modulo la relation de parallélisme -sont associées deux par deux, l'une étant l'opposée de l'autre.

Dans la deuxième, étant donné deux directions de demi-droites, il existe toujours une droite et une seule dont les demi-droites, dans un sens, sont de la première direction, et dans l'autre de la deuxième. (Et cela, même si ces deux directions, vues depuis un point O donné, paraissent arbitrairement proches l'une de l'autre. La droite qui les joint, considérée depuis O, semble en épingle à cheveux, mais considérée depuis un de ses points, elle apparaîtrait conforme à l'intuition que nous avons d'un objet rectiligne.) Puisque la géométrie des espaces galiléens doit être euclidienne : Axiome Géom9 : Les trajectoires dans un espace galiléen (E) de deux points d'un autre espace galiléen (E') sont des droites à distance bornée l'une de l'autre.

Le système d'axiomes jusqu'ici proposé engendre un édifice dans lequel les espaces galiléens sont des espaces euclidiens de même dimension finie supérieure ou égale à 2. Reste à « caler » cette dimension. Axiome Géom10 : La dimension d'un espace galiléen est 3.

Ainsi, en faisant varier dans ce dernier axiome le paramètre de la dimension, on obtient une axiomatisation élémentaire de la géométrie euclidienne de dimension 𝑛 supérieure ou égale à 2 ; et en « oubliant » cet axiome, une axiomatisation élémentaire de la géométrie de dimension 𝑛 indéterminée supérieure ou égale à 2.

-Vérification de consistance

Elle consiste à s'assurer qu'on peut construire dans le cadre de la théorie des ensembles un modèle vérifiant les axiomes proposés.

Un tel modèle n'est pas difficile à trouver : c'est celui de l'espace et du temps absolus, identifiés l'un à l'ensemble des triplets de nombres réels et l'autre à l'ensemble des nombres réels. Les points historicisés sont des applications continues du temps absolu dans l'espace absolu. Un espace galiléen est l'ensemble des points historicisés ayant tous éternellement une même vitesse constante. Un corps mémoforme est un ensemble de points historicisés gardant entre eux des distances invariables -il est donc infiniment rigide -et ses moments de repos galiléen sont ceux où il coïncide durablement avec une partie d'un espace galiléen. Tous les axiomes déjà posés se démontrent aisément dans ce modèle, ce qui prouve la consistance de leur système.

Bien évidemment, ce modèle de l'espace absolu, du temps absolu et de la rigidité infinie n'est en rien celui auquel l'analyse philosophique nous a conduits. Il présuppose l'existence du temps mesuré, notion que nous n'avons pas encore construite. Mais pour montrer la consistance logique du système d'axiomes jusqu'ici posés, il suffit d'exhiber un modèle mathématique les vérifiant, et je prends de nouveau le premier et le plus simple qui nous tombe sous la main.

-L'INSTRUMENT ET LES EXPÉRIENCES FONDATEURS DE LA CHRONOMÉTRIE

-L'horloge

Au sortir de l'axiomatisation du noyau de la géométrie, les notions dont nous disposons permettent de décrire les mouvements de points historicisés relativement à un espace galiléen, en utilisant comme variables leurs temps personnels. Dans ce contexte, l'extension conceptuelle minimale qui permettra de définir une horloge effective et minimale -une horloge première, donc -est celle qui permettra de décider, parmi tous ces mouvements, lesquels sont réguliers.

Pour ce qui est de la modélisation axiomatique, les horloges premières sont donc des ensembles particuliers de points historicisés, dont les passages successifs en un lieu d'un espace galiléen définissent des instants locaux « régulièrement espacés ».

Or depuis Galilée, nous savons quels sont les objets qui, relativement à un espace galiléen, ont des mouvements qui peuvent être qualifiés de réguliers : ce sont ceux sur lesquels aucune action n'est exercée, autrement dit les objets en mouvement inertiel. Le principe de Galilée, étendu aux mouvements inertiels en général, implique et engendre une définition du temps mesuré.

Les mouvements inertiels relativement à un espace galiléen sont réguliers les uns par rapport aux autres. Le temps qu'ils définissent est celui de la conservation de la quantité de mouvement et du moment cinétique.

Tous les objets en mouvement inertiel sont des horloges et à ce titre se valent, mais nous n'avons aucun intérêt à choisir les mouvements inertiels généraux, qui, parce qu'ils combinent translation et rotation, sont -Les horloges inertielles tournantes. Ce sont des objets ayant une symétrie de révolution, par exemple des cylindres de révolution, globalement immobiles relativement à l'espace galiléen depuis lequel on les considère, et animés d'un mouvement inertiel de rotation autour de leur axe. Les durées qu'ils définissent sont proportionnelles de tours qu'ils font.

-Les horloges inertielles glissantes. Ce sont des objets au repos galiléen, et dont les vitesses relativement à l'espace galiléen depuis lequel on les considère ne sont pas nulles. Ils sont donc animés de mouvements de translation et définissent des durées proportionnelles aux longueurs des parcours de leurs points.

Qu'elles soient glissantes ou tournantes, les horloges inertielles, ayant des mouvements réguliers les unes par rapport aux autres, définissent la même égalité des durées et donc les mêmes classes d'équivalence modulo cette égalité, autrement dit les mêmes durées.

L'horloge glissante est en fait constituée de deux corps mémoformes au repos galiléen, celui qui est en mouvement relativement à l'espace galiléen (E), et l'espace (E) lui-même. C'est exactement le même matériel que celui qui a servi à fonder la géométrie, utilisé sur un autre mode. On ne peut pas faire plus minimal.

L'horloge tournante est elle aussi minimale, même si c'est un peu moins flagrant. Pour que la régularité de son fonctionnement soit assurée, il faut que la matière dont elle est faite reste constamment identique à ellemême. Cette invariabilité lors de conditions physiques invariables est un cas particulier des propriétés du corps élastique, qui par définition redevient en tout point identique à ce qu'il était lorsqu'on le ramène à des conditions en tout point identiques. Les horloges tournantes sont donc elles aussi des corps mémoformes et le temps qu'elles délivrent repose sur les mêmes fondements que celui délivré par les horloges glissantes : le défilement régulier d'un corps mémoforme devant un autre corps mémoforme, l'un et l'autre étant emportés par un mouvement inertiel. À ce titre, ce ne sont que deux variantes également minimales du même instrument. L'horloge première de la physique, effective et minimale, est celle que réalise un objet en mouvement inertiel relativement à un espace galiléen.

-L'arbitre de simultanéité

L'instrument qu'emploie Einstein pour définir ou vérifier la simultanéité 14 est ce que nous avons appelé l'« arbitre de simultanéité », , utilisant la lumière et l'observateur médian.

Ainsi, dans la construction einsteinienne, la chronométrie est fondée sur deux instruments, l'horloge et l'arbitre de simultanéité. Cela peut nous faire douter de l'unité que nous accordons intuitivement aux notions temporelles élaborées, et qui nous ont fait les réunir dans un même noyau, pour nous demander si celui-ci ne doit pas être scindé en deux, un sousnoyau de la durée, fondé sur l'horloge, et un sous-noyau de la simultanéité, fondé sur l'arbitre de simultanéité.

On rencontre dans la construction instrumentale traditionnelle de la géométrie une situation analogue, la présence conjointe de deux instruments premiers, la règle et le compas, respectivement associés à deux concepts premiers, ceux de droite et de distance, dualités homologues qui pourraient nous faire douter de l'unité du noyau de la géométrie et le diviser en un sousnoyau de l'alignement et un sous-noyau de la distance. Mais parce que la géométrie est constructible sur le seul corps mémoforme, ce n'est pas le cas et ce noyau possède bien l'unité interne que l'intuition lui attribue. Ce résultat est à rapprocher du théorème de Mohr-Mascheroni, démontré de façon indépendante par Mohr en 1672 [START_REF] Mohr | publié en 1672 simultanément à Copenhague en danois et à Amsterdam en flamand, puis tombé dans l'oubli jusqu'à sa redécouverte en 1928 chez un bouquiniste de Copenhague[END_REF] et par Mascheroni en 1797 16 , qui affirme que si une construction géométrique est possible à la règle et au compas, alors elle est possible au compas seul.

L'horloge inertielle, étant minimale, ne peut être remplacée dans ce rôle par aucune autre. Elle est première. Aussi, le noyau de la chronométrie possède bien l'unité que nous lui devinons à condition qu'il soit fondé sur un seul instrument, autrement dit que l'horloge inertielle soit également instrument de définition et de vérification de la simultanéité.

Or c'est évidemment le cas. Considérons, dans un espace galiléen isotrope (E), un cylindre de révolution (C) globalement immobile, tournant librement sur lui-même, et sur lequel est gravée une génératrice (G). Montrons que cet étalonnage fait depuis A aboutit au même résultat que s'il était fait depuis B. Les nombres de tours comptés durant deux trajets de même origine et de même extrémité faits sur la droite AB diffèrent d'un nombre entier ; et si ces trajets sont homotopes, c'est-à-dire tels qu'on puisse passer de l'un à l'autre par déformation continue, alors cette différence de nombres de tours, qui est entière et dépend continûment des trajets, est constante ; elle vaut donc la valeur prise quand les trajets sont identiques, soit zéro. Jusqu'ici, nous ne pouvions comparer les vitesses de rotation des horloges que si leurs supports ont un point commun. La simultanéité globale relative à (E) permet de s'affranchir de cette limitation. Deux horloges tournent à la même vitesse s'il existe deux instants locaux 𝑒 A et 𝑒 A ′ se déroulant en un point A appartenant au support de l'une, et deux instants locaux respectivement simultanés à eux 𝑒 B et 𝑒 B ′ se déroulant en B appartenant au support de l'autre, tels que les deux horloges fassent le même nombre de tours entre ces deux paires d'instants. On montre facilement que :

Parti à l'instant 𝑒

Si deux horloges de (E) vont à la même vitesse pour deux paires particulières d'instants locaux, elles vont à la même vitesse pour toutes les paires possibles d'instants locaux situées sur leurs supports respectifs et deux à deux (E)-simultanés.

Les horloges inertielles tournantes globalement immobiles relativement à un espace galiléen isotrope le munissent d'une mesure des durées et d'une définition de la simultanéité compatible avec elle.

La règle synchrone.

Ce cylindre en rotation relativement à un espace galiléen est un arbitre de simultanéité, équivalent à l'observateur médian d'Einstein ; mais tandis que celui d'Einstein les fournit avec retard, il a l'avantage de les fournir « dans l'instant ». Étant de longueur invariable, c'est aussi une règle à mesurer. Tournant librement sur lui-même, c'est encore une horloge inertielle.

Cet instrument à triple fonction est un objet théorique virtuel. On peut donc en superposer autant de variantes qu'on voudra, de même rayon et de même longueur globalement immobiles dans l'e.c.i de même centre que lui.

Ainsi, il est commode de superposer : -un « immobile » qui ne tourne pas sur lui-même relativement à l'espace galiléen où l'instrument est globalement immobile ;

-deux cylindres tournant à des vitesses 𝜔 et 𝜔 ′ incommensurables ; deux génératrices de l'un et de l'autre sont superposées une fois et une seule, cela permet de lever l'équivoque entre les instants locaux en une extrémité candidats à être simultanés à un instant local en l'autre extrémité et dispense d'étalonner l'appareil comme nous l'avons fait plus haut.

Nous l'appellerons règle synchrone.

On peut aussi définir la simultanéité au moyen d'horloges glissantes. Soit 𝑒 A et 𝑒 B deux instants locaux se déroulant en des lieux A et B de (E). Soit (E') un espace galiléen dont la direction de déplacement relativement à (E) est perpendiculaire à (AB). 𝑒 A et 𝑒 B sont simultanés s'ils coïncident avec le passage en A et en B d'un même plan de (E') perpendiculaire à la direction de déplacement de (E) dans (E'). Puisque les points de (E') défilent tous dans le même sens dans (E) et inversement, cette définition de la simultanéité s'accompagne de celle d'un ordre chronologique : 𝑒 A est antérieur à 𝑒 B si les plans de (E') dont les passages en A et en B coïncident avec eux ont des abscisses rangées dans cet ordre le long de la direction de déplacement de (E) dans (E').

Pour 

-Convergence avec le parcours instrumental de l'humanité

Les instruments premiers, selon le sens particulier que nous donnons à ce mot dans la perspective de la fondation sur l'instrument et l'expérience, sont les premiers dont peut se saisir l'« homme préhistorique » que nous jouons à être lorsque nous nous penchons sur le problème d'une axiomatisation constructiviste de la cinématique. Aussi doivent-ils logiquement être également les premiers dont a pu s'emparer l'humanité.

Tel est bien le cas. La première de toutes les horloges utilisées par l'homme est le globe terrestre tel qu'il est animé d'un mouvement inertiel de rotation sur lui-même. Elle a longtemps été considérée comme parfaite. Nous savons aujourd'hui qu'elle ne l'est pas tout à fait, et que sa vitesse de rotation décroît lentement, la faisant au bout d'un siècle retarder d'environ 29 secondes sur le temps qu'elle aurait donné si elle avait été parfaite. Ce très faible ralentissement a d'ailleurs été dans un premier temps interprété comme une accélération séculaire de la vitesse de rotation de la Lune, restée inexpliquée jusqu'à ce qu'on réalise que c'était celle de la Terre qui ralentissait en raison principalement des phénomènes de marée engendrés par la Lune, le Soleil et les astres proches. Autant dire que si la Terre était solide, et si nous pouvions supprimer les influences des corps célestes voisins, elle serait une horloge parfaite. Nous savons aujourd'hui suffisamment bien modéliser l'évolution de l'orbite lunaire pour pouvoir faire les calculs correctifs rétablissant le temps inertiel parfait que donnerait la Terre si elle n'était pas soumise à ces actions qui la ralentissent. Cependant, nous disposons aujourd'hui d'horloges atomiques tellement précises qu'elles font perdre tout intérêt à ces calculs. L'avènement de ces horloges a entraîné une redéfinition de la seconde à partir des propriétés du césium 133. Cela ne change rien au fait que le temps inertiel parfait, comme nous l'avons montré plus haut, est le temps premier de la physique. Simplement, l'horloge atomique nous permet de l'atteindre bien mieux que l'imparfaite horloge terrestre.

Pour sa célèbre mesure de la circonférence de la Terre, c'est la simultanéité inertielle qu'Ératosthène utilise -et qui pendant presque deux millénaires restera la seule dont disposera l'humanité. Il profite en effet de ce qu'Alexandrie et Syène sont sur le même méridien pour tracer la figure de la situation en un même instant. Un trajet d'Alexandrie à Syène en comptant les jours lui a été nécessaire pour étalonner cette horloge.

La Terre n'est cependant pas une pure horloge inertielle, car l'index qui sert à lire les graduations fonctionne grâce à la lumière. Dans une pure horloge inertielle, cet index serait un point de l'espace galiléen dans lequel elle tourne, point situé sur le passage de l'horloge, si bien que l'index fonctionnerait grâce à la coïncidence instantanée des points, qui est du ressort du noyau primitif et n'invoque pas la lumière. Malgré cette différence, le temps et la simultanéité fournis par la Terre sont clairement inertiels.

-Conclusion

Après avoir dégagé le corps mémoforme comme instrument effectif et minimal de la géométrie, nous le retrouvons comme instrument effectif et minimal de la chronométrie.

Pour la géométrie, il s'agit du corps mémoforme au repos galiléen utilisé dans des expériences de superposition durable -donc des systèmes de deux corps mémoformes au repos galiléen immobiles l'un par rapport à l'autre.

Pour la chronométrie, c'est le corps mémoforme utilisé dans des expériences de mouvement inertiel relativement à un espace galiléen -donc des systèmes de deux corps mémoformes en mouvement inertiel l'un par rapport à l'autre.

Comme le repos galiléen est une des formes du mouvement inertiel, les systèmes de deux corps en mouvement inertiel, dont l'un au moins est un repos galiléen, suffisent à la construction de la géométrie et de la chronométrie.

La cinématique est constructible avec un seul instrument, le corps mémoforme, utilisé tantôt lors d'expériences de superposition durable, tantôt lors d'expériences de mouvement relatif inertiel.

La construction effective et minimale de la cinématique est une construction à l'aveugle, dans laquelle la lumière n'a et ne peut avoir aucune part.

Le panel instrumental de la relativité restreinte n'est pas minimal, puisque l'observateur médian utilise la lumière.

Parmi les innombrables espèces intelligentes qui probablement peuplent l'univers, il y en a peut-être qui n'ont pas le sens de la vue et que cela n'a pas empêché de construire les notions temporelles. D'ailleurs, sur notre Terre, il existe des montres tactiles, graduées en Braille, que des aveugles de naissance utilisent à la perfection.

-UNE AXIOMATISATION DE LA CHRONOMÉTRIE FONDÉE SUR L'INSTRUMENT ET L'EXPÉRIENCE

Sur le plan mathématique, nous disposons pour le moment des notions du noyau primitif et du noyau de la géométrie, qui munissent les espaces galiléens d'une géométrie euclidienne de dimension trois.

Il nous faut dans ce contexte poser des axiomes installant le concept d'horloge.

C'est un peu plus simple avec les glissantes qu'avec les tournantes, aussi nous le ferons avec les glissantes.

Comme avec la géométrie, ce travail, exposé dans tous ses détails, risquerait d'être bien long pour ce qu'il est raisonnable de faire subir à un lecteur. Aussi me limiterai-je à simplement donner ces axiomes, accompagnés des définitions nécessaires et de quelques courts commentaires. Je promets également mon pardon au lecteur qui enjambera ce chapitre.

Comme avec la géométrie, la précaution s'impose de dire que le système proposé pourrait certainement être différent, tout en étant construit sur les mêmes exigences philosophiques et en étant mathématiquement équivalent. C'est sans importance. L'enjeu n'est pas d'obtenir le système axiomatique parfait, si tant est qu'il existe, mais de montrer que nos exigences peuvent se concrétiser en un système d'axiomes.

Ce système est relativiste. Alors que le contexte général dans lequel nous nous plaçons ne l'est a priori pas. C'est en effet une hypothèse très contraignante que de supposer que toutes les lois de la physique sont les mêmes relativement à tous les référentiels, et nous démontrerons plus loin qu'il est impossible qu'elle soit entièrement exacte. Néanmoins, nous démontrerons également que la construction de la cinématique dans ce contexte non relativiste aboutit à un édifice relativiste.

Enfin, comme avec la géométrie, les axiomes proposés se divisent naturellement en deux ensembles. Les premiers formalisent la construction d'un temps global dans un espace galiléen, les suivants les relations spatiotemporelles entre espaces galiléens munis d'une chronométrie.

-Chronométrie d'un espace galiléen

Nous savons par l'axiome Géom9 que les trajectoires des points d'un espace galiléen dans un autre sont des droites parallèles. Elles définissent la direction de déplacement de l'un dans l'autre.

Axiome Chron1 : Étant donné un espace galiléen (E) et en lui une direction 𝑑, il existe des espaces galiléens dont la direction de déplacement dans (E) est 𝑑.

Axiome Chron2 : Soit (E) et (E ′ ) deux espaces galiléens distincts. Les points de (E ′ ) décrivent leurs trajectoires dans (E) en allant tous dans le même sens invariable et strictement monotone. Les propriétés de la géométrie euclidienne se transfèrent sur les durées relatives à (E) et permettent de définir leur somme, leur différence, leur produit par un nombre réel positif ou négatif, et de montrer que ces opérations jouissent des « bonnes » propriétés auxquelles nous sommes habitués.

On peut également ordonner l'ensemble des durées relatives à (E) et montrer que cet ordre est compatible d'une part avec l'ordre chronologique, d'autre part avec leur addition et leur multiplication par un réel positif.

On dit qu'un espace galiléen (E ′ ) est impartial relativement aux points A et B de (E) si sa direction de déplacement dans (E) appartient au plan médiateur de AB.

Soit 𝑖 A et 𝑖 B deux instants locaux se déroulant l'un en A, l'autre en B, (E') un espace impartial relativement à eux, et A ′ et B ′ les points de (E ′ ) qui coïncident avec A et B lors de ces instants locaux. On dit que 𝑖 A et 𝑖 B sont simultanés relativement à (E) si A' et B ′ sont sur un même plan de (E ′ ) perpendiculaire à la direction de déplacement de (E) dans (E ′ ).

Axiome Chron4 : La simultanéité relativement à (E) de deux instants locaux se déroulant en des lieux A et B de cet espace est indépendante de l'espace impartial (E ′ ) utilisé.

On démontre que la simultanéité relative à (E) est une relation d'équivalence. On appelle instants relatifs à (E) ses classes.

Si 𝑖 et 𝑗 sont deux instants relatifs à (E), on montre que la durée relative à (E) séparant deux de leurs représentants 𝑖 A et 𝑗 A en un lieu A de (E) est indépendante de A. Cela permet de définir la durée relative à (E) séparant 𝑖 et 𝑗, et donc la durée relative à (E) séparant deux instants locaux ne se déroulant pas en un même lieu de (E).

On démontre que cet élargissement de la définition des durées relatives à (E), qui est par construction compatible avec la simultanéité relative à (E), l'est aussi avec les opérations sur les durées et avec l'ordre chronologique.

Le temps relatif à un espace galiléen ainsi construit, tant qu'on ne s'intéresse qu'à lui seul et pas à ses relations avec ceux dont sont munis les autres espaces galiléens, fonctionne selon les mêmes lois mathématiques que le temps absolu de Newton et que celui dont la relativité restreinte munit ses référentiels galiléens : il n'y a à ce stade pas de différence.

-Relations entre espaces galiléens munis d'une chronométrie

Étant donné un instant local 𝑖 et un espace galiléen (E), il existe un unique couple (A, 𝑗), où A est le point de (E) en lequel se déroule 𝑖, et 𝑗 l'instant relatif à (E) dont 𝑖 est le représentant local.

Le même instant local 𝑖 peut aussi être représenté par le couple (A ′ , 𝑗 ′ ) de points et d'instants de (E ′ ). Cela définit un lien entre (A, 𝑗) et (A ′ , 𝑗 ′ ) qui est bijectif et qui est appelé changement de coordonnées.

Nous nous plaçons dans le cas où les changements de coordonnées obéissent au principe de relativité. Axiome Chron5 : Les changements de coordonnées sont des applications continues.

La topologie de l'ensemble des couples (A, 𝑗) nécessaire à l'affirmation de cette continuité est construite naturellement à partir de celles de (E) et de l'ordre parmi les instants relatifs à (E) : c'est leur topologie produit. De même pour l'ensemble des couples (A ′ , 𝑗 ′ ) avec (E ′ ).

À chaque instant j de (E), tout point A ′ de (E ′ ) coïncide avec un unique point A de (E). L'application qui à A ′ associe A est la trace à l'instant j dans (E). Axiome Chron6 : La trace instantanée AB dans (E) d'un bipoint A ′ B ′ de (E') est telle que le vecteur AB ⃗⃗⃗⃗⃗⃗ est invariable dans le temps et ne dépend que du vecteur A'B' ⃗⃗⃗⃗⃗⃗⃗⃗ de (E').

Il s'ensuit que la trace instantanée est une bijection affine. La trace instantanée d'un plan est donc un plan, celle d'une droite une droite.

On appelle référentiel galiléen la donnée d'un espace galiléen (E), d'un repère orthonormé de (E), d'une origine et d'une unité de mesure des durées relatives à (E). Étant donné un instant local 𝑖 et un référentiel galiléen RG lié à (E), le quadruplet (𝑥, 𝑦, 𝑧, 𝑡) des coordonnés spatiales et temporelle forme les coordonnées de 𝑖 relativement à ce référentiel.

On appelle (encore) changement de coordonnées l'application qui aux coordonnées de 𝑖 relativement à RG associe le quadruplet (𝑥 ′ , 𝑦 ′ , 𝑧 ′ , 𝑡 ′ ) de ses coordonnées relativement à RG′. On démontre que c'est une bijection affine.

Lorsqu'ils se font entre référentiels attachés à un même espace galiléen, les changements de coordonnées nous sont connus : ce sont des isométries affines complétées par l'identité ou par une translation de la coordonnée temporelle. La question est de savoir quelle est leur nature quand ils se font entre des référentiels RG et RG′ attachés à des espaces galiléens distincts (E) et (E′).

Grâce à la composition des changements de coordonnées, et parce que nous connaissons ceux qui se font entre référentiels liés au même espace galiléen, nous pouvons étudier ce problème en choisissant pour (E) et pour (E′) les référentiels les plus commodes.

La première étape de ce choix simplificateur est de munir les deux espaces des mêmes unités de mesure. Pour les longueurs, c'est immédiatement possible, par le transport mémoforme de l'unité de longueur d'un espace dans l'autre. On pose alors qu'une durée de (E) est égale à une durée de (E′) si elles sont dans chaque espace mesurées par le défilement d'une même longueur de l'autre.

Maintenant que les unités sont les mêmes, il faut installer les deux référentiels de telle façon qu'ils respectent la symétrie de la figure qu'engendre sa conformité au principe de relativité. Choisissons le repère orthonormé de (E) tel que son axe des 𝑥 ait pour direction la direction de déplacement de (E′) dans (E). Si deux point de (E′), à un instant donné de (E), sont portés par cette droite, ils le restent constamment, ce qui montre qu'une droite invariable de (E′) coïncide constamment avec cet axe des 𝑥, en glissant sur lui à vitesse uniforme. Prenons-la pour axe des 𝑥 ′ . Axiome Chron7 : Soit (P) un plan de (E) perpendiculaire à la direction de déplacement de (E ′ ). La trace (P ′ ) de (P) dans (E ′ ) est à tout instant de cet espace un plan perpendiculaire à la direction de déplacement de (E).

Cet axiome est une des expressions de la symétrie de la figure autour de l'axe des 𝑥 ou d'une parallèle à lui. Il permet de montrer que le changement de coordonnées est tel que (𝑥 ′ , 𝑡 ′ ) = ℎ(𝑥, 𝑡) et (𝑦 ′ , 𝑧 ′ ) = 𝑘(𝑦, 𝑧), où h et k sont deux bijections affines ; la première est la partie longitudinale du changement de coordonnées, l'autre sa partie transversale.

Soit MN un bipoint de (E), perpendiculaire à l'axe des 𝑥. Sa trace dans (E′) à un instant 𝑖 ′ de cet espace est un bipoint M′N′ perpendiculaire à l'axe des 𝑥 ′ . La trace dans (E) de M′N′ à un instant 𝑖 de cet espace est un bipoint M′′N′′ tel que MM′′N′′N est un rectangle. Cela montre que MN = M′′N′′.

En vertu du principe de relativité, M′N′/MN = M′′N′′/M′N′, d'où l'égalité de MN et de M′N'.

Techniquement, il nous faut traduire par un axiome ce que le principe de relativité vient de nous permettre de montrer, car ce principe, comme son nom l'indique, n'est pas un axiome, mais un principe : un moule à fabriquer des axiomes. Axiome Chron8 : La partie transversale des formules de changement de référentiel est une isométrie.

Puisque les isométries conservent les angles, les traces dans (E ′ ) à un instant 𝑖 ′ des axes des 𝑦 et des 𝑧 du repère orthonormé RG sont des droites perpendiculaires. Comme elles sont également perpendiculaires à l'axe des 𝑥 ′ , elles peuvent être prises, avec leurs orientations, pour axes des 𝑦 ′ et des 𝑧 ′ du référentiel RG′. Avec ce nouveau choix simplificateur, l'isométrie s'écrit comme une identité :

𝑦 = 𝑦 ′ et 𝑧 = 𝑧 ′ .
Pour que la figure exprime complètement la symétrie entre (E) et (E′) qui est la sienne en vertu du postulat qu'elle obéit au principe de relativité, orientons les axes des 𝑥 et des 𝑥 ′ en sens inverse l'un de l'autre ; et choisissons pour origines des durées de (E) et de (E′) l'instant local où les origines spatiales se croisent. Le changement de coordonnées de RG vers RG′ est alors identique à celui de RG′ vers RG. On montre que dans un univers donné les transformations sont toutes de la même espèce (toutes de Galilée, ou bien toutes de Lorentz, ou bien toutes de troisième espèce) ; que le nombre C intervenant dans les deux dernières est une constante attachée à l'univers ; que l'égalité des unités de mesure des durées entre un espace et un autre est transitive : tous les référentiels galiléens peuvent donc être munis des mêmes unités.

Dans la transformation de troisième espèce, la loi de composition des vitesses colinéaires est, en orientant les axes des 𝑥, 𝑥 ′ et 𝑥 ′′ dans le même sens,

𝑣 * 𝑣 ′ = 𝑣 + 𝑣 ′ 1 - 𝑣 𝑣 ′ 𝐶 2 𝑥 ′ = -𝑥 + 𝑣 𝑡 √ 1 - 𝑣 2 𝐶 2 𝑡 ′ = 𝑡 - 𝑣 𝑥 𝐶 2 √ 1 - 𝑣 2 𝐶 2 𝑥 ′ = -𝑥 + 𝑣 𝑡 √ 1 + 𝑣 2 𝐶 2 𝑡 ′ = 𝑡 + 𝑣 𝑥 𝐶 2 √ 1 + 𝑣 2 𝐶 2
Il s'ensuit, par annulation possible du dénominateur, qu'il existe des vitesses aussi voisines de zéro qu'on veut, telles que la composée d'ordre 𝑛 de ces vitesses ne puisse être définie. Comme tout espace galiléen doit avoir une vitesse relativement à tout espace galiléen, ces vitesses-là sont des vitesses interdites. L'ensemble des vitesses possibles d'un espace galiléen relativement à un autre n'est donc pas un intervalle, ce qui est une absurdité : pour compenser l'infinie précision des nombres réels, nous devons utiliser des continuums. L'axiome qui suit élimine la transformation de troisième espèce.

Axiome Chron10 : L'ensemble des vitesses possibles d'un espace galiléen (E ′ ) relativement à un autre (E) est dans toute direction un intervalle d'intérieur non vide.

Il n'existe que deux cinématiques du cadre plat respectant le principe de relativité, celle de la transformation de Galilée et celle de la transformation de Lorentz.

-Vérifications de consistance

Il est immédiat que l'univers du temps absolu et de la rigidité infinie utilisé pour vérifier la consistance du système d'axiomes de la géométrie vérifie également ceux de la chronométrie. Aussi, le système entier d'axiomes est consistant : on peut en construire un modèle à l'intérieur des mathématiques ; et il a la même solidité qu'elles.

Évidemment, ce modèle, sur le plan philosophique, n'est pas du tout celui auquel nous a conduit notre réflexion. Mais sur le plan mathématique, il ne diffère en rien du modèle non-chosiste de la transformation de Galilée. L'un devient l'autre en « oubliant » simplement qu'un espace galiléen parmi tous est absolu. U est donc à présent un modèle parfait de la cinématique de la transformation de Lorentz.

Ce modèleappelons le

On montre alors facilement que dans ce deuxième modèle tous les axiomes de la cinématique sont également vérifiés.

Le système d'axiomes que nous avons posé est donc vérifié par exactement deux modèles, celui de la transformation de Galilée et celui de la transformation de Lorentz, qui ont l'un et l'autre la même solidité que les mathématiques en général.

-Bilan

Nous venons de démontrer que les notions spatiotemporelles du cadre plat sont constructibles en conformité avec l'exigence de fondation sur l'instrument et l'expérience.

L'impossibilité de donner cette preuve aurait ruiné le point de vue nonchosiste, qui affirme précisément la possibilité d'une telle construction.

Inversement, le fait de pouvoir la fournir affaiblit grandement le point de vue chosiste : il est en effet difficilement concevable qu'une entité ou catégorie d'entités -ici les étendues spatiotemporelles -puisse être à la fois une simple construction intellectuelle et un objet physique existant en lui-même, incréé.

-LE FANTÔME DE LA VITESSE DE LA LUMIÈRE ET LA DEUXIÈME HORLOGE

La construction des notions spatio-temporelles sur l'instrument et l'expérience que nous venons de réaliser à ceci de particulier, que nulle part la lumière n'y intervient. C'est une construction « à l'aveugle ».

Il semble donc invraisemblable que la vitesse de la lumière apparaisse dans le formulaire de la cinématique. Comme tel est pourtant le cas dans le formulaire lorentzien, nous semblons devoir en conclure que ce dernier est erroné. Mais ce serait une erreur, car il est validé par l'expérience, et ne peut pas être abandonné. Ce n'est pas la bonne solution.

Nous construisons la cinématique sans recourir à la lumière et nous voyons donc son fantôme réapparaître sous la forme de sa vitesse 𝐶 dans le formulaire effectif.

S'il apparaît, c'est qu'il a quelque réalité physique. Aussi, plutôt qu'un fantôme, c'est un passager clandestin. La lumière est donc là où nous ne la voyons pas, dans « l'espace-temps » ou bien dans nos instruments. Mais dans le cadre non-chosiste où nous nous plaçons, c'est forcément dans nos instruments : la matière « contient » en elle de la lumière. Nous avons étudié ce point au chapitre 1 et montré que la nature électromagnétique de la matière l'obligeait à se déformer pour conserver lorsqu'elle est mise en mouvement une structure ondulatoire identique ou plus exactement isomorphe à celle qu'elle a au repos. La contraction de Lorentz, avons-nous montré, est exactement idoine à la conservation de cette structure ondulatoire. Cela fait de la matière une horloge, dont nous pouvons donner des versions macroscopiques. Par exemple une sphère dont la paroi intérieure est un miroir et du centre de laquelle on émet des rayons lumineux, ou bien deux miroirs parallèles entre lesquels la lumière fait des allers et retours.

Ainsi, nous disposons non pas d'une, mais de deux horloges, celle fondée sur le mouvement inertiel et celle fondée sur l'invariance de la vitesse de la lumière. La première est minimale, mais elles sont basiques l'une et l'autre, puisqu'elles ne recourent ni l'une ni l'autre aux lois de la mécanique ou de l'électromagnétique (si ce n'est l'uniformité des mouvements inertiels et l'invariance au moins locale de la vitesse de la lumière).

Lorsqu'elles sont immobiles l'une par rapport à l'autre, elles sont chacune régulière dans le temps donné par l'autre. Il n'empêche que ce ne sont pas les mêmes. L'horloge à lumière, nous l'établirons plus loin, obéit au formulaire lorentzien ─ c'est pourquoi nous l'appellerons aussi horloge lorentzienne. Elle est ainsi ralentie par son mouvement relativement à un espace galiléen isotrope.

-LA BIZARRE DISPARITÉ DES INSTRUMENTS DE LA RELATIVITÉ RESTREINTE 10.1 -La disparité

Dans son livre la Relativité, Einstein installe sa cinématique sur trois instruments : le corps rigide, l'arbitre de simultanéité et l'horloge.

En cela, il semble respecter l'exigence de fondation sur l'instrument et l'expérience. Néanmoins, ses trois instruments sont bizarrement disparates. 1) Le corps rigide. Il ne s'agit bien entendu pas du corps infiniment rigide, qui est incompatible avec la relativité restreinte, mais du corps « élastiquement rigide », autrement dit de ce que nous nommons le « corps élastique ». Einstein observe qu'une indication de lieu est dans un premier temps l'indication d'un point sur un corps rigide de référence, et que dans un deuxième temps on agrandit l'éventail des lieux désignables en utilisant des prolongements rigides de ce corps rigide de référence -nous avons déjà évoqué l'exemple qu'il donne, celui de la longue perche place du Panthéon à Paris, dont l'extrémité désigne la position d'un nuage implicitement ponctuel. Il est implicite également que cette mise en place imagée néglige le mouvement de rotation de la Terre, et que ce que nous donne Einstein est une définition d'un espace galiléen comme prolongement (élastiquement) rigide non borné d'un corps (élastiquement) rigide au repos galiléen. Le corps élastiquement rigide, alias corps élastique, est l'instrument nécessaire et suffisant de la géométrie, et la perche-règle à mesurer qu'utilise Einstein dans ses raisonnements est un instrument adéquat, effectif, et défini sans équivoque.

2) L'arbitre de simultanéité . Pour définir la simultanéité d'événements se déroulant en deux lieux A et B d'un espace galiléen (E), Einstein, au chapitre 8, utilise l'arbitre de simultanéité que nous avons déjà décrit.

Ce deuxième instrument d'Einstein est comme le premier adéquat, effectif et clairement défini.

3) L'horloge. En opposition à ces deux premiers instruments, le troisième, l'horloge, est totalement indéfini. Autant Einstein nous donne la « recette » opérationnelle pour construire les deux premiers, autant il nous laisse dans l'incapacité de construire une horloge. En outre, il est patent, tout au long de son ouvrage, qu'il l'assimile à un objet ponctuel. Et le même constat peut être fait dans ses autres écrits [START_REF] Albert | du Seuil[END_REF] . Or une horloge est un mécanisme, et tout mécanisme, quel qu'il soit, ne peut être explicité que détaillé dans l'espace, et ne peut donc être ponctuel. Plus généralement, d'ailleurs, aucune entité physique n'est infiniment petite, pas même une particule. L'infiniment petit, encore une fois, n'existe pas, ce n'est rien d'autre qu'une fiction induite par l'emploi des nombres réels.

Résumons les caractéristiques des instruments de la relativité restreinte dans le tableau qui suit, en y ajoutant le fait de fonder ou non leur statut sur des lois de la physique. 

Instrument

-Est-il possible de définir l'horloge en tant qu'instrument effectif ?

Nous savons qu'il est cependant possible de définir deux modèles basiques d'horloge effective, l'horloge inertielle et l'horloge à lumière.

Lorsqu'elles sont l'une et l'autre immobiles relativement à un même espace galiléen, l'horloge inertielle tournante et l'horloge à lumière sont régulières l'une par rapport à l'autre, mais dans d'autres contextes elles peuvent se comporter différemment, et la non-définition d'Einstein devient alors un point d'embarras : lorsqu'il parle d'horloge, quel type envisage-t-il, puisqu'il y en a plusieurs possibles, dont les propriétés ne sont pas les mêmes ?

-En relativité restreinte, est-il possible de définir une horloge effective ?

Mais ce n'est pas le seul problème soulevé par cette non-définition. Admettons que, d'une manière ou d'une autre, la relativité restreinte définisse une horloge avec la même efficience que celle avec laquelle elle définit la règle à mesurer ou le protocole de vérification de la simultanéité. Cette horloge est donc un mécanisme produisant, en vertu de telle ou telle loi physique spécifique, des cycles réguliers qui, par comptage, définissent des durées. Comme aucun mécanisme ne peut être de taille nulle, l'horloge a une certaine étendue, qui est solidairement concernée par les cycles qu'elle produit, de la même façon que le nombre des oscillations d'un pendule est le Ou plutôt, comme l'ont fait Hafele et Keating en 1971 [START_REF] Hafele | Around-the-World Atomic Clocks: Observed Relativistic Time Gains[END_REF] , embarquonsla à bord d'avions de ligne faisant le tour de la Terre.

Le résultat de cette expérience, comme d'autres portant sur des particules assimilables à des horloges lorentziennes en mouvement, confirme le formulaire de la relativité restreinte : un ralentissement du rythme de l'horloge est observé, qui, en tenant compte de la marge d'incertitude et d'une correction due à ce que la Terre n'est pas de masse négligeable, est conforme aux prédictions de la théorie.

Toutefois, une difficulté se présente. Imaginons que cette expérience perdure indéfiniment, dans des conditions parfaites. Le mouvement de l'avion est éternel et absolument régulier, et la situation se reproduit à l'identique tour après tour.

(H) est une horloge, une machine censée produire des cycles réguliers qui ont la même durée en chacun de ses points, de la même façon que le nombre de tours d'une aiguille sur un cadran de montre est le même en chaque point du cadran. Or les points de (H) ne vont pas tous à la même vitesse relativement à l'espace galiléen (E) dans lequel tourne l'avion. Si M est celui qui est le plus éloignés du centre de la Terre et M' celui qui en est le plus proche, M va plus vite que M', et les cycles de l'horloge, s'ils ont la même durée propre en M et en M', sont, quand on les considère depuis (E), tels que celui se déroulant en M est plus long que celui se déroulant en M'. La différence est évidemment minuscule, mais la rigueur mathématique porte infiniment au-delà la milliardième décimale ; et de toute façon l'éternité postulée de l'expérience permet d'amplifier autant que nous le voulons cette infime différence. Même si l'horloge n'a qu'un micron d'épaisseur et si l'avion va à la vitesse d'un escargot cardiaque, les durées lues dans (E) aux deux points M et M' de (H) doivent avoir une différence qui tend vers l'infini quand on fait tendre vers l'infini la durée de l'expérience. On n'observe évidemment rien de tel.

Considérons en effet l'horloge depuis (E) à un instant 𝑡 de cet espace. Elle affiche 𝑛 tours en M et 𝑛 ′ tours en M'. Un observateur faisant le va-etvient entre M et M' arrive en M à cet instant-là. Lors de son précédent passage en M' il a lu 𝑛 ′′ tours à l'horloge. Comme ce passage, considéré depuis (E), est antérieur à 𝑡, et que l'horloge ne recule pas, on a 𝑛 ′′ < 𝑛 ′ . La différence des durées lues sur l'horloge en M' et en M aux deux extrémités d'un même trajet est majorée par la constante A, d'où 𝑛 ′′ ≥ 𝑛 -𝐴.

On en déduit que 𝑛 ′ > 𝑛 -𝐴, et de la même façon que 𝑛 > 𝑛 ′ -𝐵. Donc |𝑛 -𝑛 ′ | est majoré et ne peut tendre vers l'infini quand la durée de l'expérience tend vers l'infini.

Aussi la théorie, pour échapper à une contradiction, est forcée de se déjuger : les cycles temporellement solidaires fournis par cette horloge en rotation, et perçus tels par tous les observateurs, ceux qui sont dans l'avion comme ceux qui sont restés au sol, comme ceux qui sont entre-temps allés faire un tour à l'autre bout du cosmos, ces cycles doivent avoir à présent une « durée propre » qui n'est plus la même en chacun de ses lieux, qui dépend de leur distance à l'axe de rotation, et qui ne correspond à rien d'observable.

Voilà donc que ce qui était une horloge n'en est maintenant plus une. La théorie n'évite une conclusion inacceptable qu'au prix d'un reniement épistémologique.

-Conclusion

L'absence de définition instrumentale efficiente de l'horloge, et son remplacement par une fiction d'horloge idéalement ponctuelle, alors même qu'une définition efficiente est possible, et que les deux autres instruments utilisés par Einstein sont définis de façon claire et efficiente, est donc bien autre chose qu'un simple oubli : c'est une nécessité. La relativité restreinte est dans l'incapacité de définir ses horloges. Elle ne peut que faire semblant de le faire, en installant à sa place un instrument factice que le nom d'« horloge » déguise en instrument véritable.

On peut s'interroger sur l'utilité d'une telle « horloge ». Pourquoi ne pas la faire disparaître, puisqu'elle est vide ? Mais alors son absence serait flagrante et on ne comprendrait pas pourquoi il y aurait un instrument pour construire la géométrie, un pour construire la simultanéité, et aucun pour construire la mesure des durées. On le comprendrait d'autant moins que la théorie lie indissolublement l'espace et le temps en « espace-temps », et que cette solidarité des deux, qui leur confère des natures analogues, réclame des mises en place analogues. Si on fait disparaître l' « horloge », il faut faire disparaître aussi la règle à mesurer. Et si les deux disparaissent, on ne voit pas comment l'arbitre de simultanéité pourrait se maintenir. Le principe de fondation sur l'instrument et l'expérience n'est pas de ceux qu'on peut respecter à moitié. C'est tout ou rien.

Serait-il possible à Einstein d'installer sa cinématique sans s'appuyer sur aucun instrument ? Il est clair que non. Le respect -au moins apparentde l'exigence de fondation sur l'instrument et l'expérience lui est indispensable. C'est en effet ce qui lui permet de substituer à l'espace, au temps et à la simultanéité absolus, existant « en eux-mêmes », des notions spatiotemporelles qui ne sont rien de plus que ce que l'observateur en observe avec ses instruments. Aussi Einstein donne le mieux qu'il peut l'apparence de souscrire à cette exigence, et probablement se trompe-t-il luimême en croyant qu'il le fait pour de vrai.

Cependant, maintenant que nous avons compris que sur les trois instruments deux seulement sont corrects, et que son horloge n'est que le déguisement d'une absence, maintenant que nous avons vu cette faille épistémologique et constaté qu'elle n'est pas réparable dans le cadre de la théorie, nous savons avec certitude que la relativité restreinte, bien que son formulaire soit vérifié par l'expérience, n'est pas à l'abri de tout reproche , et qu'il faut la remettre sur le métier pour la rendre capable d'assumer une horloge efficiente, explicitant son mécanisme et le principe ou la loi de base qui lui font fournir un temps régulier.

─ L'INSTRUMENT ET LES EXPÉRIENCES FONDATEURS DE LA MÉCANIQUE

11.1 -Quel est le surnoyau de la cinématique ?

Chacun des noyaux jusqu'ici construits apporte avec lui une catégorie de concepts, et savoir comment aller plus loin, c'est déterminer quels sont les concepts qui, au point où nous en sommes, nous manquent en premier. Ce ne sont pas, par exemple, les concepts électrostatiques, car pour les atteindre il faut avoir défini la notion de force ; de même, ce ne sont pas ceux de l'électromagnétisme ni de la thermodynamique. Si nous faisons ainsi le survol de tous les domaines de la physique, il est clair que ce qui nous manque en premier, ce sont les concepts liés entre eux de force, de masse, de quantité de mouvement et d'énergie. Ce sont eux que doit installer le noyau à construire autour de celui de la cinématique, et qui est le noyau de la mécanique.

L'histoire de la physique en porte d'ailleurs -et inévitablement -le témoignage. Après que les notions d'espace, de temps et de mouvement inertiel ont été mises en place, ce qui a construit la physique, c'est bien la découverte et la formalisation des lois de la dynamique.

-L'instrument et l'expérience fondateurs de la mécanique -Numérisation de la masse

Qu'est-ce qu'une force ? C'est, nous dit le dictionnaire, la cause physique d'une accélération ou d'une déformation. Définition qui est sans doute parfaitement exacte, et opérationnelle, mais qui renferme une sorte de hiatus : entre l'accélération et la déformation, on a du mal à voir l'unité conceptuelle qu'on pressent cependant dans la notion de force.

Cette unité sera peut-être plus apparente si nous déployons ce que la définition a d'implicite. Déformation de quoi ? D'un objet matériel. Accélération de quoi ? D'un objet matériel. Un même instrument se dessine. Il ne se déformerait pas, si aucune force n'était exercée sur lui. C'est donc exactement ce que nous avons appelé un corps mémoforme. Il n'accélèrerait pas si la force n'existait pas. Il serait donc alors au repos galiléen. Le point commun entre la déformation et l'accélération, c'est qu'elles témoignent l'une et l'autre des écarts au même degré zéro de référence, le corps mémoforme au repos galiléen.

Ainsi, l'instrument fondateur de la mécanique est clair : c'est encore une fois le corps mémoforme. Mais il est maintenant utilisé de la manière qui était jusqu'ici interdite. Il est soumis à des actions. Et la manière dont il se comporte sous leur effet nous permet de les repérer et de les mesurer.

C'est bien le même instrument, mais son domaine de compétences est élargi. Du coup, il nous faut réactualiser ce que nous postulons de lui. Nous ne supposions jusqu'ici son retour parfait au même état intrinsèque que lors du retour au repos galiléen, nous devons élargir ce postulat en supposant qu'un tel retour parfait au même état intrinsèque se produit aussi quand le corps revient au mêmes conditions mécaniques et dynamiques : que le ressort, lorsqu'on exerce sur lui les mêmes contraintes, retrouve la même forme ; que la boule de billard, lorsqu'on la soumet au même choc, subit la même variation de vitesse. Le corps mémoforme doit devenir « mémodéformable » et « mémo-accélérable ». Les actions exercées sur lui le déforment temporairement et modifient sa vitesse, et le laissent cependant intact en tant qu'instrument, si bien que s'il est soumis ultérieurement aux mêmes, il aura exactement le même comportement.

Porteur de ces compétences élargies, le corps mémoforme est exactement ce que la physique appelle corps élastique. Le premier -nous l'avons déjà noté lors de la construction de la géométrie -est une version axiomatiquement « faible » du second.

Nous avons défini l'instrument, mais pas complètement l'expérience. Ces actions que le comportement des corps élastiques nous permet de repérer et de mesurer, quelles sont-elles ? Par qui ou par quoi sont-elles exercées ? La réponse doit être explicite et minimale. Cela ne laisse place qu'à une solution : elles sont exercées par d'autres corps élastiques. L'expérience fondatrice est donc l'interaction des corps élastiques.

Il faut vérifier que cet instrument et cette expérience permettent bien de construire les concepts fondamentaux de la mécanique.

Imaginons deux corps élastiques (K1) et (K2), l'un et l'autre au repos galiléen, et en mouvement l'un par rapport à l'autre de telle façon que leurs trajectoires se rencontrent. Parce que la situation peut facilement être très compliquée, plaçons-nous dans un cas simple, par exemple celui de deux cubes ou de deux parallélépipèdes rectangles se heurtant axialement, le long d'un axe de symétrie commun, chacun étant fait d'une matière homogène et isotrope.

Dans un premier temps, les deux objets avancent l'un vers l'autre à vitesse uniforme. À un certain moment, ils entrent en contact, rebondissent l'un sur l'autre, et repartent en s'éloignant l'un de l'autre à vitesse uniforme.

Cette expérience permet de définir le concept de masse, dans le sens central que la physique lui donne, celui de masse inertielle. Pour cela, choisissons de l'observer dans un espace galiléen impartial, et plus précisément celui dans lequel on voit les deux corps aller à des vitesses opposées. Dans le cadre lorentzien où nous nous plaçons, il existe un et un seul espace galiléen ayant cette propriété. Cet espace impartial doit également être isotrope. Nous disons alors que les deux corps élastiques ont même masse inertielle si après le choc leurs vitesses relatives à cet espace impartial isotrope (qui par raison de symétrie sont portées par l'axe de symétrie) sont encore opposées.

Nous posons l'axiome, en conformité avec l'expérience concrète, que la relation « avoir même masse » est indépendante de la vitesse avec laquelle les deux corps se rapprochent l'un de l'autre ; et que si (K1) et (K2) ont même masse, ainsi que (K2) et (K3), alors c'est également le cas de (K1) et de (K3). Ainsi, les masses, comme les longueurs, comme les durées, se construisent en tant que classes d'équivalence.

La même expérience, observée depuis le même espace galiléen impartial isotrope, permet de comparer les masses : si les deux corps ne repartent pas avec des vitesses opposées, l'une des deux varie plus que l'autre ; c'est par définition celle de celui des deux qui a la plus petite masse. On pose l'axiome, conforme à l'expérience concrète, que la relation « avoir une plus petite masse que » est indépendante de la vitesse de rapprochement des corps, qu'elle est compatible avec l'égalité des masses, et qu'elle est transitive. C'est une relation d'ordre total.

Le choc élastique permet aussi de définir la quantité de mouvement. Pour cela, observons cette fois-ci nos expériences depuis l'espace galiléen (E1), par hypothèse isotrope, dans lequel (K1) est immobile avant le choc.

(K2) peut varier, et être remplacé par exemple par un corps (K3), de masse plus grande, mais arrivant moins vite sur (K1). Si la vitesse imprimée à (K1) est la même dans les deux cas, nous disons que (K2) et (K3) cèdent à (K1) la même quantité de mouvement. Celle-ci n'est donc définie que par des échanges, hors desquels elle n'a qu'une valeur purement conventionnelle. Cependant, comme nous faisons les expériences relativement à (E1), nous attribuons conventionnellement à (K1) quand il est immobile dans cet espace une quantité de mouvement nulle. Du coup, quand il est en mouvement, nous lui en attribuons une aussi, celle qu'il vient de recevoir, et qui dépend selon une certaine loi de sa vitesse et de sa masse. La même loi nous permet d'attribuer à (K2) et à (K3) des quantités de mouvement relatives à (E1).

Là encore, nous posons l'axiome, conforme à l'expérience concrète, que la relation « avoir la même quantité de mouvement relativement à (E1) » est transitive. Elle construit donc des classes d'équivalence appelées quantités de mouvement relatives à (E1). Ces classes peuvent être scalaires, quand elles ne tiennent pas compte de la direction et du sens de l'impact, ou bien vectorielles, quand elles en tiennent compte.

Jusqu'ici, les masses et les quantités scalaires de mouvement ne sont pas numériques. Ce sont des grandeurs repérables et continues, formant des ensembles totalement ordonnés homéomorphes à l'ensemble des réels positifs ou nuls, par des bijections qui peuvent à loisir dilater ou rétrécir telle ou telle région.

Pour numériser ces grandeurs, il faut les rendre additives : définir la somme de deux masses ou de deux quantités de mouvement.

En ce qui concerne les masses, on le fait en posant que la masse d'un corps est la somme des masses des corps qui le composent. Cette définition n'est possible à poser que si la masse est compatible avec la réunion des corps : si (K 1 ) et (K 1 ′ ) ont même masse ainsi que (K 2 ) et (K 2 ′ ), alors toute réunion de (K1) et de (K2) a même masse que toute réunion de (K 1 ′ ) et de (K 2 ′ ). Cette propriété n'est pas une évidence logique. Elle n'est d'ailleurs vraie, en vertu de l'équivalence masse-énergie, que si la réunion ou la disjonction des corps n'émet ni n'absorbe aucune énergie. Mais elle est alors, en tout cas pour les corps que nous pouvons découper et réunir -ce qui n'est pas le cas des planètes et des étoiles -d'une exactitude si parfaite qu'elle n'a jamais été prise en défaut.

-Parenthèse : les trois concepts de masse

La masse que nous avons définie est la masse inertielle, celle qui est solidaire du concept de quantité de mouvement. Tout autre, philosophiquement parlant, est la masse compatible avec la réunion et la disjonction des corps. Il s'agit alors de la masse comptable, celle qui dénombre la quantité de matière, en décomposant par exemple un solide homogène en petits cubes identiques, et en les comptant. Dans le domaine d'expérience qui est le nôtre, les deux masses sont en pratique égales ; et cette égalité est corollaire de ce que nous pouvons considérer les petits cubes identiques comme apportant aux propriétés inertielles globales du solide chacun la même contribution que s'il était seul.

D'un autre côté, puisque les phénomènes inertiels sont exactement calés sur l'univers lointain ou global ─ il est raisonnable de croire qu'ils sont une des expressions, directe ou indirecte, de son action ; et que donc si nous pouvions, d'un coup de baguette magique, supprimer uniformément la moitié des corps qu'il contient, les masses inertielles pourraient être elles aussi, d'une certaine façon, toutes « divisées par deux ». La différence ne serait peut-être pas flagrante, puisque les expériences de choc élastique, qui définissent les masses, ne nous permettent d'accéder qu'à des masses relatives les unes aux autres ; mais il faudrait bien qu'on l'observe quelque part puisque deux univers différents ne peuvent être régis par exactement les mêmes lois.

La propriété d'additivité des masses repose sur ce que les petits cubes en lesquels nous décomposons par la pensée un solide homogène sont tous physiquement identiques, et identiques chacun à ce qu'il serait si le reste du solide n'était pas là. En particulier chacun doit avoir la même exposition à l'action de l'univers lointain que s'il était seul. Mais on ne voit pas comment la situation d'un petit cube au sein d'un grand nombre d'autres pourrait être absolument identique à celle d'un petit cube isolé, puisque une grande épaisseur de matière s'interpose entre lui et l'univers lointain. Il faudrait pour une identité absolue des deux situations que la matière soit parfaitement transparente à l'action de l'univers lointain, alors même que nous formons l'hypothèse qu'elle est soumise à cette action.

Si donc nous pensons que les forces d'inertie sont sous la dépendance de l'univers lointain, nous sommes semble-t-il conduits à penser que les masses ne sont additives que lorsqu'elles sont suffisamment petites. Pour les autres, cet effet d'écran doit engendrer un déficit de la masse inertielle devant la masse comptable allant croissant avec la masse des corps. La vérification parfaite serait de couper une planète ou une étoile en deux pour mesurer les masses des moitiés et comparer leur somme avec celle de l'objet entier. Elle est malheureusement hors de notre portée. Une tentative plus raisonnable est de s'intéresser à la façon dont la densité des corps évolue selon leur masse. Un déficit de masse inertielle relativement à la masse comptable doit faire que plus la masse d'un corps est importante, plus sa densité apparente -qui est le quotient de la masse inertielle par le volumedoit diminuer. Tel est bien ce que nous observons avec les planètes, parmi lesquelles les plus lourdes sont systématiquement les moins denses. Cette plus faible densité peut certes découler de caractéristiques intrinsèques, mais il n'est pas interdit de penser qu'elle peut en plus ou moins grande part être conséquence du déficit dont nous parlons.

À l'échelle des petits corps, les trois concepts basiques de masse dont nous disposons -masse inertielle, masse comptable et masse gravitationnelle -sont superposables, si bien que nous avons tendance à les fondre en un seul. Nous fabriquons ainsi un concept bâtard que nous appelons « masse », qui nous permet, ayant choisi une unité, d'attribuer à chaque petit corps un nombre qui est sa « masse ».

Cette propriété nous est tellement évidente que nous l'extrapolons tout naturellement aux corps très massifs comme les planètes ou les étoiles : chacun d'eux doit bien posséder lui aussi une « masse », au sens indistinct qui vient d'être défini. L'hypothèse, avec les lois de Kepler et de Newton, rencontre le succès : on peut assigner à chacune des planètes du système solaire des « masses » relatives les unes aux autres, qui permettent de calculer leurs mouvements avec une extrême précision. La « masse » donne toutes les apparences d'exister vraiment. L'expérience de Cavendish, en permettant de mesurer la constante universelle de gravitation et donc la « masse » de la Terre, jette entre les petits corps et les grands le pont qui achève l'extrapolation réussie du concept.

Cependant, il est clair que les expériences qui fondent cette extrapolation n'invoquent que deux des trois notions de masse : l'inertielle et la gravitationnelle. Celle de masse comptable s'est évanouie. C'est bien normal, car à l'échelle des grands corps, nous perdons tout accès expérimental à elle : au contraire de celui d'une bûche ou d'une montagne, l'intérieur des planètes et des étoiles nous est inaccessible. L'extrapolation aux grands corps du concept de « masse » n'est donc valide que pour deux des trois composants de l'agrégat, la masse inertielle et la masse gravitationnelle.

Acceptons au moins jusqu'à la fin de ce paragraphe l'idée qu'il y ait pour les corps massifs discordance entre les trois masses. Dans ce divorce l'inertielle et la gravitationnelle, solidement mariées l'une à l'autre pour les petits corps en vertu du résultat de l'expérience d'Eötvös, le restent encore pour les grands en vertu de la troisième loi de Kepler ; mais elles se séparent de la masse comptable.

Des trois, c'est cette dernière qui est intrinsèque au corps. Si nous pouvions, d'un coup de baguette magique, diviser par deux la densité de l'univers lointain, les masses inertielle et gravitationnelle devraient être « divisées par deux », tandis que la masse comptable resterait identique à elle-même. Aussi, c'est elle qui doit servir de référent pour interpréter la discordance : d'une certaine manière, ce sont les masses inertielle et gravitationnelle qui s'éloignent de la masse « véritable », la masse comptable, et pas l'inverse.

En considérant ainsi les choses, une propriété devient bien singulière, pour ne pas dire miraculeuse : les deux s'en éloignent exactement de la même façon. Cette coïncidence semble nous montrer que les phénomènes inertiels et les phénomènes gravitationnels sont de même nature. Si nous attribuons les premiers à l'action générale des corps célestes lointains, nous devons en faire autant pour les seconds. Les effets d'écran ont dans les premiers un rôle crucial, puisqu'ils dissocient la masse inerte de la masse comptable ; il devrait en être de même dans les seconds. Nous semblons ainsi poussés vers une explication -certes très vague -de la gravitation, selon laquelle elle serait due à l'action de l'univers lointain et aux effets d'écran que les corps lui font les uns sur les autres. Les propriétés de l'angle solide font qu'une telle action serait bien proportionnelle à l'inverse du carré de la distance.

Cette idée de la gravitation découlant d'un effet d'écran n'est pas neuve, puisque Georges-Louis Lesage en fit au dix-huitième siècle le cheval de bataille de sa vie. Même si des indices concordants plaident pour elle, elle n'a pas encore, semble-t-il, réussi à vaincre les objections qu'elle soulève, en particulier celle qu'elle devrait engendrer un ralentissement trop important des planètes en rotation autour des étoiles.

-Retour à la numérisation de la masse et de la quantité de mouvement -Les concepts de force et d'énergie

Revenons au cadre du désert intergalactique où nous avons choisi de nous exiler par la pensée en costume d'homme préhistorique, et où la question de la divergence possible des différentes masses d'un corps massif ne se pose pas, puisque ce désert est par définition éloigné de tout corps massif.

Dans ce cadre idéal, la situation est beaucoup plus simple. Les champs de gravitation ont disparu, et avec eux le concept de masse gravitationnelle. Comme il n'y a que des petits corps, les masses sont additives.

L'addition des masses nous permet de multiplier ou de diviser une masse donnée par n'importe quel nombre entier non nul, et donc par n'importe quel rationnel non nul, puis, par passage à la limite, par n'importe quel réel non nul. En convenant d'une unité, c'est-à-dire d'un étalon particulier, on représente chaque masse par un nombre réel positif.

La numérisation de la quantité de mouvement découle de celle de la masse : une quantité de mouvement double par rapport à (E) est, par définition, celle d'un corps de masse double allant à la même vitesse relativement à (E). Plus généralement, la quantité de mouvement d'un corps est la somme des quantités de mouvement de ses parties.

Ayant installé et numérisé les notions de masse et de quantité de mouvement, nous pouvons installer celle de force. L'interaction élastique est un phénomène de double conversion : du mouvement est converti en déformations, et ces déformations, à leur tour, se convertissent en mouvement. Quelque chose, que nous pourrions appeler « action ou possibilité d'action » passe de l'état de mouvement à celui de déformation, puis de l'état de déformation à celui de mouvement. Ce passage peut être plus ou moins intense, et nous définissons la force comme la mesure de cette plus ou moins grande intensité. C'est donc une sorte de débit instantané. Mais de quoi ? Que l'échange se fasse dans un sens ou dans l'autre, ce que nous savons à présent mesurer, c'est la quantité de mouvement gagnée ou perdue par unité de temps. La force est donc, par définition, la dérivée par rapport au temps de la quantité de mouvement.

Cependant, toutes les forces ne sont pas associées à des échanges immédiats entre déformation et quantité de mouvement. L'arc tout entier est immobile, et pourtant sa corde est sous tension. Ce que nous appelons force, dans cette situation statique, reste toutefois la mesure d'un échange instantané entre déformation et quantité de mouvement : celui qui se produirait si la corde, soudain, n'était plus là.

Il y a donc des forces qui, comme celles qui empêchent l'arc de se détendre, n'engendrent aucune action. D'où l'installation du concept de travail comme produit scalaire d'une force par un déplacement rectiligne, ou bien comme produit scalaire d'une vitesse par une variation de quantité de Il en découle la notion d'énergie cinétique ; puis, par équivalence avec l'énergie cinétique absorbée ou restituée, celle d'énergie mécanique.

-Conclusion

Le corps élastique permet bien d'installer les concepts fondamentaux de la mécanique. Il satisfait au principe de minimalité, puisqu'il n'est autre que le corps mémoforme, considéré dans une nouvelle gamme d'expériences. Pour la deuxième fois que nous cherchons un nouvel instrument, nous avons le bonheur de le trouver déjà présent dans nos bagages, attendant que nous nous saisissions de lui.

Géométrie, chronométrie et mécanique sont donc fondées sur le même instrument, dont le champ d'application s'élargit quand on passe d'un noyau au suivant.

Cette unicité de l'instrument a pour conséquence que la mécanique est immédiatement connexe à la cinématique. L'une s'intéresse en effet à tout ce que l'autre ne dit pas de son instrument fondateur, le corps mémoforme, lorsqu'il quitte les conditions d'emploi qui lui étaient jusque-là permises. Elle soulève donc les premières questions qui se posent quand on vient d'achever la construction de l'autre. Cela confirme l'analyse faite plus haut, selon laquelle, après la cinématique, c'est bien la mécanique qui doit être construite.

Nous ne posons pas de système d'axiomes, mais il est clair qu'il serait facile de le faire pour tous les définitions mises en place ci-dessus, et qu'une fois ce travail accompli les axiomes énonçant les lois qui ne sont pas déjà installées seront faciles à poser, si tant est que nous les connaissions, puisqu'il suffira alors de les transcrire dans le langage ordinaire de la physique. La difficulté n'est pas dans la partie technique de l'axiomatisation, mais dans son aspect « physique » : quelles sont les bonnes lois ? En particulier, la loi d'additivité des masses ─ en tenant compte de l'équivalence masse-énergie ─ est-elle rigoureusement exacte ou seulement approchée ? Nous pourrions construire une mécanique où elle est supposée rigoureusement exacte ; comme une où elle ne l'est pas.

Le noyau de la mécanique peut être axiomatisé conformément à l'exigence de fondation sur l'instrument et l'expérience. Un seul instrument suffit pour cela, le corps élastique, qui est le même que celui déjà utilisé pour l'axiomatisation de la géométrie et de la chronométrie, mais employé cette fois-ci dans des expériences d'interaction dynamiques.

-Le sixième problème de Hilbert : récapitulation et synthèse

On voit donc le corps élastique tenir un rôle crucial dans ce début de réponse au sixième problème de Hilbert que nous fournit automatiquement le principe de fondation sur l'instrument et l'expérience.

La qualité la plus incontournable d'un instrument de mesure est la fidélité, autrement dit son retour au même d'une expérience de mesure à une autre. On reconnaît là une généralisation du concept d'élasticité à des objets qui ne sont pas nécessairement assimilables à des solides. Mais quand nous prenons le chemin de construire la physique à partir du plus grand dénuement possible, et dans l'ordre imposé par l'instrument et l'expérience, ce dont nous disposons, c'est en tout premier lieu de la matière solide à l'état brut, et c'est donc elle, avec sa propriété d'élasticité, qui est notre premier instrument. (La lumière, n'oublions pas ce point, n'est pas manipulable sans la matière solide.)

Cet instrument premier qu'est la matière solide élastique, passant de la chose concrète à l'idéalisation mathématique, doit se soumettre aux exigences de cette discipline. Elle devient une entité lisse, continue, séparable et duplicable à l'infini. C'est la matière des géomètres et des mécaniciens. Sa pertinence à l'échelle macroscopique est excellente, à l'échelle microscopique elle est évanescente. Mais nous ne disposons de rien d'autre que cette extrapolation incongrue.

Avec cet instrument théorique, nous pouvons construire une axiomatisation de la géométrie, de la chronométrie et de la mécanique des corps élastique conforme à l'exigence de fondation sur l'instrument et l'expérience, c'est-à dire exempte de toute entorse au principe de parcimonie et, corollairement, de tout recours à des entités métaphysiques.

Le domaine ainsi construit mérite qu'on l'examine d'un peu plus près. Avec la géométrie, il contient le concept de longueur ; avec la chronométrie celui de durée, avec la mécanique les trois concepts solidaires de masse, de force et d'énergie. Il est ce qu'on pourrait appeler le « noyau MKS » ou le « noyau cgs » de la physique, celui qui installe les grandeurs basiques permettant ensuite de donner une signification à toutes les autres.

TROISIÈME PARTIE : RELATIVITÉ RESTREINTE VERSUS NON-RELATIVITÉ LORENTZIENNE

Incompatibilité logique de la relativité restreinte avec la mécanique du corps élastique considéré dans son étendue -Remédiation

─ LE PARADOXE DES JUMEAUX DE LANGEVIN ET L'EXPÉRIENCE D'ALLER ET RETOUR D'UN CYLINDRE EN ROTATION

-Le paradoxe des jumeaux de Langevin

C'est une expérience de pensée un peu théâtralisée. Deux jumeaux, représentant en fait deux horloges, sont en un lieu galiléen O. Puis, cependant que l'un d'eux reste « immobile » en O, l'autre s'éloigne de lui à vitesse uniforme 𝑣, laisse passer du temps, fait demi-tour et revient vers O à la vitesse uniforme -𝑣. Quand il retrouve son frère, celui-ci est plus vieux que lui.

Ce très célèbre paradoxe n'a pas eu la vie facile. À beaucoupdont Bergson [START_REF] Bergson | moteur de recherche) NASA/IPAC Extragalactic Database[END_REF] -il a paru être à lui seul une preuve de l'inconsistance logique de la relativité restreinte, alors même qu'il ne recèle formellement aucune contradiction.

Mais commençons par faire le calcul. Appelons (E) l'espace galiléen dans lequel le premier jumeau se tient immobile en un lieu O, (E′) celui dans lequel son frère, s'éloignant de lui, est immobile en un lieu O′.

Munissons ces deux espaces de deux référentiels galiléens RG et RG′ placés selon la configuration standard : les axes des 𝑥 et des 𝑥 ′ sont portés par la même droite (D), les Bergson, dans Durée et simultanéité, explique en substance que les formules de Lorentz ne recouvrent qu'un effet de perspective : « "Supposez, a-t-on dit, un voyageur enfermé dans un projectile qui serait lancé de Terre avec une vitesse inférieure d'un vingt millième environ à celle de la lumière, qui rencontrerait une étoile et qui serait renvoyé à la Terre avec la même vitesse. Ayant vieilli de deux ans quand il sortira de son projectile, il trouvera que c'est de deux cents ans qu'a vieilli notre globe". -En eston bien sûr ? Regardons de plus près. Nous allons voir s'évanouir l'effet de mirage, car ce n'est pas autre chose ». S'il vivait encore, Bergson ne persisterait certainement pas dans cette opinion. Il est en effet aujourd'hui clair, par diverses expériences, que des particules en mouvement rapide manifestent bien une augmentation de leur durée de vie conforme à la prédiction de la relativité restreinte. autres axes sont deux à deux parallèles, les origines spatiales O et O′ coïncident à l'instant 0 de chaque référentiel.

Le deuxième jumeau, lorsqu'il voyage à vitesse uniforme, ce qui est le cas sauf une partie négligeable de son temps, est une horloge dont le battement intrinsèque, celui observé dans le référentiel galiléen RG′ accompagnant son mouvement, a pour durée 𝑇. Parce que le changement de coordonnées est une transformation affine, la durée séparant deux battements, observée depuis (E), est constante. Aussi, pour savoir quelle est cette durée, nous pouvons considérer n'importe lequel des battements. Le plus simple est de prendre celui qui commence à l'instant 𝑡' = 0.

Le changement de coordonnées entre (E′) et (E) est donné par la transformation de Lorentz.

Relativement à RG′, le début et la fin du battement considéré ont pour coordonnées spatio-temporelles (0, 0, 0, 0) et (0, 0, 0, 𝑇). Leurs images par le changement de coordonnées sont (0, 0, 0, 0) et (𝛾 𝑇, 0, 0, 𝛾𝑇), si bien que l'horloge, vue depuis (E), a pour période 𝛾𝑇 : sa période est plus longue, et elle tourne donc plus lentement.

Si on remplace 𝑣 par -𝑣, la formule reste inchangée : sur le chemin du retour, le même phénomène se produit.

Considérons maintenant les instant locaux 𝑖 1 , 𝑖 2 , …, 𝑖 𝑛+1 définis en O′ par les débuts des cycles successifs, puis en O′′, origine du référentiel galiléen « retour », sur le trajet de retour. En 𝑖 1 , l'horloge part de O et en 𝑖 𝑛+1 elle y revient. Sur le trajet aller, la durée des l'aller et retour a battu 𝛾 fois moins que celui de son frère. Le jumeau resté en O est donc plus vieux que l'autre.

Nous avons vu au chapitre 8 qu'on peut construire un modèle de la cinématique lorentzienne à l'intérieur de la théorie des ensembles. Aussi, si nous devions considérer comme absurde le résultat de cette expérience de pensée, ce sont les mathématiques tout entières que nous considèrerions comme absurdesalors même que cette expérience, à proprement parler, ne soulève aucune contradiction. Les deux horloges sont des dispositifs physiques subissant des parcours différents, rien ne les oblige à avoir à leur terme commun compté le même nombre de cycles -sinon, évidemment, de vieilles habitudes de pensée. Le paradoxe des jumeaux de Langevin n'en est donc pas un. Mieux, il décrit correctement la réalité physique.

Ce modèle peut, toujours dans le cadre de la théorie des ensembles, être muni des lois de la mécanique du point matériel.

La relativité restreinte, pour la cinématique comme pour la mécanique du point matériel, est donc une théorie sans faille logique envisageable, à moins de remettre en cause la solidité des mathématiques.

-Présentation de l'expérience d'aller et retour d'un cylindre en rotation

Dans l'expérience des jumeaux de Langevin, l'horloge est indéfinie. Mais nous avons montré que l'horloge première de la physique, celle qui engendre directement un temps conservateur de la quantité de mouvement et du moment cinétique, est l'horloge inertielle. Par exemple un cylindre globalement immobile relativement à un espace galiléen, et tournant librement sur lui-même autour de son axe, sans qu'aucune action soit exercée sur lui. Le temps qu'il délivre par le comptage du nombre de ses tours est « parfaitement régulier ».

Cette horloge, ce cylindre tournant peut être soumis à une expérience d'aller et retour axial analogue à celle des jumeaux de Langevin. La différence cruciale est qu'entre la partie « immobile » et celle qui fait l'aller et retour, un pont de matière reste constamment tendu, celui du cylindre.

Nous étudions le cas où le cylindre est « mince », autrement dit d'épaisseur infinitésimale.

La matière dont il est constitué n'est pas supposée « rigide » (au sens d'infiniment rigide) : elle se déforme sous l'effet des actions exercées sur elle. Elle est supposée élastique, dans le sens où ses propriétés mécaniques restent invariables au cours de l'expérience.

La première partie de l'expérience se déroule dans le cadre « totalement uniforme ». Le cylindre (C) est globalement immobile dans l'espace galiléen (E0), et tourne librement sur lui même. Il conserve donc, à ce stade de l'expérience, et à ce stade seulement, une forme invariable. 

La deuxième partie de l'expérience commence lorsque (C′) heurte (C).

Les mouvements des cylindres cessent alors d'être uniformes dans toutes leurs ses composantes. C'est un processus complexe qui se produit, et qui fait repartir (C) en arrière relativement à l'espace de référence (E).

M traverse de nouveau (P) à l'instant 𝑗 de (E), qui marque la fin de l'expérience. Il coïncide alors de nouveau avec N. Le résultat de l'expérience dépend des déformations des corps et il est donc nécessaire de les analyser. Ces déformations, à leur tour, dépendent notamment du matériau dont sont faits les cylindres, pour lequel les possibilités de variation sont innombrables. Pour simplifier, nous le supposons homogène, isotrope et élastique.

Le mouvement de (C) cesse d'être uniforme dans toutes ses composantes ; mais il continuera comme il se doit d'être analysé relativement à un référentiel galiléen. La relativité restreinte n'oblige en rien à se cantonner à l'étude des mouvements uniformes ; elle oblige seulement à ce que les référentiels soient galiléens. Le jumeau voyageur de Langevin, par exemple, a lorsqu'il fait demi-tour un mouvement accéléré. 

-Caractère « absolu » du moment cinétique

Considérons un disque élastique plein (∆) en rotation sur lui-même autour de son axe (D), et globalement immobile dans un espace galiléen (E 0 ). Appelons 𝜔 sa vitesse intrinsèque de rotation. À un certain instant, (∆) reçoit une impulsion colinéaire à (D), exercée par exemple par une « particule » circulant le long de (D), qui l'amène à terme, et en vertu de l'hypothèse qu'il est parfaitement élastique, à être, en ayant retrouvé sa forme initiale, globalement immobile dans l'espace galiléen (E) allant à la vitesse 𝑣 relativement à (E 0 ). Sa nouvelle vitesse intrinsèque de rotation est 𝜔 ′ . La symétrie de révolution fait que la particule repart le long de (D) : son moment cinétique par rapport à (D) est donc nul avant comme après l'impact. En vertu de la loi de conservation du moment cinétique, le moment cinétique de (∆) autour de (D), évalué depuis (E 0 ), est inchangé.

La valeur de 𝜔 détermine le moment cinétique de (∆) ; et la valeur de ce moment cinétique et de 𝑣 déterminent 𝜔 ′ , si bien que 𝜔 ′ est fonction de 𝑣 et 𝜔 : 𝜔 ′ = 𝑓(𝑣, 𝜔) = 𝑓 𝑣 (𝜔).

Un disque identique (∆ 1 ), globalement immobile dans (E 0 ), mais tournant à la vitesse 𝜔 1 > 𝜔 aurait un moment cinétique plus élevé ; par conservation, ce serait encore le cas lorsqu'il serait amené à la vitesse 𝑣. Sa vitesse intrinsèque de rotation finale 𝜔 1 ′ serait donc telle que 𝜔 1 ′ > 𝜔 ′ : pour 𝑣 fixé arbitraire, la fonction { ℝ + ⟶ ℝ + 𝜔 ↦ 𝜔 ′ = 𝑓 𝑣 (𝜔) est croissante.

Faisons à présent subir à (∆) une impulsion axiale de sens opposé, de valeur choisie telle qu'elle le ramène dans une position d'immobilité globale par rapport à (E 0 ). En vertu du principe de relativité, et puisque la vitesse de (E 0 ) par rapport à (E) vaut celle de (E) par rapport à (E 0 ), c'est-à-dire 𝑣, sa nouvelle vitesse intrinsèque 𝜔 ′′ de rotation est donnée par la même loi : 𝜔 ′′ = 𝑓 𝑣 (𝜔 ′ ).

On a donc 𝜔 ′′ = 𝑓 𝑣 (𝑓 𝑣 (𝜔)).

Cependant, le moment cinétique de (∆) relativement à (E 0 ) est resté invariant dans chacune des deux interactions. Comme (∆) est de nouveau immobile dans (E 0 ), et que son moment cinétique relatif à cet espace est resté invariant, 𝜔 ′′ = 𝜔 = 𝑓 𝑣 (𝑓 𝑣 (𝜔)).

En composant la fonction croissante positive 𝑓 𝑣 avec elle-même, on obtient l'identité. C'est donc que 𝑓 𝑣 est elle-même l'identité : 𝑓 𝑣 (𝜔) = 𝜔.

Ainsi, au terme de la première interaction, la vitesse intrinsèque de rotation de (∆) est inchangée.

Son moment cinétique intrinsèque, dans l'espace (E) où elle est alors globalement immobile, au terme de la première interaction, est donc le même que celui qu'elle avait (ou qu'elle aura) relativement à (E 0 ) quand elle y était (ou qu'elle y sera) globalement immobile.

C'est aussi le même, en vertu la loi de conservation, que son moment cinétique extrinsèque, celui qu'au terme de la première interaction elle a relativement à (E 0 ).

Par soustraction, ce résultat s'étend aux anneaux tournant autour de (D), qui sont les corps élémentaires intervenant dans le problème du cylindre en rotation.

Le moment cinétique d'un anneau en rotation autour de son axe (D), considéré à un instant t de son existence, est le même relativement à tous les espaces galiléens en translation le long de (D).

Moment cinétique intrinsèque et moment cinétique extrinsèque sont égaux : le moment cinétique, au contraire des durées, des longueurs, des masses, est un « absolu », au moins tant qu'on se limite aux référentiels glissant le long de (D).

-Les phénomènes de torsion

Durant l'expérience d'aller et retour, la symétrie de révolution du système est conservée. Mais des phénomènes de torsion autour de l'axe peuvent ou non se produire, qui n'altèrent en rien cette symétrie de révolution.

Il faut distinguer trois concepts de torsion, qui sont liés les uns aux autres.

─ La torsion intrinsèque

Elle demande pour pouvoir être définie que des génératrices aient été préalablement gravées sur (C) quand il tourne librement sur lui-même, globalement immobile dans un certain espace galiléen. Ce cylindre présente une torsion intrinsèque au niveau d'une de ses sections (S) si, observant le tube depuis l'espace galiléen (E M ) tangent au mouvement de translation d'un des points M de (S), on constatepar exemple avec une équerre, ou bien par un procédé en théorie équivalent -que l'angle formé par la génératrice et la section passant par M n'est pas un angle droit. Peu importe le point M choisi sur (S), puisqu'il y a symétrie de révolution. L'absence de torsion intrinsèque est une caractéristique locale : l'équerre est en théorie infinitésimale, ce qui ne l'empêche pas d'être infiniment exacte.

(S) est ici considérée en tant que courbe, et pas en tant que plan. En effet, (C) peut aussi avoir une torsion intrinsèque lorsque ses déformations font que son rayon varie, et qu'il est assimilable, au voisinage de (S), à un tronc de cône.

Le critère de perpendicularité de (S) et de (G) est alors celui de deux courbes, et pas celui d'une courbe et d'un plan.

Lorsqu'un système matériel peut à un instant donné (d'un certain espace galiléen) être considéré comme fait de points allant tous à la même vitesse, on appelle espace galiléen tangent à son mouvement l'unique espace galiléen dans lequel sa vitesse est nulle à cet instant.

Les référentiels utilisés dans cette étude sont tous animés les uns par rapport aux autres d'un mouvement de translation colinéaire à (D)à une exception près, celui que nous venons d'utiliser, l'espace galiléen tangent au mouvement du point M. Parce que les changements de coordonnées dans plusieurs directions différentes engendrent des calculs compliqués, c'est une situation que nous avons intérêt à éviter.

Soit (E S ) l'espace galiléen tangent au mouvement de translation de (S). Le mouvement de (E M ) dans (E S ) est colinéaire à la tangente en M à (S), et la transformation de Lorentz transforme une droite perpendiculaire à la direction du mouvement en une droite perpendiculaire à la direction du mouvement, aussi l'inexistence d'une torsion intrinsèque de (C) peut-elle être constatée depuis (E S ) :

La torsion intrinsèque au niveau d'une section (S) est nulle si et seulement si, dans l'espace galiléen (E S ) tangent à son mouvement de translation, les génératrices lui sont perpendiculaires.

On appelle espace galiléen tangent au mouvement de translation d'une section (ou d'une tranche infinitésimale) l'unique espace galiléen dans lequel sa vitesse de translation est nulle à l'instant où on la considère : elle y est alors globalement immobile, quoique tournant sur ellemême.

─ La torsion mécanique

On dit que (C) présente à un instant donné une torsion mécanique au niveau d'une de ses sections (S) si les tranches infinitésimales de (C) de part et d'autre de (S) exercent un couple l'une sur l'autre.

─ Lien entre torsion mécanique et torsion intrinsèque

Pour savoir s'il y a une torsion mécanique au niveau d'une section (S) à l'instant 𝑡 de l'espace de référence, nous disposons d'un test simple : nous considérons une situation en tout point identique, à ceci près que (C) a été coupé au niveau de (S) par un trait d'épaisseur nulle qui le sépare en deux tronçons successifs (C1) et (C2). L'opération remplace (S) par deux faces (S1) et (S2) adjacentes, que nous supposons parfaitement glissantes. Comme le choc est compressif, elles restent en contact dans les instants qui suivent immédiatement 𝑡.

Dans ces instants, deux possibilités se présentent : a) (S 1 ) et (S 2 ) se mettent à tourner à des vitesses différentes. Comme elles tournent à la même vitesse quand (C) n'est pas coupé, nous concluons à l'existence d'une torsion mécanique au niveau de (S), dans un sens déterminé par le signe de la différence des vitesses de rotation. b) (S1) et (S2) continuent de tourner à la même vitesse. Nous en déduisons que la torsion mécanique est nulle au niveau de (S).

La torsion mécanique au niveau de (S) est nulle à l'instant 𝑡 si et seulement si une coupure parfaitement glissante de (C) à son niveau serait telle que les faces en contact des deux tronçons continueraient de tourner à la même vitesse dans les instants immédiatement ultérieurs à 𝑡.

Cependant, nous pouvons également savoir s'il y a torsion mécanique au niveau de (S) en étudiant les déformations locales du corps élastique (C) au voisinage de (S). En vertu de la symétrie de révolution de la situation, ces déformations sont les mêmes en tout point de (S), et il suffit de faire cette étude au voisinage d'un quelconque d'entre eux.

Les déformations de (C) au voisinage d'un point M de (S), considérées dans l'espace galiléen tangent au mouvement de ce point, témoignent de l'existence ou de l'inexistence d'une torsion mécanique au niveau de (S).

En vertu du principe de relativité, la matière élastique composant (C) a des propriétés locales intrinsèques indépendantes de son mouvement de translation. Aussi, le fait que les déformations intrinsèques d'un voisinage de M soient ou non telles qu'une coupure glissante instantanée de ce voisinage le long de (S) engendre un glissement immédiat des deux parties l'une sur l'autre ne dépend que des déformations intrinsèques de ce voisinage, et pas de son mouvement de translation.

Nous pouvons donc nous ramener au cas où la vitesse intrinsèque de rotation de (C) est nulle. Quelle que soit alors l'interaction avec (C′), en tout point identique à (C), et donc également de vitesse intrinsèque de rotation nulle, la situation initiale est symétrique par rapport au plan contenant (D) et (G), et le demeure donc durant toute l'interaction. (G) reste par conséquent, quelles que soient ses déformations, coplanaire avec (D), et donc perpendiculaire à (S) : la torsion intrinsèque est constamment nulle. En même temps, les vitesses intrinsèques de rotation des sections sont nulles, si bien que l'échange de moment cinétique est nul, et que la torsion mécanique est donc nulle.

Parce que la torsion intrinsèque témoigne de la torsion mécanique, Il y a torsion mécanique au niveau d'une section (S) de (C) si et seulement il y a torsion intrinsèque.

─ La torsion extrinsèque

Étudions, dans le cas général où les différentes parties de (C) ne vont pas toutes à la même vitesse, les caractéristiques extrinsèques locales de son mouvement.

Ce raisonnement n'oublie qu'en apparence les forces centrifuges, qui interviennent à leur exacte mesure, parmi toutes les autres forces, sur l'engendrement de la forme locale de (C).

Soit (S) une section de (C) allant, à l'instant 𝑡 de (E) où nous nous intéressons à elle, à la vitesse 𝑣 relativement à (E), telle que sa vitesse intrinsèque de rotation soit 𝜔 et la torsion intrinsèque à son niveau 𝜏.

Soit (E S ) l'espace galiléen tangent au mouvement de translation de (S) à cet instant.

Sans perte de généralité, nous pouvons choisir des référentiels RG de (E) et RG′ de (E S ) placés selon la configuration standard, tels que (S) traverse le plan 𝑥 = 0 à l'instant 0 de RG, qui est celui où nous voulons étudier son comportement, et qui correspond donc localement à l'instant 0 de RG′.

La génératrice (G) a pour torsion locale intrinsèque 𝜏 à l'instant 0 de (E S ), mais cette torsion locale n'est pas constante. Les coordonnées spatiotemporelles d'un M point générique de (G) sont donc, dans (E S ), à cet instant, sans perte de généralité :

(𝑥 ′ , 𝑅 cos(𝜏 𝑥 ′ ) + 𝑜(𝑥 ′ ) , 𝑅 sin(𝜏 𝑥 ′ ) + 𝑜(𝑥 ′ ), 0).

Les vitesses de translation des sections de (C) ne sont pas supposées constantes au voisinage de M, pas plus que leurs vitesses de rotation. Mais elles doivent être supposées continues. En effet, le point M, étant infiniment petit, n'a pas de réalité physique. Seuls « existent » les voisinages infinitésimaux de M, dont la reconnaissance en tant qu'entités physiques élémentaires pertinentes, ayant une vitesse globale, présuppose la continuité des vitesses. À l'instant 𝑡', les coordonnées spatiotemporelles de M sont donc, en tenant compte de la continuité des fonctions cosinus et sinus : (𝑥 ′ , 𝑅 cos(𝜏 𝑥 ′ + 𝜔 𝑡 ′ ) + 𝑜(𝑥 ′ , 𝑡 ′ ), 𝑅 sin(𝜏 𝑥 ′ + 𝜔 𝑡 ′ ) + 𝑜(𝑥 ′ , 𝑡 ′ ), 𝑡′), où les 𝑜(𝑥', 𝑡 ′ ) sont, conformément à la notation de Landau, négligeables devant ‖(𝑥 ′ , 𝑡 ′ )‖.

Un point de coordonnées (𝑥, 𝑦, 𝑧, 𝑡) relativement à (E) est sur la génératrice si et seulement si il existe 𝑥' et 𝑡' tels que son transformé de Lorentz soit de la forme ci-dessus. Nous obtenons ainsi l'équation spatiotemporelle de (G) dans (E) aux voisinages de l'origine et de l'instant 0. En l'arrêtant à l'instant 0, on en déduit l'équation de (G) dans (E) à l'instant 0 au voisinage de l'origine : La transformation de Lorentz, parce qu'elle invoque une simultanéité dépendant de l'espace galiléen de référence, engendre un phénomène de torsion extrinsèque du cylindre en rotation, qui n'est lié à aucune déformation physique.

{ 𝑦 = 𝑅
Cette « torsion » n'est pas celle au sens usuel du mot pour une courbe, mais le « paramètre axial » de l'hélice : l'angle dont tourne un de ses points quand sa projection sur l'axe avance d'une unité de longueur. En l'arrêtant à la position 𝑥 = 0, on obtient la vitesse de rotation de N dans (E) : 𝛾(𝜔 -𝑣 𝜏).

Ce résultat nous servira ultérieurement.

Nous n'avons pas calculé la torsion extrinsèque lorsque les déformations de (C) au niveau de (S) font que son rayon varie, et que (C) est alors tangent à un cône. Un artifice nous aidera. Cette torsion extrinsèque, n'étant liée à aucune déformation physique, sera la même pour un tube épais que pour un tube mince, et encore la même pour les surfaces minces que nous pouvons découper dans ce tube épais, et particulier pour ce tronc de cône.

Lorsque les déformations que subit le cylindre font varier son rayon, les formules donnant la torsion extrinsèque et la vitesse de rotation de N restent les mêmes. Ils avancent l'un vers l'autre, se heurtent et repartent en sens inverse.

-Interaction de deux anneaux minces

La symétrie de la situation entre (A) et (A') fait qu'ils n'échangent jamais de moment cinétique lors de leur interaction. Le couple exercé sur l'un par l'autre est donc constamment nul.

Ce résultat ne dépend pas de la vitesse des anneaux l'un par rapport à l'autre.

Comme, par raison de symétrie, ils tournent à la même vitesse durant le choc, les points qui entrent en contact au moment du choc restent en contact durant toute l'interaction : aucun des anneaux ne ripe sur l'autre. Leurs surfaces peuvent être parfaitement glissantes ou bien rugueuses, cela ne fait pas de différence. Pour chacun d'eux le choc est le même que s'il rebondissait sur une surface plane parfaitement lisse. Remplaçons l'anneau (A′) par un anneau mince élastique (Z) de même taille, animé comme lui d'un mouvement global uniforme de translation colinéaire à (D), et tournant sur lui-même à la vitesse intrinsèque de rotation 𝜔 ′ . Sa matière est homogène et isotrope, comme celle de (A), mais ses autres caractéristiques sont possiblement différentes. Il n'a aucune torsion mécanique avant le choc Durant l'interaction, les faces de (A) et de (Z) en regard l'une de l'autre sont à tout instant adjacentes. Leur zone de contact est donc une couronne circulaire d'épaisseur infinitésimale. Étudions la situation suivant les différentes valeurs de 𝜔 ′ , en commençant par le cas où 𝜔 ′ < 𝜔.

Supposons dans un premier temps que les faces en contact sont parfaitement glissantes. L'échange de moment cinétique entre elles est donc nul tout au long du choc.

Un observateur emporté par le mouvement de (A), au bord de la zone de contact, observe la situation. Si la vitesse intrinsèque de rotation de (Z) était 𝜔, il verrait au début du choc, d'après ce que nous venons d'établir, les points de (Z) tourner à la même vitesse que ceux de (A). Mais la vitesse intrinsèque de rotation de (Z) est strictement inférieure à 𝜔 et l'observateur voit donc les points de (Z) glisser le long de (A) dans le sens contraire à celui dans lequel tourne (A). Il en déduit que s'il y avait des frottements, (Z) s'opposerait au mouvement de rotation de (A), autrement dit exercerait un couple antagoniste à ce mouvement.

De la même façon, si 𝜔 ′ > 𝜔 et que les frottements ne sont pas nuls, (Z) exercerait sur (A) un couple allant dans le sens de son mouvement.

Comme le couple exercé par un des anneaux sur l'autre dépend continûment de 𝜔 ′ , il est, par le théorème de la valeur intermédiaire, nul quand 𝜔 ′ = 𝜔 et que les frottements ne sont pas nuls.

Cette propriété demeure vraie, par le même raisonnement, à tout instant de l'interaction ; cependant 𝜔 et 𝜔 ′ peuvent, parce que le moment d'inertie des anneaux a changé, ne plus avoir leurs valeurs primitives, auquel cas nous sortons des hypothèses.

Soit deux anneaux minces tournant autour du même axe, et animés d'un mouvement global de translation le long de lui. Si ces anneaux, à un certain instant, sont en interaction, et qu'à cet instant -ils n'ont pas de torsion intrinsèque, -ils tournent à la vitesse intrinsèque de rotation 𝜔, alors, à cet instant, ces anneaux n'exercent aucun couple l'un sur l'autre. L'échange instantané de moment cinétique entre eux est par conséquent nul.

Si l'interaction est en outre telle que les déformations ne font à aucun instant varier les moments d'inertie intrinsèques des anneaux, ils ont un comportement particulièrement simple : Si on ajoute aux hypothèses ci-dessus que les anneaux ont durant toute l'interaction leurs moments d'inertie intrinsèques qui restent invariables, alors, durant toute l'interaction, -ils n'échangent aucun moment cinétique, -ils n'exercent aucun couple l'un sur l'autre, -ils ne subissent aucun phénomène de torsion intrinsèque, -ils conservent leur vitesse intrinsèque de rotation 𝜔.

─ Possibilité d'une interaction à moments d'inertie intrinsèques constants

Les variations des moments d'inertie intrinsèques dépendent de la constitution des anneaux.

On peut imaginer des matériaux composites tels que lors des phénomènes de compression engendrés par le choc, plus de matière soit rejetée vers l'intérieur que vers l'extérieur, et que cela fasse diminuer le moment d'inertie intrinsèque -suffisamment pour que l'effet dépasse celui de l'alourdissement consécutif au stockage de l'énergie mécanique dans le matériau comprimé, qui joue en sens inverse.

On peut à l'inverse imaginer de matériaux rejetant plus de matière vers l'extérieur que vers l'intérieur, et donc tels que lors du choc leur moment d'inertie intrinsèque augmente.

Entre les deux, semble-t-il, il existe la possibilité d'anneaux neutres, dont le moment d'inertie intrinsèque ne varie pas lors du choc. Mais ce n'est qu'une possibilité approximative et limitée. L'anneau qui serait parfaitement neutre pour telle force d'impact a toutes les chances de ne plus l'être tout à fait pour une autre. Et si d'aventure il l'était, nous serions bien incapables de le prouver en toute rigueur.

Nous disposons cependant d'une autre solution pour obtenir des anneaux neutres. Il suffit en effet d'exercer sur (A) une poussée latérale compensant exactement les variations de son moment d'inertie. Pour cela, bombardons (A) durant l'interaction par un jet continu de particules qui la heurtent toutes sous le même angle et à la même vitesse en chacun de ses points, respectant ainsi sa symétrie de révolution. Si c'est une augmentation du moment d'inertie intrinsèque qu'il faut compenser, ces particules heurteront la face cylindrique externe ; si c'est une diminution, la face interne. Plaçons-nous sans perte de généralité dans le premier cas.

Selon la façon dont le jet arrive sur (A), il peut faire croître sa quantité de mouvement relative à (E), ou bien la faire décroître : De même, il peut aussi faire croître ou décroître le moment cinétique de (A). Soit (R) un rectangle élémentaire de la surface cylindrique extérieure de (A), dont il joint les deux bords. Observons la situation depuis l'espace galiléen (EP) tangent à son mouvement.

L'action exercée sur (R) peut être bijectivement représentée par un vecteur arrivant au centre P de (R), colinéaire au jet, et de longueur proportionnelle à son intensité.

Les origines des vecteurs peuvent être prises partout dans le demiespace au-dessus de (R). Les jets qui augmentent la quantité de mouvement de (A) relativement à (E) correspondent à un vecteur qui pousse (R) disons vers la droite ; et ceux qui la diminuent à un vecteur poussant (R) vers la gauche. Cette discrimination répartit les origines des vecteurs en deux domaines séparés par une surface de révolution (SA) transversale à l'axe de l'anneau. De même, les jets qui augmentent le moment cinétique et ceux qui le diminuent sont de part et d'autre d'une surface (SL) disposée dans le sens de cet axe. Les deux surfaces se croisent selon une courbe (Γ) représentant les jets qui ne modifient ni la quantité de mouvement relative à (E) ni le moment cinétique de (A).

Parmi eux, il en est dont l'intensité est trop faible pour compenser l'augmentation du moment d'inertie de (A) : par exemple le jet nul.

Choisissons une fois pour toutes de faire l'expérience d'aller et retour à des vitesses de rotation et de rapprochement des cylindres « raisonnables », c'est-à-dire telles que les déformations et les effets « relativistes » soient « petits », voire « négligeables ». Non pas que nous ayons l'intention de négliger quoi que ce soit, nous entendons au contraire raisonner avec l'absolue précision de la géométrie, qui dépasse infiniment celle de nos expériences concrètes.

Mais si ces phénomènes sont « petits» ou « négligeables », c'est qu'on peut, en agissant sur la matière élastique, les renverser. Une intensité 𝐼 suffisamment forte du jet aura des effets dépassant ce « petit », et fera décroître le moment d'inertie. Comme il dépend continûment de 𝐼, il existe à tout instant de l'interaction une valeur intermédiaire de 𝐼 telle que sa variation soit nulle.

Il est possible d'exercer sur (A) tout au long de l'interaction une pression homogène variable dans le temps, qui, sans lui communiquer de moment cinétique ni de quantité de mouvement, maintient son moment d'inertie intrinsèque inchangé.

La relativité restreinte est une théorie « géométrique », en ce sens qu'elle est régie par des axiomes dont l'exactitude n'est pas supposée approximative mais parfaite. On peut, comme en géométrie, y faire des raisonnements dont la précision outrepasse nos capacités concrètes d'observation ; et en particulier portant sur des corps allant à des vitesses aussi petites que l'on veut, bien plus lentes que celle d'un escargot cacochyme. Pour invisibles qu'ils soient, les « effets relativistes » n'en continuent pas moins, en toute rigueur, d'exister.

-Possibilité de faire l'expérience d'aller et retour à vitesse intrinsèque de rotation constante et torsion intrinsèque nulle

Reprenons l'étude de l'interaction des deux tubes élastiques (C) et (C′) arrivant frontalement l'un sur l'autre, dans le cas où nous exerçons sur eux à tout instant une pression qui maintient inchangé le moment d'inertie intrinsèque de chacune des tranches de longueur infinitésimale qui le composent. La figure est étudiée depuis (E).

La connaissance à l'instant 𝑡 de (E) de l'ensemble des positions et des vitesses des points des deux cylindres détermine leur évolution, c'est-à-dire l'ensemble des positions et des vitesses à l'instant 𝑡 + 𝑑𝑡, où dt est une variation infinitésimale positive de t. Cette détermination est une équation différentielle dont la solution, unique en fonction des conditions initiales, nous est donnée par la méthode d'Euler, c'est-à-dire par le calcul des états du système en des instants successifs chacun incrémenté de 𝑑𝑡 par rapport à son prédécesseur.

À l'instant 𝑡 = 0, -chaque section tourne à la vitesse intrinsèque de rotation ω ; -il n'y a nulle part de torsion intrinsèque.

Supposons qu'il en soit de même à un certain instant 𝑡 = 𝜏. Imaginons que (C), à cet instant 𝜏 où nous étudions son comportement au niveau d'une quelconque de ses sections (S), soit soudain coupé en deux le long d'elle. Les deux cylindres adjacents ainsi obtenus (que les phénomènes de compression longitudinale empêchent de se séparer l'un de l'autre), considérés à cet instant au voisinage du trait de coupe, ont partout la même vitesse intrinsèque de rotation. Que les faces adjacentes soient rugueuses ou parfaitement glissantes, des points adjacents situés de part et d'autre de la coupure continueront de coïncider comme ils le feraient si elle n'existait pas, et cela montre que les tranches infinitésimales que (S) sépare n'exercent lorsque la coupure n'existe pas aucun couple l'une sur l'autre. Elles n'échangent donc à cet instant aucun moment cinétique, et leurs moments cinétiques restent par conséquent constants au voisinage de 𝜏. Comme leurs moments d'inertie intrinsèques sont eux aussi invariables, leurs vitesses intrinsèques de rotation le sont également. Ces tranches tournent donc à la vitesse intrinsèque de rotation 𝜔 durant l'intervalle infinitésimal [𝜏, 𝜏 + dt].

Puisque toutes les tranches infinitésimales en lesquelles on peut par la pensée découper les cylindres gardent des vitesses intrinsèques de rotation invariables sur l'intervalle [𝜏, 𝜏 + 𝑑𝑡], il en est de même pour toutes les sections.

Durant cet intervalle, deux tranches infinitésimales adjacentes, puisqu'elles tournent à la même vitesse, n'échangent aucun moment cinétique, et n'exercent donc aucun couple l'une sur l'autre. L'action correctrice des variations du moment d'inertie intrinsèque n'exerce elle non plus aucun couple sur elles, si bien qu'il n'apparaîtra aucune torsion mécanique, donc aucune torsion intrinsèque On en conclut qu'à l'instant 𝜏 + 𝑑𝑡 -chaque section tourne à la vitesse intrinsèque de rotation ω ; -il n'y a nulle part de torsion intrinsèque.

Ces deux assertions sont vraies lorsque 𝑡 = 0, et si elles le sont à l'instant 𝜏, elles le sont l'instant 𝜏 + 𝑑𝑡. Elles sont donc vérifiées tout au long de la suite de calculs que demande la méthode d'Euler. En conséquence : Il est possible de construire une expérience d'aller et retour d'un cylindre en rotation telle que ses sections conservent la vitesse intrinsèque de rotation ω qu'elles ont avant le choc, et que sa torsion intrinsèque soit partout nulle.

-Un entier à la fois nul et non nul

Plaçons-nous donc dans le cas dont nous venons de démontrer l'existence. Durant tout l'aller et retour, il n'apparaît donc aucune torsion intrinsèque sur (C), et la vitesse intrinsèque de rotation de ses sections est constamment égale à 𝜔. D'après ce qui a été établi lors de l'étude de la torsion extrinsèque, et puisque la torsion intrinsèque est nulle, la vitesse 𝜔 𝑁 (𝑡) de rotation de N dans (E) est 𝜔 𝑁 (𝑡) = 𝛾 𝑁 (𝑡) 𝜔, où 𝛾 𝑁 (𝑡) est le coefficient lorentzien associé à la vitesse de translation dans (E) de la section traversant (P) à l'instant 𝑡. Quant à M, puisque la section qui le porte est assimilable à une horloge de vitesse intrinsèque de rotation 𝜔, sa vitesse 𝜔 𝑀 (𝑡) de rotation dans (E) est

𝜔 𝛾 𝑀 (𝑡)
, où 𝛾 𝑀 (𝑡) est le coefficient lorentzien -a priori différent de 𝛾 𝑁 (𝑡)associé à la vitesse de translation dans (E) de la section qui porte M. Nous ne refaisons pas le calcul, c'est le même que celui fait dans l'étude du paradoxe des jumeaux de Langevin.

Comme 𝛾 𝑁 (𝑡) et 𝛾 𝑀 (𝑡) sont, sauf instants isolés, strictement supérieurs à 1, on a que, sauf instants isolés, 𝜔 𝑁 (𝑡) > 𝜔 𝑀 (𝑡).

Les nombres respectifs de tours faits autour de (D) par M et par N entre les instants 𝑖 et 𝑗 de début et de fin de l'expérience sont 𝑚 = ∫ 𝜔 𝑀 (𝑡)𝑑𝑡 Toutes choses restant par ailleurs égales, faisons maintenant varier un des paramètres : la position du plan (P). Ce plan est encore immobile dans (E) durant toute l'expérience, encore perpendiculaire à (D), mais son point d'intersection avec (D) n'est plus le même d'une expérience à l'autre.

Chaque position de (P) est repérée par l'abscisse 𝑥 de son point d'intersection avec (D), et l'ensemble des réels 𝑥 tels que (C), dont le mouvement relatif à (E) est toujours exactement le même, franchisse en partie (P) sans le franchir complètement, autrement dit donne lieu à une expérience d'aller et retour, est un intervalle [𝑥 1 , 𝑥 2 ] de ℝ.

La plus longue expérience possible, celle où le cylindre presque en entier franchit temporairement (P), à l'exception de sa dernière section, correspond à l'abscisse 𝑥 1 .

La plus courte expérience possible, celle où le point M atteint (P) en bout de course, sans le franchir, et où 𝑖 = 𝑗, correspond à l'abscisse 𝑥 2 . Elle ne dure qu'un instant et est telle que 𝑚(𝑥 2 ) = 𝑛(𝑥 2 ) = 0

Pour un 𝑥 donné dans [𝑥 1 , 𝑥 2 ], l'expérience repérée par 𝑥 rend deux nombres de tours 𝑚(𝑥) et 𝑛(𝑥). Une variation infinitésimale de 𝑥 ne peut induire qu'une variation infinitésimale de 𝑚(𝑥) et de 𝑛(𝑥). En d'autres termes, 𝑛(𝑥) -𝑚(𝑥) est une fonction continue sur [𝑥 1 , 𝑥 2 ]. Comme elle ne prend que des valeurs entières, elle est constante sur cet intervalle. On a donc pour tout 𝑥 dans [𝑥 1 , 𝑥 2 ] 𝑛(𝑥) -𝑚(𝑥) = 𝑛(𝑥 2 ) -𝑚(𝑥 2 ) = 0. En particulier,

𝑛 -𝑚 = 0

Et ce résultat, en s'opposant au précédent, montre que l'expérience, analysée selon la relativité restreinte, aboutit à une contradiction.

-LA MODIFICATION MINIMALE À APPORTER À LA RELATIVITÉ RESTREINTE

-Une catastrophe à relativiser

Sur le plan purement mathématique, l'existence d'une contradiction est une catastrophe. La théorie, en prédisant qu'il existe un entier 𝑛 -𝑚 à la fois nul et non nul, permet, par multiplication par un réel arbitraire, de démontrer que tous les réels sont nuls, et donc égaux entre eux -ce qui n'empêche pas qu'on puisse en même temps prouver qu'ils sont non nuls : lorsque l'édifice est contradictoire, on peut prouver tout et le contraire de tout.

Cela ne doit néanmoins pas nous faire perdre de vue ce point crucial, que la relativité restreinte est une théorie pragmatiquement correcte, en ce sens que les formules qu'elle propose sont conformes à l'expérience.

On peut se demander comment une théorie peut être à la fois inconsistante et conforme à l'expérience, mais ce n'est pas la première fois qu'une telle situation se produit. Tel fut en effet le cas des mathématiques grecques lorsqu'elles pensaient naïvement que tous les nombres sont rationnels -croyance qui fut brutalement anéantie par la découverte que la racine carrée de 2 est irrationnelle. Si l'on suppose en effet que √2 = 𝑝 𝑞 avec 𝑝 et 𝑞 entiers premiers entre eux, on montre que 𝑞 est à la fois pair et impair, donc que 0 = 1 ; il s'ensuit un effondrement de la théorie aussi injuste qu'incompréhensible, vu les nombreuses preuves de sa valeur précédemment données.

En raison de toutes ces preuves, justement, la théorie ne pouvait pas sombrer. Elle était trop puissante, trop efficace pour pouvoir être ruinée par une byzantine question de parité, totalement hors du champ de l'expérience ; car l'ensemble des rationnels est dense parmi les réels, si bien qu'aucun protocole expérimental ne fera jamais, ni dans un sens ni dans l'autre, la différence entre les uns et les autres. Il y avait forcément une issue, que les Grecs trouvèrent : admettre tout simplement que tous les nombres ne sont pas rationnels. Une fois cet inconcevable accepté, tout rentra dans l'ordre. Les vieux théorèmes retrouvèrent leur solidité première, et la géométrie, un moment ruinée, sortit renforcée de sa débâcle provisoire. Qui plus est, les mathématiques s'étaient enrichies d'une connaissance essentielle et féconde, celle de l'existence de nombres irrationnels.

L'analogie entre les deux situations n'est pas parfaite, mais, comme la géométrie euclidienne en ce temps, la relativité restreinte a montré sa bonne adéquation au réel. Son formulaire, répétons-le, doit être considéré comme correct.

Or le formulaire ne tombe pas du ciel. Il découle d'une théorisation mathématique du réel, et puisque la relativité restreinte n'est pas consistante mathématiquement, ce n'est pas d'elle qu'il doit légitimement découler, mais d'une théorie consistante aboutissant au même formulaire. Autrement dit, il doit exister une modification de la relativité restreinte qui la rend consistante en même temps qu'elle laisse inchangé ou quasiment inchangé son formulaire. Si nous croyons à la possibilité d'une mathématisation impeccable du noyau de la physique, alors cette nouvelle théorie, en se substituant à un édifice imparfait, aura nécessairement une pertinence au moins égale. Ce que nous pouvons légitimement espérer, en fait, et qui serait une confirmation de notre analyse, c'est qu'elle soit strictement plus pertinente que la relativité restreinte, qu'elle prédise des résultats que celleci ne peut atteindre. Nous verrons que tel est bien le cas.

-Domaine de consistance logique de la relativité restreinte

Nous avons montré au chapitre 7 qu'il est possible de construire un modèle de la cinématique lorentzienne à l'intérieur de la théorie des ensembles. Montrons que ce modèle ℳ permet à son tour de construire un modèle ensembliste de la mécanique lorentzienne du point matériel conforme au principe de relativité. Pour cela, ne conservons dans ℳ que les points matériels dont les trajectoires sont des lignes brisées, chaque segment rectiligne étant parcouru à vitesse uniforme. On affecte à chacun de ces points matériels, de toutes les façons possibles, une masse propre 𝑚. Si (M, 𝑡) est un instant local relativement à un référentiel RG, et si P 1 , P 2 , …, P n , sont des points matériels pondérés ayant tous un point extrémité d'un des segments de leur trajectoire en (M, 𝑡), on dit que le choc entre ces points matériels est correct si les vitesses des points avant et après 𝑡 obéissent aux lois de la relativité restreinte. Cette définition est indépendante du référentiel choisi pour la vérifier. L'ensemble 𝒞 des chocs corrects fournit un modèle de la mécanique lorentzienne relativiste du point matériel.

La relativité restreinte est donc mathématiquement solide pour ce qui est de la cinématique ainsi que la mécanique des chocs de points matériels, tandis qu'elle cesse de l'être lorsqu'on s'aventure dans la mécanique des corps élastiques considérés dans leur étendue.

Néanmoins, les objets ponctuels ne sont qu'une fiction. Lors de l'étude du noyau premier, à propos de ce que nous avons appelé le « péché originel de la physique », nous avons conclu que les points historicisés ne doivent jamais avoir d'autres attributs que ceux de réaliser un marquage infiniment précis des évènements et de l'ordre dans lequel ils s'enchaînent.

Évidemment, cela n'interdit pas d'utiliser des points matériels à titre d'approximation. Mais ceux qu'utilise la relativité restreinte n'en sont pas, puisque la théorie ne peut assumer le concept de corps élastique étendu.

À cela s'ajoute le fait que le corps élastique étendu, loin d'être anecdotique, est crucial : c'est avec l'instrument fondamental et incontournable d'une physique fondée sur l'instrument et l'expérience que la relativité restreinte est incompatible.

-Où est la surcharge ?

Lorsqu'un système est contradictoire, c'est qu'on lui en demande trop. Il est soumis à des exigences impossibles à satisfaire simultanément. Il faut jeter du lest. Mais puisqu'il y a justement plusieurs exigences contradictoires, on peut couper à tel ou tel endroit. Toute la question est de déterminer où.

Dans le cas de l'expérience d'aller et retour, les acteurs du conflit sont -les lois de la mécanique, qui découlent des lois de conservation de la quantité de mouvement et de l'énergie ;

-la transformation de Lorentz ; -la matière élastique considérée dans son étendue ;

-le principe de relativité. Il ne serait pas raisonnable de remettre en cause les lois de conservation de la quantité de mouvement et de l'énergie, pas plus, comme nous venons de le dire, que la transformation de Lorentz, si bien vérifiée par les spectaculaires allongements des durées de vie des particules éphémères observées dans les accélérateurs. Nous avons en outre vu qu'elle a un argument considérable en sa faveur : elle découle de la stabilité ondulatoire de la matière.

La matière élastique envisagée dans son étendue est elle aussi incontournable. C'est avec elle que nous construisons nos règles à mesurer, qui sont postulées redevenir parfaitement identiques à ce qu'elles étaient d'une mesure à une autre, autrement dit d'une position de repos galiléen durable à une autre.

C'est donc le principe de relativité que l'expérience d'aller et retour du cylindre en rotation met en cause. Ce principe a certes donné de nombreuses preuves de sa valeur, mais son statut -sa statue -de vérité absolue, définitive, presque divinisée, s'étendant à toutes les lois de la physique, même à celles que nous ne connaissons pas encore, n'est pas tenable. Nous verrons dans le paragraphe suivant une autre raison, indépendante de cette démonstration, de ne pas l'accepter dans son universalité. Aussi, parmi les acteurs du conflit, et au contraire des autres, il est bien le maillon faible.

Le principe de relativité est un principe, pas un axiome. C'est un méta-axiome, un moule à fabriquer des axiomes. Dans une perspective axiomatique, il doit être remplacé par une liste d'axiomes, chacun affirmant que telle ou telle loi physique particulière est valide relativement à n'importe quel référentiel galiléen.

-le principe de relativité et l'oubli du Ciel lointain

Regagnons par l'imagination notre lieu favori d'ermitage, dans le vide intergalactique d'un désert de l'univers, à des kyrielles d'années-lumière de tout corps massif pouvant exercer une action perturbatrice. En ce lieu, marqué physiquement par notre laboratoire, qui est comme il se doit immobile relativement à la sphère des fixes, se croisent une infinité d'espaces galiléens, chacun allant à une certaine vitesse. Le principe de relativité nous dit qu'ils se valent tous, le nôtre y compris. Que toutes les expériences que nous pouvons faire dans notre laboratoire rendraient exactement le même résultat s'il était emporté par n'importe lequel des espaces galiléens dont nous imaginons, dans le vide où nous sommes, le défilement devant nous. Tous les espaces galiléens, en conséquence, sont indiscernables les uns des autres. Leur ensemble est totalement uniforme, aussi uniforme qu'une droite sur laquelle aucun point n'est marqué qui puisse servir de repère. Nous ne savons absolument pas à quelle vitesse nous allons, la question est totalement dénuée de sens. La vitesse n'est rien d'autre que relative.

Le principe de relativité intervient également « à l'intérieur » d'un même espace galiléen. On peut en effet le munir de référentiels disposés de toutes les façons possibles, et là encore les lois de la physique devront être les mêmes relativement à chacun d'eux, si bien que toutes les directions de cet espace sont équivalentes : il est isotrope.

Cependant, depuis ce lieu totalement désert de l'espace où nous avons installé notre laboratoire, nous ne pouvons pas nous empêcher de regarder le Ciel lointain et d'observer que s'il est sensiblement isotrope dans certains espaces galiléens, il ne l'est certainement pas dans d'autres, qui vont à des vitesses extrêmes relativement aux premiers. Depuis ces espaces, on le voit « bleu » dans une certaine direction, et « rouge » dans la direction opposée. Des observateurs installés dans un laboratoire lié à un tel espace auraient le plus grand mal à croire à validité du principe de relativité, puisque pour eux le Ciel lointain est fortement anisotrope. Leur espace galiléen est particulier, différenciable d'un autre dont la vitesse serait différente ; et l'ensemble des espaces galiléens n'a pas la stricte uniformité d'une droite infinie dépourvue de repère. Le fonds diffus cosmologique marque aussi une différence entre les espaces galiléens, puisqu'il n'est isotrope que relativement à l'un d'entre eux.

On pourra objecter que ces différences ne résultent pas de lois physiques, qu'elles ne sont en quelque sorte qu'un phénomène contingent, mais ce n'est pas un point de vue facile à soutenir. Elles sont observables, formulables dans le langage de la physique, donnent lieu à des expériences régulières et reproductibles, dont les rétines, les appareils photographiques et les télescopes sont les témoins, et qui, par leur existence même, prouvent leur connexion physique avec le réel local. On peut dire qu'elles sont négligeables, mais la vérité est que nous ne savons pas, dans notre univers où tout interagit avec tout, quel est le poids réel de l'univers lointain dans le contexte local. Tout ce que nous savons, c'est que cette interaction n'est pas nulle, et qu'elle différencie les espaces les uns des autres. En outre, pour que le laboratoire soit vraiment galiléen, il est indispensable qu'il n'ait aucun mouvement de rotation relativement à la sphère des fixes, et on ne voit pas comment le rapport cinématique au Ciel lointain pourrait être jugé physiquement crucial sous un de ses aspects et inexistant sous un autre, alors même que ce deuxième aspect produit un phénomène physique observable.

Que l'univers lointain soit isotrope ou au contraire anisotrope relativement au laboratoire, cela ne revient pas au même. D'un cas à l'autre, il y a une différence physique.

Einstein dans sa théorisation du principe de relativité imagine un laboratoire galiléen parfaitement clos, à l'intérieur duquel, dit-il, que ce laboratoire aille à une vitesse ou à une autre relativement aux autres espaces galiléens, cela n'induit strictement aucune différence. La clôture du laboratoire est le signe patent de ce que la théorie oublie le Ciel lointain. Oubli paradoxal, puisque le laboratoire, étant galiléen, est de rotation nulle relativement à l'univers lointain, et donc sous sa dépendance.

La validité du principe de relativité ne peut pas être absolue.

La relativité restreinte limitée à la cinématique et à la mécanique du point matériel est solide ; cela montre que le principe de relativité ne pose alors aucun problème. Mais le corps élastique étendu est plus qu'une simple réunion infinie de points matériels élastiques. Ces derniers, étant constamment assimilés à des points, ne se déforment pas : leur comportement lors d'un choc est modélisé sans qu'il leur soit jamais attribué une forme. Tandis que le corps élastique étendu a à tout instant une forme qui témoigne des actions qu'on exerce sur lui et qu'il exerce sur les autres corps. Avec lui doit s'installer un lien entre déformations et contraintes qui n'existe pas dans la mécanique du point matériel. La mécanique du corps élastique étendu mobilise donc d'autres lois que celles de la mécanique du point matériel élastique, et au moins l'une d'entre elles n'obéit pas au principe de relativité.

Ajoutons que la gamme des expériences permettant une véritable vérification du principe de relativité est réduite. Les manquements seront en effet d'autant plus accusés que la gamme des vitesses des laboratoires dont nous disposons sera étendue. Mais les seuls dont nous disposons et ayons jamais disposé vont tous à une très petite vitesse relativement au système solaire, et offrent donc tous un Ciel lointain quasi isotrope. Il serait intéressant de conduire des expériences dans un laboratoire qui traverserait notre système solaire à une vitesse proche de celle de la lumière, c'est malheureusement hors de notre portée.

-L'espace isotrope

Dans le désert intergalactique parfait où nous nous plaçons pour construire la physique « plate », un repérage complet d'un espace galiléen doit inclure sa situation relativement à l'univers lointain, autrement dit sa vitesse relativement à l'espace galiléen particulier dans lequel le Ciel lointain se montre statistiquement isotrope. Comme le Ciel ne peut être isotrope relativement à deux espaces galiléens distincts, cet espace galiléen particulier est unique en un lieu galiléen donné. Nous l'appellerons l'espace isotrope et nous le noterons (E 𝑖𝑠 ). Sa détermination expérimentale peut être faite avec une petite incertitude au moyen du fond diffus cosmologique mais ce n'est qu'un point secondaire devant le fait qu'il est en théorie indispensable à une description du réel plus complète et plus fine que celle à laquelle nous limite le principe de relativité. Nous verrons plus loin qu'il est a priori seulement local.

En posant l'existence de cet espace, nous allons un peu plus loin que le strict nécessaire, qui est de reconnaître que tous les espaces galiléens ne sont pas strictement identiques. Leur éventail est hétérogène, ce qui implique qu'on puisse en marquer un de façon objective. Une fois ce choix fait, tous les autres sont marqués par leur vitesse relativement à lui.

Le pas de plus que ce strict nécessaire est de choisir comme espace galiléen marqué « en premier » celui relativement auquel l'univers est le même dans toutes les directions. Mathématiquement parlant, n'importe quel espace galiléen conviendrait, qu'il soit isotrope ou non. Mais, philosophiquement parlant, cet espace, ne peut être fortuit. Nous devons choisir celui qui, par son isotropie, est en position centrale.

On risque de trouver contestable ce postulat d'existence d'un espace isotrope. Étant donné trois directions de droite perpendiculaires deux à deux, il paraît raisonnable de penser qu'on puisse, en vertu du théorème des valeurs intermédiaires, déterminer en tout lieu et à tout instant une vitesse d'équilibre telle que le cosmos soit pour chacune de ces directions « le même » dans les deux directions de demi-droites qu'elles portent. Cela ne prouvera pas qu'il est « le même » d'une paire de demi-droites à une autre, ni que le même équilibre est atteint le long des autres droites issues du même lieu.

Néanmoins, comme nous postulons l'univers infini et suffisamment assimilable, lorsqu'on le considère à échelle suffisamment grande, à une sorte de gaz homogène que n'enfermerait aucune paroi, le postulat d'isotropie devient soutenable. Ajoutons qu'on dispose d'un marqueur de l'isotropie, le fond diffus cosmologique, qui, une fois qu'on l'a « calé » relativement au bon espace galiléen, est d'une grande qualité.

Pour faire disparaître la contradiction qu'engendre l'expérience d'aller et retour, le plus petit aménagement est que la théorie -intègre dans son modèle mathématique l'existence d'un espace galiléen privilégié, l'espace isotrope ; les autres espaces sont caractérisés par leur vitesse relativement à lui ;

-sépare les lois de la physique en deux sous-ensembles, celles qui sont relativistes et celles qui ne le sont pas, ce deuxième n'étant pas vide.

C'est le moins que puisse abandonner la relativité restreinte. Le renoncement au principe de relativité rend caduque la démonstration de l'expérience d'aller et retour du cylindre en rotation. Il permet de sauver l'essentiel : la cinématique lorentzienne et toutes les lois relativistes, autrement dit tout ce qu'elle est.

Cet abandon n'est en rien un retour à l'espace absolu. Le principe de relativité demeure, sous une forme « faible » : Forme faible du principe de relativité : Les lois en de la physique ne sont pas obligatoirement les mêmes relativement à n'importe quel espace de centre galiléen, mais elles sont les mêmes relativement au couple ((E 𝑖𝑠 ), (E)) : en un autre lieu galiléen de l'univers, si la vitesse de (E′) par rapport à l'espace de centre isotrope (E 𝑖𝑠 ′ ) est la même que celle de (E) par rapport à l'espace de centre isotrope (E 𝑖𝑠 ), alors les lois de la physique sont les mêmes relativement à (E') et à (E).

-Conséquences immédiates

D'une certaine façon, cet aménagement est minime, puisqu'il permet de sauver la totalité pragmatique de la théorie : tout ce qui fonctionne peut être mis dans l'ensemble des lois relativistes dont nous parlions plus haut.

Sur le plan de la compréhension philosophique, le changement de paradigme est loin d'être insignifiant. L'univers cinématique est lorentzien, certes, mais nous passons d'un cadre où aucune référence absolue n'existe à un cadre muni d'un espace « central » qui, par son existence objective, rompt la totale démocratie qui régnait auparavant entre les espaces galiléens : chacun d'eux avait son point de vue sur l'espace et le temps, aussi légitime que celui d'un autre, voici maintenant que l'un d'eux a le pouvoir théorique d'imposer aux autres le sien. ²

-Existence d'une simultanéité objective

Nous avons déjà évoqué la définition de la simultanéité selon la relativité restreinte, arbitrant les évènements 𝑖 𝐴 et 𝑖 𝐵 se déroulant en des lieux A et B d'un même espace galiléen (E) depuis le milieu O de ces points. Cette définition repose sur la symétrie de A et B relativement à O, et donc sur l'isotropie de (E) : les trajets AO et BO sont identiques.

Si (E) cesse d'être isotrope, les directions opposées AO et BO ne sont plus équivalentes, la symétrie est perdue, et avec elle la légitimité de cette simultanéité. Le seul cas où elle la conserve est celui où (E) est l'espace isotrope (E 𝑖𝑠 ). Il en est de même pour les autres définitions instrumentales possibles de la simultanéité, qui toutes reposent sur la symétrie. Dans le cadre non-relativiste, il existe donc une et une seule simultanéité légitime, celle relative à (E 𝑖𝑠 ). Toutes les autres sont biaisées par rapport à elle. La transformation de Lorentz, en rendant parfaitement relativiste toute la cinématique, ne contribue pas à la mettre en évidence. Peu importe. Entre postuler qu'il existe une et une seule vraie simultanéité -même si elle n'est pas d'emploi commode -et postuler que toute simultanéité n'est que relative, il y a une différence qui est d'importance.

-Caractère objectif du raccourcissement des longueurs et du ralentissement des horloges relativement à l'espace isotrope

Considérons deux espaces galiléens (E) et (E′) distincts, c'est-à-dire en mouvement l'un par rapport à l'autre ; et, immobiles dans (E), une horloge (H) et une boule (B) « en elle-même » parfaitepar exemple faite d'une matière homogène dont le nombre des atomes est le même sur chaque rayon.

Dans la relativité restreinte, cette situation suffit à la description du comportement des règles à mesurer et des horloges. Mais dans le cadre lorentzien non-relativiste elle ne suffit plus. Il faut faire intervenir l'espace galiléen isotrope (E 𝑖𝑠 ), a priori distinct de (E) et de (E′).

-Lorsque la situation est décrite depuis (E 𝑖𝑠 ), à un instant de cet espace, (B), en mouvement relativement à lui, est un ellipsoïde de révolution, aplati dans la direction de son mouvement ; et (H) bat plus lentement qu'une horloge identique immobile dans (E 𝑖𝑠 ). Les deux obéissent à des lois mathématiquement identiques à celles de la relativité restreinte, mais dont l'interprétation n'est plus la même. L'isotropie de (E 𝑖𝑠 ) et l'anisotropie de (E) font que (B) et (H) sont physiquement différentes de ce qu'elles seraient si elles étaient immobiles dans (E 𝑖𝑠 ). Comme la simultanéité relative à (E 𝑖𝑠 ) est objective, les dimensions de (B), considérées dans la géométrie de (E 𝑖𝑠 ) à un instant de cet espace, sont elles aussi objectives : sa contraction longitudinale est une contraction objective, physique, qui témoigne d'une modification de la matière dont elle est faite, et qui s'oppose à la contraction « relative » de la relativité restreinte, qui n'est la conséquence d'aucune modification physique, mais est seulement l'effet de la vitesse relative du référentiel galiléen depuis lequel on observe (B). De la même façon, le ralentissement de (H) doit être considéré comme physique ou objectif.

Je dis « en elle-même », pour ne pas dire « intrinsèquement », qui a dans ce texte une acception particulière : « relativement à l'espace galiléen tangent au mouvement de l'objet ». Il n'empêche que cette boule « en elle-même » parfaite est aussi, quand elle est au repos relativement à un espace galiléen, une boule « intrinsèquement » parfaite.

-Lorsque la situation est décrite depuis l'espace (E) dans lequel les deux objets sont immobiles, (B) est parfaitement sphérique. C'est pourtant, physiquement, un ellipsoïde, mais les règles à mesurer dont (E) est muni subissent elles aussi un raccourcissement longitudinal objectif dont le taux est identique au taux d'aplatissement de (B), si bien qu'on n'observe aucun aplatissement. De la même façon, (H) bat au même rythme, relativement aux horloges de (E), que celui qu'elle aurait relativement aux horloges de (E 𝑖𝑠 ) si elle était immobile dans cet espace, parce que les horloges de (E) subissent le même ralentissement objectif qu'elle.

-Enfin, lorsque la situation est décrite depuis (E′), on « voit », conformément à la transformation de Lorentz, (B) aplatie dans le sens du mouvement de (E) dans (E′). Cet aplatissement varie quand varie la vitesse de (E′), sans que (B) soit en rien changée, il est donc « relatif », mais il porte sur une représentation non-objective de (B), qui apparaît dans (E) comme parfaitement sphérique alors que physiquement elle est un ellipsoïde ; et il est évalué avec les règles à mesurer de (E′), qui sont non-objectives. De la même façon, on voit depuis (E′) (H) avoir un rythme plus lent que celui qu'elle aurait immobile dans (E'), et ce ralentissement est relatif, et non physique ; il concerne une horloge non-objective, dont le rythme intrinsèque ─ au sens particulier que nous avons donné à ce mot ─ est identique à celui qu'elle aurait immobile dans (E 𝑖𝑠 ) alors qu'objectivement il est plus lent ; car il est évalué avec les horloges de (E'), qui elles aussi sont non-objectives.

La situation, quoiqu'obéissant au même formulaire, est conceptuellement plus compliquée dans le cadre non-relativiste lorentzien que dans celui de la relativité restreinte. D'une façon générale, les corps en mouvement inertiel de translation et les horloges subissent deux sortes d'altérations qui se panachent, les altérations physiques ou objectives, liées à leur mouvement relativement à l'espace isotrope, et les altérations relatives, liées au mouvement du référentiel relativement à eux, et évaluées avec des instruments eux-mêmes physiquement altérés par leur mouvement relativement à l'espace isotrope. Deux cas particuliers sont toutefois simples. Le premier est celui où l'espace de référence est l'espace isotrope : les altérations ne sont alors qu'objectives. Le deuxième cas simple est celui où l'espace de référence est celui dans lequel les corps et les horloges sont immobiles. Leurs altérations objectives, quoique inconnues, sont alors exactement compensées par celles des instruments, si bien que les corps et les horloges, en dépit de ces altérations objectives, ont les mêmes caractéristiques relativement à l'espace galiléen où ils sont immobiles que celles qu'ils auraient relativement à l'espace isotrope s'ils étaient immobiles par rapport à lui.

-L'émergence de la transformation de Lorentz

L'espace et le temps n'ont de mesure que subordonnées au choix des instruments. On pourrait en théorie mesurer les longueurs objectives, mais cela nous obligerait à considérer qu'une règle au repos dans un laboratoire terrestre a une longueur qui varie selon un rythme diurne et annuel, puisque l'espace galiléen tangent au laboratoire varie selon ces rythmes. Ce ne serait pas très commode.

On choisit donc de se fonder sur les longueurs relatives, celles que construisent par classes d'équivalence les expériences de superposition durable : si les règles A et B, l'une et l'autre au repos relativement à un espace galiléen, sont superposables, et si B et C le sont elles aussi, dans des conditions semblables, alors A et C le sont, etc. Les classes d'équivalence sont compatibles avec le transport d'un espace galiléen à un autre, et les dotent de géométries identiques. Les lois de la géométrie ainsi construite sont donc relativistes.

On pourrait de même en théorie utiliser pour la chronométrie les durées objectives définies par les horloges de l'espace isotrope, mais on se heurte à des inconvénients similaires. On choisit donc d'utiliser des horloges immobiles relativement à l'espace galiléen du laboratoire. Comme les règles à mesurer sont lorentziennes, c'est un choix cohérent que de prendre des horloges également lorentziennes. De même, on utilise la simultanéitélumière relative à l'espace galiléen tangent au mouvement du laboratoire ─ qu'elle soit celle des horloges inertielles ou celle de l'observateur médian, cela revient au même.

Transportées d'un espace galiléen à un autre, les horloges lorentziennes subissent la même altération relative et fournissent ainsi les unes et les autres les mêmes durées : elles sont, comme les longueurs relatives, compatibles avec le passage d'un espace galiléen à un autre. Comme elles sont accordées au rythme propre de la matière, ce dernier reste invariable relativement à elles après un tel passage. Ces horloges lorentziennes obéissent donc elles aussi au principe de relativité.

Enfin, comme nous l'avons montré dans la première partie, le choix de ces instruments fait que la vitesse de la lumière est 𝐶 relativement à tous les espaces galiléens. Ce n'est pas un axiome, mais une propriété démontrable. Avec d'autres choix instrumentaux, qui utiliseraient des règles objectives, ou des horloges objectives, ou encore la simultanéité objective, elle disparaîtrait.

Par un théorème maintes fois démontré :

Avec les choix instrumentaux ci-dessus, la cinématique obéit au principe de relativité et est lorentzienne de paramètre 𝐶.

-Une non-relativité habillée de relativité

La transformation de Lorentz émerge comme découlant -de ce que le cadre premier est non-relativiste, centré autour d'un espace galiléen isotrope ;

-de la stabilité ondulatoire de la matière, et donc de la contraction de Lorentz et du ralentissement lorentzien du rythme ondulatoire de la matière, qui sont autant des phénomènes objectifs et donc non-relativistes, puisque relatifs seulement à l'espace isotrope ;

-des choix instrumentaux qu'il est pertinent d'opérer dans ce contexte.

Elle est donc dans ce premier temps le fruit et la signature du caractère non-relativiste du cadre.

Cependant, comme, de par sa nature mathématique, elle place relativement à (E 𝑖𝑠 ) un espace galiléen quelconque (E) dans une situation cinématiquement indiscernable de celle (E 𝑖𝑠 ) relativement à(E), et que le groupe que ces transformations particulières engendrent par composition est fait de transformations de Lorentz, cette indiscernabilité cinématique s'étend à tous les espaces galiléens ─ à condition bien sûr d'oublier le Ciel lointain. L'univers cinématique qui en résulte obéit donc au principe de relativité.

La transformation de Lorentz munit d'une cinématique relativiste un univers qui, parce qu'il est centré autour de l'espace isotrope, n'obéit pas au principe de relativité.

C'est donc un univers relativiste qu'elle construit, et ce caractère déborde le raccourcissement des longueurs et le ralentissement des horloges pour inclure la permanence de la structure ondulatoire de la matière, l'invariabilité de la vitesse de la lumière, et s'étend encore ─ nous le verrons plus loin ─ à un grand nombre de lois dont le caractère relativiste est confirmé par l'expérience.

-Conclusion provisoire

On peut interpréter le résultat de l'expérience de Michelson et Morley de deux façons opposées.

La première, qui fut celle de Lorentz et de Fitzgerald, est de considérer que la matière, lorsqu'elle est en mouvement relativement à un espace galiléen particulier, subit une contraction longitudinale effective, une contraction physique. Pour eux, l'espace en question était semble-t-il l'espace « absolu », entité presque concrète, chosifiée, existant « en elle-même », immuable et identique à elle-même d'un bout à l'autre de l'univers -mais c'est ici un point secondaire : l'essentiel est que la matière ne reste pas intrinsèquement identique à elle-même lorsque change sa vitesse relativement à un espace particulier.

La deuxième interprétation, celle d'Einstein et de la relativité restreinte, considère au contraire que la matière au repos est intrinsèquement la même quel que soit l'espace galiléen dans lequel elle est immobile.

Dans l'histoire de la physique, c'est la deuxième qui a pris le dessus. La contraction lorentzienne effective des longueurs a paru être une hypothèse artificieuse, fabriquée exprès pour expliquer le résultat négatif de l'expérience de Michelson et Morley. On ne pouvait guère comprendre quelle « force » mystérieuse pouvait bien ainsi rétrécir les matériaux, invisible, et qui, au contraire de toutes les autres forces connues, agissait exactement de la même façon sur chacun d'eux, du plus souple au plus rigide. En outre le débat s'est tenu à une époque où l'idée générale aujourd'hui triviale que la matière est une structure ondulatoire stable synchronisée entre ses différents lieux par des interactions électromagnétiques était encore dans les limbes. Un argument essentiel, celui que la contraction de Lorentz est le moyen effectif que la matière a de perdurer en tant que structure rythmique isomorphe à elle-même, et qu'elle implique le ralentissement lorentzien de son rythme, ne pouvait pas être avancé.

La relativité restreinte, si miraculeusement limpide sur ses deux piliers, le principe de relativité et l'invariance de la vitesse de la lumière, était, quelle que soit son étrangeté, bien plus convaincante que le recours à cette contraction effective incongrue et inexplicable. La théorie était pertinente, elle décrivait correctement le réel, elle s'est imposée sans qu'on voie que sa pertinence venait plus de la transformation de Lorentz que du principe de relativité. Ni que la théorie rivale, en aboutissant elle aussi à un cadre lorentzien, pouvait être au moins aussi pertinente. En outre, comme la transformation de Lorentz est déductible de la théorie de la relativité, celle-ci se l'est appropriée, oubliant et faisant oublier que cette transformation est tout autant le fait d'une théorie lorentzienne non-relativiste. Le vocabulaire en porte la marque, qui qualifie en général de « relativiste » ce qui est simplement lorentzien.

-SOLIDITÉ LOGIQUE DE LA NON-RELATIVITÉ LORENTZIENNE

L'abandon de la valeur absolue du principe de relativité rend caduque la démonstration de l'aller et retour d'un cylindre en rotation. Du coup, la preuve d'inconsistance qu'il produit ne s'applique pas à la non-relativité lorentzienne. Cependant, cela ne suffit évidemment pas à prouver sa consistance, car d'autres expériences de cinématique ou de mécanique des corps élastiques étendus ─ non ponctuels ─ pourraient y aboutir à une contradiction. Ce qu'il nous faut démontrer, c'est que quelle que soit l'expérience de pensée de cet ordre qu'on considère dans le cadre de la nonrelativité lorentzienne, elle n'engendre pas de contradiction.

Comme la cinématique est incluse dans la mécanique, les expériences à envisager sont dans toute leur généralité celles de mécanique des corps élastiques étendus. Avec cette précision : il s'agit de mécanique des milieux continus, qui extrapole dans l'infiniment petit les lois macroscopiques, sans prendre en compte la perte de pertinence qui en résulte alors.

C'est en vain qu'on cherchera dans la littérature scientifique une preuve de cet ordre appliquée à la mécanique des corps élastiques en relativité restreinte. Et pour cause, puisque nous savons qu'elle est impossible à fournir. Dans la construction de cette preuve pour la nonrelativité lorentzienne, nous verrons ce qui fait qu'elle ne peut pas s'appliquer à la relativité restreinte et comprendrons d'une autre façon la raison de son inconsistance.

-Inexistence en non-relativité lorentzienne d'expériences de mécanique des corps élastiques étendus aboutissant à une contradiction

L'hypothèse de l'élasticité est précisément celle de l'invariance, à contraintes égales, des déformations que subit un corps. Nous avons largement montré la nécessité de ce concept dans une physique fondée sur l'instrument et l'expérience. Cependant, un corps élastique ne le demeure pas forcément dans toutes les expériences auxquelles il peut être soumis. Imaginons par exemple une famille de corps élastiques composé de deux sphères reliées par une chaînel. Supposons qu'à l'instant 𝑡 où nous l'étudions ces deux sphères s'éloignent l'une de l'autre. Alors, si elles vont suffisamment vite ou sont suffisamment lourdes, la chaîne, après s'être tendue, cassera.

Ce n'est donc pas parce qu'un corps est élastique à un instant donné de l'espace de référence qu'il le demeure indéfiniment. Une expérience de mécanique des corps élastiques peut être faussée ou interrompue par l'apparition de déformations non élastiques. Nous travaillerons donc avec des corps élastiques, mais seulement tant qu'ils le restent.

Partons d'un modèle de la cinématique lorentzienne tel que nous l'avons construit dans la deuxième partie, au chapitre 8, mais dans lequel nous prenons pour espace de référence, au lieu de l'espace générique (E 1 ), l ′ espace isotrope (𝐸 𝑖𝑠 ).

Appelons « configuration géométrique à l'instant 𝑡 » un système de corps élastiques disjoints les uns des autres. Ils sont représentés dans l'espace de référence par exemple par des réunions finies connexes d'ouverts bornés homéomorphes à des boules. L'existence d'un tel support géométrique est évidemment assurée dans le cadre des mathématiques construites sur la théorie des ensembles.

Parce que la formule 𝐹 ⃗ = 𝑚𝛾 ⃗ est de loin la plus importante de la mécanique, on ne peut se pencher sur la mécanique non-relativiste lorentzienne des corps élastiques considérés dans leur étendue que lorsque les points des corps ont tous des vitesses et des accélérations. Appelons « configuration cinématique à l'instant 𝑡 » la donnée à cet instant de la configuration géométrique et du champ des vitesses des points des corps relativement à l'espace de référence. L'existence de la configuration cinématique ne soulève pas de difficulté dès lors que nous convenons que chaque point d'un corps élastique a bien une position et une vitesse.

Enfin, nous appellerons configuration physique la donnée à l'instant 𝑡 en chaque point de la configuration géométrique des divers paramètres permettant le calcul de l'évolution locale de la situation. Notamment l'homogénéité du matériau, son isotropie, ou au contraire le fait qu'il soit composite, par exemple fibré, avec telle ou telle géométrie pour les nappes de fibres, ou bien alvéolaire, et quoi qu'il en soit il faudra mettre dans la liste la densité du matériau, ses modules d'élasticité, son tenseur des contraintes, son tenseur des déformations, des contraintes-limite pour témoigner de ce qu'on sort ou pas de la zone d'élasticité, les caractéristiques physiques des corps élastiques réclament quelques paramètres descriptifs dont l'adjonction ne soulève dans son principe elle non plus aucune difficulté.

Toute expérience de pensée de mécanique non-relativiste lorentzienne des corps élastiques consiste en la donnée d'une configuration définie à l'instant 𝑡 et le calcul de son évolution dans les instants ultérieurs, ce qui revient à résoudre une « grosse » équation différentielle dont la solution est l'ensemble des positions et des vitesses des points des corps aux instant 𝑡 ′ > 𝑡 . Cette solution peut être obtenue par la méthode d'Euler qui consiste à faire les calculs pas infinitésimal après pas infinitésimal. Les données initiales sont les données entrantes à l'étape 0. Elles sont tout ce qu'il nous faut pour pouvoir calculer en tout point de chaque corps son évolution durant le pas infinitésimal 𝑑𝑡 : les positions et les vitesses de chaque point de la configuration, les forces exercées sur un voisinage infinitésimal de ce point, la masse de ce voisinage. De la formule 𝐹 ⃗ = 𝑚 𝛾 ⃗ on déduit la variation de vitesse du point, et donc sa nouvelle vitesse, qui permet le calcul de la nouvelle position. Lorsque ce calcul est fait partout à l'instant 𝑡 + 𝑑𝑡, on peut calculer les déformations élastiques, qui à leur tour détermineront les contraintes exercées sur un voisinage infinitésimal du point étudié et permettront de passer au pas infinitésimal suivant ou d'interrompre le calcul si de trop fortes contraintes ont quelque part outrepassé la limite d'élasticité.

À chaque étape, le calcul, fait à partir de données entrantes correctes, fournit un unique paquet de données sortantes, positions des points, états locaux des corps, qui formeront le paquet des données entrantes à l'étape suivante. Chaque paquet est ainsi déterminé en fonction du précedent, et tous le sont donc en fonction du premier, ainsi que la limite de la fonction affine par morceaux qui converge vers la solution. On comprend donc que cette solution, comme l'affirme un théorème bien connu, est unique en fonction des conditions initiales.

Dans la non-relativité lorentzienne, il n'y a qu'un paquet de conditions initiales, celui décrivant en chaque point relativement à l'espace de centre isotrope l'état du système à l'étape 0, et deux paquets de données différents ne peuvent jamais apparaître au même rang. L'état du système à un instant donné est donc unique, et il ne peut pas apparaitre de contradiction.

Dans le cadre de la non-relativité lorentzienne, aucune expérience de pensée de mécanique des corps élastiques étendus ne peut aboutir à deux résultats différents.

-Échec de la démonstration de solidité logique de la mécanique des corps élastiques étendus dans le cadre de la relativité restreinte

On l'aura observé, le fait que la cinématique soit lorentzienne ou non n'intervient pas dans le raisonnement qui vient d'être fait. On peut en le décalquant à l'identique montrer la consistance de la mécanique galiléenne des corps élastiques.

Mais ce raisonnement ne s'applique pas à la relativité restreinte. Les trois théories ramènent chaque situation mécanique des corps élastiques ou non à une équation différentielle. Cependant, les conditions initiales y ont des statuts bien différents.

Dans la relativité galiléenne, l'existence d'un temps universel fait que les conditions initiales, qui décrivent l'état du système à un instant 𝑡, continuent de porter sur les mêmes instants locaux lorsqu'on change d'espace de référence.

Dans la non-relativité lorentzienne, les seules références non biaisées sont celles relatives à l'espace de centre isotrope. L'ensemble des instants locaux support des conditions initiales est donc la description du système à un certain instant relativement à l'espace de centre isotrope.

Dans la relativité restreinte, en revanche, si un instant local appartient au support ensembliste des conditions initiales, tous les espaces galiléens sont légitimes pour héberger ce support des conditions initiales, chacun selon sa simultanéité propre. Relativement à l'un de ces espaces, chacun de ces supports est contenu dans un hyperplan spécifique, ce qui engendre une explosion du nombre des systèmes de conditions initiales possibles. Le problème de leur compatibilité se pose alors. Elle n'est pas assurée a priori, puisque justement l'expérience d'aller et retour du cylindre en rotation aboutit à des résultats contradictoires. On comprend donc que la non-relativité lorentzienne, en coupant court à cette Nous savons toutefois que la mécanique relativiste lorentzienne des points matériels isolés est consistante. Dans le modèle proposé pour cette mécanique, les points matériels isolés ont hors interaction des vitesses uniformes, et les différents panels de conditions initiales sont alors immédiatement déductibles les uns des autres via l'uniformité des mouvements et la transformation de Lorentz, si bien que leur multiplicité n'est qu'apparente ; d'autre part l'exigence relativiste quant aux lois du choc conduit, dans ce cas simplifié où la forme des corps n'intervient pas, à des conditions mathématiques possibles à satisfaire.

hypertrophie infinie des systèmes de conditions initiales, répare l'inconsistance de la relativité restreinte. On notera que l'expérience d'aller et retour d'un cylindre en rotation utilise une infinité de référentiels galiléens distincts, puisque la vitesse du référentiel RG' prend une infinité de valeurs.

3 -La non-relativité lorentzienne ouvre des degrés de liberté

Lorsqu'une théorie est contradictoire, c'est que sa barque axiomatique est trop chargée. Elle porte en elle des contraintes impossibles à faire coexister. Pour lui éviter de couler, il faut jeter du lest, la remplaçant ainsi par une théorie moins contraignante dans laquelle la contradiction pourra s'évanouir.

Or telle est bien la position de la non-relativité lorentzienne par rapport à la relativité restreinte.

Dans cette dernière, en effet, chaque espace galiléen est isotrope, et constitue donc un « centre de symétrie » de l'univers ; tandis que dans la nonrelativité lorentzienne, il n'y a plus qu'un seul espace isotrope, un seul « centre de symétrie ». C'est donc bien un allègement des contraintes.

De même, contrairement à ce qu'on pourrait hâtivement croire, postuler l'unicité de la simultanéité physique est moins contraignant que d'admettre qu'il en existe une infinité, tout aussi valables les unes que les autres. C'est en effet le corollaire de l'alternative entre l'existence d'un unique ou d'une infinité d'espaces isotropes.

La vitesse de la lumière n'est postulée égale à 𝐶 que relativement à l'espace isotrope : c'est donc aussi un allègement des contraintes -même si on démontre par la suite qu'avec les choix instrumentaux qui sont faits, elle vaut 𝐶 relativement à tout espace galiléen.

Seul point où il n'y a pas allègement, le postulat que la matière élastique avec laquelle nous fabriquons règles et horloges est un objet ondulatoire synchronisé entre ses différents lieux par la lumière ; et qu'elle conserve à l'identique son architecture vibratoire lorsque change sa vitesse de repos galiléen ; mais il adhère suffisamment bien à ce que nous savons aujourd'hui de la matière pour paraître hors de doute. Il opère en outre, nous l'avons observé, un rapprochement basique entre la mécanique quantique et les fondements de la cinématique qui comble en partie le fossé entre elles.

Reste que globalement, c'est bien un allègement. On se retrouve devant une théorie non seulement solide logiquement, mais encore plus souple. Alors que la relativité restreinte, en raison de l'absolue rigidité du principe de relativité, ne supporte aucune loi pour la mécanique des corps élastiques étendus, la non-relativité lorentzienne peut supporter n'importe lesquelles, sous couvert d'une régularité mathématique suffisante. Cela ne veut bien entendu pas dire qu'elles seront pertinentes, mais simplement qu'elles n'ouvriront la porte à aucune contradiction logique interne à la théorie.

Parmi toutes les lois possibles, on peut évidemment choisir celles basées sur le formulaire de la relativité restreinte de la masse et de la quantité de mouvement, dont on sait qu'il est pertinent. Mais, au contraire de la relativité restreinte, où ces formules, étant des théorèmes, sont supposées d'une exactitude parfaite, la non-relativité lorentzienne peut sans devenir contradictoire supporter le cas peut-être pas impossible où elles ne seraient qu'approchées et laisse un espace libre pour un éventuel affinage.

-PERTINENCE DE LA NON-RELATIVITÉ LORENTZIENNE

-Cinématique et propriétés cinématiques de la lumière

La non-relativité lorentzienne et la relativité restreinte obéissent dans ces domaines à des axiomes ou théorèmes identiques et conduisent donc aux mêmes résultats. Ainsi, elles prévoient l'une et l'autre un même résultat pour l'expérience de Michelson et de Morley, une vitesse de la lumière constamment égale à 𝐶 relativement à tout espace galiléen, un même ralentissement des horloges en mouvement, une même augmentation de la durée de vie des particules en mouvement rapide et une même impossibilité pour elles de dépasser la vitesse de la lumière -à condition qu'elles soient lorentziennes, mais en existe-t-il d'autres ? -, un même « paradoxe » des jumeaux de Langevin, un même effet Doppler « relativiste », et notamment un même effet Doppler transverse, inobservé en cinématique galiléenne, etc. Un des traits saillants de cette jolie démonstration réside dans la liste de ses prémisses, qu'Einstein prend le soin de détailler dans son article :

-L'équivalence entre masse et énergie

-la loi de conservation de la quantité de mouvement, -le résultat établi par Maxwell en 1873 donnant la quantité de mouvement d'une radiation électromagnétique, -et la loi d'aberration de la lumière établie par Bradley en 1727.

Parmi ces prémisses, on ne trouve pas la transformation de Lorentz. En effet, la démonstration se fait par passage à la limite quand 𝑣 tend vers zéro, et donc dans un contexte où la cinématique lorentzienne est équivalente à la galiléenne.

Une prémisse importante est passée sous silence -ce qui est légitime tant elle est incontestable. C'est le fait que la lumière puisse être absorbée par la matière. Au début de l'expérience elle est présente, à la fin elle a disparu. Ce phénomène, à lui seul, nous montre que lumière et matière ne sont pas des entités radicalement étrangères. Elles ont quelque chose de commun, puisque l'une peut être absorbée ou émise par l'autre -propriété cohérente avec celle que la lumière est partie prenante dans la façon dont s'architecture la matière.

Dans le cadre non-relativiste lorentzien, cette démonstration reste valable pour peu que restent valables ses prémisses. Or la loi de conservation de la quantité de mouvement est toujours une loi fondatrice, et celle de l'aberration de la lumière, étant d'ordre purement cinématique, continue d'être vérifiée. La loi donnant la quantité de mouvement d'une radiation électromagnétique n'est peut-être qu'une loi approchée, exactement vraie seulement par rapport à l'espace isotrope ; mais cela suffit à faire fonctionner la démonstration, avec ce résultat que la formule 𝐸 = 𝑚 𝐶 2 continue d'être vraie, même si ce n'est peut-être qu'en première approximation quand l'espace de référence n'est pas l'espace isotrope mais reste voisin de lui, comme le sont tous nos laboratoires.

-L'expérience de Fizeau

Dans le chapitre 13 de La Relativité, Einstein invoque l'expérience de Fizeau à l'appui de la relativité restreinte : cette expérience en est, dit-il, une brillante confirmation.

Elle consiste à mesurer la vitesse de propagation de la lumière dans un liquide en mouvement à la vitesse 𝑣 dans un tuyau (T). Le dessin ci-dessous reproduit celui par lequel Einstein illustre son propos : Si la vitesse de la lumière dans le liquide au repos est 𝑤, sa vitesse par rapport au tuyau quand l'eau est en mouvement n'est pas 𝑤 + 𝑣, comme le voudrait la loi galiléenne de composition des vitesses, mais 𝑤 + 𝑣 (1 - Une autre expérience semble apporter un éclairage intéressant sur la question, celle de la mesure de l'indice de réfraction d'un gaz globalement immobile dans le laboratoire. L'intérêt est qu'on peut à température constante faire varier sa pression, autrement dit le nombre de molécules présentes dans un volume donné de gaz. L'expérience montre que l'indice 𝑛 de réfraction varie alors de telle façon que 𝑛 -1 soit à peu près proportionnel à la pression.

Appelons 𝑤 la vitesse de la lumière dans ce gaz, mesurée relativement au laboratoire. On a que 𝑛 = 

𝑤 ′ = 𝐿 𝐶 𝑁(𝐶 -𝑣) + 𝑣𝐿 𝑁𝑤 - 𝑣𝐿 𝑁𝐶 𝐿 𝑁(𝐶 -𝑣) + 𝐿 𝑁𝑤 - 𝐿 𝑁𝐶 = 𝐶 (𝐶 -𝑣) + 𝑣 𝑤 - 𝑣 𝐶 1 (𝐶 -𝑣) + 1 𝑤 - 1 𝐶 Comme 𝑤 = 𝐶 𝑛 , 𝑤 ′ = 𝐶 (𝐶 -𝑣) + 𝑛 𝑣 𝐶 - 𝑣 𝐶 1 (𝐶 -𝑣) + 𝑛 𝐶 - 1 𝐶 = 𝐶 2 + (𝑛 -1)𝑣(𝐶 -𝑣) 𝐶 + (𝑛 -1)(𝐶 -𝑣) = 𝐶 1 + (𝑛 -1) 𝑣 𝐶 (1 - 𝑣 𝐶 ) 1 + (𝑛 -1) (1 - 𝑣 𝐶 ) = 𝐶 𝑛 1 + (𝑛 -1) 𝑣 𝐶 (1 - 𝑣 𝐶 ) 1 - 𝑛 -1 𝑛 𝑣 𝐶
Puisque 𝑣 est petit devant 𝐶, on a, au premier ordre en

𝑣 𝐶 𝑤 ′ ≈ 𝐶 𝑛 1 + (𝑛 -1) 𝑣 𝐶 1 - 𝑛 -1 𝑛 𝑣 𝐶 ≈ 𝐶 𝑛 (1 + (𝑛 -1) 𝑣 𝐶 + 𝑛 -1 𝑛 𝑣 𝐶 ) = 𝐶 𝑛 [1 + (𝑛 - 1 𝑛 ) 𝑣 𝐶 ] = 𝑤 + (1 - 1 𝑛 2 ) 𝑣
On retrouve ainsi de cette façon la formule établie expérimentalement par Fizeau, sans qu'intervienne la loi lorentzienne de composition des vitesses.

Dans le cadre de la non-relativité lorentzienne, cette démonstration est remise en question, parce que le liquide en mouvement n'est pas supposé rester intrinsèquement le même lorsque change sa vitesse relative à l'espace isotrope : on ne peut a priori plus appliquer le principe de relativité, sur lequel se fonde le raisonnement d'Einstein et celui que nous avons fait. Cet abandon amoindrit les possibilités déductives.

Deux hypothèses sont possibles. La première est que la durée 𝜏 est accordée au rythme propre de la matière, et donc égale à ce qu'elle serait dans le cadre relativiste, si bien que la situation est la même que dans le cadre relativiste et que l'analyse faite cidessus reste valable.

La deuxième est qu'au contraire 𝜏 n'obéit pas à une loi relativiste. On a alors, au premier ordre en

𝑣 𝐶 𝑤 ′ = 𝑤 + (1 - 1 𝑛 0 2 (1 + 𝜀(‖𝑣 ⃗ + 𝑣 ⃗ 𝑖𝑠 ‖))) 𝑣
où 𝑣 𝑖𝑠 est la vitesse de la nappe isotrope relativement au laboratoire et 𝑛 0 l'indice de réfraction du liquide en situation d'isotropie. Comme tous les laboratoires que nous utilisons vont à une vitesse petite relativement à l'espace isotrope, on retrouve en pratique la même formule que si l'expérience obéissait au principe de relativité.

-Autres lois

Dans le cadre de la relativité restreinte, la quantité de mouvement 𝑝 relative à un espace galiléen (E) d'un corps de masse 𝑚 0 et de vitesse 𝑣 est proportionnelle à sa masse, et a donc pour valeur 𝑚 0 𝑓(𝑣) = 𝑚𝑣.

On peut la déterminer à partir de la formule 𝐸 = 𝑚𝐶 2 en communiquant à un corps allant à la vitesse 𝑣 ⃗ une poussée colinéaire à 𝑣 ⃗. L'énergie qu'il reçoit est 𝐹 ⃗ . 𝑑M ⃗⃗⃗⃗⃗⃗⃗ = 𝑑𝑝 ⃗ 𝑑𝑡 . 𝑑M ⃗⃗⃗⃗⃗⃗⃗ = 𝑑𝑝 ⃗. 𝑣 ⃗ = 𝑑(𝑚𝐶 2 ), d'où

(𝑚𝑑𝑣 ⃗ + 𝑑𝑚𝑣 ⃗). 𝑣 ⃗ = 𝐶 2 𝑑𝑚 𝑚𝑣𝑑𝑣 = (𝐶 2 -𝑣 2 )𝑑𝑚 𝑑𝑚 𝑚 = 𝑣𝑑𝑣 𝐶 2 -𝑣 2 = -1 2 𝑑(𝐶 2 -𝑣 2 ) 𝐶 2 -𝑣 2 𝑚 = 𝐾 √𝐶 2 -𝑣 2
Et comme la quantité de mouvement est équivalente à 𝑚 0 𝑣 lorsque v est voisin de 0, on a finalement

𝑝 = 𝑚 0 𝑣 √ 1 - 𝑣 2 𝐶 2
Puisque ce calcul repose sur la formule 𝐸 = 𝑚𝐶 2 , qui reste vraie, au moins en première approximation, dans le cadre de la non-relativité lorentzienne, le résultat demeure valide, au moins en première approximation, dans ce cadre.

Comme l'énergie cinétique se calcule par intégration à partir de celle de la quantité de mouvement, la formule de la relativité restreinte donnant l'énergie cinétique d'un corps allant la vitesse 𝑣 reste elle aussi valide :

E c = ∫ 𝑤 ⃗⃗⃗ 𝑑𝑝 ⃗⃗⃗⃗⃗ = 𝑣 0 ∫ 𝑤𝑑 𝑚 0 𝑤 √ 1 - 𝑤 2 𝐶 2 𝑣 0 = ⋯ = 𝑚 0 𝐶 2 [ 1 √ 1 - 𝑣 2 𝐶 2 -1 ]
Ainsi, concernant le formulaire de base de la mécanique, les lois de la non-relativité lorentzienne sont celles de la relativité restreinte, au moins lorsque les espaces galiléens auxquels on se réfère vont à des vitesses petites relativement à l'espace isotrope ─ ce qui est le cas, encore une fois, de tous les laboratoires qui ont un jour été utilisés.

On a vu dans les exemples précédents se dessiner une explication générale de pertinence de la non-relativité lorentzienne :

-son formulaire cinématique est exactement le même que celui de la relativité restreinte ;

-comme les laboratoires en pratique utilisés vont tous à des vitesses petites relativement à l'espace isotrope, ils forment un panel obéissant au moins en bonne approximation au principe de relativité ;

-les conclusions qu'on en tire sont donc au moins en bonne approximation celles qu'on déduirait d'un panel obéissant exactement au principe de relativité dans le cadre d'une cinématique lorentzienne de paramètre 𝐶, autrement dit celles qu'en tire la relativité restreinte, et qui sont pertinentes ; -d'où la pertinence des lois de la non-relativité lorentzienne.

Ce raisonnement général englobe les lois de l'électromagnétisme. La coïncidence des deux théories est parfaite en ce qui concerne la vitesse de la lumière et des ondes électromagnétiques en général, mesurée avec les conventions instrumentales qui construisent le cadre lorentzien.

Les lois de l'électromagnétisme sont liées à celles de la mécanique. On comprend donc que si celles-ci sont largement relativistes, celles-là le sont aussi. On le comprend d'autant mieux que l'état dans lequel se rééquilibre la matière en mouvement par rapport à l'espace isotrope est précisément tel qu'elle soit le plus possible dans le même rapport à la lumière que lorsqu'elle est immobile par rapport à lui -en somme tel que les lois de l'électromagnétisme soient le plus possible les mêmes.

-Une théorie consistante et de meilleure pertinence

Les deux théories, dont le choix des instruments rend les cinématiques identiques, produisent très largement les mêmes résultats dans la gamme des « effets relativistes ».

Ce sont cependant deux théories distinctes, et le fait qu'elles soient l'une et l'autre pertinentes montre que la pertinence de la relativité restreinte ne suffit pas à prouver sa validité.

Les lois de la physique ne sont pas tout à fait de même nature chez l'une ou chez l'autre.

Dans la relativité restreinte, le principe de relativité est tenu pour parfaitement exact, et les lois qui en découlent, comme la valeur de la quantité de mouvement, doivent en conséquence être elles aussi tenues pour parfaitement exactes, de la même façon, par exemple, que la géométrie euclidienne considère le théorème de Pythagore comme parfaitement exact. Ce sont des lois qu'on peut qualifier d'infiniment rigides.

Dans la non-relativité lorentzienne, la valeur de vérité intangible du principe de relativité disparaît, et avec elle le moteur puissant permettant d'engendrer des assertions nettement tranchées, mais qui, trop contraignant, engendre au final une théorie non-consistante. En renonçant à la valeur absolue de ce principe, en admettant donc que certaines lois de la physique peuvent ne pas être relativistes, tandis que d'autres peuvent l'être, que ce soit parfaitement ou bien en première approximation, non seulement on débarrasse la théorie de cette inconsistance, mais encore on donne aux lois un degré de liberté -une souplesse ─ qui leur permet au cas par cas de mieux épouser le réel que les rigides lois-théorèmes de la relativité restreinte.

La non-relativité lorentzienne est consistante tandis que la relativité restreinte ne l'est pas, et offre un cadre dont la pertinence sera en définitive meilleure.

-LE CERTIFICAT INTROUVABLE

Nous avons vu au chapitre Cahier des exigences qu'il existe un « certificat » permettant à une théorie, au sens vague du mot, d'entrer dans la catégorie des théories mathématiques, au sens précis que les mathématiciens donnent à cette expression : c'est de fournir la preuve qu'elle n'engendre pas de résultats contradictoires.

En fait, ce dont on peut et doit donner la preuve, ce n'est pas la solidité logique absolue de la théorie, mais sa solidité relativement à celle de la théorie des ensembles, et cette preuve, si elle est établie, lui confère exactement la même solidité que cette dernière et que la totalité des mathématiques. Une façon de l'établir est de construire un modèle de cette théorie dans le cadre de la théorie des ensembles ou dans celui d'une théorie mathématique reconnue, les deux reviennent au même, puisque la constructibilité est transitive.

Les certificats de solidité logique apparaissent dans la seconde moitié du XIXe siècle, sous la poussée du questionnement quant à la consistance des géométries non-euclidiennes, qui a finalement été prouvée par la construction de modèles à l'intérieur de la géométrie euclidienne. Du coup, une contradiction dans une géométrie non-euclidienne serait une contradiction dans la géométrie euclidienne, et les géométries noneuclidiennes sont au moins aussi solides que la géométrie euclidienne.

Comme cette dernière est constructible dans la théorie des ensembles, la contradiction, si elle existait, rendrait les mathématiques tout entières contradictoires. Nous n'avons aucune preuve que cette contradiction n'existe pas, et les mathématiques reposent ainsi sur un acte de foi, au demeurant raisonnable car la théorie des ensembles ne fait que poser les règles de base de la pensée logique, et si elle était inconsistante, ce serait la possibilité même de penser qui s'écroulerait.

Le fait est étonnant, les relativités restreinte et générale ont derrière elles plus d'un siècle d'existence et n'ont toujours pas fourni leur certificat de solidité logique. De ce point de vue, elles ne sont pas encore entrées dans l'univers mathématique. Le contraste entre elles et les géométries noneuclidiennes est saillant dans la littérature scientifique : tandis que les ouvrages traitant de géométrie non-euclidienne répètent à l'envi l'histoire des diverses preuves qui ont été données de leur constructibilité, aucun traité de relativité ne fait référence à une éventuelle preuve de solidité logique de ces théories.

Pourtant, sachant les nombreuses critiques dont elles ont été l'objet depuis un siècle, et l'ardeur mise par ceux qu'elles ont convaincus à les défendre, il parait clair que si une telle preuve avait un jour été publiée, ceux-ci s'en seraient saisis pour clouer le bec aux détracteurs.

En rendant vaines les nombreuses tentatives faites jusque-là de démonstration du postulat d'Euclide, dont certaines par des mathématiciens de haute compétence, par exemple Legendre, les preuves de consistance logique des géométries non-euclidiennes ont eu un grand retentissement, qui n'a pu être ignoré des milieux scientifiques favorables aux théories d'Einstein. Il est difficile de croire qu'aucun chercheur n'a eu l'idée d'employer cette technique de construction de modèles pour prouver la solidité logique de ces « géométries » exotiques que sont les deux relativités. Il paraît donc probable que ces preuves ont été recherchées mais que personne n'a réussi à mettre le doigt dessus.

Les traités de relativité s'emploient évidemment à justifier la valeur des théories einsteiniennes. Mais les arguments qui sont développés ne répondent pas à la question de leur consistance logique. Quoique souvent ;; baptisés à tort preuves de la théorie, ils ne se rapportent en effet qu'à la question de leur pertinence, autrement dit la justesse des prédictions qu'elles permettent. Pertinence et consistance sont deux notions séparées, et l'une ne prouve pas l'autre.

Examinons l'expérience d'aller et retour d'un cylindre en rotation du point de vue de la relativité générale.

Pour toute valeur définie de l'épaisseur du cylindre, nous pouvons représenter l'expérience d'aller et retour en utilisant le cadre spatiotemporel de la relativité restreinte, mais les valeurs qui nous serons rendues ne seront pas les bonnes. Les vitesses de rotation de N et de M autour de l'axe du cylindre, qui reste axe de symétrie de révolution de l'expérience, ne seront pas 𝛾 N (𝑡)(𝜔 -𝑣 N (𝑡)𝜏 N (𝑡)) et 𝜔 𝛾 M (𝑡) , et l'action homogène exercée sur chaque tranche du cylindre, telle que la relativité restreinte la calcule, ne laissera pas inchangée sa vitesse intrinsèque de rotation ni nulle sa torsion intrinsèque. Cependant, si nous faisons tendre vers 0 l'épaisseur du cylindre, la quantité totale de matière invoquée par l'expérience tend vers 0, et de même, donc, le champ de gravitation, si bien que nous entrons dans le cas limite de la relativité générale où elle coïncide avec la relativité restreinte. Autrement dit, lorsque l'épaisseur du cylindre est infinitésimale, l'analyse selon la relativité générale coïncide avec celle selon la relativité restreinte.

Aussi, quand, toutes choses restant par ailleurs égales, positions, vitesses, longueur, diamètre, matériau du cylindre et de celui qui, identique à lui et arrivant en sens inverse, lui fait effectuer son aller et retour, nous faisons tendre vers 0 son épaisseur, le nombre 𝑛 -𝑚 tend vers la valeur strictement positive ∫ (𝛾 N (𝑡) -

1 𝛾 M (𝑡) ) 𝑇 0
𝜔𝑑𝑡 que lui assigne la relativité restreinte. Il est donc strictement positif dès lors que l'épaisseur du cylindre est suffisamment petite.

Comme ce nombre est un entier, il est supérieur ou égal à 1. En même temps, comme il dépend continûment de la longueur de l'aller et retour et qu'il est nul pour un aller et retour de longueur nulle, il vaut 0.

La preuve d'inconsistance logique apportée par l'expérience d'aller et retour d'un cylindre en rotation vaut pour la relativité générale comme pour la restreinte. peut être envisagée comme témoignant de ce que l'une ou l'autre théorie souffre de difficultés, car si l'une et l'autre étaient parfaites, elles devraient s'accorder et se prolonger l'une l'autre. La non-consistance logique de la relativité générale la désigne comme très probable source du conflit. Le fait que, dans la théorie « presque jumelle » remplaçant la relativité restreinte, la contraction des règles à mesurer et le ralentissement des horloges s'installent non pas comme propriétés de l'espace-temps mais comme découlant de la structure ondulatoire de la matière peut apparaître comme un indice que la modification à opérer pourrait résoudre le conflit.

QUATRIÈME PARTIE : LA DÉRIVE DE LA NAPPE ISOTROPE

La non-relativité lorentzienne se prolonge en une cinématique du cosmos à grande échelle

-LA DÉRIVE DE LA NAPPE ISOTROPE

-Insuffisance de l'espace isotrope global

Sommairement parlant, la non-relativité lorentzienne, c'est la relativité restreinte dont on a supprimé la valeur absolue du principe de relativité et, corolairement, à laquelle on a rajouté l'existence d'un et d'un seul espace isotrope -au contraire de postuler que tous le sont. Tant qu'on reste au niveau local et qu'on n'entre pas trop dans le détail, les deux théories ne présentent guère de différence. En effet, l'aspect exactement ou approximativement relativiste des principales lois de la non-relativité lorentzienne « gomme » la présence non-relativiste de l'espace isotrope.

Cependant, il n'y a aucune raison pour que des corps galiléens isotropes placés en des lieux distincts aillent à la même vitesse. En vertu de l'homogénéité de l'univers, la fluctuation statistique de la vitesse de l'espace isotrope entre deux lieux isotropes séparés par la distance 𝐷 -selon une simultanéité que nos instruments nous permettront, comme cette distance, de définir -est potentiellement partout la même, et la composition des vitesses fait que cette fluctuation est d'autant plus grande que ces lieux sont éloignés l'un de l'autre.

Il en découle que l'espace galiléen isotrope, dont la mise en place remédie à l'inconsistance de la relativité restreinte, est une entité qui n'a de pertinence que locale. Dès qu'on s'écarte trop de son « centre », il perd sa propriété cruciale, l'isotropie, et doit être remplacé par un autre espace isotrope. Matière virtuelle prolongeant indéfiniment la matière virtuelle, il recouvre l'univers, mais avec une anisotropie moyenne -au sens vague du mot -croissante avec la distance, et finissant possiblement par dépasser toute valeur fixée d'avance. Une description pertinente de l'univers ne peut pas reposer sur un seul espace isotrope, mais sur une infinité d'espaces isotropes locaux, dont chacun est pertinent au voisinage de son centre, l'instant local en lequel il est le plus isotrope de tous les espaces galiléens qui s'y croisent. L'univers est ainsi recouvert par une infinité d'espaces galiléens isotropes locaux considérés chacun sur une petite étendue, dont la réunion forme une entité mouvante que nous appellerons la nappe isotrope. Sa dérive est le phénomène qui fait que d'un instant local à un autre, deux espaces galiléens isotropes locaux sont en mouvement l'un par rapport à l'autre.

Lorsqu'on explique la fuite visible des corps célestes lointains par l'expansion de l'univers, on imagine volontiers que le cosmos se dilate, emportant les corps dans son mouvement. Chacun d'eux est approximativement en situation d'isotropie, et ce phénomène, s'il est effectif, est un cas particulier de dérive de la nappe isotrope. Mais la notion de dérive est plus générale et n'implique pas l'expansion de l'univers.

La relativité restreinte, parce qu'elle considère, en vertu du principe de relativité, comme intrinsèquement identiques les espaces galiléens se croisant en un instant local donné, ne dispose pas de cet espace isotrope unique et particulier, et ne peut pas installer cette notion. Aussi, quoique la relativité restreinte et la non-relativité lorentzienne prédisent en tant que théories locales les « mêmes » résultats, elles diffèrent considérablement dès qu'on considère à travers elles l'univers à grande échelle.

-Univers de Bruno et nappe isotrope

Nous accordons dans ce livre une attention particulière à un « plus simple » modèle d'univers, l'univers de Bruno, ne serait-ce que pour voir jusqu'où va sa pertinence. Obéissant au principe cosmologique, il est donc homogène et isotrope. Il est en outre stable, c'est-à-dire sans expansion ni contraction.

L'homogénéité et la stabilité se réunissent en une formulation très simple : toutes les boules de l'univers de même rayon contiennent en moyenne le même nombre de corps, à la fois invariable dans l'espace et le temps. Simplicité qui n'est peut-être que de surface, puisque cette définition invoque une simultanéité. Quoi qu'il en soit, cette propriété n'est que statistique, vraie seulement en moyenne.

L'isotropie est moins simple à formuler. Il faut commencer par se placer dans notre domaine favori d'excursion, le désert intergalactique. Un objet est alors isotrope si dans chacune des directions de l'espace qu'il engendre l'univers est statistiquement « le même » pour ce qui est des positions et des vitesses des corps. Comme pour la propriété précédente, cette équivalence des directions ne peut être parfaitement exacte, elle n'est que statistique.

Nous avons montré dans la première partie de ce livre qu'un univers de Bruno engendre une sphère des fixes synchrone. Si elle tournait relativement à un objet isotrope, les vitesses relativement à lui des corps peuplant l'univers ne seraient pas statistiquement les mêmes le long des différentes directions issues de lui, et il ne serait pas isotrope. Les objets candidats à être isotropes en un instant local donné sont donc tels que la sphère des fixes synchrone soit immobile dans l'espace qu'ils engendrent. Ils peuvent avoir dans une direction donnée différentes vitesses de translation et parmi elles une et une seule le mettra dans cette direction en équilibre relativement à l'univers lointain. Cet équilibrage, fait dans trois directions perpendiculaires issues du corps, ne suffit pas à nous assurer qu'il vaudra pour un autre système de trois directions perpendiculaires. Il nous faut ajouter l'hypothèse qu'à grande échelle nous pouvons considérer l'univers comme un gaz homogène que n'enfermerait aucune paroi ; et qu'ainsi, lorsqu'un corps relativement auquel la sphère des fixes ne tourne pas est en outre tel que sa vitesse soit en équilibre relativement à l'univers lointain dans trois directions perpendiculaires, elle l'est aussi, statistiquement parlant, le long de toutes les directions issues de lui dans l'espace qu'il engendre. Or le fond diffus cosmologique, qui est remarquablement isotrope relativement à un espace particulier, possède cette propriété, qui serait invraisemblable si l'univers était anisotrope relativement à cet espace. Le postulat que l'isotropie relativement à un système de trois directions perpendiculaires issues d'un même lieu d'un même espace galiléen implique l'isotropie relativement à n'importe quel autre système de trois directions perpendiculaires issues du même lieu du même espace se voit confirmé, en même temps que nous est fourni un critère permettant de mettre avec une bonne précision le doigt sur l'espace de centre isotrope.

Depuis un lieu du désert intergalactique, l'observation du Ciel lointain ou du fond diffus cosmologique permettent de déterminer si ce lieu est ou non isotrope. Ces deux examens peuvent encore être faits au voisinage d'un corps massif, par exemple sur notre planète, à 8 minutes-lumière du Soleil. L'étoile modifie certes les trajectoires des rayons lumineux venus du Ciel lointain, mais son effet là où nous sommes est tout à fait négligeable, même s'il est marginalement décelable pour les rayons dont la trajectoire le frôle. Ainsi, les critères permettant d'évaluer dans le désert intergalactique l'isotropie ou l'anisotropie d'un objet fonctionnent encore au voisinage d'un corps massif et nous renvoient un résultat expérimental « identique » à celui qui serait obtenu si l'étoile n'était pas là. Quoique le concept de nappe isotrope ne prenne tout son sens que dans le désert intergalactique, cette entité peut être prolongée jusqu'au voisinage immédiat des corps massifs, et ce prolongement nous fournit un champ de vitesses recouvrant l'univers entier.

Nous pouvons prolonger la nappe isotrope à l'univers entier considéré à grande échelle et donc attribuer aux corps célestes des vitesses relativement à la nappe isotrope.

Nous verrons plus loin que nos instruments nous permettent de prolonger indéfiniment les espaces isotropes locaux. Dans cette opération, ces espaces perdent a priori leur isotropie, qui n'est assurée qu'en leur centre. Considérés sous l'angle de leur extension infinie et de leur isotropie seulement locale, nous les appellerons espaces de centre isotrope (e.c.i.).

Par tout instant local il passe un et un seul e.c.i.

-L'univers est installé le long de la nappe isotrope

Lorsque depuis notre système solaire nous observons le Ciel lointain, nous le voyons assez nettement isotrope. L'observation du fond diffus cosmologique confirme le fait.

En vertu du principe cosmologique, l'univers est statistiquement homogène et ses lieux sont tous à peu près les mêmes. Aussi, de deux choses l'une : ou bien cette situation d'isotropie quasi parfaite du système solaire relativement au reste du cosmos est un miracle, ou bien elle témoigne d'une loi générale. Comme la prudence nous invite à ne pas trop croire aux miracles, surtout quand ils sont anthropocentriques, nous devons postuler que c'est une loi générale du cosmos que les systèmes de corps massifs sont en bonne approximation en situation d'isotropie. Nous formulons cette propriété en disant que L'univers est installé le long de la nappe isotrope.

Lorsqu'on considère à grande échelle le mouvement général des corps, il coïncide avec celui de la nappe isotrope.

-Les deux cinématiques du cadre plat

Il serait agréable de faire de la physique en n'utilisant que des notions spatiotemporelles objectives, non biaisées, celles relatives à l'espace de centre isotrope en l'instant local où nous sommes. Mais c'est malheureusement impossible, du moins à notre échelle. Cela impliquerait, dans un laboratoire terrestre, de mesurer les longueurs avec des règles en mouvement relativement à lui, selon une simultanéité qui ne coïncide a priori pas avec la sienne, et qui change d'instant en instant en raison du mouvement de la Terre.

Nous n'avons donc pas le choix. Nous devons utiliser les notions spatiotemporelles intrinsèques à l'espace de centre galiléen allant à la vitesse du laboratoire, qui change constamment, et donc utiliser des notions spatiotemporelles se référant à un panel continu d'espaces galiléens locaux débordant le seul espace de centre isotrope, autrement dit, par nécessité de simplicité, utiliser le contexte lorentzien local. Mais lorsque nous considérons l'univers à grande échelle, la dérive de la nappe isotrope est un phénomène majeur, puisqu'elle coïncide avec le mouvement général des corps célestes. Les espaces galiléens locaux pertinents sont ceux qui accompagnent la dérive : les espaces isotropes locaux. L'incertitude sur la vitesse de la nappe isotrope -au demeurant assez faible si on la détermine au moyen du fond diffus cosmologique -doit alors être rapportée à l'amplitude des variations qu'elle peut prendre d'un lieu à un autre, qui peut a priori atteindre les plus grandes valeurs qu'autorise la cinématique. Du coup, à grande échelle, la vitesse de la nappe isotrope devient une variable définie avec précision et les notions spatiotemporelles pertinentes sont celles qui se rapportent à elle, et que nous appelons objectives ou isotropes.

Notons une différence saillante entre les deux. Il y a autant de comportements instrumentaux intrinsèques que d'espaces possibles, galiléens non isotropes ou galiléens isotropes, tandis qu'il n'existe qu'un seul comportement instrumental objectif, celui des instruments immobiles relativement à la nappe isotrope. Dans le premier cas, les grandeurs cinématiques en un même instant local sont dépendantes de l'espace galiléen auquel on se réfère, dans le deuxième elles n'en dépendent pas, puisqu'elles sont décalquées de celles relatives à la nappe isotrope.

Dans le premier cas, se référer à un espace particulier est indispensable, dans le deuxième c'est une commodité, une façon de ne pas trop changer nos habitudes de pensée, mais pas une nécessité. 

-Métrique locale et topologie de l'espace-temps

En relativité restreinte, nous ne savons pas définir la distance séparant deux instants locaux. Elle varie selon l'espace galiléen de référence et aucun d'entre eux n'a de légitimité pour l'accaparer. Nous disposons seulement de la pseudométrique ∆𝑥 2 + ∆𝑦 2 + ∆𝑧 2 -𝐶 2 ∆𝑡 2 .

Le marquage de l'espace de centre isotrope fournit autour de chaque instant local un cadre de référence objectif permettant de combler ce manque. Ayant choisi une constante arbitraire 𝑤 > 0, nous pouvons, au moyen de règles synchrones infinitésimales isotropes, définir autour d'un instant local 𝑖 des boules de rayon 𝑟 ≥ 0 suffisamment petit par la condition

𝑗 ∈ 𝐵(𝑖, 𝑟) ⇔ √ (∆ 𝑒𝑠𝑝 (𝑖, 𝑗)) 2 + 𝑤 2 (∆ 𝑡𝑒𝑚𝑝 (𝑖, 𝑗)) 2 < 𝑟
où ∆ 𝑒𝑠𝑝 (𝑖, 𝑗) et ∆ 𝑡𝑒𝑚𝑝 (𝑖, 𝑗) sont les distances géométrique et temporelle séparant 𝑖 et j dans l'e.c.i. en 𝑖 Ces boules engendrent une topologie dont on montre facilement qu'elle est indépendante de 𝑤 non nul. On peut donc définir des fontions continues de ℝ dans l'ensemble des instants locaux, autrement dit des arcs spatiotemporels. La même métrique de voisinage permet de définir par sommation des longueurs de lignes polygonales, puis par passage à la limite des longueurs d'arc spatiotemporels.

Dans le cas particulir ou 𝑤 = 0, on obtient la longueur géométrique de l'arc. En faisan tendre w vers l'infini dans

1 𝑤 √ (∆ 𝑒𝑠𝑝 (𝑖, 𝑗)) 2 + 𝑤 2 (∆ 𝑡𝑒𝑚𝑝 (𝑖, 𝑗)) 2
On obtient la durée arithmétique totale de l'arc.

Ainsi, dans ce contexte de la dérive de la nappe isotrope et du référencement à elle, un arc spatiotemporel a une longueur géométriqus et une durée arithmétique totale dont les définitions ne sont liées à aucun référentiel singulier mais à l'infinité des référentiels isotropes qui accompagnent son parcours le long de la nappe isotrope

-Le principe de Galilée

Un point de vocabulaire. J'ai dans la première partie de ce livre utilisé le mot « inertiel » dans un emploi qui diffère de celui que la physique donne en général à ce mot. Ainsi, dans l'horloge « inertielle » tournante, l'objet tournant sur lui-même n'est pas « inertiel » selon le vocabulaire standard, quoiqu'il ait un « moment d'inertie » et qu'il soit une espèce de « volant d'inertie ». Je l'ai qualifié d'« inertiel », pensant que cette acception du mot était provisoire, mais maintenant que je me retrouve dans une situation similaire, je ne vois pas de meilleure solution que de persister.

Nous dirons, comme dans la première partie de ce livre, qu'un objet est inertiel lorsque les seules actions et contraintes auquel il est soumis sont celles qu'exerce sur lui l'univers lointain, et qui sont impossibles à supprimer. Principe de Galilée. Il affirme l'uniformité des mouvements inertiels. Les objets inertiels sont donc des horloges mutuellement compatibles. L'heure qu'ils donnent n'est pas une heure affichée miraculeusement sur un petit écran lumineux, elle est celle que fournit la spacialisation de leur mouvement, dont l'uniformité n'a de sens que si elle se réfère à quelque réalité. Dans l'hypothèse non-chosiste où nous nous plaçons, ce ne peut être un cadre spatial qui perdurerait identique à lui-même indépendamment de la variabilité de la nappe isotrope, puisqu'il n'a aucune sorte d'existence physique. C'est au cadre réel que l'uniformité du mouvement doit être rapportée, le cadre installé par la réalité de l'univers global et dont la nappe isotrope, c'est-à-dire l'espace de centre isotrope est le référent.

Objets inertiels, objets galiléens, objets isotropes. Puisque la cinématique est celle du désert intergalactique : Tous les objets libres sont inertiels.

Un objet galiléen est un objet inertiel tel que la sphère des fixes synchrone est immobile dans l'espace qu'il engendre.

Un objet isotrope est inertiel et ne tourne pas sur lui-même. Il est donc galiléen.

Nous postulons que l'ensemble des vitesses possibles pour un corps inertiel forme un large continuum. En l'occurrence, qu'étant donné un corps inertiel définissant un lieu A et engendrant un espace local (E), il existe un objet inertiel -virtuel -en A et tournant sur lui-même relativement au premier de telle façon que la sphère des fixes soit immobile dans l'espace que ce nouvel objet engendre. Il faut et suffit pour cela que son axe de rotation dans (E) soit le même que celui de la sphère des fixes, et que sa vitesse de rotation soit l'opposée de celle de la sphère des fixes. Ce nouvel objet en A est galiléen.

Étant donné un objet inertiel, il existe un unique espace de centre galiléen (e.c.g.) dans lequel cet objet est globalement immobile.

Selon la relativité restreinte, cet espace est isotrope. Mais selon la nonrelativité lorentzienne, il est isotrope si et seulement s'il vérifie la condition supplémentaire sa vitesse en A est celle de la nappe isotrope.

En vertu du principe de Galilée :

L'e.c.g. engendré par un objet galiléen et l'e.c.i. qu'il croise ont l'un relativement à l'autre des vitesses vectorielles constantes.

Si un objet galiléen est isotrope à un certain instant de sa chronologie personnelle, et si aucune action n'est jamais exercée sur lui, il est constamment galiléen isotrope : l'e.c.i. engendré par un objet galiléen isotrope est pérenne.

La propriété pour un espace de centre galiléen d'être isotrope est pérenne : ou bien il ne l'est jamais, ou bien il l'est constamment.

-LES INSTRUMENTS ET LA DÉRIVE DE LA NAPPE ISOTROPE

-Conditions de légitimité des règles synchrones et des horloges

Pour l'esquisse que nous venons de faire de ce qu'est la nappe isotrope, nous avons utilisé des notions spatiotemporelles naïves, non fondées sur l'instrument et l'expérience. Mais l'existence de la dérive de la nappe isotrope n'infirme en rien l'exigence de cette fondation. Comme le cadre avec dérive est localement identique avec le cadre sans dérive, les instruments du premier sont ceux du second, à condition que ces derniers soient de portée locale, c'est-à-dire infinitésimaux.

Nous avons étudié dans la deuxième partie les causes potentielles de déformation des règles synchrones et des horloges, et nous avons conclu que toutes pouvaient être corrigées, sauf les déformations lorentziennes. Tel est encore le cas lorsque la dérive n'est pas nulle. Mais quelques perturbations apparaissent alors.

Les parties non tournantes des règles synchrones doivent être au repos galiléen, isotrope ou non selon l'usage qu'on veut faire de ces instruments. Nous détaillerons ce point plus loin. En attendant, observons que ce repos galiléen n'a plus la même définition. Nous l'avions défini sans faire appel à la sphère des fixes : un corps est au repos galiléen s'il n'est soumis à aucune contrainte et si des particules ponctuelles libres situées sur son domaine peuvent être immobiles par rapport à lui. La dérive de la nappe isotrope rend cette définition inexacte, puisque les particules libres ponctuelles situées sur son domaine gardent une vitesse constante relativement à la nappe isotrope, tandis que les points du corps, en raison de la variabilité spatiotemporelle de la dérive, ne peuvent tous avoir la même vitesse relativement à la nappe isotrope. Nous avons donc utilisé à la place une définition basée sur la sphère des fixes.

La non-constance des vitesses de la nappe isotrope sur le domaine couvert par l'instrument fait que les modifications lorentziennes sont plus ou moins intenses en tel ou tel point du corps. Nous reviendrons plus tard sur cette hétérogénéité pour montrer qu'elle devient négligeable lorsque la taille du corps est infinitésimale.

Dans le cadre sans dérive, les instruments devaient déjà être de masse (naïve) infinitésimale, le cadre avec dérive les oblige à être également de dimensions infinitésimales. Nous n'avons ainsi plus droit aux règles « infiniment » longues et « infiniment » fines, mais seulement aux règles « infiniment » courtes et « infiniment » fines.

Les instruments légitimes du cadre avec dérive sont ceux de taille infinitésimale.

Cependant, qu'est-ce, à l'échelle des années-lumière, qu'une taille « voisine » de zéro ? En toute rigueur, un « infinitésimal » n'est pas telle ou telle valeur arrêtée, c'est une « valeur dynamique » que nous devrions plutôt nous représenter sous la forme d'une suite convergeant vers zéro, dont les termes finissent toujours par avoir définitivement une norme plus petite que toute valeur fixée à l'avance. À ce titre, nos instruments pourraient se faire plus petits qu'un atome, ce qui manque quelque peu de vraisemblance.

C'est pourtant déjà le cas avec les instruments abstraits de la géométrie traditionnelle, la règle et le compas, qui sont théorisés comme pouvant avoir des longueurs aussi petites que l'on voudra. Cela n'engendre aucun désastre, et construit au contraire un édifice qui, bien que ne coïncidant pas avec le réel au niveau de l'infiniment petit, est logiquement consistant. Il n'est d'ailleurs pas possible, nous l'avons déjà dit, de faire autrement : les nombres « réels » et leur infinie précision sont l'outil indispensable d'une mathématisation efficiente.

Le zoom infini qui construit un infiniment petit infiniment vaste est en discordance avec le monde effectif. N'empêche, cette chimère, ces étendues spatio-temporelles imaginaires sont d'une grande utilité. Parce qu'elles sont la réduction exacte des domaines macroscopiques qu'elles prolongent, leur ajout respecte la figure et ne fait que l'insérer dans un espace dont la complétion mathématique permet le travail déductif.

Autre question embarrassante, celle de la définition même de ce qu'est une « déformation » dans un univers où nous ne disposons pas d'instruments parfaits, puisqu'ils sont inévitablement déformés… Ce cercle vicieux n'en est pas un, parce qu'on peut avec des instruments imparfaits constater et mesurer par des moyens plus ou moins simples ou sophistiqués leurs imperfections. Ainsi, il n'est pas besoin de disposer d'une horloge parfaite pour vérifier que deux horloges sont imparfaites, il suffit de les superposer et de constater que leurs rythmes ne sont pas mutuellement réguliers. Certes, nous ne reconstituons ainsi pas l'entièreté de leurs déformations, mais d'une part nous donnons du sens au fait qu'elles sont déformées, d'autre part nous avons en réserve un outil de poids inutilisé dans ce très simple exemple : le fait que que nous connaissons la nature et la grandeur des déformations lorentziennes et qu'il est légitime de supposer qu'elles sont les mêmes si nous avons des instruments impeccables pour les mesurer que si nous n'en avons pas.

-Le contexte euclidien

Nous avons démontré dans la première partie de ce livre qu'une géométrie non-chosiste, homogène et isotrope vérifiant les quatre premières demandes d'Euclide vérifie nécessairement la cinquième. Cette preuve est solide dès lors qu'on accepte ses prémisses, qui sont (forcément) plus contraignantes que celles d'Euclide, et pas toutes de nature mathématique. L'inexistence de l'espace en soi est d'ordre philosophique, l'existence des atomes et le passage en revue des structures cristallographiques appartiennent à la physique et aux sciences naturelles. Les deux dernières sont vraies en toute certitude, et la première est étayée sur un tel nombre d'arguments convergents qu'on ne voit guère comment elle pourrait être fausse -mais est en général difficile de montrer qu'une chose n'existe pas, par exemple qu'il n'y a aucune théière en orbite autour du Soleil. Quant aux quatre premières demandes d'Euclide, elles ne sont pas faciles à rejeter :

-par deux points distincts il passe une droite et une seule ; -un segment peut être prolongé indéfiniment en un segment plus long ;

-étant donné deux points distincts, il existe un cercle ayant le premier pour centre et passant par le deuxième ; -tous les angles droits sont égaux. Aussi, la conclusion qui s'impose, quelles que soient les réticences qu'elle peut faire naître de ce qu'elle paraît trop simple pour être vraie, c'est que les déserts intergalactiques ou intersidéraux sont euclidiens. Nous l'adopterons.

Cet énoncé n'atteint cependant du sens qu'à condition de préciser quelles sont les longueurs qui construisent cette géométrie. Il n'y a qu'une réponse : ce sont celles que nous renvoient nos instruments. Quand la dérive était nulle, ils devaient être isotropes, maintenant qu'elle ne l'est plus, il doivent en outre être infinitésimaux.

La géométrie plate, celle qui régit les étendues désertiques du cosmos, est celle reposant sur les instruments isotropes infinitésimaux. Elle est euclidienne.

-Déformations lorentziennes des règles synchrones

Convenons, sans perte significative de généralité, que nos règles synchrones infinitésimales, qui sont toutes faites du même matériau élastique et homogène, tournent toutes à la même vitesse et sont, quand elles ne sont pas déformées par une dérive non nulle, obtenues par une similitude de rapport 𝑘 tendant vers 0 à partir d'une même forme initiale.

Majoration des déformations locales. Des petites variations des lieux et des instants entraînent des petites variations de la vitesse de la nappe isotrope, et le lien entre les unes et les autres est « localement quasi constant », autrement dit continu. Cela fait que la vitesse de la nappe isotrope est continûment différentiable. Nous utilisons nos règles synchrones de telle façon que la vitesse de la nappe isotrope soit nulle en leur centre. Si 𝑙 est la longueur de la règle, cette vitesse est donc un 𝑂(𝑙) sur le domaine infinitésimal couvert par la règle. Comme la vitesse de rotation est aussi un 𝑂(𝑙), la composée des deux est également un 𝑂(𝑙). Les vitesses par rapport à la nappe isotrope de tous les points de l'intrument sont des 𝑂(𝑙). Elles induisent des déformations lorentziennes relatives -c'est-à dire rapportées à la taille de l'objet -qui sont en 𝑂(𝑙 2 ), autrement dit majorées au voisinage de 0 par un certain 𝐴𝑙 2 . Comme les règles synchrones sont infinitésimales, il n'y a pas d'inconvénient à supposer leurs longueurs majorées par un 𝑙 0 . Sur l'étendue centrée sur la nappe isotrope et universellement bornée qu'elles couvrent, la vitesse de la nappe isotrope par rapport à l'e.c.i. en ce centre admet un majorant universel. Il n'y a aucun inconvénient non plus à supposer les vitesses de rotation de leur partie tournante universellement majorées, si bien que la constante 𝐴 peut être choisie universelle.

Les déformations lorentziennes ne sont pas des déformations mécaniques. Elles restent en effet les mêmes quelles que soient les caractéristiques de la matière, de la plus rigide à la plus souple, de la plus dense à la plus légère. Elles ne sont pas engendrées par des forces.

Néanmoins, comme ces déformations déplacent de la matière, elles en changent la configuration géométrique. Il se peut qu'elles ne soient pas compatibles les unes avec les autres. Dans ce cas, alors, des déformations mécaniques vont se mettre en place, qui construiront d'elles-mêmes une synthèse physique automatique de ces déformations incompatibles entre elles.

Les disparités des déformations lorentziennes sont doublement infinitésimales.

-D'une part l'instrument étudié est d'étendue infinitésimale, ce qui rend infinitésimales les disparités.

-d'autre part cette étendue est centrée au centre de l'e.c.i., ce qui multiplie la disparité par la petite taille des valeurs des déformations conflictuelles.

Les déformations lorentziennes étant du second ordre relativement à la taille de l'instrument, ces disparités doivent donc être d'ordre supérieur ou égal à 2 par rapport à cette taille. Une autre façon de raisonner est que ces déformations mécaniques ne peuvent pas être démesurées devant les déformations lorentziennes dont elles gomment au mieux les disparités. Elles sont au plus du même ordre de grandeur, donc elles aussi en 𝑂(𝑙 2 ), majorées par un certain 𝐵𝑙 2 , qui, défini par rapport à la nappe isotrope selon les mêmes conditions que 𝐴, peut lui aussi être choisi universel. En continuant d'appeler 𝐴 la constante 𝐴 + 𝐵 Il existe une constante universelle 𝐴, telle que les déformations locales relatives d'une règle synchrone de longueur 𝑙 par rapport à l'e.c.i. en son centre sont en chacun de ses points majorées dans chaque direction par 𝐴𝑙 2 .

Ces déformations sont locales relativement à la règle synchrone. Elles sont donc par hypothèse considérées sur une étendue infinitésimale de l'instrument et le problème est de savoir quelle est l'amplitude de leur recollement. À l'instar de toutes les démonstrations un peu longues dans ce livre -exception faite de celle de l'aller et retour d'un cylindre en rotation -l'étude mathématiques d'un cylindre déformé selon cette règle est placée en annexe. Elle aboutit aux résultats suivants : Lorsque, dans un contexte de dérive non nulle de la nappe isotrope, on fait tendre vers zéro la longueur d'une règle isotrope tout en conservant constantes ses proportions et son matériau :

-Elle subit des déformations relatives qui tendent vers 0 quand 𝑙 tend vers 0.

-Sa forme limite est sa forme non déformée par la dérive.

-Les déformations relatives des longueurs homologues appartiennent à un intervalle [1 -𝐴𝑙 2 , 1 + 𝐴𝑙 2 ].

-Pour tous les points M, N et P tels que N soit le milieu de MP et que la boule (N, NM)soit incluse dans (FND), |𝜋 -M 𝑙 N 𝑙 P 𝑙 ̂| ≤ 𝜆𝑙 2 . -Le vrillage axial de la règle (twist), mesuré par l'angle entre deux diamètres des faces circulaires avant et arrière, diamètres parallèles sur l'objet non déformé, fait sur l'objet déformé un angle appartenant à un intervalle [0, 𝜇𝑙 2 ].

Les constantes 𝐴, 𝜆 et 𝜇 sont universelles pour des proportions, un matériau donné et une taille maximale donnée de l'instrument.

-SIMULTANÉITÉ ISOTROPE

19.1-Chaînes et alignements de règles synchrones isotropes

On raccorde une règle synchrone (R 𝑘+1 ) à une autre (R 𝑘 ) selon la loi que le dernier instant local de l'arc défini par (R 𝑘 ) -dernier pour l'ordre géométrique des instants locaux le long des génératrices -coïncide avec le premier instant local de l'arc défini par (R 𝑘+1 ). Comme chacune de ces règles synchrones est globalement immobile relativement à la nappe isotrope, deux règles adjacentes sont en mouvement l'une relativement à l'autre. Le raccordement de deux règles en un instant local se fait « à la volée » : il ne dure qu'un instant. Un instant plus tard, c'est une autre règle synchrone qui doit être utilisée.

(R ′ ) est raccordée en l'instant local 𝑖 à (R) si et seulement si ® est raccordée en l'instant local 𝑖 à (R ′ )
Une chaîne instantanée de règles synchrones isotropes est la figure formée par un certain nombre 𝑛 de règles synchrones isotropes identiques raccordées les unes aux autres et formant ainsi une file totalement ordonnée.

Une chaîne instantanée de règles synchrones considérée à rebours depuis sa fin jusqu'à son origine est elle aussi une chaîne instantanée de règles synchrones.

Toute partie connexe (pour le raccordement) d'une chaîne de règles synchrones est une chaîne de règles synchrones.

Un alignement instantané de règles synchrones isotropes est une chaîne de règles synchrones raccordées les unes aux autres de telle façon que les segments joignant les extrémités de leurs axes soient alignés relativement à l'e.c.i. de centre l'instant local où ces règles se raccordent Un alignement instantané de règles synchrones considéré à rebours depuis sa fin jusqu'à son origine est lui aussi un alignement de règles synchrones.

Toute partie connexe (pour le raccordement) d'un alignement de règles synchrones est un alignement de règles synchrones.

-Alignement limite d'un alignement de règles synchrones isotropes infinitésimales

Étant donné un instant local 𝑖, 𝛿 une direction de l'e.c.i. en 𝑖, 𝐿 une longueur, construisons, pour tout entier 𝑛 suffisamment grand, à partir de l'instant local 𝑖 et dans la direction 𝛿 un alignement de 𝑛 règles synchrones isotropes chacune de longueur 

-Les notions spatiotemporelles de base sont indépendantes du référencement à un e.c.i. particulier

Les notions spatiotemporelles sont construites en référence aux instruments, dont nous avons montré qu'ils doivent notamment être immobiles devant la nappe isotrope. Ces instruments, que nous appelons « isotropes », se réfèrent systématiquement à elle. S'ils variaient selon l'e.c.i. relativement auquel nous représentons le réel, comme c'est le cas de ceux de la relativité restreinte, les notions spatiotemporelles qu'ils fournissent en dépendraient. Mais ce n'est pas le cas.

Les notions spatiotemporelles que construisent les alignements isosimultanés sont indépendantes de l'e.c.i. de référence.

Nous dirons que deux instants locaux sont isosimultanés s'ils sont aux deux extrémités d'un alignement isosimultané.

Si deux instants locaux sont isosimultanés dans une représentation du réel relative à un e.c.i. donné, ils le sont dans toutes les représentations relatives aux autres e.c.i.

L'alignement isosimultané est un instrument synthétique, un instrument « trois en un ». Il est aussi règle à mesurer et horloge inertielle.

La longueur d'un alignement isosimultané tendu entre deux instants locaux isosimultanés est indépendante de l'e.c.i. dans lequel on représente le réel.

La façon dont les durées sont indépendantes des e.c.i. sera examinée plus tard.

-Alignements isosimultanés pérennes

Lorsque nous construisons un alignement isosimultané à partir d'un instant local 𝑖 0 , nous installons une règle synchrone isotrope (R 0 ) dont une extrémité est en 𝑖 0 . Elle se compose d'une partie « immobile » et d'une (ou plusieurs, mais restons à une) partie « tournante ». Elle définit une ligne « immobile » le long de la génératrice du cylindre « immobile » et une ligne « tournante ». Les deux existent au voisinage spatiotemporel de 𝑖 0 et se croisent en 𝑖 0 . Leur croisement définit sans ambiguïté un arc d'instants locaux allant de 𝑖 0 à 𝑖 1 en l'autre extrémité de la règle. Nous pouvons en ce deuxième instant local recommencer la même opération avec une deuxième règle synchrone isotrope (R 1 ) alignée avec (R 0 ) et augmenter l'arc déjà construit du segment 𝑖 1 𝑖 2 , et ainsi de suite.

On peut faire cette construction à partir de n'importe quel instant de la première règle synchrone, et ainsi construire à partir de A une famille d'alignements isosimultanés prolongeant l'alignement isosimultané instantané de départ et formant ce que nous appellerons un alignement isosimultané pérenne.

De nombreuses variantes d'alignements pérennes de règles synchrones sont possibles. La règle (R 0 ) existe avant et après l'instant 𝑖 0 et peut être utilisée pour pérenniser l'alignement, mais ce n'est pas une nécéssité. On peut aussi employer une règle voisine d'elle, lui donnant ainsi un « mouvement », qui n'est pas son « vrai » mouvement puisque celui-ci est isotrope, mais la trajectoire d'un choix continu et lisse parmi les règles synchrones voisines de (𝑅 0 ) qui peut être aussi varié et fantaisiste que nous le voulons. Cependant, les situations auxquelles nous serons conduits à nous intéresser sont particulièrement simples. Si on pérénise un alignement isosimultané en lui conservant toujours le même lieu isotrope O de début, la même longueur et la même direction dans l'e.c.i. (E) de centre O, alors tous les alignements isosimultanés qui le composent ont leurs supports superposés dans (E).

-Quelques propriétés des alignement isosimultanés

Un alignement isosimultané (instantané ou pérenne) considéré à rebours depuis sa fin jusqu'à son origine est un alignement isosimultané Tout sous-intervalle d'un alignement isosimultané (instantané) est un alignement isosimultané.

La rencontre des deux drapeaux détermine un et un seul instant en un point donné de l'axe.

Il existe sur un alignement isosimultané instantané un et un seul instant local à une distance de son origine inférieure ou égale à sa longueur.

Soit 𝑖 et j deux instants locaux se déroulant en deux points fixes d'un e.c.i., l'un en A, l'autre en B et reliés par un alignement isosimultané. Un éventuel autre alignement isosimultané les reliant aurait le même axe (AB), la même longueur AB, et partirait de A dans la même direction. Ces trois propriétés le déterminent et le rendent donc identique au premier.

Deux instants locaux ne sont reliés l'un à l'autre par aucun alignement isosimultané s'ils ne sont pas isosimultanés et par un seul s'ils le sont. 

-Triangles isosimultanés

-Lignes de temps et durées isotropes

Étant donné un instant local quelconque 𝑖, il existe toujours un corps isotrope suffisamment petit pour pouvoir être considéré comme ponctuel et qui coïncide avec lui. Ce corps évolue en restant toujours galiléen isotrope, et puisqu'il peut être considéré comme ponctuel, il décrit dans l'espace-temps un arc que nous appelons ligne de temps (car c'est la trajectoire dans l'espace-temps d'une horloge inertielle ou lorentzienne infinitésimale isotrope).

Puisqu'un autre corps galiléen isotrope ponctuel participant au même instant local 𝑖 a toujours été et sera toujours comme lui immobile relativement à la nappe isotrope, les deux coïncident constamment et décrivent donc la même ligne de temps.

Par tout instant local passe une et une seule ligne de temps ; si deux lignes de temps ont un instant local en commun, elles sont identiques.

L'espace-temps est réunion de lignes de temps deux à deux disjointes.

La relation « appartenir à la même ligne de temps » est une relation d'équivalence entre instants locaux. Ses classes sont identifiables aux lieux isotropes.

Soit 𝑖 et 𝑗 deux instants locaux distincts situés sur la même ligne de temps. Dans l'e.c.i. dont cette ligne de temps est le centre, leurs coordonnées sont, dans un référentiel convenablement choisi, (0, 0, 0, 𝑡 𝑖 ) et (0, 0, 0, 𝑡 𝑗 ). Ces durées, lues sur une horloge en 0, sont distinctes : durant l'intervalle L'ensemble des instants locaux, alias l'espace-temps, peut être identifié au produit cartésien de l'ensemble des lieux isotropes et de l'ensemble des instants isotropes.

Translation le long des lignes de temps. Étant donné un instant local 𝑖, il existe une et une seule ligne de temps passant par lui. C'est la trajectoire dans l'espace-temps d'une horloge isotrope infinitésimale, et le translaté de la durée 𝜏 de 𝑖 en est l'unique instant local 𝑗 tel que 𝑖𝑗 ̅ = 𝜏. On le note 𝑖 + 𝜏.

Soit 𝑒 et 𝑓 deux instants locaux isosimultanés. Soit M le lieu isotrope qui, à un certain instant de sa chronologie, est en 𝑒, et N le lieu de l'e.c.i. de centre M qui coïncide avec f à un certain instant de sa chronologie. Les représentants de deux instants isotropes sur deux lignes de temps distinctes sont séparés par des durées égales.

Ayant fait le choix d'un instant isotrope 0, tout instant isotrope est repéré par la durée séparant de cet instant 0, qui est la même que celle qui sépare leurs deux représentants sur n'importe quelle ligne de temps.

Dans un univers de Bruno, nous postulons que l'existence d'un point historicisé s'étend sans lacune dans l'intervalle de temps -de tours d'horloges -allant de -∞ à +∞. Un point historicisé, à tout instant de sa chronologie personnelle « existe », donc participe à un certain instant isotrope unique. Et de même, à tout instant isotrope, ce point « existe » encore, en un certain et unique instant personnel.

Le lien entre les instants personnels qu'egrène un point historicés et les instants isotropes auxquel il participe en ces instants personnels est donc bijectif.

Les instants isotropes sont décrits par des nombres réels, dont l'infinie précision exige qu'ils soient de façon générale manipulés par des opérateurs continus. Cette bijection entre les instants personnels et les instants isotropes est continue. Elle est donc monotone.

Les lignes de temps sont des trajectoires particulières de points historicisés , que nous avons ordonnées « dans le sens du temps », c'est-àdire dans le sens du lien causal. Si nous orientons de même les trajectoires des autres points historicisés, elles formeront avec elles un continuum. L'application qui à une trajectoire associe 1 si elle est orientée dans le même sens que les lignes de temps et -1 sinon est continue. Elle prend donc toujours la même valeur.

Le lien causal ordonne temporellement toutes les trajectoires des points historicisés, lignes de temps comprises, dans le même sens. Sa taille est strictement indépendante de la vitesse de M relativement à la nappe isotrope, parce que les longueurs et la simultanéité sous l'angle de laquelle on les considère sont celles se rapportant à la nappe isotrope.

-ESPACES-GRILLES

Un autre sommet de ce cube pérenne est un point historicisé N. En tout instant local 𝑗 de sa trajectoire, nous pouvons exactement comme ci-dessus installer un cube isosimultané isotrope isométrique au précédent et orienté à notre Cela nous permet de le choisir tel que 𝑗 et trois autres de ses sommets -qui sont trois autres instants locaux -coïncident avec quatre sommets du précédent.

Et nous pouvons ainsi continuer indéfiniment ce début de pavage, puisque -pour un instant donné 𝑖 les cubes que nous utilisons appartiennent tous, de proche en proche, au même instant isotrope ;

-ils ont tous la même taille, indépendante de la vitesse à laquelle ils « vont » ;

-ils sont euclidiens.

À tout instant 𝑖, lorsque 𝑖 suit un arc spatiotemporel , ce pavage de cubes existe, et il reste constamment identique à lui-même. C'est un objet géométrique et en tant que tel, comme tout pavage de cubes, il ne dépend pas de l'ordre dans lequel il est fait.

Cet objet géométrique pérenne, s'étendant sans chevauchement ni lacune des régions les plus proches de l'univers aux plus lointaines, recouvre l'« espace » en entier, et, justement parce qu'il est pérenne, recouvre aussi le « temps » en entier. Il recouvre donc l'espace-temps en entier. Nous pouvons l'enrichir indéfiniment d'autres pavages, par exemple en divisant les cubes en 8 cubes d'arête moitié.

Nous construisons ainsi un espace-grille euclidien et dont le « mouvement » dépend entièrement de celui du premier cube, lequel, puisque ce n'est pas un mouvement matériel, peut être aussi varié que nous le voulons, éventuellement allant plus vite que la lumière relativement à la nappe isotrope, sans borne supérieure.

Les espaces-grilles n'ont aucune réalité physique. Ils sont tous différents les uns des autres, mais cette différence ne doit pas nous faire oublier qu'ils sont tous une émanation du même moule unique, le référencement aux instruments infinitésimaux isotropes.

Un alignement isosimultané a la même longueur relativement à tous les espaces-grilles.

La distance entre deux instants locaux isosimultanés est la même relativement à tous les espaces-grilles.

Lorsque le cube de départ est isotrope infinitésimal, cet espace coïncide avec l'e.c.i. de centre le centre de ce cube.

-CINÉMATIQUE D'UN UNIVERS DE BRUNO, RÉCAPITULATION ET COMPLÉMENTS

-Deux cinématiques du cadre plat coexistent.

La première est celle construite sur les instruments immobiles relativement à l'espace de référence. Elle est lorentzienne et formellement identique à celle de la relativité restreinte, à cela près qu'elle est seulement de portée -de pertinence -locale.

Ce caractère local n'a toutefois rien de désespérant, puisque les déformations que subissent les instruments du fait de la dérive de la nappe isotrope sont, dans un rayon de quelques dizaines d'années-lumière, très certainement infimes.

La deuxième cinématique est celle construite sur les instruments immobiles relativement à l'espace de centre isotrope. Elle est munie d'une simultanéité, de longueurs et de durées universelles.

Cette deuxième cinématique fournit un prolongement à l'univers entier de celle de l'espace de centre isotrope, via les espaces-grilles fondant sur le référencement à la nappe isotrope la simultanéité, les longueurs et les durées dont ils sont munis.

Lorsque le contexte est sans équivoque entre la cinématique lorentzienne locale et la cinématique globale du temps isotrope universel, nous pouvons dorénavant alléger notre vocabulaire. À la place des locutions « instants isotropes », « durées isotropes », « longueurs isotropes », nous emploierons sauf exception simplement les mots « instants », « durées », « longueurs ».

-Éclatement du concept d'espace galiléen

Dans le cadre sans dérive, il existe un unique espace isotrope, les espaces galiléens sont géométriquement solides -autrement dit indéformables -, d'étendue infinie et formés de points galiléens. Ces trois qualités -le caractère galiléen, la solidité et l'étendue infinie sont incompatibles lorsque la dérive de la nappe isotrope n'est pas nulle. Elles restent cependant compatibles deux par deux et engendrent des entités pérennes.

-Si l'on conserve la solidité et le caractère galiléen, il faut renoncer à l'étendue infinie. On obtient les .ec.l (dont font partie les e.c.i.) restreints au voisinage de leur centre. Leur solidité géométrique est parfaite mais le caractère galiléen n'est qu'une propriété limite.

-Si on conserve la solidité et l'infinité de l'étendue, il faut renoncer au caractère galiléen.

─ Isosimultanéité et sphère des fixes synchrone

Soit O un lieu isotrope, (E) l'e.c.i. de centre O. À tout instant local 𝑖 se déroulant en O, nous pouvons tracer dans (E) des segments isosimultanés issus de O et s'appuyant sur n'importe quel corps céleste assimilé à un point historicisé.

Nous désignons un point de la sphère des fixes synchrone en 𝒊 par une suite de corps célestes, assimilés à des points historicisés, dont la distance isosimultanée à 𝑖 tend vers l'infini, et telle que les directions des segments isosimultanées joignant 𝑖 à ces corps convergent dans (E) vers une direction limite que nous identifions à ce point de la sphère des fixes.

Nous postulons, dans cette définition, que les corps concernés sont éternels, ou que, si ce n'est pas le cas, qu'ils sont à leur disparition aussitôt remplacés par des corps suffisamment voisins pour ce remplacement n'altère pas les propriétés de la suite qu'ils forment.

Dans un univers de Bruno, la variation relative ∆𝐷 𝐷 en une unité de temps isotrope de la distance isosimultanée 𝐷 séparant deux corps tend vers 0 quand D tend vers l'infini. On en déduit que la variation relative ∆𝛼 𝛼 en une unité de temps de l'écart angulaire 𝛼 entre deux segments isosimultanés issues d'un lieu isotrope O et s'appuyant chacun sur un corps lointain tend vers 0 quand leur distance à nous tend vers l'infini. La variation relative en une unité de temps de l'écart entre les directions limites par lesquelles nous définissons les points de la sphère des fixes est donc nul. La même suite de corps célestes par laquelle nous définissons un point de la sphère des fixes synchrone est donc éternellement valide.

La sphère des fixes synchrone relative à un e.c.i. est invariablement formée des mêmes points conservant entre eux des angles invariables. Appelons P 1 (𝑡) et P 2 (𝑡) les positions à l'instant 𝑡 de ces rayons. Ils arrivent au même instant en O, mais ne quittent pas forcément(K) exactement au même instant. Nous faisons toutefois disparaître cette différence en considérant qu'ils partent tous les deux de (K) à l'instant 0, quitte à rallonger ou raccourcir un peu une des trajectoires. La vitesse de l'un est 𝐶 ⃗ 1 + 𝑣 ⃗ 𝑖𝑠 (P 1 (𝑡)), celle de l'autre 𝐶 ⃗ 2 + 𝑣 ⃗ 𝑖𝑠 (P 2 (𝑡)), où 𝑣 ⃗ 𝑖𝑠 (P 1 (𝑡)) et 𝑣 ⃗ 𝑖𝑠 (P 2 (𝑡)) sont les vitesses aux lieux où ils sont de la nappe isotrope relativement à l'espace de référence, qui sont l'une et l'autre d'espérance nulle.

L'écart vectoriel entre les positions des rayons à l'instant 𝑡, qui est indépendant de l'e.c.i. de référence, est Le parcours moyen de la lumière arrivant d'un corps céleste lointain se fait selon des cônes dont les sections transversales ont en moyenne, comme lorsque la dérive est nulle, des dimensions proportionnelles à leur distance au sommet.

CINQUIÈME PARTIE : LA PLUS VASTE DES ILLUSIONS D'OPTIQUE

Dans un univers de Bruno, l'effet Doppler se fait pour l'essentiel « en chemin ». Il se conjugue avec la surreprésentation des corps vus s'éloignant pour engendrer une illusion de fuite des corps célestes lointains numériquement conforme à l'observable, y compris dans l'illusion d'accélération de cette illusion d'expansion.

-STABILITÉ DE L'UNIVERS SYNCHRONE ET INFLATION APPARENTE DE L'UNIVERS OBSERVÉ

-Dérive et bruit

Observé depuis la Terre, le fond diffus cosmologique présente une modulation d'environ 400 km/s, elle-même soumise à une variation annuelle de plus ou moins 30 kilomètres par seconde, qui reflète exactement la révolution terrestre autour du Soleil. La modulation de 400 km/s, constante dans le temps si l'on lui retranche cette sous-modulation, est la vitesse du système solaire par rapport à la nappe isotrope. Comme on a pu estimer par diverses méthodes la vitesse du Soleil au sein de la Voie lactée, on dispose d'une estimation de la vitesse globale de la Voie lactée par rapport à la nappe isotrope : environ 630 km/s.

Cependant, lorsque nous considérons l'univers à très grande échelle en ayant pour espace de référence un e.c.i. de centre O, les vitesses des corps et de la lumière à la distance 𝐷 tendent en probabilité vers l'infini quand 𝐷 tend vers l'infini. Cette vitesse de 630 km/s devient alors négligeable devant les vitesses mises en jeu.

En vertu du principe cosmologique, la vitesse vectorielle des corps relativement à l'espace de centre isotrope obéit partout et toujours à une même loi de probabilité universelle.

En vertu des postulats qu'un univers de Bruno est isotrope et stable, cette loi est isotrope et d'espérance nulle.

Étant universelle, elle doit avoir partout et toujours le « même » écart type. Dans notre essai de superposer autant que possible un univers de Bruno au réel, nous pourrions l'évaluer à 630 km/s. C'est peut-être 2 ou 3 fois trop grand, ou peut-être 2 ou 3 fois trop petit. Il faudrait pour en savoir plus disposer de statistiques que je n'ai pas trouvées. Comme les petits échantillons sous-estiment l'écart type, on peut penser que cette valeur est plutôt trop petite que trop grande, mais, encore une fois, nous n'en savons rien. Il y a cependant une bonne nouvelle, c'est que si les résultats numériques rendus par le programme dépendent bien de cette valeur, le point qualitatif crucial que nous voulons atteindre n'en dépend pas. Prenons donc à titre d'exemple 900 km/s, c'est-à-dire, puisque dans le programme 𝐶 =1, sigma_𝑣 = 0, 003. Il nous faudra également prendre le temps de vérifier que pour d'autres valeurs les résultats sont qualitativement les mêmes.

Nous appellerons bruit en un instant local 𝑖 donné le mouvement des corps au voisinage de 𝑖 relativement à l'espace isotrope en 𝑖. Le bruit en un lieu isotrope n'est pas nul alors que la vitesse de la nappe isotrope l'est. Cela nous montre que la vitesse de la nappe isotrope dans une boule de centre O et de rayon 𝑟 devient négligeable devant le bruit lorsqu'on fait tendre 𝑟 vers 0.

-Simulation informatique de l'illusion d'expansion dans un univers de Bruno

Si les mathématiques sont bien l'art d'éviter le plus possible la souffrance des calculs, l'informatique en est l'un des plus confortables aboutissements. Le lecteur trouvera en annexe une vérification de plus de cet adage, sous forme d'un programme permettant d'étudier la façon dont sont « vus » les corps lointains dans un univers de Bruno.

-Stratégie de raisonnement

Nous avons jusqu'ici abordé cette question en nous focalisant sur les corps lointains eux-mêmes, ce qui semblait naturel. Nous avons raisonné en attribuant aux corps des trajectoires rectilignes parcourues à vitesse uniforme. Nous avons justifié cette hypothèse simple en observant que dans un univers de Bruno l'accélération d'un objet galiléen relativement à un e.c.i.p, qui n'est en général pas nulle en raison de la dérive de la nappe isotrope, est statistiquement isotrope, donc de moyenne nulle (en prenant les précautions qui conviennent pour parler de moyenne sur une étendue tridimensionnelle infinie). Les positions possibles du corps à un instant donné forment alors une boule de centre la position moyenne, dans laquelle leur loi de répartition est isotrope. Si cette boule est suffisamment petite, les propriétés de ses éléments seront plus volontiers celles de de son élément central que si elle est grande. Selon que les trajectoires possibles du corps à partir de sa position initiale (en l'occurrence en remontant le temps) divergent peu ou bien beaucoup, la pertinence du remplacement par le corps moyen de mêmes position et vitesse à un instant donné (en l'occurrence l'instant actuel) sera pertinente ou bien risque de ne pas l'être.

Or dans le contexte de la dérive de la nappe isotrope cette divergence risque d'être grande, puisque les vitesses des corps et de la lumière relatives Les guillemets autour du verbe voir veulent signifier que nous ne tenons compte ici ni de l'occultation ni de l'extinction, et qu'un corps « vu » est soit un corps effectivement vu en O à l'instant actuel, soit un corps qui serait vu si son éclat n'était pas occulté par d'autres corps ou éteint par de la poussière céleste.

à l'e.c.i. en O tendent en probabilité vers l'infini quand la distance tend vers l'infini. L'occultation et l'extinction, en gommant les parties lointaines des trajectoires, font disparaître une grande partie de ces difficultés, mais il est loin d'être immédiat de savoir si cela suffit ou non à rendre pertinent le remplacement des trajectoires par les trajectoires moyennes.

On voit ces problèmes s'évanouir quand au lieu de raisonner d'emblée sur les corps lointains on se penche d'abord sur ceux qui sont proches de O. Quant aux interactions gravitationnelles, elles modifient certes la vitesse des corps, mais dans le désert intergalactique où nous nous plaçons, elles sont infimes. Plus précisément, les influences gravitationnelles en provenance de l'univers lointain sont fondues en une globalité dont l'effet en un lieu est dominé par un phénomène de compensation entre les différentes directions qui atteint son maximum et sa quasi perfection relativement à l'espace de centre isotrope. Dans un désert galiléen effectif, quelques corps insuffisamment lointains égratignent cette perfection, mais d'une part leur influence est très faible, d'autre part elle doit être elle aussi neutre, impartiale entre rougissement et bleuissement, à la fois pour un contexte donné et pour l'ensemble de tous les contextes. 

-Les effets négligés

-Calcul des caractéristiques d'un corps

Informatiquement parlant, un corps, est un ensemble de paramètres liés les uns aux autres. Ils sont définis relativement à l'e.c.i. de référence, celui qu'engendre le lieu isotrope O. Nous ne connaissons sans doute pas toutes les galaxies proches de nous, certaines peuvent être occultées par d'autres, ou bien trop petites ou trop peu lumineuses. Mais nous en connaissons tout de même une belle quantité, et parmi elles, disons parmi celles qui sont à moins de 5 ou 10 millions d'années-lumière de nous on ne trouve pas de galaxie bolide qui irait par exemple à une vitesse de 10 000 km/s. Ou, pour être un tantinet plus souple, qu'il y en a tellement peu que les oublier est sans incidence.

Nous attribuons aux corps du domaine d'expérience des vitessesrelatives à l'e.c.i. de référence -uniformément régies par une loi gaussienne d'espérance nulle et dont la norme a pour écart type 𝜎 𝑣 , alias sigma_𝑣 dans le texte Python. Pour cette loi, la probabilité qu'un corps aille à une vitesse supérieure à disons 7 𝜎 𝑣 est donc infime, de l'ordre de 10 -12 ; et le nombre des corps dans le petit domaine d'expérience où nous travaillons est certainement inférieur à 1𝑒12. Aussi, de tels corps, il n'y en a « aucun ». Puisque 𝐶 = 1, il suffit donc, pour n'oublier « aucun » corps, de prendre distance_max ≥ (1 + 7𝜎 𝑣 ) distance_utile. La valeur choisie dans le programme est distance_max = 1.04 distance_utile, qui est excessive, mais sans entraîner une trop grande inflation des calculs, tout en laissant de la marge pour des valeurs de 𝜎 𝑣 éventuellement un peu fortes.

Tous les corps qui sont à l'instant actuel présents dans la boule de centre O et de rayon ne sont pas « vus » dans la boule de centre O et de rayon distance_utile. Il faudra éliminer ceux qui en sont sortis, c'est-à-dire ceux tels que OP > distance_utile.

-Subdivision du domaine en tranches

Le domaine d'expérience, cette « petite » boule de centre le lieu isotrope O et de rayon distance_utile, est subdivisé en couronnes sphériques successives de même épaisseur, qui vaut, puisque leur nombre est nb_tranches, épaisseur_tranches = distance_utile / nb_tranches. La première de ces couronnes en est un cas limite, puisque c'est la sphère de centre O et de rayon épaisseur_tranches .

-Entrants aléatoires

Le langage Python fournit sous le nom 𝑟𝑎𝑛𝑑𝑜𝑚(i) une variable aléatoire telle que pour tout 𝑥 de [0, 1] 𝑝(𝑟𝑎𝑛𝑑𝑜𝑚( ) ≤ 𝑥) = 𝑥. Cela nous permet de tirer au hasard, avec des lois de probabilité uniformes dont nous devons déterminer l'expression mathématique, la distance OM, l'angle 𝛼, noté alpha dans le texte Python, et la vitesse arithmétique 𝑣 = ‖𝑣 ⃗‖ du corps exprimée en fraction de la vitesse de la lumière, et donc toujours strictement inférieure à 1. (En fait, parce que nous travaillerons à très petite échelle, elle sera très inférieure à 1.) La distance OM La distribution des positions des corps à l'instant actuel dans la boule de rayon distance_max obéit à une loi de probabilité uniforme relativement aux volumes, autrement dit telle que deux régions de même volume contiennent en moyenne le même nombre de corps.

La loi de probabilité répondant à cette exigence est celle de la variable aléatoire distance_max × random( ) Une valeur approchée de l'exposant est -125, et l'ordre de grandeur de cette probabilité est 𝑒 -125 , qui vaut approximativement 5 × 10 -55 . En tirant un milliard de corps par seconde, il faudrait attendre en moyenne quelque chose comme 6 × 10 37 années, c'est-à-dire 10 28 fois l'âge aujourd'hui estimé de la Terre pour que cela se produise.

Si le nombre de corps est trop grand, on rencontre un autre écueil, le dépassement des capacités-mémoire de l'ordinateur. Sur celui que j'ai utilisé, ces problèmes apparaissent à partir d'environ 5 × 10 8 corps. On y remédie en insérant la boucle qui traite ces nb_corps dans une autre boucle qui fait un nombre 𝑛𝑏 𝑡𝑜𝑢𝑟𝑠 de tours (presque) aussi grand qu'on le voudra. Le dernier écueil possible est alors celui de l'impatience de l'utilisateur devant le mutisme de la machine qui tourne et tourne avant de rendre les résultats.

Pour rendre cette attente moins insupportable, le programme affiche le nombre de tours déjà accomplis.

Une fois les tirages effectués, le programme calcule pour chaque tranche les valeurs des variables pertinentes : vitesses radiales, effectifs, distances, angles solides rouges ou bleus, etc. Cela lui permet de produire deux séries de résultats pour chaque tranche, l'une portant sur les vitesses radiales moyennes des corps , l'autre sur les tailles totales des angles solides rouges et bleus. On constate que -ces courbes sont toujours positives à partir de 𝑑 = 0.05 Ma-lgm.

-qu'elles sont à peu près plates à partir de d = 0.4 Ma-l.gm. -que la dispersion de leurs valeurs est faible du côté droit (c'est-àdire dans les tranches les plus éloignées de O) et grande du côté gauche (c'est-à-dire dans les tranches les plus rapprochées de O). Cet écart s'explique facilement par le fait que les effectifs des tranches sont bien plus fournis lorsqu'elles sont éloignées de O que lorsqu'elles en sont proches. Le lissage de la dispersion qu'opère le passage à la moyenne y est donc bien plus important.

Que nous conservions ou non les mêmes amorçages de générateurs de nombres aléatoires, les tirages que nous en faisons rendent des résultats indépendants les uns des autres et de probabilité uniforme sur [0, 1], et nous replacent ainsi à chaque étape dans la même situation probabiliste. Les trois suites 𝑙 1 , 𝑙 2 et 𝑙 3 de nb_tours tirages de longueur nb_corps produisent les trois mêmes moyennes et moyennes des moyennes que si elles formaient une seule suite 𝐿 de 3 × nb_tours tirages de longueur nb_corps. Les effectifs des 𝑙 𝑖 sont suffisamment importants pour que leurs écarts types puissent être considérés comme des estimateurs non biaisés de l'écart type de la population, donc leur moyenne en est un aussi. En vertu du théorème de la limite centrale, l'écart type de la moyenne de 𝐿 est √3 fois plus petit que celui des 𝑙 𝑖 . Nous obtenons ainsi, dans la dernière tranche, c'est-à-dire à une distance de O comprise entre 9,95 × 10 4 et 10 5 a-lgm, une vitesse radiale des corps en moyenne égale à 3,021 × 10 -6 𝐶, avec un écart type de 0,0830 × 10 -6 𝐶.

La moyenne est ainsi à Lorsque sigma_𝑣 vaut 0,003, 𝑙𝑎 vitesse radiale moyenne de la dernière tranche des corps « vus » est strictement positive.

-Influence nulle du paramètre distance_utile

En faisant le même raisonnement pour d'autres valeurs de distance_utile , nous devrions en savoir plus sur les intervalles de distances à O où la moyenne des vitesses radiales est strictement positive. Remplaçonsle par exemple par 10 6 a-lgm sans rien changer d'autre. Les trois graphiques qui viennent d'être tracées deviennent : Plaçons-nous dans le cas où le programme tourne à un moment avec distance_utile = 𝑑 1 et à un autre avec distance_utile = 𝑑 2 , tous les autres paramètres étant identiques.

Formons l'hypothèse de récurrence qu'à l'entrée de la boucle les générateurs de nombres aléatoires mis à contribution, qui sont identiques et distincts, ont depuis le lancement du programme produit l'un et l'autre exactement la même quantité de nombres aléatoires. Il n'y a donc aucun décalage entre eux et tant que ce sera le cas ils produiront les mêmes nombres aléatoires.

Le premier tirage aléatoire de la boucle est celui qui produit les distances OM 1 et OM 2 respectivement égales à 1.04 𝑑 1 𝑟𝑎𝑛𝑑𝑜𝑚( ) Les tirages de 𝛼 se font donc avec des nombres aléatoires de même rang, et qui sont en conséquence égaux. Ils consomment chacun le même nombre de 𝑟𝑎𝑛𝑑𝑜𝑚( ) et n'engendrent aucun décalage. Les deux passes fournissent des 𝛼 identiques.

On tire ensuite les vitesses 𝑣 des corps. Dans les deux cas, le programme tire des 𝑔𝑎𝑢𝑠𝑠(0, 𝑠𝑖𝑔𝑚𝑎 𝑣 ) qui eux aussi sont reproduits à l'identique de la passe 1 à la passe 2. Ces deux tirages se font dans les mêmes conditions, à partir d'un même générateur de nombres aléatoires que celui qui engendre les 𝑟𝑎𝑛𝑑𝑜𝑚( ). Ils produisent donc le même résultat et consomment un même nombre de 𝑟𝑎𝑛𝑑𝑜𝑚( ), ne créant ainsi aucun décalage dans la suite de nombres aléatoires consommés par l'un et l'autre calcul. Les triangles OP 1 M 1 et OP 2 M 2 ont deux angles homologues égaux : 𝑎 1 = 𝑎 2 et 𝜑 1 = 𝜑 2 . Ils sont semblables.

Plus aucun nombre aléatoire n'est consommé dans la boucle pour ces deux corps. Les deux prochains corps seront donc tirés comme eux avec des nombres aléatoires de même rang, donc égaux. L'égalité des rangs des tirages aléatoires est donc héréditaire de tour de boucle en tour de boucle. L'amorçage est valide puisque le programme démarre avec la même initialisation du générateur de nombres aléatoires et qu'aucun n'est tiré avant ceux que nous venons d'examiner. À chaque tour de boucle, les nombres aléatoires apparaissant dans les passes 1 et 2 du programme sont donc identiques. Nous avons montré au passage, lors de l'étude de l'hérédité, que si tel est le cas pour un certain tour de boucle, les passes 1 et 2 produisent le même 𝑣, les mêmes paramètres angulaires et des paramètres distances proportionnels, et de même pour tous les tirages suivants. Les vitesses radiales 𝑣 1 cos 𝜑 1 et 𝑣 2 𝑐𝑜𝑠 𝜑 2 seront par conséquent identiques à chaque tour. Ainsi, au même rang de la suite des corps engendrés par les deux passes, la première rendra le couple (𝑑, 𝑣 𝑟𝑎𝑑 ) et la deuxième le couple ( Le principe sur lequel repose la méthode de Monte-Carlo que nous pratiquons ici est que lorsque l'on fait tendre vers l'infini le nombre des tirages non rejetés -la longueur de la passe -, les valeurs moyennes des vitesses radiales obtenues -appelons-les valeurs moyennes « simulées »tendent avec une probabilité égale à 1 vers les valeurs moyennes effectives des vitesses radiales des corps « vus ».

Ce résultat ne dépend pas de la suite de nombres aléatoires utilisée pourvu qu'elle soit correcte, c'est-à-dire faite de nombres indépendants les uns des autres et obéissant à une loi de probabilité uniforme.

Ce résultat reste vrai si nous utilisons pour chaque passe la même suite correcte potentiellement infinie de nombres aléatoires. On dispose alors d'une propriété supplémentaire : pour un même nb_corps, quelle que soit la valeur de la variable d=distance_utile (dans un certain ]0, △]) les panels des vitesses radiales simulées sur [0, 𝑑] sont identiques. Donc leurs moyennes sont les mêmes.

Lorsqu'on fait tendre nb_corps vers l'infini, cette propriété perdure, et passe à la limite, car des suites identiques à chaque rang, convergent, ont nécessairement des limites identiques : quelle que soit la valeur de la variable 𝑑 > 0 , les valeurs moyennes sur [0, 𝑑] des vitesses radiales effectives sont identiques.

Ce résultat repose également sur le fait que nous avons attribué à la vitesse arithmétique des corps la même loi de probabilité dans les boules 𝐵(O, 𝑑 1 ) et 𝐵(O, 𝑑 2 ). Cela découle de ce que nous avons choisi de travailler avec des distances « infinitésimales » et de ce que le bruit 𝐵 0 en 0 n'est pas nul. Les bruits 𝐵 𝑑 1 et 𝐵 𝑑 2 dans les boules respectives 𝐵(O, 𝑑 1 ) et 𝐵(O, 𝑑 2 ) sontnen effet identiques à B 0 dès que les distances 𝑑 1 et 𝑑 2 sont suffisamment petites.

-Blocage de la vitesse arithmétique du bruit à une seule valeur

Les valeurs moyennes des vitesses radiales des corps « vus » sont indépendantes de leur distance actuelle à O lorsque la loi de probabilité régissant leur vitesse arithmétique est elle-même indépendante de cette distance. Ce résultat vaut encore pour cette loi de probabilité particulière qui à vitesse 𝑣_bloquée associe 1 et à toute autre 0 -autrement dit quand les corps vont tous à la vitesse 𝑣_bloquée.

Si d est la distance utile définissant le rayon d'une sphère de centre O à l'intérieur de laquelle cette famille ou une partie de cette famille est étudiée, alors la vitesse radiale moyenne des corps dans cette sphère est la même quel que soit 𝑑.

Pour une autre valeur 𝑑 ′ la vitesse radiale moyenne des corps sera la même. On en déduit que la vitesse radiale moyenne est aussi la même sur la couronne sphérique de centre O et de rayons 𝑑 et 𝑑 ′ , puis, par passage à la limite, qu'elle est la même pour tous les corps à la distance d de O.

Lorsque la vitesse des corps est bloquée à une seule valeur, l'espérance de leur vitesse radiale est la même pour tous, indépendante de leur distance à O. En explorant ce que rend le programme pour différentes valeurs de 𝑣_bloquée, on constate qu'à deux valeurs 𝑣_bloquée_1 et 𝑣_bloquée_2 correspondent toujours deux vitesses radiales moyennes rangées dans le même ordre. Illustrons ce constat par le panel suivant de couples (𝑣_bloquée , 𝑣_radiale_moyenne) (0, 0), (10 -4 , 3.315 × 10 -9 ) (2.5 × 10 -4 , 1.602 × 10 -8 ) (5 × 10 -4 , 9.703 × 10 -8 ) (10 -3 , 3.908 × 10 -7 ) (2× 10 -3 , 1. 307 × 10 -6 ) (3× 10 -3 , 3.137 × 10 -6 ) (4 × 10 -3 , 5.304 × 10 -6 ) (5 × 10 -3 , 8.163 × 10 -6 ) (6 × 10 -3 , 1.176e-5× 10 -5 ) (7 × 10 -3 , 1.647e-5× 10 -5 ) (8 × 10 -3 , 2.117e-5× 10 -5 ) (9 × 10 -3 , 2.702 × 10 -5 ) (10 -2 , 3.345 × 10 -5 ) Ces données fournies par le programme permettent de tracer la courbe suivante :

Traçons la courbe des quotients des ordonnées par les abscisses : C'est en bonne approximation le graphe d'une fonction linéaire de coefficient environ Dans les déserts intergalactiques ou intersidéraux qui, géométriquement parlant, sont l'étoffe de l'univers, les corps n'agissent « pas » les uns sur les autres, et les effets de leurs très faibles interactions sont d'autant plus faibles qu'ils sont considérés le long de courtes trajectoires. Dans ce cadre, les corps se comportent d'une façon indépendante les uns des autres, exclusion faite bien sûr de la somme des corps « infiniment » lointains, qui forment un tout dont l'action locale ne peut être nulle. Un corps se comporte donc de la même façon quel que soit le panel de ceux qui l'accompagnent. Comme l'étude faite avec des vitesses bloquées nous apprend que quelle que soit leur vitesse actuelle, leur vitesse moyenne radiale à l'instant où ils sont vus a une espérance strictement positive, Quelle que soit la loi de probabilité des vitesses actuelles arithmétiques des corps, leurs vitesses radiales à l'instant où ils sont vus sont en moyenne strictement positives. 

-Moyenne des vitesses radiales autour d'un lieu galiléen non isotrope

Soit à présent un lieu galiléen non isotrope Ω. Appelons O le lieu isotrope avec lequel Ω coïncide à l'instant « actuel » 0. Les distances de Ω et de O aux autres autres corps sont les mêmes, et la lumière met les mêmes durées à les parourir. En l'instant local où ces deux lieux coïncident, on voit depuis chacun d'eux les autres lieux de l'univers au même instant de leur existence. (On ne les voit pas pour autant exactement identiques : leurs vitesses ne sont pas les mêmes, et l'effet Doppler n'est donc pas le même ; en outre l'aberration de la lumière fait que les écarts angulaires qu'ils font avec les autres corps ne sont pas non plus exactement les mêmes.)

Soit 𝑉 ⃗⃗ la vitesse de l'e.c.g. en Ω relativement à l'e.c.i. en O. Si la vitesse relativement à cet e.c.i. d'un corps(K 𝑖 ) vu depuis O est 𝑣 ⃗ 𝑖 , sa vitesse relativement à l'e.c.g. en Ω est 𝑉 ⃗⃗ + 𝑣 ⃗ 𝑖 . Les opérations de somme, de moyenne, de calcul de la vitesse radiale sont linéaires ; et la vitesse radiale vectorielle moyenne depuis le centre d'une boule d'une population homogène de corps de cette boule allant tous à la même vitesse est, par symétrie, nulle lorsque ces vitesses sont comptées, comme il se doit dans notre raisonnement, du centre vers l'extérieur. Il en résulte, si 𝑟 ≤ 𝜌, que la vitesse radiale moyenne des corps de l'e.c.g. de centre Ω qui sont dans la boule 𝐵(Ω, 𝑟) est la même que celle des corps de l'e.c.i. de centre O qui sont dans la boule B(0, 𝑟).

Dans un univers de Bruno, il existe une constante universelle 𝜌 telle que la vitesse radiale moyenne des corps « vus » dans toute boule de centre galiléen et de rayon 𝑟 < 𝜌 soit strictement positive. La période des rayons émis n'est en général pas la même que celle des rayons reçus : il se produit un effet Doppler.

-Illusion d'expansion

Dans un univers de Bruno, la vitesse des ondes lumineuses est invariablement 𝐶 relativement à la nappe isotrope, mais la vitesse de la nappe isotrope varie relativement à l'e.c.i. de référence. Deux fronts d'onde successifs de la lumière émise, n'étant pas au même lieu au même instant, n'ont donc en général pas la même vitesse à cet instant. Du coup, leur décalage temporel varie le long de leur trajet, ce qui engendre un effet Doppler spécifique.

Dans un univers de Bruno, l'effet Doppler est pour l'essentiel un effet Doppler « en chemin ».

-Cas des distances infinitésimales

Appelons élément d'un rayon lumineux un point historicisé suivant la trajectoire du rayon, à la même vitesse que lui. Cet objet conceptuel nous permet de diviser par la pensée un rayon lumineux, forcément étalé dans le temps en chaque lieu où il passe, en morceaux infiniment brefs successifs, de même que nous divisons une longueur en points infiniment petits successifs.

Définissons aussi le front d'onde, que nous venons par dérogation spéciale d'utiliser sans l'avoir défini. C'est le plan perpendiculaire à la trajectoire passant par un élément donné. Les fronts d'onde nous permettent de comparer la marche de deux éléments au cas où ils ne suivraient pas tout à fait la même trajectoire.

Dans un univers de Bruno, considéré à petite échelle, c'est-à-dire sur de petites étendues -au niveau cosmologique ! -les propriétés cinématiques des corps et de la lumière deviennent indiscernables de celles observées et démontrées dans un univers lorentzien relativiste standard. En conséquence, on a le même effet Doppler aux petites vitesses : si les deux rayons 𝑅 0 et 𝑅 𝜃 émis en M dans la direction de O sont séparés par le très court délai 𝜃, alors l'observateur en O les reçoit dans l'ordre où ils ont été émis, mais séparés par le délai

𝜃 * = 𝜃 (1 + 𝑣 𝐶 ),
où 𝑣 est la vitesse radiale de M à l'instant d'émission dans l'e.c.g. de centre O, positive si M s'éloigne de O, négative sinon. Cette formule suppose que les corps vont à vitesse uniforme, c'est-à-dire à vitesse uniforme relativement à la nappe isotrope. On peut remplacer 𝑣 par la vitesse radiale de O relative à l'espace de centre galiléen en M. La formule est asymptotique, exacte seulement à la limite, -à l'échelle cosmologique, encore une fois. Aussi son écriture mathématique correcte est

𝜃 * = 𝜃 (1 + 𝑣 𝐶 ) + 𝑜(𝑣)

-L'effet Doppler en chemin est multiplicatif

La modification des fréquences de la lumière est en toute rigueur variable dans le temps, puisqu'elle est déterminée par les vitesses de la source, de la nappe isotrope traversée et du récepteur, qui sont elles-mêmes variables.

Mais nous étudions cette modification des fréquences sur des intervalles très courts, et dans des circonstances où les accélérations, celles des corps comme de la nappe isotrope, sont très faibles. Les variations des vitesses de la source, de la nappe isotrope traversée et du récepteur sont en conséquence négligeables. Ces paramètres sont donc considérés comme invariables à l'échelle de temps où nous étudions la situation.

L'effet Doppler sur un parcours AB est le quotient 

-Calcul de l'effet Doppler en chemin

Plaçons-nous dans le cas où l'émetteur M et le récepteur N sont des corps isotropes. Appelons 𝑥 l'abscisse curviligne de N lorsqu'il décrit un rayon lumineux issu de M et 𝐷(𝑥) l'effet Doppler en 𝑥, c'est-à-dire le nombre De ce qu'on voit apparaître dans la formule le nombre 𝑉 𝐶 , il ne faudrait pas conclure que l'effet Doppler en chemin dans un univers de Bruno est tel que 𝜃 ′ < 𝜃 𝑒 1 . Les corps lointains comme la lumière, emportés par la dérive de la nappe isotrope, peuvent aller à des vitesses supérieures à celle de la lumière, et même considérablement supérieures, puisqu'elles tendent en probabilité vers l'infini quand l'éloignement tend vers l'infini. Cependant, relativement à leur nappe isotrope locale, les premiers vont à des vitesses inférieures à 𝐶 et la deuxième, exactement à la vitesse 𝐶.

En croisant ce résultat avec celui démontré dans le précédent chapitre Dans un univers de Bruno, l'effet Doppler le long d'un chemin-lumière de durée 𝑇 obéit à la formule 𝜃 * = 𝜃 exp 𝐻 0 𝑇 .

Si la longueur du chemin-lumière est 𝐷, on a donc 𝜃 * = 𝜃 exp ( 𝐻 0 𝐷 𝐶 ).

-Prise en compte du « bruit » local

Nous avons supposé isotropes les lieux M et O d'émission et de réception de la lumière, en nous fondant sur le principe que l'univers est installé le long de la nappe isotrope. Mais cette propriété n'est qu'approximative, et les corps, sauf miracle, ne vont jamais exactement à la vitesse de la nappe isotrope. Il existe ce que nous avons appelé un « bruit » local.

Effet Doppler à la source. 𝐹 0 quitte à l'instant 0 la source lumineuse M, dont la vitesse relativement à la nappe isotrope est 𝑣 ⃗ 𝑠 , petite devant la vitesse de la lumière puisque l'univers est installé le long de la nappe isotrope. 𝐹 𝜃 quitte M avec un retard 𝜃 sur 𝐹 0 . Il existe donc à tout instant 𝑖 se déroulant sur le corps (O) une plus petite longueur 𝐷 𝑖 de trajet-lumière telle qu'au-delà d'elle on ne voit que des décalages vers le rouge. Tel est bien ce qu'on constate dans l'univers concret qui est le nôtre. En effet, à l'exception de « quelques » galaxies plus ou moins ce proches -le catalogue de la NASA 20 en dénombre tout de même 22 000, sans donner leurs ! distances à nous -, toutes présentent un décalage vers le rouge. Cela montre, selon le paradigme de l'univers de Bruno, que l'effet Doppler en chemin devient rapidement prépondérant sur la composante engendrée par le bruit local, et confirme que ce dernier est bien négligeable quand la distance est suffisamment grande.

-Comparaison avec le formulaire relativiste

En utilisant des « chandelles standard », des objets dont on connaît la magnitude absolue, les astronomes ont réussi à étendre leur connaissance des distances des corps célestes bien au-delà de la petite fraction d'entre eux suffisamment proches pour que leur éloignement puisse être établi par la variation annuelle de leur parallaxe . Ils ont ainsi pu évaluer les distances de galaxies « proches », « modérément lointaines », ou même, plus récemment, « très lointaines » par d'autres moyens que l'effet Doppler.

S'agissant de celles qui sont proches ou modérément lointaines, ce panel de résultats établit l'existence d'une relation de proportionnalité approximative mais indiscutable entre l'éloignement et le décalage Doppler.

La formule de l'effet Doppler ce test puisque, en posant

𝜃 ′ 𝜃 = 1 + 𝑧 , on a, si D est petit, 𝑧 ≈ 𝐻 0 𝐶 𝐷.
Cependant, les galaxies très lointaines n'obéissent plus à cette loi : Pour elles, le 𝑧 continue à croître avec la distance, mais il devient significativement plus grand que 𝐻 0 𝐶 𝐷.

Dans un univers de Bruno, constamment mouvant du fait de la dérive de la nappe isotrope, la notion de distance d'un corps à un autre corps lointain n'est pas aussi simple que dans un univers newtonien. Si au lieu d'utiliser la distance parcourue par la lumière le long de la nappe isotrope nous utilisons la distance relative à un e.c.i. la différence peut être considérable. En effet, en un lieu de l'e.c.i. où la vitesse de la nappe isotrope vaudrait 𝐶 dans une certaine direction, la lumière allant dans la direction opposée ferait du sur-place relativement à l'e.c.i. tandis qu'elle irait évidemment toujours à la vitesse 𝐶 relativement à la nappe isotrope.

Dans un univers considéré comme étant en expansion, les notions de distance ne sont pas simples non plus. On est amené à en définir plusieurs. La distance propre, qui est celle arrêtée à un instant donné (puisque l'univers est considéré comme étant en expansion, il a une histoire, et donc une chronologie globale, qui autorise cette définition) ; la distance comobile, définie comme étant la distance propre au temps actuel ; la distance lumineuse, construite à partir de la luminosité des corps ; la distance Nous emploierons dans cette section et les suivantes le mot « relativiste » comme signifiant « conforme aux théories de la relativité ». angulaire, construite à partir de leur taille angulaire. En raison de cette multiplicité des notions de distance, les astronomes préfèrent utiliser le coefficient 𝑧 de décalage vers le rouge en tant qu'indicateur de distance plutôt que de parler de la distance elle-même. Cela semble parfois tenir de la coquetterie. Ainsi P. A. Oesch, G. Brammer et al., dans leur article relatant leur découverte, en 2016, de la galaxie GN-z11, en 2016, la plus lointaine jamais observée jusque-là [START_REF] Oesch | A remarkably luminous galaxy at z = 11.1 measured with Hubble space telescope[END_REF] , n'en donnent pas la distance, mais disent qu'elle est vue « just ∼400 Myr after the Big Bang », seulement 400 millions d'années après le Big Bang. Sachant que l'âge de l'univers était alors estimé à 13,8 milliards d'années, il n'était pas difficile d'en déduire qu'ils considéraient la distancelumière de cet objet comme égale à 13,8 -0,4 = 13,4 milliards d'annéeslumière.

La construction « centrale » des distances a été faite d'abord en utilisant la méthode des parallaxes, dès qu'on a pu disposer d'instruments de qualité suffisante. C'est encore un travail en cours, avec à présent des télescopes installés sur des satellites artificiels, qui ont permis une augmentation considérable de la précision et du nombre des objets célestes concernés [START_REF]Les satellites Hipparcos et Gaia[END_REF] . Cette méthode reste cependant confinée aux régions « proches » de nous. Pour aller plus loin on utilise des objets calibrés -Céphéides, supernovas de type 1A, etc. -dont on connaît la magnitude absolue, et dont la magnitude apparente permet de déterminer l'éloignement. Le lien entre distance et magnitude dépend de la géométrie attribuée à l'univers, dont on constate qu'elle est suffisamment plate pour qu'on ne puisse pas constater qu'elle ne l'est pas. Aussi cette hypothèse, sans être la seule, tient une place privilégiée.

Dans ce cadre plat, l'interprétation du décalage vers le rouge comme témoignant d'une expansion de l'univers se fait selon les lois de la relativité restreinte. L'effet Doppler pour un corps s'éloignant à la vitesse 𝑣 obéit donc à la formule Compte tenu de l'incertitude qui pèse sur les mesures, la conclusion observationnelle de Riess que l'éclat diminue de 10 à 15 % pour les valeurs élevées de 𝑧 est validée à la perfection par la loi de l'effet Doppler dans un univers de Bruno. L'observation du Ciel lointain infirme la formule 1 + 𝑧 = √ Ainsi, dans un univers de Bruno, bien que l'expansion effective soit nulle, -on observe que les spectres des objets célestes lointains sont décalés vers le rouge, d'une façon d'autant plus intense qu'ils sont éloignés, et donnent donc une illusion d'expansion globale ;

-deux constituants d'une même galaxie n'allant pas à la même vitesse sont associés à des valeurs différentes du bruit local, et produiront des effets Doppler légèrement différents, comme c'est le cas lorsqu'on interprète cet effet comme dépendant uniquement de la vitesse des corps ;

-sauf éventuelles exceptions de plus en plus rares avec l'éloignement, seuls certains corps suffisamment proches de l'observateur offrent un décalage vers le violet ;

-jusqu'à une distance d'environ 2 milliards d'années-lumière, ce décalage obéit à une loi indiscernable de celle de l'effet Doppler relativiste ; -au-delà, la loi 1 + 𝑧 = 𝑒 𝐻 0 𝐷 𝐶 à laquelle il obéit est fidèle à l'observable alors que celle de l'effet Doppler relativiste ne l'est plus. des 13,4 qu'on lui accorde aujourd'hui, soit 2,5 fois plus. Si nous considérons comme exacte la formule brunienne de l'effet Doppler, nous concluons que la formule actuelle engendre une sous-évaluation de la taille de l'univers observable. Cette sous-évaluation ne devient suffisamment importante pour être observable qu'à de très grandes distances À 7 Gal, elle correspond ce qu'on a interprété comme l'accélération de l'expansion de l'univers. Elle n'est que de 15 % à cette distance et correspond à l'observable. Elle se déploie ensuite dans des régions tellement lointaines que nous ne savons mesurer la distance des objets que par l'effet Doppler. Aussi est-elle en l'état actuel des techniques très difficile à observer -mais peut être pas complètement impossible. [. Le lien entre 𝐷 𝑏𝑟𝑢 et 𝐷 𝑒𝑥𝑝 est continu bijectif, ce qui rend les deux représentations topologiquement équivalentes. Selon le paradigme de l'univers en expansion, cette couronne contient un nombre fini de corps et selon celui de l'univers de Bruno, un nombre infini, dont l'extinction ne nous laisse toutefois voir qu'un nombre fini. Plus les corps sont brillants, plus la probabilité qu'ils ne soient pas totalement effacés par l'extinction est forte. Comme les quasars très lumineux -il existe différents types de quasars et nous ne nous intéressons ici qu'au type « très lumineux » -sont de beaucoup les corps les plus lumineux existant dans l'univers, ils sont favorisés : dans la cohorte des corps qui restent visibles en dépit de l'extinction, leur proportion est supérieure à celle qui est la leur dans l'univers synchrone. D'où, selon le paradigme brunien, cette autre illusion, si on croit à la justesse du paradigme de l'expansion, cette autre illusion que les que les quasars sont en proportion plus grande aux confins de l'univers observable, autrement dit étaient plus nombreux quand l'univers était plus jeune.

-Distance à nous de l'univers très lointain

CONCLUSION

Les notions spatiotemporelles sont cruciales en physique. Il n'y a aucune expérience qui ne les fasse intervenir. Selon qu'on les place d'un côté ou de l'autre de la ligne de démarcation entre le réel et l'irréel, on voit changer la figure du monde. Dans un cas, l'univers pourrait être en expansion, dans l'autre c'est une simple illusion d'optique ; dans un cas, il nous faut imaginer une mystérieuse « énergie noire » pour expliquer l'accélération de l'expansion, dans l'autre nous voyons une solution tomber d'elle-même dans notre panier. En bonne philosophie, cette question de la réalité physique des étendues spatiotemporelles est la première de celles qu'on doit se poser lorsqu'on s'intéresse à leur nature et au rôle qu'elles tiennent en physique. Pourtant, elle est aujourd'hui complètement absente du paysage. En témoigne par exemple le livre de Stephen Hawking Une brève histoire du temps, [START_REF] Hawking | Une brève histoire du temps, Flammarion, collection Champs[END_REF] unanimement couvert de louanges, où cette question, à défaut d'être étudiée, n'est ni posée ni même simplement évoquée.

Nous avons dans le premier chapitre de cet ouvrage développé quelques solides raisons de douter de la réalité physique de ce qu'on appelle l'espace et le temps. J'en fais rapidement le tour.

-Ils sont construits avec ces nombres qu'on appelle « réels » mais que leur monstrueuse précision rend inadéquats à une description exacte du réel ─ inadéquation dont on peut se demander si elle n'a pas sa part dans notre difficulté chronique à « comprendre » le monde quantique.

-Le paradigme de la réalité physique des étendues spatiotemporelles contrevient également à ce qu'on appelle le principe du rasoir d'Okham ou le principe d'économie, ou encore de minimalité, de simplicité ou de parcimonie, et qui réclame l'élagage des entités inutiles. Tout le monde s'accorde sur la réalité physique de la règle à mesurer et de l'horloge, et postuler que l'espace et le temps ont eux aussi « en eux-mêmes » une réalité physique est une hypothèse superflue, puisque l'horloge et la règle (et le vérificateur de simultanéité, par exemple l'observateur médian d 'Einstein) construisent des domaines spatiotemporels isomorphes à ceux dont ils évitent de postuler l'existence concrète.

-Corollairement, nous n'avons jamais fait ni ne ferons jamais la moindre expérience sur l'espace ou sur le temps. Nous n'atteignons que des objets et des événements. Les étendues spatiotemporelles considérées comme existant « en elles-mêmes » sont définitivement hors d'atteinte physique et sont donc à proprement parler des entités métaphysiques, ou plutôt des paradigmes chimériques agrégés à notre culture avec une telle ténacité que nous les sentons, les vivons comme des contenants réels du monde, semblables en cela aux Anciens pour qui les sphères de cristal étaient tellement réelles qu'ils en entendaient parfois la musique.

-Ce sont les théories correctes qui expliquent le mieux le réel. Or sur nombre de points le paradigme chosiste est d'une misère patente, au contraire du paradigme de l'irréalité des édifices spatiotemporels. Celui-ci, en effet, donne des explications simples au caractère euclidien de l'espace, à sa tridimensionnalité, à la contraction de Lorentz, au ralentissement du rythme de la matière en mouvement, à la constance de la vitesse de la lumière, à l'impossibilité de la dépasser, à la possible existence de dimensions « enroulées », des explications simples fondées sur des propriétés générales de la matière, son élasticité, sa stabilité, sa nature électromagnétique et ondulatoire, la combinatoire des nombres quantiques qui déterminent les couches électroniques.

-La moisson n'est cependant pas finie, puisqu'on voit s'y ajouter l'existence d'une sphère des fixes, d'un degré zéro de rotation, la fuite apparente des corps célestes lointains et son apparente accélération. Ce n'est plus seulement l'existence « en elles-mêmes » des étendues spatiotemporelles qui dans le cadre chosiste déroge au principe de parcimonie, mais aussi toutes ces propriétés, et cela commence à faire beaucoup. * * * L'affirmation que les étendues spatiotemporelles n'ont pas d'existence physique et ne sont que des constructions que nous posons au moyen de nos instruments sur le réel brut afin de le décrire et de le comprendre, cette affirmation réclame, pour trouver sa pleine solidité, que ces constructions, tant pour les instruments que pour les expériences soient réalisées pas à pas et dans le détail depuis leurs débuts les plus « préhistoriques ». C'est ce que nous avons fait. Ce résultat donne sa pleine légitimité au point de vue nonchosiste en même temps qu'il jette, semble-t-il, une nouvelle pierre dans le jardin chosiste. On ne voit pas très bien, en effet, comment l'espace-temps pourrait à la fois être une construction de notre intelligence nous aidant à comprendre et à ordonner le monde, semblable en cela aux nombres, et en même temps avoir une existence physique préalable à tout raisonnement. * * * La physique newtonienne a vécu, et la place-forte du paradigme chosiste dans la physique d'aujourd'hui est la théorie de la relativité générale. S'il est vrai, comme les points évoqués ci-dessus commencent à en donner de sérieuses indications, que le paradigme non-chosiste est celui qui doit être retenu, nous devrions en corolaire pouvoir dénicher dans cette théorie ce qu'on peut diplomatiquement appeler des « difficultés ». Avant d'en pointer quelques-unes, il est utile d'observer que la relativité restreinte est logiquement déductible de la générale, à la fois comme cas limite et comme cas particulier. Lorsqu'une théorie A est déductible d'une théorie B, les faiblesses de A sont des faiblesses de B. La relativité restreinte est ainsi en position de verrou logique de la relativité générale.

Pointons les difficultés que nous croyons pouvoir constater.

-En affirmant la relativité de l'espace et du temps, autrement dit qu'ils n'ont de sens et d'existence que relativement à un référentiel, la relativité restreinte est de naissance une théorie non-chosiste. Elle bâtit explicitement ses analyses non pas sur un espace et un temps absolus, existant en eux-mêmes, immuables et parfaits, comme ceux de Newton, mais au contraire sur ce que renvoient les instruments : la règle, le vérificateur de simultanéité et l'horloge. Pourtant, à y regarder de plus près, cette fondation sur l'instrument et l'expérience n'est qu'une apparence dictée par la nécessité de se séparer de la mise en place newtonienne : sur les trois instruments invoqués, deux sont correctement définis et reposent sur des lois physiques explicites et basiques, alors que le troisième, l'horloge, est non défini, infiniment petit et ne repose sur aucune loi physique explicite. Le temps qu'elle donne dans ces conditions est un pur objet métaphysique, tout comme celui de Newton, mais logé dans l'infiniment petit au lieu d'avoir pour support l'univers entier -ce qui n'est pas mieux, et même est pire, car l'univers existe tandis que l'infiniment petit n'est qu'une vue de l'esprit.

Comme il est possible à ce niveau d'installer des horloges correctement définies, non réduites à un point infiniment petit, affichant leur mécanisme et les lois de la physique qui assurent leur bon fonctionnement, et qu'en outre cela peut être fait avec deux modèles différents, l'horloge inertielle et l'horloge à lumière, on ne peut que se demander pourquoi Einstein installe un tel faux-semblant d'instrument, et on découvre qu'il ne peut pas faire autrement sans laisser la porte ouverte à ce que deux points distincts d'une même horloge puissent battre indéfiniment à des cycles de longueur différente, créant entre eux un décalage tendant vers l'infini. En quelque théorie que ce soit, cela contredit le concept d'horloge. La relativité restreinte est dans l'incapacité d'installer des horloges correctement définies et utilise à la place des simulacres infiniment petits -qui sont encore une nouvelle espèce de chimères.

-Le principe de relativité affirme que tous les espaces galiléens se croisant en un lieu générique donné sont identiques, comme le sont par exemple les points d'une droite infinie. Aucun repérage absolu de ces espaces n'est alors possible, et les seuls repérages possibles sont ceux, relatifs, contingents, fortuits, que nous pouvons tracer nous-mêmes. Mais c'est un postulat immédiatement battu en brèche -aujourd'hui, et pas du temps d'Einstein -par le rougissement des spectres des corps lointains et l'existence du fond diffus cosmologique, qui opèrent une discrimination absolue, non fortuite, objective, entre les espaces galiléens selon leur plus ou moins grande anisotropie. Le principe de relativité ne peut pas être considéré comme une vérité absolue. Il a ses exceptions et sa marge d'erreur.

-Alors qu'il existe depuis le dix-neuvième siècle une technique permettant de prouver la solidité logique d'une théorie mathématique, celle de sa possible construction dans un cadre mathématique solide, c'est-à-dire in fine dans le cadre de la théorie des ensembles, et que cette technique a par exemple donné leur pleine légitimité aux géométries non-euclidiennes, ni la relativité restreinte ni la générale n'ont encore, plus d'un siècle après leur avènement, et au contraire des géométries non-euclidiennes, fourni de preuve de leur solidité logique. Les mathématiques ne se bornent pas à empiler des gros calculs les uns sur les autres, elles permettent aussi de connaître la fiabilité du cadre dans lequel on les fait. Je ne sais pas si des tentatives ont eu lieu pour établir cette preuve, ni dans quelle mesure les spécialistes de la théorie ont pris -ou plutôt n'ont pas pris -conscience de la nécessité de la fournir pour garantir la solidité de leur travail, toujours estil que l'un et l'autre point semblent être l'objet d'un silence cent pour cent unanime dans la littérature.

La question de la valeur de la théorie est cependant un thème que les spécialistes abordent volontiers, en dressant avec satisfaction des listes des résultats qu'elle prédit correctement. Certes, mais là n'est pas la question. Elle est de savoir si, en gambadant dans la théorie sans se soucier du réel qu'elle est censée représenter, et en démontrant à chaque pas un nouveau théorème, on risque ou non d'en démontrer un qui contredise un de ceux déjà prouvés.

-La preuve de solidité logique pour les théories de la relativité était d'autant plus nécessaire que ce sont des théories fragiles. Dans une théorie où il n'existe qu'une simultanéité, les conditions initiales d'une équation différentielle décrivant l'évolution d'une situation donnée ont pour support le même ensemble d'instants locaux, et l'unicité de la solution en fonction des conditions initiales nous assure qu'il n'y a qu'une solution modulo les changements de référentiel. On ne risque donc pas de voir apparaître deux évolutions qui se contrediraient.

Tandis qu'en relativité restreinte, étant donné une situation caractérisée relativement à (𝐸 0 ) par une équation différentielle dont les conditions initiales sont posées à l'instant 𝑡 = 0, d'une part, en vertu du principe de relativité, il sera légitime de poser que cette situation physique peut être caractérisée relativement à n'importe quel autre référentiel par une équation physique dont les conditions initiales sont posées à un instant 𝑡 ′ = 0, d'autre part, puisque les simultanéités sont différentes d'un référentiel à un autre, les ensembles d'instants locaux supports des conditions initiales ne seront jamais les mêmes. L'unicité des solutions en fonction des conditions initiales nous fournira une infinité d'évolutions distinctes pour lesquelles nous perdons la garantie a priori qu'elles ne se contredisent pas.

-Par malheur, ce qu'on pouvait redouter arrive. Un des modèles basiques d'horloge qu'Einstein aurait pu utiliser est l'horloge inertielle, sous la forme d'un cylindre de révolution homogène globalement immobile relativement à un espace galiléen et tournant librement sur lui-même autour de son axe. L'étude du mouvement d'aller et retour de cette horloge relativement à un espace galiléen sous l'effet d'un choc axial avec une horloge identique réalise une variante du paradoxe des jumeaux de Langevin, mais dans laquelle l'étendue vide séparant les jumeaux est remplacée par la matière élastique du cylindre, dont le principe de relativité joint à la loi de conservation du moment cinétique nous permet d'étudier le comportement. Contrairement à la version standard de l'expérience, qui ne soulève aucune contradiction, et dont le résultat est conforme à l'expérience concrète, cette variante, analysée dans le détail avec le plus grand soin, aboutit à deux résultats contradictoires. Cette contradiction de la relativité restreinte est également une contradiction de la relativité générale. Les deux sont donc, selon le vocabulaire des mathématiciens désignant cet état de fait, « inconsistantes » ou « non consistantes » . * * * Les relativités restreinte et générale ont multiplié, à titre de « preuves » de leur validité, les exemples de bonne adéquation de leurs formulaires au réel. Cela ne répond pas à la question de l'inconsistance, mais À l'heure où j'écris ces lignes, cette démonstration a eu environ 3000 lecteurs, et aucun ne m'a signalé un point discutable. Si tel avait été le cas, ou si j'y avais moimême vu une erreur, je n'aurais évidemment pas eu la stupidité malhonnête de la publier.

doit évidemment être pris en compte. Ces théories, parce qu'elles produisent un grand nombre de résultats corrects, ne peuvent pas être rejetées en bloc. Il faut trouver le point crucial à l'origine de la contradiction et si possible y opérer une modification la faisant disparaître tout en sauvant l'essentiel. L'analyse de l'expérience d'aller et retour montre que parmi les hypothèses de la relativité restreinte le maillon faible est le principe de relativité. En lui retirant sa valeur de principe absolument et universellement vrai, nous faisons coup multiple :

-On peut montrer que la théorie ainsi obtenue est logiquement solide. Le problème de l'inconsistance logique est réparé.

-Nos nous débarrassons d'un principe que la théorie considère à tort, ainsi que nous l'avons vu plus haut, comme toujours parfaitement exact.

-La théorie ainsi obtenue -la non-relativité lorentzienne -est « soeur jumelle » de la relativité restreinte. Elle a exactement la même cinématique lorentzienne et produit largement les mêmes résultats pour les expériences emblématiques par lesquelles on justifie la pertinence de la relativité restreinte.

La non-relativité lorentzienne dispose cependant de degrés de liberté lui permettant un ajustement de ses prédictions plus fin que celui qu'offre la relativité restreinte, rigidifiée qu'elle est par le postulat de la vérité universelle et absolue du principe de relativité. La non-relativité lorentzienne, tout en étant « jumelle » de la relativité restreinte, est donc une théorie meilleure, tant parce qu'elle répare l'erreur de considérer tous les espaces galiléens comme isotropes que par sa solidité mathématique, que par sa souplesse.

La différence décisive entre les deux théories n'est pas à chercher au niveau local, car elles sont alors, comme nous l'avons dit, « jumelles ». Elle apparaît lorsqu'on considère l'univers à grande échelle.

La non-relativité lorentzienne, parce qu'elle définit en tout lieu et à tout instant un espace de centre isotrope, engendre, quand on considère l'univers à grande échelle, le continuum formé par tous ces espaces isotropes locaux, et que nous avons appelé la nappe isotrope. On démontre que dans un univers plat, homogène, isotrope, stable et soumis aux « plus simples lois du hasard » -un univers de Bruno -la cinématique se référant en tout lieu et à tout instant à la nappe isotrope est une cinématique dont les instants et les durées sont universels.

On montre alors qu'un univers de Bruno possède certaines propriétés qui peuvent nous inciter à tempérer la certitude actuelle que l'univers est en expansion.

-Les corps vus à la distance-lumière 𝐷 ont une vitesse radiale d'éloignement en moyenne strictement positive et proportionnelle à 𝐷 (alors que, dans cet univers par définition stable, les corps actuellement à la distance 𝐷 ont une vitesse radiale d'éloignement en moyenne nulle).

-L'effet Doppler se fait pour l'essentiel « en chemin », engendrant un rougissement des spectres des corps lointains finement conforme à l'observable. En particulier, si nous l'interprétons comme témoignant d'une expansion, il donne l'illusion, par simple effet cinématique, que cette expansion s'accélère avec le temps en coïncidence numérique avec les valeurs dégagées par le travail de Riess. La non-relativité lorentzienne aboutit donc au même résultat, sans invoquer quelque « énergie noire » que ce soit, alors que les relativités restreinte ou générale sont dans l'obligation d'installer cet artefact. Nous savons certes que la confirmation expérimentale d'une théorie ne prouve pas sa validité, mais elle en est quand même une agréable vérification.

-L'effet Doppler est moins important que celui donné par la théorie de la relativité et les vitesses des corps, tout en étant majorées par 𝐶 relativement à l'espace de centre isotrope, ne sont pas majorées relativement à l'e.c.i. au centre duquel se tient l'observateur. L'univers très lointain, interprété selon le paradigme de l'expansion, est écrasé dans une couronne de volume fini, tandis que dans un univers de Bruno, il est infini. L'extinction fait que les corps les plus brillants sont surreprésentés. Tel est bien ce qu'on observe avec les quasars.

En outre, l'hypothèse d'un univers en expansion est aujourd'hui en pleine crise. La question de la détermination de la constante de Hubble se heurte en effet à de sérieuses difficultés [START_REF] Sloman | Hubble Tension Headache: Clashing Measurements Make the Universe's Expansion a Lingering Mystery -Researchers hoped new data would resolve the most contentious question in cosmology[END_REF] . Selon qu'on adopte une méthode ou une autre [START_REF] Sandage | Current Problems in the Extragalactic Distance Scale[END_REF] , les résultats divergent, semble-t-il, avec un écart bien supérieur aux incertitudes, un écart tel que la probabilité qu'il soit dû au hasard est inférieure à 0,001 % 28 .

À cette crise est en train de s'en rajouter une autre. Les télescopes spatiaux ont fait de tels progrès qu'on commence à voir les galaxies très lointaines avec une finesse qui permet d'évaluer leur taille et le nombre de leurs étoiles. Ces données permettent à leur tour d'évaluer leur âge, puisque es galaxies grandissent et changent au cours de leur existence. Selon le modèle de l'univers en expansion, les galaxies lointaines sont d'autant plus jeunes qu'on regarde loin. Mais cette prédiction n'est pas réalisée. Très loin de nous, on observe encore des galaxies qui paraissent très anciennes 29 .

Plus le temps passera, meilleurs seront les télescopes, et plus on en verra. La théorie de l'univers en expansion est aujourd'hui condamnée. Certains, peut-être, pour expliquer le phénomène, essaieront d'invoquer un nouvel artefact, une chimère de plus, qui sait, une énergie d'une nouvelle couleur, dorée peut-être, ou peut être rouge à pois blancs. Mais il est peu probable que cela réussisse. Les discordances seront devenues trop massives.

Les télescopes seront les leviers majeurs de cet fin peu glorieuse. Il est vrai que ce sont des outils fantastiques. Mais la philosophie appuyée sur les mathématiques y aura également pris sa part. Ces outils d'une autre espèce sont eux aussi fantastiques : ils permettent parfois, à leur façon, de voir aussi loin ou même plus loin que les meilleurs télescopes.

ANNEXE 1 -LE RACCOURCISSEMENT LORENTZIEN DES LONGUEURS EST EXACTEMENT ADÉQUAT À CE QUE SOIT CONSERVÉE LA STRUCTURE ONDULATOIRE DE LA MATIÈRE

Soit, considéré relativement à un certain espace galiléen isotrope de référence (E 𝑖𝑠 ), qui continuera d'être le seul que nous utiliserons, un système au repos (S) entre certains points duquel la lumière effectue différents cycles qui ont la propriété d'être accordés les uns aux autres. Appelons (S ′ ) ce même système lorsqu'il est animé d'un mouvement de translation uniforme de vitesse 𝑣 ⃗ par rapport à (E 𝑖𝑠 ). Faisons l'hypothèse que (S ′ ) subit alors une contraction longitudinale de rapport √1 - Les durées des cycles composant l'architecture vibratoire de (S) sont toutes multipliées par le même nombre, si bien qu'ils restent accordés les uns aux autres et forment exactement, à un isomorphisme près, la même structure.

isotrope est continûment différentiable. Nous utilisons nos règles synchrones de telle façon que la vitesse de la nappe isotrope soit nulle en leur centre. Si 𝑙 est la longueur de la règle, cette vitesse est donc un 𝑂(𝑙) sur le domaine infinitésimal couvert par la règle. Comme la vitesse de rotation, que nous supposons « raisonnable » est aussi un 𝑂(𝑙), la composée des deux est également un 𝑂(𝑙). Les vitesses par rapport à la nappe isotrope de tous les points de l'intrument sont des 𝑂(𝑙). Elles induisent des déformations lorentziennes relatives -c'est-à dire rapportées à la taille de l'objet -qui sont en 𝑂(𝑙 2 ), autrement dit majorées par un certain 𝐴𝑙 2 . Comme les règles synchrones sont infinitésimales, il n'y a pas d'inconvénient à supposer leurs longueurs majorées par un 𝑙 0 . Sur l'étendue centrée sur la nappe isotrope et universellement bornée qu'elles couvrent, la vitesse de la nappe isotrope par rapport à l'e.c.i. en ce centre admet un majorant universel. Il n'y a aucun inconvénient non plus à supposer les vitesses de rotation de leur partie tournante universellement majorées, si bien que la constante 𝐴 peut être choisie universelle.

Les déformations lorentziennes ne semblent pas être des déformations mécaniques. Elles restent en effet les mêmes quelque soient les caractéristiques de la matière, des plus rigides aux plus souples, des plus denses aux plus légères. Elles ne paraissent pas engendrées par des forces.

Néanmoins, comme ces déformations déplacent de la matière, elles en changent la configuration géométrique. Il se peut qu'elles ne soient pas compatibles les unes avec les autres. Dans ce cas, alors, des déformations mécaniques vont se mettre en place, qui construiront d'elles-mêmes une synthèse physique automatique de ces déformations incompatibles entre elles.

Les disparités des déformations lorentziennes sont doublement infinitésimales.

-D''une part l'instrument étudié est d'étendue infinitésimale, ce qui rend infinitésimales les disparités.

-d'autre part cette étendue est centrée au centre de l'e.c.i., ce qui multiplie la disparité par la petite taille des valeurs des déformations conflictuelles.

Les déformations lorentziennes étant du second ordre relativement à la taille de l'instrument, ces disparités doivent donc être d'ordre supérieur à 2. Une autre façon de raisonner est que ces déformations mécaniques ne peuvent pas être démesurées devant les déformations lorentziennes dont elles gomment les disparités. Elles sont au plus du même ordre de grandeur, donc elles aussi en 𝑂(𝑙 2 ), majorées par un certain B𝑙 2 , qui, défini par rapport à la nappe isotrope selon les mêmes conditions que A ,, peut lui a être choisi universel. En continuant d'appeler A la constante A+B Il existe une constante universelle 𝐴, telle que les déformations relatives d'un instrument de longueur l par rapport à l'espace de centre isotrope en son centre sont en chacun de ses points majorées dans chaque direction par 𝐴𝑙 2 .

Nous pourrions peut-être trouver un meilleur encadrement, mais le bénéfice serait insignifiant, voire négatif en raison de la complexité des calculs.

Soit (Γ) un arc lisse tracé sur (FND), mathématiquement régulier autant qu'il le faudra. Il est rectifiable et sa longueur 𝐷 = 𝑙𝑜𝑛𝑔(Γ) est la limite quand 𝑛 tend vers l'infini de la somme des longueurs d'un nombre infiniment grand 𝑛 de segments infinitésimaux mis bout à bout le long de l'arc à un instant donné de l'e.c.i.

Chacun de ces 𝑛 segments a sur (FND) pour longueur Une bijection entre ensembles de points qui conserve la longueur des arcs est une isométrie.

FD(0) est isométrique à (FND).

Majoration des déformations des angles droits. Soit, gravé dans (FND), un triangle rectangle isocèle MNP de sommet N et de petit côté 𝑎. Ses sommets ont pour images respectives dans (FD(𝑙)) M 𝑙, N 𝑙 et P 𝑙 .

Posons . Cela définit 𝑓 -1 donc également 𝑓 et assure l'identité des deux lois de probabilité.

Posons 𝑦 = 𝑓 -1 (𝑟). On a donc 𝑟 = 𝑓(𝑦). 𝑦 = ( 𝑟 𝑅 ) def somme(liste): """Calcule la somme des termes d'une liste de nombres.""" res = 0 for i in liste: res += i return res def grad_regu(n, premier, pas):

"""Engendre une suite arithmétique de raison "pas". Elle est formée de n termes dont le premier est "premier".""" res = [] for i in range(n): res.append(premier + i * pas) return res def scientif0(nb):

"""Active la notation scientifique de nb, avec 0 décimale.""" return "{:.0e}".format(nb) def scientif3(nb): """Active la notation scientifique de nb avec 3 decimales.""" return "{:.3e}".format(nb) """ tableau est une liste d'ordre 2 forméee de nb_tranches listes de même longueur nb_tours. La procédure renvoie la somme ensembliste des n dernieres listes de tableau. 

A5.2 -Prise en compte du bruit local

Effet Doppler à la source. Sans perte de généralité, fixons pour instant 0 celui en lequel 𝐹 0 quitte la source lumineuse M, dont la vitesse relativement à la nappe isotrope est 𝑣 ⃗ 𝑠 , petite devant la vitesse de la lumière parce que l'univers est installé le long de la nappe isotrope.

Prenons pour espace de référence l'e.c.i. € de centre le lieu isotrope Ω coïncidant avec M à l'instant 0.

Soit N le lieu allant le long de [𝛺𝑥) à la vitesse radiale de la nappe isotrope, et qui coïncide avec M à l'instant 𝜃. La vitesse de N le long de [𝛺𝑥) est 0, à la variation de la vitesse de la nappe isotrope près, qui est ici négligeable devant ‖𝑣 ⃗ 𝑠 ‖. N peut donc être considéré comme étant immobile dans €. Comme N coïncide à l'instant 𝜃 avec M(𝜃) et que 𝐹 𝜃 est émis de M(𝜃) à l'instant 𝜃, 𝐹 𝜃 passe en N à l'instant 𝜃. 

4)

  La matière étendue est donc tridimensionnelle. Soit (E) un « espace » construit autour d'un lieu O, au sens de prolongement virtuel d'un corps mémoforme en O, et M un point de l'« espace », au deuxième sens d'ensemble des positions possibles d'un corps dans le cosmos. Tendons une longue ficelle entre ces deux points, et elle aura une trace déterminée dans l'espace en O. Chaque point M pourra être ainsi décrit par une direction à partir de O dans l'espace tridimensionnel (E) et par une distance, la longueur de ficelle qu'il faut pour l'atteindre. L'« espace » -aux deux sens du motest donc bien tridimensionnel.Cette démonstration -ou plutôt « monstration » -échappe au défaut d'extrapolation hasardeuse d'une loi physique de la dimension 3 vers une autre. Elle met en effet le doigt sur des lois -celles de la combinatoire quantique qui construit les couches électroniques -dont elle justifie qu'elles n'ont pas à être considérées comme liées à une dimension particulière et montre que ces lois construisent un univers tridimensionnel.

  remplacement de (O) par (O ′ ) ajoute à la vitesse d'un corps en M la quantité vectorielle 𝜔 ⃗ ⃗⃗ ∧ OM ⃗⃗⃗⃗⃗⃗⃗ qui, si M n'est pas sur la droite O + ℝ 𝜔 ⃗ ⃗⃗, tend vers l'infini proportionnellement à OM quand la longueur M tend vers l'infini. Cependant, le remplacement de (O) par (O ′ ) tournant sur lui-même n'introduit aucun changement significatif à l'échelle de l'univers, ni même d'une modeste galaxie. Comme les notions de durée et de simultanéité dépendent du comportement physique des instruments dans l'univers entier, qui dépendent eux-mêmes de l'état de l'univers, ce changement n'introduit aucun changement significatif dans les notions de durée et de simultanéité dont est muni l'univers. Deux corps (A) et (B) considérés au même instant lorsque (O) est inchangé sont donc deux corps considérés au même instant lorsque (O) est remplacé par (O ′ ). Puisque les rotations sont des isométries, les distances entre (A) et (B) sont les mêmes que (O) soit remplacé par (O ′ ) ou qu'il ne le soit pas. Ce remplacement ne modifie donc ni la simultanéité, ni les durées, ni les distances, ni les vitesses : il laisse l'univers cinématique intact. Toutes les représentations de l'univers relativement aux espaces engendrés par les corps tournant sur eux-mêmes en un lieu O sont euclidiennes et isométriques. Nous pouvons donc prendre n'importe laquelle, c'est sans importance. En vertu des postulats d'homogénéité et d'isotropie de l'univers :

  Sphère des fixes « synchrone » et sphère des fixes « observée » Nous ne sommes cependant pas au bout de nos peines, car la sphère des fixes découlant du principe cosmologique, la sphère des fixes « synchrone », existe aujourd'hui, à l'instant où nous sommes, et il faudrait que nous soyons assis dans le « fauteuil de Dieu » pour pouvoir l'embrasser du regard. Tandis que celle que nous voyons est faite d'images « fossiles » extraites des sphères des fixes du passé dont la lumière nous parvient avec un retard d'autant plus grand qu'étaient loin de nous les corps qui l'ont émise. Nous ne pouvons comprendre comment se constitue la sphère des fixes observée qu'en postulant certaines propriétés de la propagation de la lumière. Commençons par nous placer ici dans le cas où elle circule à vitesse 𝐶 invariable dans l'espace (E) prolongeant le corps galiléen (O) et à qui nous attribuons pour le coup une pertinence couvrant l'univers entier. La lumière suit alors des trajectoires qui sont des droites allant des corps à l'instant d'émission jusqu'à O.

  Soit P le point où le corps, actuellement en M, est vu. un théorème classique, l'ensemble des points P est la sphère de diamètre [UV], où U et V sont les points qui divisent [OM] dans le rapport 𝑣 𝐶 . La division (O, M, U, V) est harmonique et les points de contact des tangentes menées depuis O à cette sphère sont dans le plan perpendiculaire en M à (OM). Un point P 1 séparant l'ensemble « rouge » où l'on voit le corps s'éloigner de celui « bleu » où on le voit se rapprocher est tel que l'angle OP 1 M ̂ soit droit. Ce point est donc sur la sphère de diamètre [OM]. Pour un même point M, nous pouvons construire la sphère des points P pour différentes valeurs de 𝑘 = 𝑣 𝐶 . Nous pouvons aussi faire varier la distance 𝐷 = 𝑂𝑀 en faisant glisser le point M sur la droite (OM). Comme pour un 𝑘 donné la division (O, M, U, V), qui détermine la figure, est transformée en une division harmonique homothétique, la figure obtenue, pour ce 𝐷 et ce 𝑘, est homothétique à la figure initiale. Nous pouvons enfin faire tourner autour de O la configuration précédente, de toutes les façons possibles.

  La flèche du temps n'a pas d'existence « en elle-même ». Elle n'est rien d'autre que l'expression macroscopique du lien causal. Mathématisons cet ordre chronologique global. L'histoire de chaque point historicisé M se déroule dans un temps séquentiel, non mesuré, qui est son ordre chronologique personnel. Mathématiquement parlant, son histoire personnelle est un ensemble ordonné par une relation d'ordre total < M : étant donné deux instants personnels 𝑖 M et 𝑖 M ′ de M, on a toujours 𝑖 M < M 𝑖 M ′ ou bien 𝑖 M = 𝑖 M ′ ou bien 𝑖 M > M 𝑖 M ′ . Les ordres chronologiques personnels se prolongent à l'ensemble des points historicisés en un ordre chronologique global, ou tout simplement un ordre chronologique. L'opération peut se faire en deux temps. On définit d'abord l'antériorité directe : deux instants locaux 𝑖 et 𝑖 ′ sont le premier directement antérieur au second s'il existe un point historicisé M dont un des instants personnels 𝑖 M appartient à 𝑖 et un autre instant personnel 𝑖 M ′ appartient à 𝑖', avec 𝑖 M strictement antérieur à 𝑖 M ′ dans l'histoire de M. Puis on définit l'antériorité dans sa forme générale : deux instants locaux 𝑖 et 𝑖' sont tels que 𝑖 est antérieur à 𝑖' s'il existe une suite 𝑖 1 , 𝑖 2 , …, 𝑖 𝑛 d'instant locaux telle que chacun d'eux soit directement antérieur à son successeur, que 𝑖 1 = 𝑖 et que 𝑖 𝑛 = 𝑖 ′ . Cet ordre chronologique global n'est évidemment pas total : deux instants locaux 𝑖 et 𝑗 peuvent être tels qu'aucun des deux ne soit antérieur à l'autre.

Axiome NP2 :

 NP2 La relation de coïncidence, définie parmi les instants personnels des points historicisés, est une relation d'équivalence dont les classes d'équivalence sont les instants locaux. La deuxième expérience associée au point historicisé est le repérage de l'ordre chronologique. Un instant local i1 est directement antérieur à un instant local i2 s'il existe un point historicisé M ayant dans son histoire personnelle un instant 𝑖 M,1 appartenant à 𝑖 1 et un instant 𝑖 M,2 appartenant à 𝑖 2 , tels que 𝑖 M,1 soit antérieur à 𝑖 M,2 .

  Si nous refusons d'admettre que certaines régions du cosmos sont définitivement hors de toute atteinte géométrique, nous devons modéliser les espaces galiléens comme étant aussi vastes que lui.Axiome Mém5 : Soit (E) un espace galiléen. Tout point historicisé, à tout instant de sa chronologie, coïncide avec un point de (E). On dit que deux corps mémoformes (K) et (K′) sont superposables… a) Premier essai : lorsqu'il existe un moment ℳ au cours duquel ils sont superposés. Mais cette définition n'est pas suffisante puisque deux corps mémoformes peuvent être superposables sans jamais être superposés. b) Deuxième essai : lorsqu'il existe un corps mémoforme (L) et deux moments ℳ et ℳ ′ tels que (L) soit superposé à (K) durant ℳ et à (K') durant ℳ ′ . Cette définition n'est pas suffisante elle non plus puisque (K) et (K′) peuvent n'avoir chacun dans toute son existence qu'un seul moment de repos galiléen, et ces deux moments ℳ et ℳ ′ peuvent être tels qu'aucun corps mémoforme (L) n'est assez rapide pour aller de l'un à l'autre. c) Troisième essai : lorsqu'il existe deux corps mémoformes (L) et (L') et trois moments ℳ, ℳ ′ et ℳ ′′ tels que (L) soit superposé à (K) durant ℳ, (L') à (K') durant ℳ ′ , et (L) à (L′) durant ℳ ′′ . Cette définition fonctionne puisqu'elle laisse autant de temps qu'il le faudra (dans le futur ou dans le passé) pour réaliser l'expérience de superposition durable entre (L) et (L'). La tentative b) n'en est d'ailleurs qu'un cas particulier, obtenu en identifiant (L') à (K′), de même que a) est un cas particulier de b), obtenu en identifiant (L) à (K′). Donc : deux corps mémoformes (K) et (K') sont superposables s'il existe deux corps mémoformes (L) et (L') qui leur sont superposés chacun à un certain moment, et qui sont superposés l'un à l'autre à un troisième moment. Axiome Mém6 : La relation « être superposable » est une relation d'équivalence parmi les corps mémoformes.

  A et B sont deux points de (E) appartenant au domaine parcouru par (C), et tels que la droite (AB) soit parallèle à son axe. Deux événements 𝑒 A et 𝑒 B se déroulant l'un en A et l'autre en B sont simultanés si c'est la même génératrice (G) qui traverse A et B lorsqu'ils se produisent. Il y a un petit problème auquel il faut remédier : ces événements pourraient être non simultanés mais décalés d'un nombre entier de tours. Une solution est d'étalonner cet instrument grâce à un observateur faisant le trajet AB en comptant le nombre 𝑥 de tours qu'effectue devant lui la génératrice. Arrivé en B il sait que l'instant en B simultané à celui où il a quitté A est celui où la génératrice en B était 𝑥 tours en arrière de sa position actuelle.

  La simultanéité inertielle tournante relativement à (E) est une relation d'équivalence parmi les instants locaux. Elle définit donc des classes d'équivalence appelées instants relatifs à (E).Deux lignes polygonales joignant deux points A et B d'un même espace galiléen transportent la même simultanéité entre A et B.

  Soit A et B deux points de (E), 𝑖 A et 𝑗 A deux instants locaux se déroulant en A, 𝑖 B et jB deux instants locaux se déroulant en B. Nous disons que les durées 𝑖 A 𝑗 A et 𝑖 B 𝑗 B sont égales lorsque a) 𝑖 A et 𝑗 A sont rangés dans le même ordre que 𝑖 B et 𝑗 B ; b) la distance ─ définie dans la géométrie de (E ′ ) ─ entre les points de (E ′ ) qui coïncident avec A lors des instants 𝑖 A et 𝑗 A est égale à celle entre les points de (E ′ ) qui coïncident avec B lors des instants 𝑖 B et 𝑗 B .Il est immédiat que l'égalité des durées est une relation d'équivalence entre couples d'instants locaux se déroulant en des mêmes lieux de (E). On appelle durées relatives à (E) ses classes. Axiome Chron3 : L'égalité des durées relatives à (E) est indépendante de l'espace galiléen (E ′ ) servant d'horloge.

  Axiome Chron9 : Lorsque les axes des 𝑥 et des 𝑥 ′ sont orientés en sens inverse l'un de l'autre et que les origines des durées de (E) et de (E′) sont l'instant local où les origines spatiales se croisent, la partie longitudinale du changement de coordonnées est involutive. Le problème est donc ramené à la recherche d'une matrice ( 𝑎 𝑐 𝑏 𝑑 ) involutive, c'est-à-dire dont le carré vaut l'identité, engendrant les formules 𝑥 ′ = 𝑎𝑥 + 𝑐𝑡 et 𝑡 ′ = 𝑏𝑥 + 𝑑𝑡. Le choix d'orienter en sens inverse les axes des 𝑥 et des 𝑥 ′ fait que 𝑎 est strictement négatif. Dans un référentiel comme dans l'autre, le temps coule dans le sens du lien causal, qui est le même dans les deux. 𝑑 est donc strictement positif. En faisant 𝑥 ′ = 0, on a 𝑥 = -𝑐 𝑎 𝑡. Le nombre -𝑐 𝑎 est par conséquent la vitesse 𝑣 dans RG de l'origine de RG′, non nulle. On en tire que 𝑐 = -𝑎𝑣. Si 𝑏 = 0, on montre que 𝑥 ′ = -𝑥 + 𝑣𝑡 et 𝑡 ′ = 𝑡. C'est la transformation de Galilée. Si 𝑏 n'est pas nul, l'analyse dimensionnelle montre que | 𝑏 𝑐 | est homogène à l'inverse du carré d'une vitesse. On note 1 𝐶 sa racine carrée. Deux cas se présentent. Si 𝑏 et 𝑐 sont de signes contraires, on aboutit à la transformation de Lorentz, dont les formules sont (avec un axe des 𝑥 ′ orienté en sens inverse de la présentation traditionnelle) Si b et c sont de même signe, on aboutit à une transformation de troisième espèce, dont les formules sont

L

  'horloge inertielle L'horloge à lumière Parfaitement définie. Parfaitement définie. Dimensions non nulles. Dimensions non nulles. Modélise un objet d'existence possible.Modélise un objet d'existence possible. Fondée sur une loi de base de la physique, l'uniformité des mouvements inertiels.Fondée sur une loi de base de la physique, l'invariabilité des propriétés de la lumière dans un contexte invariable. même à chacune des deux extrémités de sa course, ou que le nombre de fois qu'on retourne un sablier est le même pour chacune de ses deux fioles, ou que le nombre de fois qu'une aiguille fait le tour d'un cadran est le même en tout point du cadran. Ce « le même » doit être précisé puisqu'aucun observateur n'a le don d'ubiquité et ne peut être à la fois en deux lieux M et M' d'une horloge (H) ayant une expansion spatiale non nulle. Une solution est de faire faire régulièrement la navette entre M et M' à un observateur, qui observe ainsi alternativement les nombres 𝑛 et 𝑛' de cycles effectués par l'horloge en ces lieux. Si on fait tendre le temps d'observation vers l'infini, les durées des trajets de M à M' deviennent négligeables (car on peut supposer la durée des allers et retours bornée, qu'elle soit mesurée en M ou en M'). Nous disons que 𝑛 et 𝑛' sont « les mêmes » si leur différence reste bornée quand 𝑛 ou 𝑛' tendent vers l'infini. Cette horloge étendue parcourue par des cycles réguliers, posons-la sur le plateau tournant à vitesse uniforme qu'utilise Einstein dans la Relativité, et observons-la. Du point de vue de la modélisation, un « observateur » est un point historicisé.

  mouvement. Cela revient au même puisque dW = F ⃗⃗ . dM ⃗⃗⃗⃗⃗⃗⃗ = dp ⃗ ⃗⃗ dt . dM ⃗⃗⃗⃗⃗⃗⃗ = dp ⃗⃗. dM ⃗⃗⃗⃗⃗⃗⃗ dt = dp ⃗⃗. v ⃗⃗.

2 𝛾 1 √1

 21 𝑇 relativement à RG ; sur le trajet retour, il en est de même, en remplaçant RG′ par RG′′ : lorsque les deux horloges se retrouvent, si celle qui a fait l'aller et retour a compté une durée 𝜏, celle qui est restée immobile a compté une durée 𝛾 τ. Si, pour continuer la métaphore, les horloges sont les muscles cardiaques des jumeaux, celui du jumeau qui a fait Transformation de Lorentz de (E') vers (E) :Dans ces formules, γ est le coefficient « relativiste »

(

  G) est une génératrice de (C), définitivement tracéedisons « gravée »sur lui.(E) est un autre espace galiléen, relativement auquel (C) est animé d'un mouvement uniforme global de translation colinéaire à son axe (D). Cet axe est donc globalement fixe à la fois dans (E) et dans (E 0 ), comme l'est le support commun des axes des 𝑥 et des 𝑥 ′ dans la présentation traditionnelle de la transformation de Lorentz.(G) rencontre un plan fixe (P) de (E), perpendiculaire à (D), en un point N qui joue le rôle du premier jumeau. Le rôle du deuxième est tenu par le point M, qui est fixe -« gravé » lui aussisur (G). La vitesse globale de translation de (C) relativement à (E) est 𝑣, et sa vitesse intrinsèque de rotation, c'est-à-dire celle observée dans (E 0 ), est 𝜔.On appelle génératrice de (C) l'ensemble des points de sa surface qui, au début de l'expérience, lorsque le mouvement de (C) est uniforme dans toutes ses composantes, et qu'on l'observe dans l'espace galiléen (E0) où il est globalement immobile, appartiennent à une même droite parallèle à son axe. Une génératrice est « gravée » ou « peinte » sur (C) : lorsque, dans un deuxième temps de l'expérience, (C) sera soumis à une action, il se déformera, puisqu'aucun corps n'est infiniment rigide, et (G) se déformera donc en même temps que lui.Lorsqu'un objet peut être considéré comme immobile (ou globalement immobile, s'il tourne sur lui-même) relativement à un espace galiléen donné, ses caractéristiques relativement à cet espace sont qualifiées d'intrinsèques ; par rapport à un autre espace galiléen, d'extrinsèques.La vitesse intrinsèque de rotation de (C) est donc celle observée depuis (E0).Un cylindre (C′) identique à (C), au mouvement uniforme dans toutes ses composantes, tournant lui aussi autour de (D) à la vitesse intrinsèque de rotation 𝜔, avance à la rencontre de (C).L'expérience, qui est décrite relativement à (E), commence à l'instant 𝑖 de (E) où le point M croise le plan (P) dans le sens « aller », et coïncide alors instantanément avec le point N.Les points M et N sont donc parfaitement définis, et leur définition ne changera pas. On prendra garde à ce que N n'est pas défini comme la projection orthogonale, dans l'espace galiléen (E0) ou dans un autre, du point M sur (P). Cette définition erronée invoque la simultanéité de cet espace, ce qui n'est pas le cas de celle qui a été choisie. Elle coupe d'autre part le lien matériel continu entre M et N, qui est crucial.Contrairement à ce que montre cette figure, quand le mouvement de (C) est uniforme par rapport à (E), ses génératrices (G), décrites dans (E), sont à tout instant non pas des droites, mais des hélices régulières (voir plus loin).

  Comme (C) ne franchit pas entièrement (P), le point N existe tout au long de l'intervalle [𝑖, 𝑗] que dure l'expérience, au terme de laquelle M a tourné de 𝑚 tours autour de (D) et N de 𝑛 tours. L'inversion du sens du mouvement de (C) ne peut être immédiate, puisque les actions se propagent à vitesse finie. (C) se déforme et ses sections ne vont plus toutes à la même vitesse relativement à (E). Ainsi, juste après le choc, celles qui sont proches du point d'impact sont déjà reparties en arrière tandis que celles qui en sont loin vont encore vers l'avant. En effet la On appelle section de (C) son intersection par un plan perpendiculaire à son axe. Les sections, comme les génératrices, sont « gravées » sur (C).

  section de tête (S t ) vient d'être heurtée par (C′) dont la vitesse relative à (E) est supérieure à celle de (C).

  axiale à lui administrer pour l'amener à la vitesse 𝑣 n'est pas la même que celle à exercer sur (∆).

Les

  𝑜(𝑥', 𝑡') étant des 𝑜(𝑥, 𝑡), cela équivaut à : { 𝑦 = 𝑅 cos [𝜏 𝛾(𝑥 -𝑣 𝑡) + 𝜔 𝛾 (𝑡 -𝑣 𝑥 𝐶 2 )] + 𝑜(𝑥, 𝑡) 𝑧 = 𝑅 sin [𝜏 𝛾(𝑥 -𝑣 𝑡) + 𝜔 𝛾 (𝑡 -𝑣 𝑥 𝐶 2 )] + 𝑜(𝑥, 𝑡) Transformation de Lorentz de (E) vers (ES) : 𝑥′ = 𝛾(𝑥 -𝑣 𝑡)

12. 5 . 1 ─

 51 Condition suffisante pour que deux anneaux en interaction n'exercent aucun couple l'un sur l'autre Soit (A) et (A′) deux anneaux élastiques identiques d'axe (D), minces dans leur longueur comme dans leur épaisseur, et tournant sur euxmêmes à la même vitesse intrinsèque de rotation 𝜔. Ils n'ont ni l'un ni l'autre de torsion mécanique.

  des deux anneaux vaut 𝜔 au début du choc ; mais cette valeur n'est a priori pas conservée durant le choc : en effet, le moment cinétique 𝜇 des anneaux reste invariable, mais leurs défor-mations temporaires font varier leur moment d'inertie intrinsèque 𝐽, et donc leur vitesse intrinsèque de rotation 𝜇 𝐽 .

.

  Comme les fonctions 𝜔 𝑀 (𝑡) et 𝜔 𝑁 (𝑡) sont continues et que la seconde est presque partout strictement supérieure à la première, 𝑛 > 𝑚. D'autre part, M et N coïncident aux instants 𝑖 et 𝑗. La différence des nombres de tours qu'ils font est donc un entier. 𝑛 -𝑚 est un entier strictement positif.

  n'avons cependant rien fait d'autre que de « marquer » un espace galiléen particulier (E 𝑖𝑠 ), et d'ajouter au vocabulaire de la théorie le mot « objectif » (ou « physique », qui en est dans ce contexte un synonyme), dont la signification formelle est : relatif à (E 𝑖𝑠 ). Tout en étant, physiquement, une boule sphérique. C'est une boule sphérique parfaite placée en situation d'anisotropie.

  Einstein, dans un article de 1946 intitulé Une démonstration élémentaire de l'équivalence entre masse et énergie, en donne une preuve d'une grande élégance. Un corps (B) au repos galiléen reçoit deux « complexes de rayonnement » (S) et (S ′ ) identiques. La quantité de mouvement du système, évaluée dans l'espace galiléen (E) où (B) est immobile, est par raison de symétrie constamment nulle. Elle est donc la même avant et après l'absorption.Un objet lorentzien est un objet ondulatoire dont les états stables sont synchronisés par des interactions allant à la vitesse de la lumière.Cette même expérience est considérée depuis un espace galiléen (E′) animé relativement au premier d'un mouvement de translation de vitesse -𝑣 ⃗ parallèle au plan « horizontal » de symétrie de la figure :Dans ce nouveau référentiel, la quantité de mouvement du système doit également rester invariante. Selon un résultat établi par Maxwell, lorsqu'une radiation électromagnétique transporte une énergie E, autrement dit cèdera à son récepteur une énergie E, elle a pour quantité de mouvement que chacun des deux complexes de radiation transporte, définie relativement à (E). La quantité de mouvement de chacun d'eux est donc, relativement à (E), 𝐸 2 𝐶 . Le cas étudié est celui où 𝑣 tend vers zéro, si bien que les quantités de mouvement de (S) et de (S′) relativement à (E′) ont sensiblement cette même valeur 𝐸 2 𝐶 ; plus précisément, elles ont une valeur qui tend vers 𝐸 2 𝐶 quand 𝑣 tend vers zéro. D'après la loi d'aberration de la lumière établie par Bradley, l'angle α d'arrivée de la lumière sur (B), évalué dans (E′), vaut en première approximation 𝑣 𝐶 , de même que son sinus, puisque 𝑣 est petit devant C. La quantité de mouvement relative à (E′) que les deux complexes de rayonnement cèdent à (B) lors de leur absorption est donc équivalente, quand v est voisin de zéro, laisse invariante la vitesse de (B) relativement à (E), et par conséquent invariante aussi relativement à (E′). Elle fait disparaître les complexes de rayonnement, et avec eux leur quantité de mouvement. La quantité de mouvement de (B) relativement à (E′) augmente donc de 𝐸 𝑣 𝐶 2 . Comme sa vitesse ne change pas, c'est sa masse qui augmente, passant de 𝑀 à 𝑀 + 𝑚 tel que 𝑚𝑣 = 𝐸 𝑣 𝐶 2 . On en déduit que E = m C 2 .

1 𝑛 2

 12 ), où 𝑛 est l'indice de réfraction du liquide. En revanche, ce résultat coïncide au deuxième ordre près, quand 𝑣 est petit devant 𝑤 ─ ce qui est le cas dans l'expérience ─ avec celui qu'engendre la loi lorentzienne einsteinienne de composition des vitesses. On a en effet

.

  𝛼 𝑝, où 𝑝 est la pression et 𝛼 une constante dépendant du gaz. Si 𝐿 est une longueur, on en tire que Comme le nombre 𝐿𝑝 est proportionnel au nombre 𝑁 de molécules Expérience faite par exemple par Albert Pérard en 1925.qu'un rayon lumineux rencontre sur un trajet de longueur 𝐿 dans le gaz, on peut écrire que , où 𝜏 est une durée dépendant du gaz.Ainsi, le temps 𝐿 𝑤 que met la lumière à traverser la longueur L de gaz est la somme de deux durées : d'une part celle que mettrait la lumière si elle faisait ce trajet à la vitesse 𝐶, d'autre part une durée qui est proportionnelle au nombre de molécules qu'elle rencontre. L'interprétation en paraît évidente : chacune de ces rencontres la retarde, en moyenne, d'une même durée 𝜏 par rapport au temps que prendrait la traversée à la vitesse 𝐶 de l'espace occupé par la molécule.Les molécules donnent de fortes apparences d'être largement les mêmes à l'état liquide ou gazeux, aussi on peut postuler que cette loi physique reste vraie quand le gaz est remplacé par un liquide.Pour franchir une longueur 𝐿 de liquide au repos, la lumière met donc un temps égal à 𝐿 𝑤 = 𝐿 𝐶 + 𝑁 𝜏, où 𝑁 est le nombre de molécules qu'elle traverse, et τ le retard que lui fait prendre chaque molécule traversée par rapport au temps qu'elle mettrait à la traverser si elle n'était pas là. Pour prendre une image schématique, la lumière progresse comme le long d'une corde à noeuds : elle parcourt chaque intervalle entre les centres de deux noeuds successifs à la vitesse 𝐶, cependant qu'en chaque noeud il se produit une interaction physique qui la retarde d'une certaine durée 𝜏. Imaginons maintenant que la corde à noeuds aille à la vitesse 𝑣 relativement au laboratoire. Puisque 𝑣 est petit devant 𝐶, nous raisonnerons au premier ordre en 𝑣 𝐶 . Soit 𝑑 la distance entre deux noeuds. Lorsque la lumière parcourt une longueur 𝐿 de corde en mouvement, elle croise 𝑁 noeuds et franchit 𝑁 -1 intervalles, avec N très grand, si bien que 𝑑 = 𝐿 𝑁 . Le temps que met la lumière à franchir un intervalle est 𝐿 𝑁(𝐶-𝑣) ; et la distance qu'elle parcourt dans le laboratoire pendant ce temps est 𝐿 𝐶 𝑁(𝐶-𝑣). Lors de l'interaction immédiatement successive, dont la durée est au premier ordre τ, comme le noeud avance à la vitesse 𝑣, la lumière parcourt la distance 𝑣𝜏.La vitesse de la lumière progressant dans le liquide en mouvement est donc, relativement au laboratoire,

  Alignement isosimultané. Lorsqu'on fait tendre 𝑛 vers l'infini, le diamètre des règles synchrones raccordées les unes aux autres tend vers zéro, mais les directions issues de l'axe et s'appuyant sur les génératrices immobiles ou tournantes continuent évidemment d'exister et sont une des productions utiles de l'instrument. Nous fabriquons ainsi un alignement isosimultané. Nous pouvons le représenter par exemple par des drapeaux plans collés à l'axe, l'un immobile dans l'e.c.i., l'autre tournant à vitesse uniforme autour de lui. Leur croisement définit en tout lieu de l'axe la simultanéité rendue par l'instrument.L'énoncé qui suit n'est rien d'autre qu'une formulation en termes différents du résultat qui vient d'être obtenu.Les déformations lorentziennes des alignements de règles synchrones infinitésimales sont nulles.La majoration des déformations n'a pas été inutile. Imaginons qu'au lieu d'avoir des déformations relatives en 𝐴𝑙 2 , elles aient été en 𝐵√𝑙. L'un et l'autre cas relèvent du traitement avec 𝜀 fait en annexe.Dans le deuxième, la longueur de 𝑛 règles est dans lde la convergence vers 0 des déformations ne suffit pas pour conclure à l'absence de déformation des alignements isosimultanés. Encore faut-il que cette convergence se fasse suffisamment vite. L'étude faite en annexe n'est donc pas inutile.

  Dans ce résultat deux alignements isosimultanés successifs et alignés raccordés l'un à l'autre sont évidemment comptés comme un seul. Si deux instant locaux 𝑖 et 𝑗 sont reliés par un alignement isosimultané [[𝑖𝑗]], ils le sont par un deuxième : [[𝑗𝑖]]. Les alignements [[𝑖𝑗]] et [[ 𝑗𝑖]] sont identiques.

  [𝑖, 𝑗], l'horloge tourne d'une durée non nulle. Il n'existe donc aucun alignement simultané allant de 𝑖 à 𝑗. Les classes d'équivalence d'un instant local modulo la relation d'isosimultanéité ne sont en conséquence ni égales à l'espace-temps en entier ni réduites à un seul élément : ce n'est pas une relation d'équivalence triviale. Soit (LT) une ligne de temps et I un instant isotrope. Appelons (E) l'e.c.i. dont (LT) est le centre. Une horloge inertielle accompagnant (LT) déroule ses instants de l'alpha du temps à son oméga en bijection avec le mouvement de sa partie tournante. En vertu du théorème de la valeur intermédiaire, elle passe nécessairement par la position qui caractérise I, autrement dit traverse le représentant local de I. Comme cette horloge décrit (LT), I admet un représentant sur (LT). S'il n'était pas unique, il y aurait deux instants locaux isosimultanés distincts sur une même ligne de temps, ce qui est impsossible. Tout instant isotrope admet un représentant et un seul sur chaque ligne de temps.Si deux instants locaux vérifient les deux relations d'équivalence « Se dérouler en un même lieu isotrope » et « appartenir à un même instant isotrope », ils sont égaux.Tout instant local est ainsi caractérisé de façon unique par les deux classes auxquelles il appartient, et un couple (lieu isotrope, instant isotrope) désigne toujours un instant local.

  Recette pour construire un cube isosimultané. Étant donné un instant local 𝑖, tracer trois alignements isosimultanés de même longueur [𝑖𝑗], [𝑖𝑘] et [𝑖𝑙] perpendiculaires deux à deux. Soit 𝑒, 𝑓 et 𝑔 les milieux respectifs de [𝑗𝑘], [𝑘𝑙] et [𝑙𝑗]. Tracer les alignements [𝑖𝑒], [𝑖𝑓] et [𝑖𝑔] et les prolonger depuis 𝑖 jusqu'à doubler leur longueur. On obtient ainsi les instants locaux 𝑚, 𝑛 et 𝑜. Tracer de même le symétrique 𝑝 de 𝑗 par rapport au milieu de [𝑚𝑜]. La figure (𝑖𝑗𝑜𝑙𝑘𝑚𝑝𝑛) est un cube isosimultané. Pavage isosimultané En tout instant local 𝑖 que traverse un point historicisé M, nous pouvons installer un tel cube isosimultané orienté à notre guise. Ce cube n'a d'existence qu'en l'instant isotrope dont 𝑖 est un représentant local. Mais nous pouvons le rendre pérenne par rapport à M en le renouvelant constamment, de telle façon que ses sommets suivent des trajectoires continues. Ce n'est jamais le même cube, et pourtant, nous pouvons le traiter comme étant toujours le même, accompagnant M dans sa trajectoire.

Si

  𝑖 et 𝑗 sont deux instants locaux isosimultanés et 𝛼 et 𝛽 deux points de la sphère des fixes synchrone, les demi-droites isosimultanées [𝑖𝛼) et [𝑗𝛼) sont tracées l'une et l'autre dans tout e.c.i. et pointent vers le même point à l'infini. Elles sont donc parallèles, et de même les demi-droites [𝑖𝛽) et [𝑗𝛽). Les angles 𝛼𝑖𝛽 ̂ et 𝛼𝑗𝛽 ̂ sont donc égaux.
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 4 Vitesse de la lumièreConformément aux postulats d'homogénéité spatiale et temporelle, la vitesse de la lumière est partout et toujours 𝐶 relativement à l'e.c.i.La lumière circule à la vitesse C le long de la nappe isotrope.DoncRelativement à l'e.c.i.p (E) de centre O, la vitesse de la lumière en un point M est 𝑉 ⃗⃗ = 𝐶 ⃗ + 𝑣 ⃗, où 𝐶 ⃗ est la vitesse de la lumière en M relativement à l'e.c.i. en M, et 𝑣 ⃗ la vitesse de cet e.c.i. relativement à (E).Relativement à un e.c.i. de centre O considéré à grande échelle, la vitesse de la lumière en un point M n'est constante ni en module ni en direction. Son module tend en probabilité vers l'infini quand OM tend vers l'infini.Dans le cadre plat sans dérive, le postulat de la propagation de la lumière en ligne droite et à vitesse uniforme équivaut à celui que son accélération physique est nulle. Conservons, sous cette forme, ce postulat.La vitesse vectorielle d'un rayon lumineux est invariablement la même relativement aux e.c.i. qu'il croise. Relativement à chacun d'eux, il pointe donc, en leur centre, vers le même point de la sphère des fixes synchrone.La dérive de la nappe isotrope fait que cette propriété se perd hors de ce contexte. Cependant, il en demeure ceci : Le vecteur 𝐶 ⃗ donnant la vitesse d'un rayon lumineux dans la formule 𝑉 ⃗⃗ = 𝐶 ⃗ + 𝑣 ⃗ 𝑖𝑠 est pour un rayon donné le même à chaque instant relativement à un e.c.i. donné.Étant donné un lieu isotrope O, nous pouvons tirer au hasard avec une probabilité uniforme un lieu M dans la boule de centre O et de rayon R. La vitesse de la nappe isotrope en M est alors définie. Répétant cette expérience une « infinité » de fois, nous pouvons calculer la moyenne de ces vitesses. En vertu de l'hypothèse de stabilité d'un univers de Bruno, elle est nulle. Elle est donc indépendante de 𝑅. L'écart type de ces vitesses, en revanche, dépend de 𝑅.La vitesse moyenne de la nappe isotrope en un lieu d'un e.c.i. est nulle.Soit M 1 et M 2 deux points sur un même corps céleste lointain, d'où partent deux rayons lumineux qui arriveront au même instant 𝑇 en un lieu éloigné O.

P 1 (

 1 𝑡)P 2 (𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = M 1 M 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ + (𝐶 ⃗⃗⃗ 2 -𝐶 ⃗⃗⃗ 1 ) 𝑡 + ∫ (𝑣 ⃗ ⃗⃗ 𝑖𝑠 (P 2 (𝜏)) -𝑣 ⃗ ⃗⃗ 𝑖𝑠 (P 1 (𝜏))) 𝑡 0 𝑑𝜏 Le passage des rayons lumineux n'affecte pas la vitesse de la nappe isotrope là où ils passent, ni ne sélectionne une vitesse particulière de la nappe isotrope : 𝑣 ⃗ 𝑖𝑠 (P 2 (𝑡)) -𝑣 ⃗ 𝑖𝑠 (P 1 (𝑡)) est d'espérance nulle, et cet écart est en moyenne M 1 M 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ + (𝐶 ⃗ 2 -𝐶 ⃗ 1 )𝑡. Cette dernière quantité est affine, nulle quand 𝑡 vaut la durée 𝑇 du parcours de la lumière, égale à M 1 M 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ quand 𝑡 vaut 0. Elle vaut donc 𝑇-𝑡 𝑇 M 1 M 2 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ , c'est-à-dire la même chose que lorsque la dérive est nulle.

1 ,

 1 Certains sont premiers : la distance 𝐷 = OM entre O et le point M où est « actuellement » le corps physique que le corps informatique modélise ; l'angle 𝛼 = 𝑂𝑀𝑃 ̂, noté 𝑎𝑙𝑝ℎ𝑎, où P est le point en lequel le corps est actuellement « vu » ; la vitesse arithmétique 𝑣 du corps, autrement dit la norme de son vecteur vitesse, exprimée en prenant comme unité la vitesse de la lumière. Tous les autres paramètres qui nous seront nécessaires peuvent être calculés à partir de ces trois-là. L'unité de distance dans laquelle seront exprimés les distances à défaut de toute autre indication est l'a-lgm, l'année-lumière grosso modo. Que cette unité ne coincide que très sommairement avec l'année-lumière ne nous empêche en rien de conduire avec elle des calculs précis et des raisonnements exacts.Le corps met le même temps pour aller de P à M que la lumière pour aller de P à O, donc autrement dit MP = 𝑣 OP.𝑣 est « petite », disons 𝑣 ≤ 0,01. Comme OP -PM ≤ OM ≤ OP + PM
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 3 La preuve en est donnée en annexe. Dans cette partie principale, le lecteur devra se contenter de l'histogramme d'une liste formée d'un grand nombre de tirages de cette variable aléatoire. L'angle 𝜶 Sa distribution est homogène relativement aux angles solides. Sa loi de probabilité est en conséquence celle de arccos (1-2random( )). La preuve en est donnée en annexe. Ci-contre un histogramme d'une liste d'un grand nombre de tirages de cette v.a. La vitesse 𝒗 La troisième variable aléatoire, tirage_𝑣(D), est la norme de la vitesse du corps. Contrairement aux deux autres, sa distribution n'est pas déterminée par l'homogénéité et l'isotropie de la situation : il reste des degrés de liberté. Le bruit local n'est pas nul. Il a une valeur moyenne et un écart type qui, dans un univers de Bruno, sont des constantes universelles. Il semble « naturel » de lui attribuer une vitesse vectorielle régie par une loi gaussienne isotrope relativement à l'e.c.i., donc d'espérance nulle, et c'est ce que nous ferons. Cela détermine la loi de sa norme. Mais nous pouvons vérifier que n'importe quelle loi de probabilité d'espérance nulle donnerait des résultats semblables. À cette fin, nous installons une option 𝑣 𝑏𝑙𝑜𝑞𝑢é𝑒 qui remplace le tirage aléatoire de ‖𝑣 ⃗‖ par une valeur constante. L'espérance de 𝑣 ⃗ est nulle car la distribution de 𝛼 est celle qui fait que 𝑣 ⃗ est régie par une loi isotrope. Si, pour toute valeur d'un balayage suffisamment fin du domaine de ‖𝑣 ⃗ ‖ avec l'option 𝑣 𝑏𝑙𝑜𝑞𝑢é𝑒 , un nombre suffisant d'expériences donne invariablement des résultats sans équivoque en faveur de telle ou telle

  L'un et l'autre calcul se font selon la même architecture, une « petite boucle dans laquelle on calcule les caractéristiques d'un échantillon de nb_corps, est insérée dans une « grande » boucle qui répète nb_tours fois ce travail. La moyenne échantillonnale est un estimateur non biaisé, et l'écart type échantillonnal l'est aussi lorsque les échantillons sont suffisamment grands, ce qui est le cas ici. La loi des grands nombres s'applique. Notons, pour des raisons techniques d'éditeur d'équation nb_corps = 𝑛𝑏 𝑐𝑜𝑟𝑝𝑠 . Si 𝜎 est l'écart type des vitesses radiales, celui de leur moyenne sur une petite boucle est 𝜎 √ 𝑛𝑏 𝑐𝑜𝑟𝑝𝑠 ; et celui de la moyenne de ces moyennes est 𝜎 √ 𝑛𝑏 𝑐𝑜𝑟𝑝𝑠 × 𝑛𝑏 𝑡𝑜𝑢𝑟𝑠 = 𝜎 √ 𝑛𝑏 𝑐𝑜𝑟𝑝𝑠 √𝑛𝑏 𝑡𝑜𝑢𝑟𝑠 . Ce dernier nombre définit la précision avec laquelle nous connaissons la vitesse radiale moyenne des corps sur le domaine que nous considérons. D'autres résultats sont précalculés et laissés en attente d'une éventuelle finalisation, au cas où certains lecteurs voudraient s'en saisir.

𝑑 2 > 1 ⟺

 21 M 2 est rejeté. Donc M 1 et M 2 mettent le même nombre de tours de sous-boucle pour être acceptés. Il ne se crée aucun décalage .

𝑑 2 𝑑 1 ×

 21 𝑑, 𝑣 𝑟𝑎𝑑 ).Pour un sigma_𝑣 donné, les valeurs moyennes des vitesses radiales des corps « vus » sont les mêmes sur tout intervalle [0, 𝑑].

  bonne approximation de la courbe.On vérifie sans difficulté (mais avec des durées proportionnelles au carré de la précision nécessaire) que les calculs de nouveaux points s'intègrent avec précision à cette courbe.Lorsque tous les corps vont à la même vitesse arithmétique 𝑣_bloquée, le moyenne des vitesse radiales est strictement croissante en fonction de 𝑣_bloquée. Elle est nulle quand 𝑣_bloquée est nulle et donc strictement positive quand 𝑣_bloquée n'est pas nulle. Sa valeur, approchée ou peut-être excate, est 𝑣_bloquée²/3 si on prend C comme unité.

  d'infimes points dans le Ciel, et nous pouvons aussi bien les choisir quasi « lumière-alignés », mais pas tout à fait, ne différant de la perfection que d'un tout petit iota local, qui ne change rien de significatif à la figure qu'ils forment mais permet de tous les voir depuis O. Ces corps, donc, tous vus de O à un certain instant 𝑖 0 , sont tous, à un iota près, sur la trajectoire d'un même rayon lumineux 𝑅 𝑛 partant de O 𝑛 à l'instant 𝑖 𝑛 et arrivant en O 0 à l'instant 𝑖 0 . De la même façon, ils sont tous, sauf O 𝑛 , sur la trajectoire d'un même rayon lumineux 𝑅 𝑛-1 partant de O 𝑛-1 à l'instant 𝑖 𝑛-1 et arrivant en O 0 à l'instant 𝑖 0 . Les rayons 𝑅 𝑛 et 𝑅 𝑛-1 suivent le même trajet et arrivent au même instant 𝑖 0 au même terme O 0 . Ils coïncident donc, à un iota près, sur toute la longueur du trajet-lumière O 𝑛-1 O 0 . De même les rayons 𝑅 𝑛-1 et 𝑅 𝑛-2 coïncident sur toute la longueur du trajet O 𝑛-2 O 0 , et avec eux 𝑅 𝑛 , et ainsi de suite. Les rayons 𝑅 𝑘 pour 𝑘 allant de 1 jusqu'à 𝑛 forment une seule « rivière » de lumière dont les sources sont dans la rivière elle-même. En revanche, les distances O 𝑘-1 O 𝑘 sont petites et nous pouvons traiter l'arc lumière entre ces deux points comme un segment de droite. Appelons, pour tout entier 𝑘 dans [1, 𝑛], 𝑣 𝑘 la vitesse radiale de O 𝑘 relativement à l'e.c.g. de centre O 𝑘-1 . C'est aussi la vitesse d'allongement de l'arc lumière O 𝑘-1 O 𝑘 à l'instant 𝑡 𝑘-1 en O 𝑘-1 , et tout aussi bien à l'instant 𝑡 𝑘 en O 𝑘 . La vitesse (algébrique) d'allongement de la longueur de l'arc OO 𝑛 est donc 23 -EFFET DOPPLER DANS UN UNIVERS DE BRUNO 23.1 -Effet Doppler en chemin Un corps lumineux en M, considéré comme ponctuel, émet de la lumière que reçoit un observateur en O.

  La vitesse radiale de N(𝑥 + 𝑑𝑥) dans l'e.c.i. de centre N(𝑥) est 𝑣(𝑥 + 𝑑𝑥) -𝑣(𝑥). Parce que l'effet Doppler est multiplicatif, on a 1 + 𝑧 MN(𝑥+𝑑𝑥) = (1 + 𝑧 MN(𝑥) )(1 + 𝑧 N(𝑥)N(𝑥+𝑑𝑥) ) 𝐷(𝑥 + 𝑑𝑥) = 𝐷(𝑥) (1 + 𝑣(𝑥 + 𝑑𝑥) -𝑣(𝑥) 𝐶 ) 𝐷(𝑥 + 𝑑𝑥) -𝐷(𝑥) = 𝐷(𝑥) 𝑣(𝑥 + 𝑑𝑥) -𝑣(𝑥) 𝐶 𝐷 ′ (𝑥) = 𝐷(𝑥) 𝑣 ′ de Bruno, l'effet Doppler entre deux lieux isotropes obéit à la formule 𝜃 * = 𝜃 exp 𝑉 𝐶 où 𝑉 est la vitesse d'allongement du trajet-lumière allant du corps lumineux à l'observateur.

  Le retard du front d'onde 𝐹 𝜃 sur le front d'onde 𝐹 0 au début du chemin n'est pas 𝜃 mais 𝜃 ′ = 𝐶-‖𝑣 ⃗⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶 𝜃. La démonstration est en annexe. Effet Doppler à la réception. celui en lequel 𝐹 0 arrive au terme O de son trajet à l'instant 0. Ce lieu va relativement à la nappe isotrope à la vitesse 𝑣 ⃗ 𝑟 petite devant celle de la lumière. Si △ est le retard de 𝐹 𝜃 sur 𝐹 0 à la fin du chemin, son retard en O n'est pas △ mais

  𝐶 et confirme la formule 1 + 𝑧 = 𝑒 𝐻 0 𝐷 𝐶 .

  Lorsque les corps sont très lointains, l'effet Doppler devient notre seul moyen d'évaluer leur éloignement. L'effet Doppler particulier aux univers de Bruno les munit d'une échelle spécifique des distances lointaines. Ainsi, la galaxie GN-z11, la plus éloignée que nous connaissions, est selon ce nouveau formulaire vue à la distance 𝐷 telle que 1 49 = 1,357 × 10 10 × 2,49 = 33,8 Gal au lieu
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 2222222222 autrement dit qu'il est à tout instant de (E 𝑖𝑠 ) l'image de (S) ─ ou d'une copie géométriquement exacte de (S) ─ par une affinité orthogonale de direction 𝑣 ⃗ et de rapport √1 -𝑣 Montrons que tous les cycles-lumière de (S) subissent un raccourcissement relatif à (E 𝑖𝑠 ) proportionnel à leurs durées, et restent donc accordés les uns aux autres. Commençons par calculer la durée 𝑇 * d'un trajet-lumière AB relativement à (E 𝑖𝑠 ). Si (S) ne subissait pas de déformation lorentzienne lorsqu'il va à la vitesse 𝑣 ⃗ relativement à (E 𝑖𝑠 ), la longueur AB vaudrait 𝑙, l'angle (𝑣 ⃗, AB ⃗⃗⃗⃗⃗⃗ )vaudrait 𝜑 et la durée du trajet lumineux AB serait 𝑇. Mais les déformations lorentziennes font que ces grandeurs valent respectivement 𝑙 * , 𝜑 * et 𝑇 * . Par le théorème d'Al Kachi, 𝐶 2 𝑇 * 2 = 𝑣 2 𝑇 * 2 + 𝑙 * 2 -2𝑣𝑇 * 𝑙 * cos(𝜋 -𝜑 * ) D'où (𝐶 2 -𝑣 2 )𝑇 * 2 -2𝑣𝑙 * cos 𝜑 * 𝑇 -𝑙 * 2 = 0 Cette équation du second degré en 𝑇 * a deux racines dont le produit -𝑙 * 𝑣 2 est négatif, et qui sont donc de signes contraires. La plus grande des deux est positive et fournit 𝑇 * . Le discriminant réduit est ∆ ′ = 𝑣 2 𝑙 * 2 cos 2 𝜑 * + (𝐶 2 -𝑣 2 )𝑙 * 2 Or 𝑙 * 2 cos 2 𝜑 * = (1 -𝑣 𝑙 2 cos 2 𝜑 et 𝑙 * 2 = 𝑙 * 2 sin 2 𝜑 * + 𝑙 * 2 cos 2 𝜑 * = 𝑙 2 𝑠𝑖𝑛 2 𝜑 + (1 -𝑙 2 cos 2 𝜑 + (𝐶 2 -𝑣 2 )𝑙 2 (1 -𝑣 2 𝐶 2 cos 2 𝜑) = (𝐶 2 -𝑣 2 )𝑙 2 On a donc 𝑇 * = 𝑣𝑙 * cos 𝜑 * + 𝑙√𝐶 2 -𝑣
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 21 𝑎 𝑖 ), où 𝑖 va de 1 à 𝑛, avec -𝐴𝑙 2 ≤ 𝑎 𝑖 ≤ 𝐴𝑙[START_REF]Ce livre n'a pas immédiatement trouvé sa forme définitive. À l'origine série d'articles sur le mouvement brownien publiés en 1907-1909[END_REF] . La somme des longueurs des 𝑛 segments vérifie donc quel que soit 𝑛 Un arc régulier de longueur 𝐷 sur (𝐹𝑁𝐷) est de longueur (1 ± 𝐴𝑙 2 )𝐷 sur (FD(𝑙)).Passage des arcs aux segments. Soit [MN] un segment tout entier dans (FND). L'arc (M 𝑙 N 𝑙 ) image de ce segment vérifielong(M 𝑙 N 𝑙 ) ≤ (1 + 𝐴𝑙 2 )long([MN]) C'est-à-dire, puisque [MN] est un segment long(M 𝑙 N 𝑙 ) ≤ (1 + 𝐴𝑙 2 )MN Comme M 𝑙 N 𝑙 ≤ long(M 𝑙 N 𝑙 ) On a M 𝑙 N 𝑙 ≤ (1 + 𝐴𝑙 2 )MNL'image réciproque de [M 𝑙 N 𝑙 ] est un arc (MN) allant de M à N, et vérifiant long(MN) ≤ long([M 𝑙 N 𝑙 ]𝐴𝑙 2 )MN ≤ M 𝑙 N 𝑙 Si [MN] est un segment tracé dans (FND), MN(1 -𝐴𝑙 2 ) ≤ M 𝑙 N 𝑙 ≤ MN(1 + Al 2 ) |M 𝑙 N 𝑙 -MN| ≤ 𝐴𝑙 2 MN Isométrie de (FND) et de FD(0). Soit 𝑓 : M ⟼ M ′ une bijection entre (E) et (E ′ ) qui conserve la longueur des arcs. L'image d'un segment [AB] de longueur 𝑙 est un arc A ′ B ′ de longueur 𝑙. La longueur 𝑙 ′ du segment [A ′ B ′ ] vérifie 𝑙 ′ ≤ 𝑙. La bijection réciproque de 𝑓 transforme ce segment en un arc allant de A à B et dont la longueur est 𝑙 ′ . Comme la longueur du plus court chemin entre A et B est 𝑙, on a 𝑙 ′ ≥ 𝑙. On en déduit 𝑙 ′ = 𝑙. L'arc A ′ B ′ image de [AB] par 𝑓, ayant pour longueur celle, 𝑙 ′ , du plus court chemin de A ′ à B ′ , est donc le segment [A ′ B ′ ].
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 13 Les lois de probabilité des paramètres premiersLa distance OM Posons 𝑅 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑥 a variable aléatoire OM est telle que pour tout 𝑟 appartenant à [0, 𝑅], 𝑝(OM ≤ 𝑟) = ( 𝑟 𝑅 ) On cherche une fonction 𝑓 bijective croissante telle que la variable aléatoire 𝑓(𝑟𝑎𝑛𝑑𝑜𝑚( )) ait la même loi de probabilité que OM. 𝑓 est donc définie sur l'ensemble des valeurs de 𝑟𝑎𝑛𝑑𝑜𝑚( ), qui est [0, 1], et a ses images dans l'ensemble des valeurs de OM, qui est [0, 𝑅]. 𝑓 ∶ [0, 1] ⟶ [0, 𝑅] 𝑓 est inversible et on a (𝑓(𝑟𝑎𝑛𝑑𝑜𝑚( )) ≤ 𝑟) ⟺ (𝑟𝑎𝑛𝑑𝑜𝑚( ) ≤ 𝑓 -1 (𝑟)) Dans cette formule, les deux 𝑟𝑎𝑛𝑑𝑜𝑚( ) désignent la même occurrence de 𝑟𝑎𝑛𝑑𝑜𝑚 ( ). On en déduit 𝑝(𝑓(𝑟𝑎𝑛𝑑𝑜𝑚( )) ≤ 𝑟) = 𝑝(𝑟𝑎𝑛𝑑𝑜𝑚( ) ≤ 𝑓 -1 (𝑟)) Les deux 𝑟𝑎𝑛𝑑𝑜𝑚( ) ne désignent plus le même tirage mais chacun n'importe lequel. Ils sont en effet tous indépendants et obéissent tous à la même loi de probabilité. Comme pour tout 𝑥 ∈ [0, 1] 𝑝(𝑟𝑎𝑛𝑑𝑜𝑚( ) ≤ 𝑥) = 𝑥, pour tout r 𝑝(𝑓(𝑟𝑎𝑛𝑑𝑜𝑚( )) ≤ 𝑟) = 𝑓 -1 (𝑟) Pour que cette loi de probabilité soit celle de OM, il faut et il suffit que pour tout 𝑟 ∈ [0, 𝑅] 𝑓 -1 (𝑟) = (
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 12 Les variables aléatoires OM et 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑥 . 𝑟𝑎𝑛𝑑𝑜𝑚( ) t la même loi de probabilité. L'angle alpha La deuxième variable aléatoire à tirer est l'angle 𝛼 = OMP ̂, à valeurs dans [0, 𝜋]. La lumière quitte le corps suivant une loi uniforme relativement à l'angle solide, donc 𝑝(𝜃 1 ≤ 𝛼 ≤ 𝜃 2 ) = aire de la zone sphérique [𝜃 1 𝜃 2 ] aire de la sphère qui la porte = 2𝜋𝑅 2 (cos 𝜃 1 -cos 𝜃 2 ) 4𝜋𝑅 2 = cos 𝜃 1 -cos 𝜃 2 En particulier, pour tout 𝜃 ∈ [0, 𝜋] 𝑝(α ≤ 𝜃) = 𝑝(0 ≤ 𝛼 ≤ 𝜃) = cos 0 -cos 𝜃 2 = 1 -cos 𝜃 2 Pour toute bijection croissante et donc continue 𝑓 de [0, 1] dans [0, 𝜋], les événements 𝑓(𝑟𝑎𝑛𝑑𝑜𝑚( )) ≤ 𝜃 et 𝑟𝑎𝑛𝑑𝑜𝑚( ) ≤ 𝑓 -1 (𝜃) sont identiques. Ils ont même probabilité. L'application 𝜑 ∶ 𝜃 ∈ [0, 𝜋] ⟼ 1-cos 𝜃 2 est une bijection croissante de [0, 𝜋] dans [0, 1]. Elle admet donc une réciproque 𝜑 -1 = 𝑓, qui est une bijection croissante de [0, 𝜋] dans [0, 1]. Pour 𝑥 ∈ [0, 1], 𝑓(𝑥) est l'unique élément 𝜃 de [0, 𝜋] tel que 𝑥 = blocage_v = False, la vitesse des corps suit une loi gaussienne d'espérance nulle et d'écart type sigma_v. Sinon, elle est constamment sigma_v. ***********************************************************************""" """*************************** UTILITAIRES *******************************""" """***********************************************************************"""

  """ tableau = tableau[len(tableau) -n: len(tableau)] res = [] for i in range(n): res = res + tableau[i] return res """************************************************************************""" l2_v_rad_bleus[num_tranche].append(v_rad) l2_rouges_moins_bleus[num_tranche].append(-1) l2_p_ou_m_1_sur_OP2[num_tranche].append(-un_sur_OP2) l1_sommes_1_sur_OP2 = aplatir(l2_1_sur_OP2) """ Certains des calculs faits ici sont "pendants" en ce sens qu'ils n'interviennent pas dans la suite du programme. Ils sont présents parce possiblement utiles pour des explorations à la guise du lecteur.""" l1_sommes_v_rad = aplatir(l2_v_rad) l1_sommes_v_rad_rouges = aplatir(l2_v_rad_rouges) l1_sommes_v_rad_bleus = aplatir(l2_v_rad_bleus) l1_sommes_rouges_moins_bleus = aplatir(l2_rouges_moins_bleus) l1_sommes_p_ou_m_1_sur_OP2 = aplatir(l2_p_ou_m_1_sur_OP2) l1_effectifs = [] for i in range(nb_tranches): l1_effectifs.append(len(l2_rouges_moins_bleus[i])) l1_effectifs_rouges = [] l1_effectifs_bleus = []
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 1 Renversement de l'orientationSi, au lieu de considérer la situation depuis le lieu isotrope émetteur M = M 0 , nous la considérons depuis le lieu récepteur O, et que nous orientons le trajet de façon « standard », de O vers M, alors, dans ce changement de lieu de référence doublé d'un changement d'orientation, les valeurs des vitesses radiales sont conservées et la formule sera la même.

  Puisque la vitesse radiale de M est ‖𝑣 ⃗ 𝑠 ‖ cos 𝜑 𝑠 , la projetée sur [𝛺𝑥) de la distance M(0)M(𝜃) = 𝛺M(𝜃) = 𝛺N a pour longueur 𝜃‖𝑣 ⃗ 𝑠 ‖ cos 𝜑 𝑠 . La vitesse de 𝐹 0 étant, à un négligeable près, 𝐶, ce front d'onde passe par N à l'instant 𝜃‖𝑣 ⃗⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶 . Le retard de 𝐹 𝜃 sur 𝐹 0 est par conséquent 𝜃 -‖𝑣 ⃗ 𝑠 ‖𝜃 cos 𝜑 𝑠 𝐶 = 𝐶 -‖𝑣 ⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶 𝜃 Effet Doppler à la réception. Choisissons pour instant 0 celui en lequel 𝐹 0 arrive au terme O de son trajet. Ce lieu va relativement à la nappe isotrope à la vitesse 𝑣 ⃗ 𝑟 petite devant celle de la lumière. Prenons pour espace de référence l'e.c.i. (E) de centre le lieu isotrope Ω qui coïncide avec O à l'instant 0, et dont nous fixons l'abscisse à 0 sur la trajectoire des rayons. Soit △ le retard de 𝐹 𝜃 sur 𝐹 0 à l'instant où 𝐹 0 arrive en O. L'abscisse de 𝐹 𝜃 à l'instant 0 est telle que 𝐹 𝜃 va mettre un temps △ à rejoindre le lieu allant à la vitesse radiale de la nappe isotrope en lequel est 𝐹 0 à l'instant 0. Comme la vitesse de 𝐹 𝜃 est 𝐶, et que ce lieu est la projection orthogonale de Ω sur la trajectoire de la lumière, d'abscisse constamment nulle, l'abscisse de 𝐹 𝜃 à l'instant 0 est -𝐶 △ . L'équation de la trajectoire de 𝐹 𝜃 est donc 𝑥 = 𝐶𝑡 -𝐶 △, tandis que celle de l'abscisse de O est 𝑥 = (‖𝑣 ⃗ 𝑟 ‖ cos 𝜑 𝑟 )𝑡. L'instant 𝜏 d'arrivée de 𝐹 𝜃 en O vérifie en conséquence : 𝐶𝜏 -C △= (‖𝑣 ⃗ 𝑟 ‖ cos 𝜑 𝑟 )𝜏

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Supposons que ABA soit un cycle élémentaire, parcouru en un temps 𝑇. On a donc AB = 𝐶

	Un	espace	galiléen	est
	l'ensemble des « évènements »
	(au sens que la relativité
	restreinte donne à ce mot) dont
	les trois coordonnées spatiales
	sont éternellement invariables
	relativement à un référentiel
	galiléen donné. Un référentiel
	galiléen définit un unique
	espace galiléen, et tout espace
	galiléen peut être muni d'une
	infinité	de	référentiels
	galiléens.		
	𝑇 2 Considérons ce même atome allant à la vitesse 𝑣 relativement à (E 𝑖𝑠 ). . Supposons que toutes ses dimensions géométriques relatives à (E 𝑖𝑠 ) restent
	invariables.			
	Quand AB est colinéaire à 𝑣 ⃗, la durée relative à (E 𝑖𝑠 ) du trajet ABA
	devient			

  1 , O 2 , … O 𝑛 des corps formant un alignement régulier de pas D. La vitesse d'allongement de 𝑂 𝑘 O 𝑘+1 relativement à (O 𝑘 ) obéit quel que soit 𝑘 à la même loi probabiliste dépendant du paramètre D. Appelons 𝑣̅ 𝐷 sa moyenne et 𝜎 𝐷 son écart type. On notera 𝑣 𝐷 = 𝑣̅ 𝐷 ± 𝜎 𝐷 L'allongement de la longueur OO 𝑘 durant le laps 𝜏 est le cumul des allongements des longueurs OO 1 , O 1 O 2 , …, O 𝑘-1 O 𝑘 aux instants où on les considère. même loi de probabilité et nous postulons qu'elles sont « largement indépendantes », c'est-à-dire suffisamment indépendantes pour que leur somme soit l'objet d'une compensation globale comme c'est le cas quand elles sont exactement indépendantes. Nous n'exigeons pas que le défaut de compensation exacte soit proportionnel à √𝑛, mais seulement qu'il soit négligeable devant 𝑛 et qu'il tende néanmoins vers l'infini avec 𝑛.

	Les variables aléatoires	△𝑂 𝑘-1 𝑂 𝑘				
		△ OO 𝑛 OO n	=	(𝑣̅ 𝐷 𝜏 ± 𝜎 𝐷 𝜏) + (𝑣̅ 𝐷 𝜏 ± 𝜎 𝐷 𝜏) + ⋯ + (𝑣̅ 𝐷 𝜏 ± 𝜎 𝐷 𝜏) 𝑛𝐷	𝜏
	=	𝑣̅ 𝐷 𝜏 𝐷	±	(±𝜎 𝐷 ± 𝜎 𝐷 ± ⋯ ± 𝜎 𝐷 )𝜏 𝑛𝐷	=	𝑣̅ 𝐷 𝜏 𝐷	±	𝑜(𝑛)𝜏 𝑛𝐷	=	𝑣 ̃𝐷 𝜏 𝐷	±	𝜀(𝑛)𝜏 𝑛𝐷
				△ OO 𝑛 OO n	=	△ OO 1 +△ O 1 O 2 + ⋯ +△ O 𝑛-1 O 𝑛 𝑛𝐷

Dans le cas où la cinématique est galiléenne, l'allongement relatif est 𝐷 obéissent à la où 𝜀(𝑛) tend vers zéro quand 𝑛 tend vers l'infini, et où 𝑣 ̅ 𝐷

  A de A, un observateur compte 𝑥 tours sur l'horloge avant d'arriver en B à l'instant 𝑒 B . Il en déduit que l'instant 𝑒 B 0 simultané en B à 𝑒 A est antérieur de 𝑥 tours à 𝑒 B . et 𝑒 B 0 𝑒 𝐵 𝑒 B ′ étant homotopes, le nombre de tours comptés en B entre 𝑒 B et 𝑒 B ′ est 𝑦 + 𝑧 -𝑥. F𝑦 + 𝑧 -𝑥, d'où 𝑦 = 𝑦'. Ainsi, que l'on étalonne la simultanéité en partant de A ou de B, cela revient au même : cet étalonnage n'affecte donc pas la symétrie du dispositif. Il faut montrer que cette simultanéité ne dépend pas de l'horloge utilisée. Supposons donc que la droite (AB) soit le long de deux horloges (C) et (C′) de vitesses de rotation, d'axes et de rayons éventuellement différents. Soit 𝑒 un instant local en A, 𝑓 son simultané en B via (C), 𝑓 ′ son simultané en B via (C′). Cette dernière tourne 𝑘 fois plus vite que (C). Un observateur parti de A à l'instant 0 arrive en B à l'instant 𝑓, après avoir compté 𝑚 tours sur (C). lI a donc compté 𝑘 𝑚 tours sur (C′). L'instant local 𝑒 en A est à 𝑚 tours de O sur (C) et donc à 𝑘 𝑚 tours de O sur (C ′ ). Le simultané de 𝑒 est par conséquent 𝑓 ′ . Elle est trivialement réflexive (tout évènement est simultané à luimême) et symétrique (si 𝑒 A est simultané à 𝑒 B , alors 𝑒 B l'est à 𝑒 A ). Penchonsnous sur la question de sa transitivité. Pour cela, commençons par remarquer que Étant donné deux points M et N de (E) et un instant local 𝑒 M se déroulant en M, il existe un unique instant local 𝑒 N se déroulant en N et simultané à lui. Soit A, B et C trois points de (E), et 𝑒 A , 𝑒 B et 𝑒 C trois instants locaux ayant respectivement lieu en ces points, et tels que 𝑒 A soit simultané à 𝑒 B ainsi que 𝑒 B à 𝑒 C . Si le triangle ABC est isocèle en un quelconque de ses sommets, aplati ou non, alors par isotropie et donc symétrie, 𝑒 A et 𝑒 C sont simultanés. Si le triangle ABC est rectangle en B, soit I le milieu de AC et 𝑒 I l'instant local en I simultané à 𝑒 B . Dans le triangle isocèle ABI, 𝑒 A est simultané à 𝑒 B et 𝑒 B à 𝑒 I , donc 𝑒 A et 𝑒 I le sont. De la même façon, 𝑒 I et 𝑒 C le sont, et, parce que I est le milieu de AC, 𝑒 A et 𝑒 C . Comme tout triangle est un collage de deux triangles rectangles, on montre de même que la simultanéité est transitive pour sur les triangles quelconques ; et de même, qud ce résultat s'étend aux triangles aplatis.

	Parti à l'instant 𝑒 B 0 de B, un observateur compte 𝑦 tours sur l'horloge ′ . Soit 𝑦' le nombre de tours comptés en A avant d'arriver en A à l'instant 𝑒 A ′ . entre 𝑒 A et 𝑒 A ′ compte 𝑧 tours avant d'arriver Un observateur en A parti à l'instant 𝑒 A en B à l'instant 𝑒 B ′ . Les trajets 𝑒 B 0 𝑒 A ′ 𝑒 B ′ Toutes les horloges tournantes de (E) définissent la même
	simultanéité relative à (E).
	Il faut enfin montrer que cette simultanéité est une relation
	d'équivalence.

  ≤ 𝑔 cet ordre chronologique et ~ la simultanéité par horloges tournantes. Comme la situation est symétrique relativement à A et à B, si 𝑒 A ~𝑒B alors 𝑒 A ≤ 𝑔 𝑒 B ⟹ 𝑒 B ≤ 𝑔 𝑒 A . Donc 𝑒 A ~𝑒B ⟹ 𝑒 A ~𝑔𝑒 B ; et, puisque chacune des deux simultanéités est une bijection entre les instants locaux en A et ceux en B, elles sont identiques. < 𝑙 et < 𝑖 les ordres chronologiques associés ; et considérons un segment AB le long duquel tourne une horloge inertielle. Un observateur médian est installé au milieu I de AB. L'isotropie de (E) fait que la figure est symétrique par rapport au plan médiateur de AB, et donc que les lois qui la régissent sont invariantes par permutation de A et de B. Supposons que 𝑒 A ~𝑙 𝑒 B et 𝑒 A < 𝑖 𝑒 B . On doit alors avoir, en permutant A et B, 𝑒 B ~𝑙 𝑒 A et 𝑒 B < 𝑖 𝑒 A , ce qui contredit l'hypothèse. De la même façon, 𝑒 A ~𝑙 𝑒 B et 𝑒 A > 𝑖 𝑒 B conduit à une contradiction. Donc 𝑒 A ~𝑙 𝑒 B ⇒ 𝑒 A ~𝑖 𝑒 B . On montre de la même façon que 𝑒 A ~𝑖 𝑒 B ⇒ 𝑒 A ~𝑙 𝑒 B . Par conséquent, 𝑒 A ~𝑖 𝑒 B ⟺ 𝑒 A ~𝑙 𝑒

	Qu'elles soient tournantes ou glissantes, les horloges inertielles
	définissent la même simultanéité relativement à un espace galiléen isotrope.
	Un dernier point reste à vérifier : que cette simultanéité inertielle est
	équivalente, relativement à un espace galiléen isotrope, à la simultanéité-
	lumière.
	Notons ~𝑖 la simultanéité inertielle et ~𝑙 la simultanéité-lumière
	relatives à (E),

un espace galiléen (E') répondant aux contraintes, notons ~𝑔 cette simultanéité, B La simultanéité-lumière et la simultanéité inertielle relatives à un espace galiléen isotrope sont équivalentes.

  Upermet de construire en son sein un modèle dont les transformations sont de Lorentz, et vérifiant notre système d'axiomes. Pour le montrer, choisissons dans U un espace galiléen particulier (E1) et une constante strictement positive 𝐶. Parmi tous les points historicisés dont U, en dernier recours, est fait, ne conservons que ceux dont la vitesse relativement à (E 1 ) est constamment strictement inférieure à 𝐶. Du coup, parmi tous les espaces galiléens de U, nous ne conservons que ceux dont la vitesse par rapport à (E1) est strictement inférieure à 𝐶. Munissons (E1) d'un référentiel RG1. La donnée d'un autre référentiel RG2 d'un espace (E2) ─ qui peut éventuellement être (E1) ─ détermine le passage de coordonnées 𝐺 12 entre ces deux référentiels, qui est galiléen, comme elle déterminerait le passage de coordonnées 𝐿 12 entre eux s'il était lorentzien. Si 𝑖 est un instant local quelconque, le lien entre ses coordonnées 𝑚 1 relatives à RG1 et ses coordonnées 𝑚 2 relatives à RG2 est la bijection affine 𝑚 2 = 𝐺 12 𝑚 1 . Remplaçons 𝑚 2 par 𝑀 2 tel que 𝑀 2 = 𝐿 12 𝑚 1 , c'est-à-dire 𝑀 2 = 𝐿 12 𝐺 12 -1 𝑚 1 = 𝐿 12 𝐺 21 𝑚 1 . Effectuons ce remplacement pour tous les référentiels. Soit 𝑀 3 le remplaçant ainsi défini des coordonnées 𝑚 3 de 𝑖 relatives à RG3. On a 𝑀 3 = 𝐿 13 𝑚 1 et 𝑚 1 = (𝐿 12 ) -1 𝑀 2 = 𝐿 21 𝑀 2 , donc𝑀 3 = 𝐿 13 𝐿 21 𝑀 2 . 𝐿 13 𝐿 21 est la composée de la transformation de Lorentz de RG2 vers RG1 par la transformation de Lorentz de RG 1 vers RG 3 , c'est donc la transformation de Lorentz de RG2 vers RG3. Ainsi, toutes ces modifications des changements de coordonnées sont compatibles entre elles et fabriquent un univers lorentzien.

𝐿 𝑛 .

 𝑛 Lorsqu'elles ne sont pas déformées, pour un même entier 𝑛, les règles synchrones sont toutes les mêmes ; pour deux entiers 𝑛 1 et 𝑛 2 , elles sont obtenues par similitude à partir d'une même forme et construites avec le même matériau élastique, comme dit dans le préambule de ce chapitre.En conséquence des résultats énoncé plus haut et démontrés en annexe les longueurs homologues des règles synchrones sont comprises nous les installons, en alignant les axes, jointe à la convergence des axes des règles synchrones vers la ligne droite, fait que l'alignement converge vers une ligne droite, caractérisée par ce que chacun des instants locaux qui la composent en est point d'inflexion dans l'e.c.i. dont il est le centre, autrement dit par l'annulation des dérivés secondes. 'énergie élastique mise en jeu dans ces déformations infinitésimales, elle-même proportionnelle au carré de l'amplitude des déformations. L'alourdissement relatif est donc au maximum en 1 ± 2𝐴𝑙 2 , et les variations relatives du moment d'inertie au maximum en 1 ± 4𝐴𝑙 2 .Soit (𝐴 𝑛 ) un alignement de 𝑛 règles synchrones isotropes qui, lorsqu'elles ne sont pas déformées, sont déduites d'une même forme indépendante de 𝑛 par une similitude de rapport

	entre [𝐿 -𝐴𝐿 3 𝐿 𝑛 (1 -𝑛 , 𝐿 + 𝐴𝐿 2 𝑛 2 ) et 𝐴𝐿 3 𝑛 ]. Si D est leur diamètre non déformé, leur diamètre déformé est dans 𝐿 𝑛 (1 + 𝐴𝐿 2 𝑛 2 ). La longueur de l'alignement est donc dans [ 𝐷 𝑛 (1 -𝐴𝐷 2 𝑛 2 ) , 𝐷 𝑛 (1 + 𝐴𝐷 2 𝑛 2 ) ]. Leur angle de vrillage longitudinal est dans l'intervalle [ 0, 𝜇𝐿 2 𝑛 2 ]. L'angle de vrillage maximal de l'alignement est donc 𝑛 𝜇𝐿 𝑛 2 = 𝜇𝐿 𝑛 . La façon dont Sur les règles 𝐿 𝑛, le rapport des longueurs des déformés des segments perpendiculaires à l'axe aux longueurs de leurs antécédents non déformés est encadré par 1 ± 𝐴𝑙 2 . Cela s'applique aux tubes minces de même axe que le cylindre, dont le moment d'inertie 𝐽, sans tenir compte de l'alourdissement relativiste, est modifié au maximum en 𝐽(1 ± 𝐴𝑙 2 ) 2 = 𝐽(1 ± 2𝐴𝑙 2 ). Il faut bien entendu tenir compte de l'alourdissement relativiste, qui est 𝑛 . Alors, quand 𝑛 tend vers l'infini, -la longueur de l'alignement converge uniformément vers la valeur qui serait la sienne si la dérive était nulle ; -son twist converge uniformément vers 0 ; -la courbure de son axe converge uniformément vers 0 ; -l'écart relatif entre son diamètre et celui qu'il aurait si la dérive était nulle converge uniformément vers 0 ; -l'écart relatif entre son moment d'inertie et celui qu'il aurait si la proportionnel à l1 dérive était nulle converge uniformément vers 0.

  Soit i et j deux instants locaux isosimultanés. Appelons (E) l'e.c.i. de centre l'unique lieu isotrope O qui est en 𝑖 en cet instant local. Appelons A le lieu de cet e.c.i. qui est en 𝑗 en cet instants local.. Les points O et A sont par leur définition fixes dans (E). Pérennisons les suites d'alignements de règles synchrones instantanés qui engendrent par passage la limite l' alignement isosimultané [[𝑖𝑗]].Dans cette pérennisation de [[ij]] en [[OA]], nous choisissons-que l'origine de chacun des alignements instantanés de règles synchrones qui, après passage à la limite, composeront l'alignement pérenne [[OA]] reste le lieu O de (E) ;-que le premier item de chaque alignement instantané de règles synchrones ait pour direction (OA ⃗⃗⃗⃗⃗⃗ ) dans(E) ; -que pour tout 𝑛 ≥ 1, dans chaque suite de règles synchrones dont la limite sera un des alignements isosimultanés qui composeront [[OA]], l'alignement d'indice 𝑛 soit formé de 𝑛 règles de longueur non déformée OA]] est donc celle qu'il a à son début, en l'occurrence (OA ⃗⃗⃗⃗⃗⃗ ). Et sa longueur est 𝐿. En outre, il a pour origine l'unique point X de (E) tel que la direction (XA ⃗⃗⃗⃗⃗⃗ ) soit (OA ⃗⃗⃗⃗⃗⃗ ) et que la distance XA soit OA. Le support géométrique de chaque alignement isosimultané instantané est donc [OA].

	𝐿 𝑛	.
	Les déformations des alignements isosimultanés sont nulles. La
	direction dans (E) de chaque alignement isosimultané instantané composant
	[[	

  Soit 𝑖, 𝑗 et 𝑘 trois instants locaux distincts tels que que 𝑖 et 𝑗 d'une part, 𝑖 et 𝑘 d'autre part soient les extrémités de deux alignements isosimultanés instantanés de même longueur 𝐿. Commençons par éudier le cas où A et B sont distincts. Appelons (E) l'e.c.i. de centre l'unique lieu isotrope O qui est en 𝑖 en cet instant local. Appelons A et B les lieux de cet e.c.i. qui sont en 𝑗 et k en ces instants locaux respectifs. Les points O, A et B sont par leur définition fixes dans (E). Pérennisons les suites d'alignements de règles synchrones instantanés qui engendrent par passage la limite les alignements isosimultanés [[𝑖𝑗]] et [[𝑖𝑘]]. Dans cette pérennisation de [[ij]] en [[OA}}, nous choisissons -que l'origine de chacun des alignements instantanés de règles synchrones qui composent l'alignement pérenne [[OA]] reste le lieu O de (E) ; -que le premier item de chaque alignement instantané de règles synchrones ait pour direction (OA ⃗⃗⃗⃗⃗⃗ ) dans (E) ; -que pour tout 𝑛 ≥ 1, dans chaque suite de règles synchrones dont la limite sera un des alignements isosimultanés qui composent [[OA]], l'alignement d'indice 𝑛 soit formé de 𝑛 règles de longueur non déformée Pour tout 𝑡 réel, à l'instant 𝑖 + 𝑡 que le dispositif construit en O ainsi que sur les alignements isosimultanés [[OA]] et [[OB]], les drapeaux mobiles de ces alignements , qui tournent à la même vitesse autour de leurs axes respectifs, sont symétriques par rapport au plan médiateur de AB.Installons un troisième alignement isosimultané pérenne [[AB]] allant de A à B, raccordé en A à [[OA]] ; puis un quatrième alignement isosimultané pérenne [[BA]] allant deB à A. raccordé en B à [[OB]] . Les drapeaux verticaux immobiles sont sans perte de généralité choisis verticaux, de même sens que ceux de [[OA]] et de [[OB]]. Comme ils sont verticaux et qu'ils contiennent tous les deux l'horizontale [AB], ils sont portés par un même plan vertical (P). Parce que A et B jouent des rôles symétriques dans la construction qui vient d'être faite, et que les déformations des alignements isosimultanés sont nulles, cette machine est symétrique relativement au plan médiateur de AB. Appelons M le milieu de AB. Les parties [[AM]] et [[BM]] des alignements respectifs [[AB]] et [[BA]] sont des alignements isosimultanés pérennes qui tournent à la même vitesse et dont la construction respecte la symétrie de la figure. En conséquence, selon la simultanéité locale en M, pour un même instant 𝑖 + 𝑡 en, O, les drapeaux mobiles de ces alignements coupent le drapeau immobile (P) en respectant cette symétrie, et donc en des instants locaux -comparables puisque se déroulant tous les deux en M -tels qu'aucun des deux ne soit strictement antérieur ou strictement postérieur à l'autre, c'est-à-dire en un même instant local : Les alignements isosimultanés [[AM]] et [[MB]], respectivement extraits de [[AB]] et de [[BA]], sont donc raccordés en M de telle façon que la simultanéité locale y rende le même verdict que la chaîne d'alignements isosimultanés [[MB]] [[BO]] [[OA]] [[AM]]. Cette chaîne est donc une chaîne fermée : quel que soit l'instant local 𝑖 + 𝑡 en O, elle définit les mêmes instants locaux à gauche et à droite de chacun de ses noeuds. Cette propriété est circulaire : elle ne dépend pas de l'ordre dans lequel on parcourt un cycle le long d'elle. Aussi la chaîne [[OA]] Dans le cas où A et B sont confondus, ce résultant est trivial. Dans le cas ou A et B sont symétriques par rapport à O, la démonstration ci-dessus fonctionne. Si 𝑖, 𝑗 et 𝑘 sont trois instants locaux tels que 𝑖 et 𝑗 sont isosimultanés, ainsi que 𝑖 et 𝑘, et si les alignements isosimultanés [[𝑖𝑗]] et [[𝑖𝑘]] ont la même longueur, alors 𝑗 et 𝑘 sont isosimultanés. Soit trois instants locaux 𝑖, 𝑗 et 𝑘 tels que 𝑖 et 𝑗 soient isosimultanés ainsi que 𝑗 et 𝑘, et qu'en outre, en appelant O le lieu isotrope en lequel se déroule 𝑖, (E) l'e.c.i. de centre 𝑖, A et B les points de (E) en lesquels se déroulent 𝑖 et 𝑗, le triangle AOB soit isocèle en O. Soit 𝑘 * l'isosimultané de 𝑖 en 𝑘. La figure 𝑖𝑗𝑘 * remplit les conditions du résultat précédant le lemme, donc 𝑗 est isosimultané à 𝑘 * . Comme il l'est aussi à 𝑘, que 𝑗 se déroule en un point fixe de (E), que 𝑘 et 𝑘 * se déroulent en un autre point fixe de (E), 𝑘 et 𝑘 * sont identiques. Si les sommets d'un triangle isocèle d'instants locaux vérifient deux relations d'isosimultanéité, ils vérifient la troisième.On démontre facilement (cette démonstration est identique à celle donnée dans la deuxième partie du livre à propos de la simultanéité relative à un espace galiléen) que si un triangle est un collage de deux triangles isosimultanés, il est lui-même isosimultané. Comme tout triangle rectangle est un collage de deux triangles isocèles, que tout triangle est un collage de deux triangles rectangles, et que le cas où les instants locaux 𝑖 0 , 𝑖 A et 𝑖 B sont alignés est alors trivial, on aboutit au résultat suivant : Si trois instants locaux 𝑖, 𝑗 et 𝑘 sont tels que 𝑖 et 𝑗 soient isosimultanés, ainsi que 𝑗 et 𝑘, alors 𝑖 𝑒𝑡 𝑘 le sont aussi.

	𝐿 𝑛 Puisque l'isosimultanéité est réflexive (tout instant local est . D'apès un résultat montré plus haut, le support géométrique de chaque isosimultané à lui-même) et symétrique (si 𝑖 est isosimultané à 𝑗, alors 𝑗 l'est alignement instantané formant [[OA]] est [OA], et de même pour [[OB]] et à 𝑖) [OB]. Considérons comme « horizontal » le plan contenant les deux alignements pérennes [[OA]] et [[OB]], que nous supposons en outre non alignés. Ce n'est évidemment qu'une commodité de description. Pour chaque alignement instantané composant [[OA]], on peut choisir arbitrairement la position du drapeau fixe : la position du drapeau mobile en découle. Prenons donc sans perte de généralité pour drapeau fixe de l'alignement isosimultané [[OA]] le demi-plan vertical bordé inférieurement par (OA). Prenons pour drapeau fixe de l'alignement isosimultané [[OB]] son symétrique par rapport au plan médiateur de AB. [[OB]] est raccordé à [[OA]] que le milieu de AB est celui de BA, l'alignement [[MB]] extrait de [[BA]] est identique à l'alignement [[MB]] extrait de [[AB]], et le raccordement de [[AM]] et de [[MB]] est [[AB]]. La chaîne [[OA]] [[AB]]] [[BO]] est donc fermée. en O : [[AM]] [[MB]] [[BO]] est également fermée. Puisque [[AB]] et [[BA]] sont symétriques tout en étant identiques, et L'isosimultanéité est une relation d'équivalence entre instants locaux.

  Pour toute durée 𝜏, deux instants locaux 𝑒 + 𝜏 et 𝑓 + 𝜏 sont isosimultanés si et seulement si 𝑒 et 𝑓 le sont. Soit (LT 1 ) et (LT 2 ) deux lignes de temps, E et F deux instants isotropes, 𝑒 1 , 𝑓 1 , 𝑒 2 , 𝑓 2 leurs représentants respectifs sur (LT 1 ) et (LT 2 ). Soit 𝜏 la durée 𝑒 1 𝑓 1 et 𝑓 2 ′ l'instant local 𝑒 2 + 𝜏. Comme 𝑒 1 et 𝑒 2 sont isosimultanés, 𝑓 1 et 𝑓 2 ′ le sont. Comme 𝑓 1 et 𝑓 2 sont isosimultanés, 𝑓 2 et 𝑓 2 ' le sont. Comme ils sont sur la même ligne de temps, 𝑓 2 = 𝑓 2 ′ . D'où 𝑒 2 𝑓 2 ̅̅̅̅̅̅ = 𝜏.

  La dérive de la nappe isotrope est nulle au centre M de l'e.c.i. de référence, tandis que le bruit local ne l'est pas. Elle est donc négligeable devant le bruit local. Elle n'intervient d'ailleurs pas dans les calculs faits par le programme. En sus d'être négligeable, elle est statistiquement indépendante du bruit local et n'a de préférence ni pour le rougissement ni pour le bleuissement. Son effet est non seulement négligeable, mais encore très largement neutre. Il peut être tenu pour localement nul, contrairement à son effet global, lointain, dont nous verrons qu'en décalant les vitesses des corps, il hypertrophie le rougissement.

  × 10 -13 m/s², ce qui n'est vraiment pas grand-chose. Une étoile très proche, à 4 années-lumière de nous, est 10 6 fois plus proche, et 10 12 fois moins lourde. Elle engendre donc un effet du même ordre de grandeur.Nous ne négligeons cependant pas, au sens d'« oublier », les actions gravitationnelles et la dérive de la nappe istrope. Elles soumettent les corps et la lumière à des accélérations physiques ou purement cinématiques qui modifient leur vitesse et donc leur trajectoire. Ces modifications sont certes non seulement petites et largement impartiales entre le rougissement et le bleuissement, mais aussi et surtout, elles sont aussi petites qu'on le voudra dès lors qu'on se cantonne à un voisinage sphérique suffisamment petit d'un lieu isotrope O donné ; tandis que le bruit garde sensiblement la même valeur non nulle sur toute l' étendue d'un tel voisinage. Cela nous permet de les négliger, dans un sens qui n'est pas celui d'oublier, mais celui d'avoir démontré qu'elles n'ont pas à être prises en compte.

	La masse du Soleil est 𝑚 𝑆 = 2 × 10 k 30 g,
	celle d'Andromède, la grande galaxie la
	plus proche de la nôtre, à 2,55 millions
	d'années_lumière, c'est à dire 2,41 × 10 22
	m, est 𝑚 𝐴 ≈ 1,25 × 10 12 masses solaires.
	La force exercée par Andromède sur le
	Soleil est	𝐹 =	𝐺𝑚 𝐴 𝑚 𝑆 𝑑 2	.	La	part
	d'accélération qu'elle engendre sur cette
	étoile parmi les autres est donc 𝛾 𝑆 = 𝐺𝑚 𝐴 𝑑 2 = 6,67×10 -11 ×2,5×10 42 2,41 2 ×10 44 = 1,87×10 32 5 , 81×10 44 = 𝐹 𝑚 𝑆	=
	3,21					

  Ainsi, MP est le plus petit des côtés du triangle OPM. Il est donc opposé au plus petit angle, dont la valeur n'excède jamais il est égal à la plus petite des deux valeurs. Comme 𝛼 est dans [0, 𝜋] et 𝑣 dans [0,1[, 𝑣 sin 𝛼 est dans[0, 1[ et arcsin(𝑣 sin 𝛼) dans [0, 𝜋/2[. Il est donc la plus petite des deux valeurs possibles. . La somme 𝑎 + 𝛼 + (𝜋 -𝜑) des angles du triangle OPM vaut 𝜋 : Prenons pour champ d'expérience une « petite » boule de centre le lieu isotrope O, et appelons distance_utile son rayon. Nous voulons calculer les vitesses radiales des corps que nous y « voyons ». Durant le trajet de la lumière jusqu'à nous, ils se sont déplacés. Certains viennent de régions extérieures à la boule, et pour les prendre en compte il faut agrandir au-delà de distance_utile le domaine où sont recrutés les corps candidats à être « vus ». La symétrie sphérique de la situation fait que ce domaine est lui aussi une boule de centre O. Appelons distance_max son rayon.

	𝑣 1 + 𝑣 23.2.3 -Domaine d'expérience ≤ MP OM = 𝑀𝑃 𝑂𝑃 × 𝑂𝑃 𝑂𝑀	≤	𝑣 1 -𝑣
				𝜋 3	:
		𝑎 <	𝜋 3
	La loi des sinus dans le triangle OPM permet d'écrire
	.		
	sin 𝑎 MP	=	sin 𝛼 OP
	sin 𝑎 = 𝑣 sin 𝛼 = sin(𝑎𝑟𝑐𝑠𝑖𝑛(𝑣 𝑠𝑖𝑛 𝛼))
	𝑎 = arcsin(𝑣 sin 𝛼) ou 𝑎 = π -arcsin(𝑣 sin 𝛼)
	Ces deux valeurs possibles de a ont 𝜋 pour somme et ne valent pas toutes les deux 𝜋 2 . L'une est donc plus grande que 𝜋 et l'autre plus petite. 2 Comme 𝑎 est dans [0, 𝜋 2 [, sin 𝛼 = 𝑣 sin 𝑎
	𝑎 = arcsin(𝑣 sin 𝛼)
	𝜑 = 𝑎 + 𝛼
	En utilisant de nouveau la loi des sinus
	OP sin α	=		OM sin(𝜋 -𝜑)
	1 -𝑣 ≤ OP =	OM OP OM sin 𝛼 ≤ 1 + 𝑣 sin 𝜑

  « Aucun » des corps actuellement plus éloignés n'est « vu » dans la boule (O, distance_utile).

	Pour que OP soit inférieur à distance_utile il est nécessaire que OM
	soit inférieur à (1 + 7	𝜎 𝑣
	On déduit des formules PM =	𝑣 𝐶	OP et 𝑣 < 7𝜎 𝑣
				PM < 7	𝜎 𝑣 𝐶	OP
	d'où, puisque OM ≤ OP + PM,
				OM < (1 + 7	𝜎 𝑣 𝐶	) OP
	et, parce que 𝑂𝑃 ≤ distance_utile
	OM < (1 + 7	𝜎 𝑣 𝐶	) distance_utile

𝐶

) distance_utile.

23.2.6 -Fonctionnement du programme.

  conclusion, c'est que pour tout ‖𝑣 ⃗‖ la probabilité de cette conclusion est supérieure à celle de son contraire. La propriété restera alors vraie quelle que soit la loi de probabilité de ‖𝑣 ⃗‖ non bloquée.Il tire au hasard un grand nombre de corps selon une distribution probabiliste isotrope et uniforme relativement au volume. Leurs vitesses arithmétiques, aléatoires elles aussi, sont distribuées selon une loi uniforme relativement aux directions, de façon à respecter la symétrie sphérique de centre O de la figure. Ces distributions ont été explicitées plus haut et leur détermination mathématique se trouve en annexe.Ces corps, pour le moment considérés à l'instant « actuel », sont tirés dans un domaine un peu plus grand que le domaine d'expérience. On calcule pour chacun la distance OP à laquelle il est « vu » en un certain instant de son passé. Si elle est plus grande que le rayon distance_utile de la sphère domaine d'expérience, le corps est éliminé ; sinon il est conservé et rangé dans la tranche correspondant à son OP. Ce travail est fait jusqu'à ce qu'on ait obtenu nb_corps. Ce paramètre peut être ajusté. Si, pour un nombre donné de tranches, nb_corps est trop petit, la probabilité que certaines tranches restent vides devient significative et le programme peut planter. On prend donc les deux paramètres tels que la probabilité de cet écueil soit vertigineusement petite. Par exemple, avec 20 tranches et 10 6 corps, en postulant que les effectifs des tranches restent suffisamment homogènesce que nous pouvons facilement vérifier grâce au programme -la probabilité que la première tranche reste vide est

	(	20 3 -1 3 20 3 ) 10 6	= (1 -	1 8000	) 10 6	= 𝑒	1 000 000 𝑙𝑛(1-8000 1	)

  Ces résultats sont établis lorsque la dérive de la nappe isotrope est supposée nulle et le désert galiléen parfait, c'est-à-dire lorsque les mouvements des corps et de la lumière sont supposés exactement rectilignes et uniformes, et que la vitesse de lumière vaut C. Lorsque la dérive n'est pas nulle et le désert galiléen imparfait, les écarts à la situation parfaite tendent vers zéro quand on fait tendre vers zéro la taille du voisinage sphérique de O dans lequel on étudie la situation. Dans le cadre parfait, les vitesses des corps ne tendent pas vers zéro quand la taille d'un tel voisinage tend vers zéro. Comme les vitesses radiales moyennes des corps dépendent de leurs vitesses selon la formule en On peut tracer autour de tout lieu isotrope O une boule telle que la vitesse radiale moyenne des corps « vus » depuis O dans cette boule soit strictement positive. En vertu de l'hypothèse d'homogénéité, on peut donner à ces boules un même rayon universel 𝜌 non nul.

	1 3	(v_bloquée)², elles non plus ne tendent pas vers zéro, mais vers des valeurs
	strictement positives.

  Soit un observateur sur un corps galiléen O 0 qui « voit » partant devant lui un « alignement » régulier O 1 O 2 … O 𝑛 de corps galiléens. Cet « alignement », en fait, n'en est plus un lorsqu'on considère l'univers à grande échelle relativement à un e.c.i., puisque la lumière ne se propage alors ni en ligne droite ni à vitesse uniforme. Si cet alignement-lumière, nonobstant le fait qu'il n'est pas rectiligne, était parfait, nous ne verrions que le premier des corps, à quelques éventuelles couronnes près engendrées par les éventuelles trop grandes disparités de leurs tailles. Ces corps 𝑂 𝑘 sont des virtualités. Ils sont ce qu'ils seraient s'ils étaient effectivement présents. Ils peuvent être là où nous les mettons, donc nous pouvons les mettre là où nous les mettons. Vus de O 0 , ils ne sont que

  𝐶-‖𝑣 ⃗⃗ 𝑟 ‖ cos 𝜑 𝑟 ) △. La démonstration est également en annexe.Lorsqu'on prend en compte le bruit local, la formule de l'effet Doppler dans un univers de Bruno est 𝑒 ‖ et ‖𝑣 ⃗ 𝑟 ‖ sont petits devant 𝐶, on retrouve bien, quand T est grand, la formule donnant l'effet Doppler dans un univers de Bruno considéré à grande échelle.Pour un corps suffisamment proche, 𝑒 𝐻 0 𝑇 est voisinde 1, et 

	𝜃 ′ 𝜃	=	𝐶 -‖𝑣 ⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶 -‖𝑣 ⃗ 𝑟 ‖ cos 𝜑 𝑟	𝑒 𝐻 0 T =	𝐶 -‖𝑣 ⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶 -‖𝑣 ⃗ 𝑟 ‖ cos 𝜑 𝑟	𝑒	𝐻 0 𝐷 𝐶
	où 𝐷 est la distance parcourue par la lumière le long de la nappe
	isotrope.						
	Comme ‖𝑣 ⃗ 𝜃 ′ 𝜃	est
	équivalent à Doppler ordinaire. Pour un corps suffisamment lointain, 𝐶-‖𝑣 ⃗⃗ 𝑒 ‖ cos 𝜑 𝑒 , autrement dit à la valeur que rendrait l'effet 𝐶-‖𝑣 ⃗⃗ 𝑟 ‖ cos 𝜑 𝑟 𝜃 ′ est en revanche 𝜃 équivalent à 𝑒 𝐻 0 𝐷 𝐶 .

𝐶 (

  ,001 ; tant que 𝐷 ≤ 2200 Mal, elle est inférieure à 0,01. Compte tenu du bruit local, qui existe dans l'une et l'autre hypothèse, on peut considérer que les deux formules se valent dans cet intervalle de distances.

	𝐷 = Tandis qu'un développement limité au même ordre de 𝑧 𝐵𝑟𝑢 est 𝑣 𝐻 0 = 0,98641 × 299792 72 = 4107,19 Mpc = 4107,19 × 3,2616 = 13396 Mal 𝑧 𝐵𝑟𝑢 = 1 + 𝑥 + 1 2 𝑥 2 + 1 6 𝑥 3 + 𝑜(𝑥 3 ) -1
	≈ 13,4 milliards d'années-lumière, qui est bien la distance à laquelle on situe cet objet céleste. 𝑧 𝐵𝑟𝑢 = 𝑥 + 1 2 𝑥 2 + 1 6 𝑥 3 + 𝑜(𝑥 3 )
	La formule de l'effet Doppler, jointe à celle de l'expansion 𝑣 = 𝐻 0 𝐷, nous donne la valeur théorique du décalage vers le rouge à la distance 𝐷 dans Ces valeurs sont très proches quand 𝑥 est petit : 𝑧 𝑒𝑥𝑝 -𝑧 𝐵𝑟𝑢 ~1 3 𝑥 3 au
	ce cadre : voisinage de 𝑥 = 0	
	𝑧 𝑒𝑥𝑝 = √ Tant que 𝐷 ≤ 700 millions d'années-lumière, la différence relative 1 + 𝐻 0 𝐷 1 -𝐶 𝐻 0 𝐷 -1 𝐶 𝑧 𝑒𝑥𝑝 -𝑧 𝐵𝑟𝑢 𝑧 𝐵𝑟𝑢 est inférieure à 0
	Avant de comparer cette formule avec celle
	𝑧 𝐵𝑟𝑢 = 𝑒	𝐻 0 𝐷
	Un développement limité à l'ordre 3 de 𝑧 𝑒𝑥𝑝 est, en posant 𝑥 =	𝐻 0 𝐷 𝐶
	1 + 𝑧 = √ 𝑧 𝑒𝑥𝑝 = √(1 + 𝑥)(1 + 𝑥 + 𝑥 2 + 𝑥 3 + 𝑜(𝑥 3 )) -1 𝑣 1 + 𝐶 𝐶 1 -𝑣
	En témoigne par exemple le calcul de la distance de la galaxie GN-z11. = √1 + 2𝑥 + 2𝑥 2 + 2𝑥 3 + 𝑜(𝑥 3 ) -1
	Comme son coefficient 𝑧 vaut 11,09, on a 𝑣 𝐶 = (1 + 𝑧) 2 -1 (1 + 𝑧) 2 + 1 = 12,09 2 -1 12,09 2 + 1 = 1 + 1 2 (2𝑥 + 2𝑥 2 + 2𝑥 3 ) -1 8 (4𝑥 2 + 8𝑥 3 ) + = 145,1681 1 (8𝑥 3 ) + 𝑜(𝑥 3 ) -1 16 147,1681 = 0,98641 D'où, en prenant pour valeur de la constante de Hubble 72 km/s/Mpc, = 𝑥 + 1 2 𝑥 2 + 1 2 𝑥 3 + 𝑜(𝑥 3 )

𝐶 -1 donnant le décalage vers le rouge dans un univers de Bruno, prenons le temps d'observer que nous comparons bien ce qui est comparable, autrement dit que nos deux modèles sont chacun muni d'une définition des distances compatible avec celle de l'autre. Tel est bien le cas puisque lorsque le corps est proche, les deux concepts de distance sont équivalents, et lorsqu'il est éloigné 𝐷 est dans un cas comme dans l'autre la longueur du trajet-lumière du corps jusqu'à nous, considérée relativement à une étendue isotrope par rapport à laquelle elle va dans les deux cas à la vitesse 𝐶. Mais tel n'est plus le cas lorsqu'on passe dans des gammes plus élevées.

Le graphique ci-dessus représente la valeur de l'effet Doppler selon qu'il est linéaire (𝑧 𝑙𝑖𝑛 , valable pour les courtes distances-lumière), qu'il est l'effet Doppler dans un univers plat en expansion (𝑧 e ), ou bien qu'il est l'effet Doppler dans un univers de Bruno

23.7 -Décrochage du formulaire relativiste à partir de

  𝒛 = 𝟎, 𝟏 Adam Riess et son équipe ont fait une étude sur le décalage Doppler des surpernovas de type 1A, qui valut à ce chercheur d'obtenir en 2011 le prix Nobel pour la découverte de « l'accélération de l'expansion de l'univers[START_REF] Riess | Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant[END_REF] . » Leur travail portait sur des astres dont les décalages étaient dans l'intervalle [0,16 ; 0,62]. Il montre que pour un effet Doppler donné, l'éloignement des corps, évalué, puisqu'on connaît leur magnitude absolue, par leur magnitude apparente, est sous-estimé à partir de 𝑧 ≈ 0,1. Dans le cas d'un univers plat et « vide », et dans lequel le taux d'expansion est constant, les corps du panel dont le décalage vers le rouge est important ont leur éclat affaibli dans des proportions appartenant à la fourchette approximative 10-15 %. Comme cet univers plat et « vide » est, à l'hypothèse d'expansion près, celui de l'univers de Bruno, la comparaison des deux est légitime. Calculons donc, pour les 𝑧 allant de 0,1 à 0,7, les distances des corps en fonction de ce paramètre. Comme nous nous plaçons dans un univers de Bruno, nous appellerons « distance observée » la distance calculée selon la loi Doppler d'un univers de Bruno. Sa valeur est Et comme nous nous mettons dans la situation où nous théorisons à tort cet univers comme étant en expansion, nous appellerons « distance théorique » celle calculée selon le formulaire relativiste. Les magnitudes observée et théoriques sont les magnitudes apparentes d'un même corps de magnitude M à ces deux distances. Elles sont obtenues par la formule 𝑚 -𝑀 = 5 log 𝐷 -5, où ne figure aucune correction pour l'extinction, ce qui les rend compatibles avec les magnitudes données par Riess, qui sont corrigées de l'extinction et doivent donc être traitées comme si elle était nulle. Leur différence vaut 𝑚 𝑜𝑏𝑠 -𝑚 𝑡ℎ = 5 log 𝐷 𝑜𝑏𝑠 𝐷 𝑡ℎ Du rapport des magnitudes apparentes d'un même corps envisagé à deux distances différentes on déduit le rapport de leurs éclats respectifs par la loi de Pogson, ou bien simplement par le rapport des carrés de leurs distances-lumière. Ces calculs sont significatifs car il découle de la formule donnant la vitesse de la lumière dans un univers de Bruno que les angles solides évalués dans les espaces isotropes le long des trajets-lumière moyens sont constants.

	Magnitude			
	observée	-	Éclat	Diminution
	𝐷 𝑜𝑏𝑠 = 𝐷 𝑡ℎ = 𝐶 𝐻 0 𝐻 0 𝐶 (1 + 𝑧) 2 -1 ln(1 + 𝑧) (1 + 𝑧) 2 + 1 Distance théorique (Gal) magnitude théorique 1,290 0,007 2,001 0,016 2,449 0,024 3,483 0,049 4,405 0,080 5,223 0,115 5,951 0,152 6,087 0,160 L'une et l'autre seront exprimées en milliards d'années-lumière. Z Distance observée (Gal) observé / éclat théorique de l'éclat 0,1 1,294 0,994 0,6 % 0,16 2,016 0,985 1,45 % 0,2 2,476 0,978 2,18 % 0,3 3,563 0,956 4,42 % 0,4 4,569 0,929 7,09 % 0,5 5,506 0,900 10,02 % 0,6 6,383 0,869 13,08 % 0,62 6,552 0,863 13,69 % 0,7 7,206 6,598 0,191 0,838 16,16%

  Un objet vu à la distance 𝐷 𝐵𝑟𝑢 dans un univers de Bruno aura un Ce coefficient 𝑧, interprété selon le paradigme d'un univers en expansion, témoigne d'une distance 𝐷 𝑒𝑥𝑝 telle que Du point de vue non-chosiste, le paradigme erroné de l'expansion fait que la couronne sphérique [𝐷 𝐵𝑟𝑢 , +∞[ est théorisée comme étant la couronne [𝐷 𝑒𝑥𝑝 ,

	coefficient 𝑧 = 𝑒	𝐻 0 𝐷 𝐵𝑟𝑢 𝐶	-1.	
				𝑧 = √	1 + 1 -	𝐻 0 𝐷 𝑒𝑥𝑝 𝐶 𝐶 𝐻 0 𝐷 𝑒𝑥𝑝	-1
	On a donc , pour 𝐷 𝐵𝑟𝑢 >0
				√	1 + 1 -	𝐻 0 𝐷 𝑒𝑥𝑝 𝐶 𝐶 𝐻 0 𝐷 𝑒𝑥𝑝	= 𝑒	𝐻 0 𝐷 𝐵𝑟𝑢 𝐶
				1 + 1 -	𝐻 0 𝐷 𝑒𝑥𝑝 𝐶 𝐶 𝐻 0 𝐷 𝑒𝑥𝑝	= 𝑒	2𝐻 0 𝐷 𝐵𝑟𝑢 𝐶
		𝐻 0 𝐶	𝐷 𝑒𝑥𝑝 =	-1 + 𝑒 1 + 𝑒 2𝐻 0 𝐷 𝐵𝑟𝑢 2𝐻 0 𝐷 𝐵𝑟𝑢 𝐶 𝐶	= th	𝐻 0 𝐷 𝐵𝑟𝑢 𝐶
				𝐷 𝑒𝑥𝑝 =	𝐶 𝐻 0	th	𝐻 0 𝐷 𝐵𝑟𝑢 𝐶
		𝐶			
		𝐻 0			

  2 𝐶 2 -𝑣 2 Appelons HA et HB les projections orthogonales à un instant relatif à (E 𝑖𝑠 ) de A et B sur une droite parallèle à 𝑣 ⃗. Comme le mouvement de (S) est uniforme, la mesure algébrique H A H B ̅̅̅̅̅̅̅̅ est indépendante de l'instant en lequel se fait la projection, et on a La première somme est nulle par la relation de Chasles, si bien qu'entre les durées 𝑇 𝐴𝐵𝐶𝐷𝐸𝐴 et 𝑇 𝐴𝐵𝐶𝐷𝐸𝐴 ′ du cycle quand (S) est immobile dans (E 𝑖𝑠 ) et quand il va à la vitesse 𝑣 relativement à cet espace on a la relation

	𝑣(H A H B ̅̅̅̅̅̅̅̅ + H B H C ̅̅̅̅̅̅̅ + ⋯ + H E H A ̅̅̅̅̅̅̅ ) 𝐶 2 -𝑣 2	+	AB + BC + ⋯ EA 𝑣 2 𝐶 √ 1 -𝐶 2
	𝑇 𝐴𝐵𝐶𝐷𝐸𝐴 ′	=	1 √ 1 -	𝐶 2 𝑣 2	𝑇 𝐴𝐵𝐶𝐷𝐸𝐴
	𝑇 * =	𝑣 H A H B ̅̅̅̅̅̅̅̅ 𝐶 2 -𝑣 2 +	AB 𝐶 √ 1 -	𝑣 2 𝐶 2
	La durée totale d'un cycle-lumière tel que par exemple ABCDEA est
	donc				

  𝛼 𝑙 = (M 𝑙 N 𝑙 P 𝑙 ) ̂, 𝑎 𝑙 = M 𝑙 N 𝑙 , 𝑏 𝑙 = M 𝑙 𝑃 𝑙 , 𝑐 𝑙 = N 𝑙 P 𝑙 En vertu du théorème d'Al Kachi 2𝑎 𝑙 𝑏 𝑙 On a d'autre part les encadrements suivants :0 < (1 -𝐴𝑙 2 )𝑎 ≤ 𝑎 𝑖 ≤ (1 + 𝐴𝑙 2 )𝑎 0 < (1 -𝐴𝑙 2 )𝑎 ≤ 𝑏 𝑖 ≤ (1 + 𝐴𝑙 2 )𝑎 0 < (1 -𝐴𝑙 2 )𝑎√2 ≤ 𝑐 𝑖 ≤ (1 + 𝐴𝑙 2 )𝑎√2 Un minorant du numérateur de cos 𝛼 𝑙 est (1 -𝐴𝑙 2 ) 2 𝑎 2 + (1 -𝐴𝑙 2 ) 2 𝑎 2 -(1 + 𝐴𝑙 2 ) 2 . 2𝑎 2 = 2𝑎 2 ((1 -𝐴𝑙 2 ) 2 -(1 + 𝐴𝑙 2 ) 2 ) = -8𝑎 2 𝐴𝑙 2 < 0Un majorant en est(1 + 𝐴𝑙 2 ) 2 𝑎 2 + (1 + 𝐴𝑙 2 ) 2 𝑎 2 -(1 -𝐴𝑙 2 ) 2 . 2𝑎 2 = 8𝑎 2 𝐴𝑙 2 > 0Un minorant du dénominateur est 2𝑎 2 (1 -𝐴𝑙 2 ) 2 > 0

	cos 𝛼 𝑙 =	𝑎 𝑙 2 + 𝑏 𝑙 2 -𝑐 𝑙 2
	On en tire			
	𝑎 𝑙 2 + 𝑏 𝑙 2 -𝑐 𝑙 2 2𝑎 𝑙 𝑏 𝑙	≥	-8𝑎 2 𝐴𝑙 2 2𝑎 𝑙 𝑏 𝑙
	Ainsi que			
	1 2𝑎 𝑙 𝑏 𝑙	≤	1 2𝑎 2 (1 -𝐴𝑙 2 ) 2
	-8𝑎 2 𝐴𝑙 2 2𝑎 𝑙 𝑏 𝑙	≥	-8𝑎 2 𝐴𝑙 2 2𝑎 2 (1 -𝐴𝑙 2 ) 2
	𝑎 𝑙 2 + 𝑏 𝑙 2 -𝑐 𝑙 2 2𝑎 𝑙 𝑏 𝑙	≥	-8𝑎 2 𝐴𝑙 2 2𝑎 2 (1 -𝐴𝑙 2 ) 2 =	-4𝐴𝑙 2 (1 -𝐴𝑙 2 ) 2
	On en tire aussi			
	𝑎 𝑙 2 + 𝑏 𝑙 2 -𝑐 𝑙 2 2𝑎 𝑙 𝑏 𝑙	≤	8𝑎 2 𝐴𝑙 2 2𝑎 𝑙 𝑏 𝑙
	𝑎 𝑙 2 + 𝑏 𝑙 2 -𝑐 𝑙 2 2𝑎 𝑙 𝑏 𝑙	≤	8𝑎 2 𝐴𝑙 2 2𝑎 2 (1 -𝐴𝑙 2 ) 2

  def format_2(): """Initialise une liste de longueur nbtranches et d'ordre 2, c'est-à-dire une liste de nb_tranches listes de nombres.""" Initialise une liste de longueur nb_tranches, dont tous les éléments sont des nombres : elle est du premier ordre. Les tranches sont définies par un partage régulier de la distance distance_utile, qui est le rayon de la sphère de centre O dans laquelle nous nous étudions la cohorte des corps observés à l'instant actuel. La première tranche est la boule de centre O et de rayon épaisseur_tranche = distance_utile / nb_tranches, la dernière est la couronne sphérique de rayon extérieur distance_utile et d'épaisseur epaisseur_tranche."""

	res = []
	for i in range(nb_tranches):
	res.append([])
	return res
	def format_1():
	""" res = []
	for i in range(nb_tranches):
	res.append(0)
	return res
	def aplatir(liste):
	"""
	Renvoie, à partir d'une liste lpt, la liste des sommes de ses
	sous-listes
	"""
	res = []
	for i in range(len(liste)):
	res.append(somme(liste[i]))
	return res
	def reunion_der_tranches(tableau, n):

  𝜏 = 𝐶 (𝐶 -‖𝑣 ⃗ 𝑟 ‖ cos 𝜑 𝑟 ) △ Ainsi, si le retard de 𝐹 𝜃 sur 𝐹 0 est 𝜃 à l'émission, il est au début du ‖𝑣 ⃗⃗ 𝑟 ‖ cos 𝜑 𝑟 ) . Lorsqu'on prend en compte le bruit local, la formule de l'effet Doppler dans un univers de Bruno est 𝜃 ′ 𝜃 = 𝐶 -‖𝑣 ⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶 -‖𝑣 ⃗ 𝑟 ‖ cos 𝜑 𝑟 𝑒 𝐾𝑇 = 𝐶 -‖𝑣 ⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶 -‖𝑣 ⃗ 𝑟 ‖ cos 𝜑 𝑟 𝑒 𝐾 𝐷 𝐶 où 𝐷 est la distance parcourue par la lumière le long de la nappe isotrope.

	chemin	𝐶-‖𝑣 ⃗⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶	𝜃, à la fin du chemin ( 𝐶-‖𝑣 ⃗⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶	𝜃) 𝑒 𝐾𝑇 , et à sa reception
	( 𝐶-‖𝑣 ⃗⃗ 𝑠 ‖ cos 𝜑 𝑠 𝐶	𝜃) 𝑒 𝐾𝑇	(𝐶-	𝐶

Nous savons donc que les boules ouvertes sont des ouverts, et que les ouverts sont des réunions quelconques de boules ouvertes. La famille des ouverts de (E) est parfaitement caractérisée. Nous disposons donc d'une topologie sur (E), qui de plus est séparée : étant donné deux points distincts, on peut construire deux boules ouvertes centrées en ces points, de rayons non nuls, et ne se rencontrant pas. Axiome Géom7 : Étant donné un espace galiléen (E) et un point historicisé M, l'application qui à tout instant personnel de M associe le point de (E) avec lequel il coïncide à cet instant est continue.Une boule fermée est la réunion d'une sphère et de la boule ouverte qu'elle engendre.

L'action sur le disque, à condition de durer suffisamment longtemps, peut être aussi faible qu'on veut, et donc créer des déformations élastiques aussi petites qu'on veut.

Voir par exemple le livre d'AlexandreMoatti : Einstein -un siècle contre lui, éd.Odile Jacob, 2007.

On aurait pu croire que l'absence de preuve de solidité logique des deux relativités est un oubli, une étourderie de l'histoire, ou peut-être même que ces preuves sommeillent dans un obscur placard, telles la Belle au bois dormant dans son château entouré de ronces. Mais il n'en est rien. Ces preuves ne peuvent pas exister car les deux théories ne sont pas logiquement consistantes.Cela n'empêche pas leur pertinence, aujourd'hui reconnue sur bien des points. Mais cela montre qu'elles ne sont pas les édifices ultimes et presque sacralisés qu'on voudrait souvent qu'elles soient. Il leur reste encore un pas à faire, un saut à accomplir.En ce qui concerne la relativité restreinte, le saut est assez facile à formuler. Il suffit de renoncer à la valeur absolue du principe de relativité et corolairement de mettre en place le concept d'espace de centre isotrope pour obtenir une théorie « presque jumelle » mais logiquement consistante.En ce qui concerne la relativité générale, le travail est sans doute quelque peu plus difficile. Son incompatibilité avec la mécanique quantique

Nous notons e.c.g. un espace de centre galiléen, mais, puisque l'isotropie d'un espace local implique qu'il est galiléen, nous notons e.c.i. (et non e.g.i.l) l'espace galiléen isotrope local.

Puisque e et 𝑓 sont isosimultanés, il existe un alignement isosimultané allant de 𝑒 à 𝑓. Pérennisons-le en lui conservant le même lieu isotrope M de début, la même longueur et la même direction. Son support géométrique est donc inchangé dans l'e.c.i. de centre M : c'est [MN]. On peut sans perte de généralité attribuer à chacun des alignements isosimultanés instantanés qui composent l'alignement pérenne le même le rideau tournant. Les rideaux immobiles doivent être installés en conséquence. S'agissant de l'alignement instantané initial, son rideau immobile est traversé par le rideau tournant à l'instant 𝑒. Son translaté de la durée 𝜏 le long des lignes de temps a en chacun de ses instants locaux un retard 𝜏 (positif ou négatif) sur lui. Il fait avec lui sur toute la longueur de l'alignement un angle constant 𝜔𝜏, ou 𝜔 est la vitesse de rotation du rideau tournant. C'est bien un plan, et ce translaté est bien un arc isosimultané. En particulier, 𝑒 + 𝜏 et 𝑓 + 𝜏 sont isosimultanés. Inversement, si ces instants locaux sont isosimultanés, 𝑒 = 𝑒 + 𝜏 -𝜏 et 𝑓 = 𝑓 + 𝜏 -𝜏.

Un fait est apparu, qui semble devoir ruiner cette issue. Semblablement à ce qui se produit pour les quasars, les galaxies devraient, selon le paradigme de l'expansion, être en moyenne de plus en plus jeunes quand on regarde de plus en plus loin. Les télescopes récemment apparus, avec leur pouvoir de résolution considérablement meilleur , ont permis de voir bien mieux dans l'univers très lointain et en particulier d'y mieux distinguer les types de galaxies. Une galaxie passe dans son existence par différents types selon des séquences bien établies. Si l'univers très lointain était selon l'hypothèse du Big Bang plus jeune que l'univers proche, on devrait y voir une autre répartition des types de galaxies. Mais ce n'est pas ce qu'on observe. La répartition des types semble y être la même, et, sous cet angle, l'univers très ancien le même qu'aujourd'hui[START_REF] Biagetti | High-redshift JWST Observations and Primordial Non-Gaussianity[END_REF] .

Le deuxième Congrès international des mathématiciens, tenu à Paris en août 1900. Hilbert y présenta une liste de 23 problèmes qui tenaient les mathématiciens en

Lincoln, D, (2020), Is Modern Cosmology in Crisis? The Physics Teacher , 58, 234.

Biagetti, M, Franciolini, G, Riotto, A, (oct. 2022), High-redshift JWST Observations and Primordial Non-Gaussianity, arXiv:2210.04812

-Moyenne des vitesses radiales 23.3.1 -Étude de trois exemples

Voici trois exemples, successifs pour ce qui est de l'amorçage du générateur de nombres aléatoires, de la répartition des moyennes par tranche des vitesses radiales des corps dont le programme simule le comportement Cette méthode permet de définir une forme limite FD(0) de l'objet, qui n'est pas la forme de l'objet limite, puisque celui-ci est réduit à un point.

Majoration des déformations locales. Des petites variations des lieux et des instants entraînent des petites variations de la vitesse de la nappe isotrope, et le lien entre les unes et les autres est « localement quasi constant », autrement dit continu. Cela fait que la vitesse de la nappe Lorsque l est voisin de O, les trois sommets d'un triangle rectangle isocèle de (FND) sont déformés sur (FD(𝑙)) en trois points tels que l'homologue 𝛼 𝑙 qu'ils forment de l'angle droit obéisse à l'encadrement indépendant de la taille du triangle

Ce que nous noterons cos 𝛼 𝑙 = ±4𝐴𝑙 2 en négligeant les termes de rang supérieur à 2.

Déformé d'un cube

Lorsque 𝑙 tend vers 0, le champ des vitesses de la nappe isotrope tend uniformément vers 0 et avec lui l'intensité des déformations au point de la règle au point où les plus grandes. La convergence vers zéro des déformations est donc uniforme.

Supposons que le cylindre que nous étudions soit plein. Sa forme non déformée (FND) est donc convexe. Soit M et N deux points intérieurs à elle, M 𝑙 et N 𝑙 leurs images sur la forme déformée (FD(𝑙)). Comme la frontière de (FND) est compacte, que [MN] l'est aussi, et que les deux n'ont aucun point en commun, la distance 𝛿 entre eux est strictement positive.

À condition de prendre 𝑙 suffisamment petit, (FD(𝑙)) est aussi peu différent qu'on le veut de (FND). Donc, si 𝑙 est suffisamment petit, l'arc M 𝑙 N 𝑙 déformé de [MN] diffère aussi peu qu'on le veut du segment de droite parfait [MN] en même temps que le minimum de la distance à la frontière de ses points diffère aussi peu qu'on le veut de 𝛿. Il existe en conséquence une valeur de 𝑙 en deçà de laquelle le segment [M 𝑙 N 𝑙 ] est tout entier dans (FD(𝑙). Plaçons-nous dans ce cas.

Soit

un parallélépipède rectangle MNPQRSTU d'arêtes 𝑎, 𝑏, 𝑐 tout entier contenu dans l'intérieur de (FND), M 𝑙 N 𝑙 P 𝑙 Q 𝑙 R 𝑙 S 𝑙 T 𝑙 U 𝑙 son image dans (FD(𝑙)). On prend 𝑙 suffisamment petit pour que le polyèdre M 𝑙 N 𝑙 P 𝑙 Q 𝑙 R 𝑙 S 𝑙 T 𝑙 U 𝑙 soit dans (FD(𝑙)). L'ojet non déformé commr lr o4OBJET D2FIRL2 COPour tout 𝑙 obéissant à cette contrainte, installons dans (FD(𝑙)) un référentiel orthonormé qui nous permettra d'évaluer la différence entre le parallélépipède parfait et le parallélépipède déformé.

Installons l'origine en M 𝑙 , l'axe des 𝑥 positivement colinéaire à M 𝑙 N 𝑙 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ et l'axe des 𝑦 dans le plan MNQ, tel que l'ordonnée de Q soit positive.

On a donc M 𝑙 (0, 0, 0)

𝑄 𝑙 (-(𝑏 + 𝑂 2 (𝑙 2 )) sin (𝑂(𝑙 2 )) , (𝑏 + 𝑂(𝑙 2 )) cos(𝑂 3 (𝑙 2 )) , 0)

𝑄 𝑙 (𝑂(𝑙 2 ), 𝑏 + 𝑂(𝑙 2 ), 0)

Pour alléger les écritures, notons 𝑂(𝑙 2 ) = 𝜀. On a donc M 𝑙 (0, 0, 0), N 𝑙 (𝑎 + 𝜀, 0, 0), 𝑄 𝑙 (𝜀, 𝑏 + 𝜀, 0).

En outre, sa cote est positive. Soit (𝑥, 𝑦, 𝑧) les coordonnés de 𝑅 𝑙 . Une règle synchrone isotrope de longueur 𝑙 quand la dérive est nulle a pour longueur 𝑙 + 𝑂(𝑙 3 ) et pour angle de torsion axiale 𝑂(𝑙 2 ) quand la dérive n'est pas nulle.