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Morphological disparity of early ammonoids: A geometric 

morphometric approach to investigate conch geometry  

 

NINON ALLAIRE, SAMUEL GINOT, KENNETH DE BAETS, DIETER KORN, 

NICOLAS GOUDEMAND, CLAUDE MONNET, and CATHERINE CRÔNIER 

 

Fossils of Devonian ammonoids are abundant and well-preserved in the Anti-Atlas of 

Morocco; as such they provide an invaluable record of regional morphological disparity 

changes (diversity of shapes) that characterise the first steps of the ammonoid evolution. 

However, they were rarely analysed quantitatively with respect to their morphological 

spectrum. Here, we investigated the morphological disparity of the early ammonoids by 

analysing the shape of their whorl profile. A geometric morphometric approach based on the 

acquisition of outline semilandmark coordinates was used to analyse the whorl profiles. For 

comparison, morphometric ratios based on classical conch measurements were also analysed 

to investigate the overall conch geometry. Several standard disparity estimators were 

computed to measure different aspects of morphological disparity fluctuations through time. It 

appears that a major increase in disparity occurred throughout the Early Devonian, followed 

by ups and downs during the Middle Devonian constituting a general decreasing trend. Only 

the end-Eifelian Kačák event shows a significant decrease in disparity. Thus, the ammonoids 

explored the range of possible shapes fairly quickly during their initial radiation; however, we 

found no evidence for an early burst of shape diversity (i.e. the rise does not exceed the 

expectations given diversity). Nevertheless, correlation tests between diversity and disparity 

time series support that they are partially decoupled. The highly resolved biozone record 
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highlights that the increase in disparity began earlier than the increase in diversity that 

characterise the late Emsian. 
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Introduction 

 

Ammonoids are extinct cephalopods with an external coiled conch; they originated in the 

Early Devonian (Schindewolf 1933; Erben 1953, 1960, 1964, 1965, 1966; Becker and House 

1994; Klug et al. 2008b; De Baets et al. 2013; Becker et al. 2019). They descended from the 

Bactritida, which root in the latest Silurian or earliest Devonian Orthocerida (Erben 1966; 

Kröger and Mapes 2007; Klug et al. 2015). Thanks to their numerous morphological 

characters, ammonoids constitute an invaluable fossil record for documenting 

macroevolutionary patterns (e.g. Kennedy and Cobban 1976; Teichert 1986; House 1988; 

Brayard et al. 2009; Monnet et al. 2011; Korn and Klug 2012; Brosse et al. 2013; Tendler et 

al. 2015).  

The initial radiation of ammonoids took place in a context of environmental conditions 

that were repeatedly affected by more or less severe crises (Klug et al. 2010). Several global 

events, usually associated with significant environmental changes, have been recorded by the 
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study of Devonian rocks and fossils. Some of these events severely impacted marine life and 

led to extinction phases (for a review of Devonian global events and crises, see Walliser 1984, 

1996; House 1985, 1996a, 2002; Becker et al. 2016). House (1989), Saunders et al. (2008), 

Korn and Klug (2012) and Korn et al. (2015) documented changes in the taxonomic diversity 

of Palaeozoic ammonoids. For the time interval studied here (Early and Middle Devonian), 

global reductions in ammonoid diversity were recorded for the late Emsian Daleje Event, the 

end-Eifelian Kačák Event and the Givetian Taghanic Event (Korn and Klug 2012). 

Taxonomic diversity trends can be compared to disparity (i.e. the diversity of 

phenotypes) trends; they provide a robust framework for discussing evolutionary processes 

and understanding biotic crises (Roy and Foote 1997). To achieve that, multivariate 

ordination methods allow to quantify morphological disparity and provide a convenient way 

to study the variation of shapes without considering the taxonomic or phylogenetic context 

(Foote 1997; Nardin et al. 2005). They have been successfully applied to various cephalopod 

groups, such as ammonoids (e.g. Dommergues et al. 1996; Simon et al. 2010; Korn and Klug 

2012; Hoffmann et al. 2019), belemnites (Dera et al. 2016; Nätscher et al. 2021) and modern 

coleoids (Neige 2003; Hoffmann et al. 2021). 

Classic methods involving linear measurements of the conch, as the so-called Raupian 

parameters (Raup and Michelson 1965; Raup 1966, 1967; Korn and Klug 2003), enable the 

calculation of morphometric conch properties. This traditional approach allows for the 

quantification of the entire conch geometry; however, it does not allow us to take into account 

all the morphological features that characterise the morphology of the conch, such as the 

degree of whorl overlap, the curvature of the flanks and the presence of grooves and keels 

(Korn and Klug 2012). Therefore, a geometric morphometric approach applied to the whorl 

profiles represents an alternative to complement the understanding of the conch shape 

evolution (Korn and Klug 2012). The shape of the whorl profile determines two dimensions 

https://en.wikipedia.org/wiki/Kačák_Event
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of the space that accommodated the animal’s soft body (but not the length of the body 

chamber). The preparation of cross sections of ammonoid conchs is considered a classic 

method for studying this group and provides an immense amount of biometric data (Reyment 

and Kennedy 1991; Korn and Klug 2003; Korn and Klug 2012). The shape of the whorl 

profile is highly variable in ammonoids and it is therefore used in various studies 

investigating their changes in morphological disparity (e.g. Simon et al. 2010; Korn and Klug 

2012; Klein and Korn 2014). 

Several studies have already examined the morphological evolution of Devonian 

ammonoids – mostly on a global level (Korn and Klug 2003, 2012; Monnet et al. 2011; De 

Baets et al. 2012; Korn et al. 2015; Whalen et al. 2020). Through the Devonian, rapid coiling 

trends from uncoiled/straight ancestors to ammonoids with coiled embryonic as well as post-

embryonic conchs have been documented (House 1996a; Korn and Klug 2003; Klug and 

Korn 2004; Klug et al. 2008b; Monnet et al. 2011; De Baets et al. 2012, 2013; Naglik et al. 

2019). Korn and Klug (2012) and Korn et al. (2015) documented the fluctuations in 

morphological disparity through the Devonian using a standard morphometric method based 

on a modified version of the Raupian parameters (Korn 2010). They documented a major 

increase in morphological disparity during the Emsian, followed by a decrease from the 

Eifelian to the Givetian. Whalen et al. (2020) documented the global fluctuations of 

ammonoid disparity through the Palaeozoic based on conch morphometric data; in this study 

they used the ammonoids as a model taxon to test for the prevalence of early bursts (i.e. 

accumulation of morphological disparity in excess of taxonomic richness; see Simpson 1944; 

Foote 1994, 1997; Hughes et al. 2013; Benton et al. 2014). They also captured this pattern of 

rapidly increasing disparity through the Emsian; however, they found no evidence for an early 

burst: After being corrected for species richness, the disparity of Emsian ammonoids does not 
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exceed the null expectation given the concomitant increase in species richness (Whalen et al. 

2020).  

Furthermore, concerning the extinction events occurring through the studied time 

interval (Early and Middle Devonian), Korn and Klug (2012) and Korn et al. (2015) reported 

that only the end-Eifelian Kačák event was marked by a significant decrease in disparity; they 

found that changes in diversity and disparity were usually decoupled (Korn and Klug 2012; 

Korn et al. 2015). However, the results of Whalen et al. (2020) suggest that the majority of 

Palaeozoic ammonoid species-level morphological disparity could be explained by species 

richness alone, contrary to these previous works. 

Korn and Klug (2012) were the only ones to investigate the morphological disparity of 

Devonian ammonoids by analysing the shape of the whorl profile using a Fourier analysis and 

a multivariate analysis; they described the evolution of the morphospace occupation at 

substage resolution. However, changes through time were not quantified using disparity 

indices. With their loosely coiled conchs (i.e. advolute/evolute conchs without whorl overlap), 

the early Emsian ammonoids occupied a very restricted part of the morphospace (Korn and 

Klug 2012). Then, a shift occurred and new shapes appeared through the late Emsian and the 

Middle Devonian, with a trend towards more involute conchs with increasing whorl overlap 

degrees (Korn and Klug 2012).  

The purpose of our study is to accurately quantify the morphological disparity of 

ammonoids from their origination in the early Emsian (Early Devonian) to the end of the 

Givetian (Middle Devonian), by investigating the shape of the whorl profile using a geometric 

morphometric approach and standard disparity metrics. The novelty of our study also resides 

in the higher temporal resolution (biozone level), in the updated dataset including new data 

from all recent publications documenting early ammonoids from Morocco and from 

specimens prepared and drawn (DK). In addition, our study allows to test, at the regional 
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scale, the global findings of Whalen et al. (2020) concerning the relationship between 

morphological disparity and taxonomic richness and the occurrence of an early burst pattern. 

In this context, the highly resolved Moroccan biozone record enables to highlight changes that 

cannot be seen using a lower time resolution (i.e. substage or stage resolution). 

 

Material and methods 

 

Data compilation.—Our study is based on the fossil record of ammonoids from the Anti-Atlas 

of Morocco (Fig. 1), an area that is well-known for its abundant and well-preserved Devonian 

ammonoid assemblages. In the last decades, many papers documenting Early and Middle 

Devonian ammonoids from Morocco were published (Becker and House 2000; Klug et al. 

2000, 2008b; Klug 2001a, b, 2002a, b, 2017; Becker et al. 2004, 2013, 2018, 2019; Becker 

2007; Bockwinkel et al. 2009, 2013, 2015, 2017; De Baets et al. 2010; Aboussalam and 

Becker 2011; Ebbighausen et al. 2011). These studies provide a comprehensive and valuable 

record of taxonomic diversity and morphological disparity of ammonoids through time. 

Furthermore, working in this one area allows for the collection of data with a consistent 

species-level taxonomic framework and with a precise timescale based on the Moroccan 

ammonoid biozonation (Fig. 2). This time interval of around 22.3 million years (Walker et al. 

2019) has been subdivided into 30 biozones based on ammonoids (Klug 2002a; Aboussalam 

and Becker 2011; Bockwinkel et al. 2015; Becker et al. 2019). In order to synthesise the more 

general changes in disparity observed at the biozone resolution and to visualise global trends, 

the studied time interval is divided into seven timeslices, which are also used as a time scale 

(Fig. 2).   
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The dataset analysed here is a compilation of drawings of whorl profiles (Fig. 3) from 

specimens illustrated in the literature (Chlupáč and Turek 1983; Korn 1999; Klug 2001a, 

2002a; Korn and Klug 2002; Bockwinkel et al. 2009, 2013, 2015, 2017; De Baets et al. 2010; 

Aboussalam and Becker 2011; Ebbighausen et al. 2011; Becker et al. 2013, 2019) and from 

unpublished material (39 whorl profiles belonging to 20 species). The dataset includes 127 

Early and Middle Devonian ammonoid species that were documented from the Anti-Atlas 

(dataset available as supplementary online material at 

https://datadryad.org/stash/share/XXXX; see SOM 1 and 2). Most taxa (~70%) are 

represented by several drawings of the whorl profile, which correspond to ontogenetic stages 

of individual specimens. The decision to select only one specimen per species is guided by the 

aim of focusing only on the interspecific variation and not intraspecific variation (e.g. De 

Baets et al. 2013; Hoffmann et al. 2019). Some of the species could not be included in our 

analysis because their stratigraphic distribution is unclear or because complete whorl profile 

outlines were not available.  

Independently, the conch geometry was also analysed on the base of classical linear 

measurements of the conch (App. S1; for details, see Korn 2010). For most species (75%), the 

analysed measurements (dataset available as supplementary online material at 

https://datadryad.org/stash/share/XXXX; see SOM 3) correspond to the same specimens from 

which the whorl profiles were analysed. From these measurements (App. S1), five 

morphometric ratios were calculated (see Korn 2010): Conch width index (CWI = ww/dm1), 

umbilical width index (UWI = uw/dm1), whorl expansion rate (WER = (dm1/dm2)
2
), whorl 

width index (WWI = ww/wh) and imprint zone rate (IZR = (wh-ah)/wh). 

 

Geometric morphometrics.—In our study, the shape of the whorl profile is quantified using 

geometric morphometrics with the acquisition of semilandmark coordinates on the outline (for 
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a general overview of geometric morphometrics, see Adams et al. 2004, 2013; Zelditch et al. 

2012). All the functions used here to perform geometric morphometric analysis are from the R 

package Momocs (version 1.4.0; Bonhomme et al. 2014). Drawings of whorl profiles are 

automatically digitised into a series of 200 curvilinear equally-spaced points on the outline, 

the semilandmarks (Gunz and Mitteroecker 2013), by using the function ‘coo_interpolate’. 

The standardisation of semilandmark data to correct the size/scale, position/translation, and 

orientation/rotation of whorl profiles is performed as follow: (i) translation effect is removed 

by centering the outlines (i.e. placing all outlines around their centroid, which is the average 

point of all semilandmarks) using the function ‘coo_center’; (ii) coordinates of each outline 

are scaled by their centroid size using the function ‘coo_scale’; (iii) the starting point of each 

outline (i.e. point located at the intersection between the outline and the line passing by the 

centroid with an angle of π/2) is defined using the functions ‘coo_intersect_angle’ and 

‘coo_slide’. Then, superimposed coordinates are modeled into harmonic coefficients with an 

elliptical Fourier analysis (EFA) (Kuhl and Giardina 1982; Ferson et al. 1985; Crampton 

1995; Lestrel 1997; Haines and Crampton 2000; Bonhomme et al. 2014) computed with the 

function ‘efourier’. The number of harmonics to be used for the subsequent analyses is 

selected by default in the function to represent at least 99% of the cumulative Fourier 

harmonic power, in our case this was achieved with 6 harmonics. Our scripts are available 

online (https://github.com/sginot/Ammonoids_disparity). 

 

Morphospaces and disparity metrics.—To study the shape changes and to quantify the 

morphological disparity in time series, the obtained Fourier coefficients are analysed using a 

principal component analysis; this creates a multidimensional empirical morphospace (Foote 

1991; Budd 2021). In macroevolutionary approaches, various disparity indices have been used 

to assess the changes in morphological disparity based on morphospace occupation (Foote 
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1991, 1993; Wills et al. 1994; Ciampaglio et al. 2001; Wills 2001; Guillerme et al. 2020). The 

computation of different types of disparity indices (i.e. size, density and position) is essential 

to catch different aspects of morphological disparity fluctuations through time (Hopkins 

2022). Here, morphological disparity changes over time are analysed using five indices: sum 

of ranges (SoR) and convex hull area (i.e., size-based disparity indices); sum of variances 

(SoV) and mean squared Euclidean distance from centroid (i.e., density-based disparity 

indices); and average displacement (i.e., position-based disparity index). Confidence intervals 

are computed by randomly resampling with replacement points in the morphospace (1000 

iterations) and extracting the 2.5 and 97.5 percentiles of the distribution (Foote 1991). The 

partial morphological disparity (i.e. sum of mean squared Euclidean distance from centroid 

per superfamilies) is computed using the method of Foote (1993). Disparity indices are 

calculated for each of the seven studied intervals constituting the Early and Middle Devonian, 

as well as for each of the 30 biozones (Fig. 2). To compute disparity indices, we produced our 

own custom code (available at https://github.com/sginot/Ammonoids_disparity) based on 

formulas from Foote (1993), Wills et al. (1994), Wills (2001) and Guillerme et al. (2020). All 

analyses are calculated using the scientific environment R (version 3.3.0, R Core Team 2016). 

In order to compare traditional morphometrics based on linear measurements of 

ammonoid conchs to geometric morphometrics, the five conch morphometry ratios are 

ordinated using a principal component analysis to produce another morphospace, which is 

quantified similarly to the EFA-based morphospace (see disparity indices above). 

In addition, for the two datasets, we applied the model of Whalen et al. (2020) to 

investigate the relationship between disparity and diversity, and to test the occurrence of an 

early burst pattern. This approach allows us to compare the measured disparity (estimated 

using the convex hull area calculated for PC1 and PC2) with the expected disparity corrected 

for species richness computed by applying the null model of Whalen et al. (2020). This null 

https://github.com/sginot/Ammonoids_disparity
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distribution of disparity values is basically computed from iterated shuffling of the 

morphospace, which maintains the number of points for each time bin, but modifies the 

corresponding points by randomly assigning real data values to different taxa. For details, see 

the original article and our custom code. 

 

Results 

 

Morphospace and morphological changes.—The two first principal components for the whorl 

section profiles explain 95.7% of the total variance (PC1 = 67.3%; PC2 = 28.4%; Fig. 4). 

Along the first axis, the shape variation is associated with the degree of whorl compression, 

which corresponds to the relative width of the whorl profile compared to its height. The 

distribution of the whorl profiles along PC1 covaries with the whorl width index (WWI; see 

App. S2). Low PC1 values represent more compressed whorl profiles (whorl higher than 

wide, low WWI); towards high PC1 values, the whorl profiles are increasingly depressed 

(whorl wider than high, high WWI) (Fig. 4, App. S2). Along the second axis, shape variation 

is related to the degree of whorl overlap. The distribution of the whorl profiles along PC2 

covaries with the imprint zone rate (IZR; see App. S2). Low PC2 values represent a lower 

overlap (more evolute conchs, low IZR); towards high PC2 values, the degree of overlap is 

increasing (more involute conchs, high IZR) (Fig. 4, App. S2). In summary, morphological 

gradients can be seen along PC1 and PC2, respectively, from compressed to depressed whorl 

profiles (PC1), with a very low to very high degree of overlap (PC2). 

Considering the Emsian as a whole, the occupied morphospace already shows a wide 

range of morphologies, from very compressed to very depressed, with a degree of overlap 

from absent (gyroconic and advolute conchs) to moderate (subinvolute conchs) (Figs 4–5). 
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However, the morphospace occupation is rather low in the first Emsian interval (EMS-1, Fig. 

6; biozones 1 to 3, App. S3), which is only produced by the ancestral ammonoid superfamily 

Mimosphinctoidea. The species of this superfamily show a very small range of morphologies 

(Fig. 6), usually with a compressed whorl profile and without whorl overlap (gyroconic to 

advolute conchs). During the second Emsian interval (EMS-2, Fig. 6; biozones 4 to 6, App. 

S3), the morphospace occupation increased, caused by the emergence of the 

Mimagoniatitoidea, which are characterised by a wider morphological spectrum. Their 

diversification led to an expansion of morphospace to both higher and lower PC1 values 

(more compressed/more depressed whorl profiles), and towards slightly higher PC2 values 

(higher overlapping degree). The last Emsian interval (EMS-3, Fig. 6; biozones 7 to 9, App. 

S3) records a significant increase in morphospace occupation. While the Mimosphinctoidea 

disappeared, the morphological range of the Mimagoniatitoidea increased and the 

Anarcestoidea appeared with their wide broad morphological spectrum (Fig. 6). 

During the Eifelian, a large part of the total morphospace was occupied; even after the 

disappearance of the most compressed early Emsian forms, leaving the bottom-left corner of 

the morphospace unoccupied (Figs 4–5). The first Eifelian interval (EIF-1, Fig. 6; biozones 10 

to 15, App. S4) shows an expansion of the morphospace towards lower PC1 scores, caused by 

the emergence of the Agoniatitoidea, which mainly explored the middle left part of the 

morphospace. This means that new shapes with very compressed whorl profiles and a higher 

degree of overlap appeared (Figs 4–6). Very involute forms characterised by a very high 

overlap degree, causing a horseshoe-shaped whorl profile, appeared within the Agoniatitoidea 

(top-most part of the morphospace; Fig. 6). During the second Eifelian interval (EIF-2, Fig. 6; 

biozones 16 to 19, App. S4), morphospace occupation became more restricted with the 

extinction of the Mimagoniatitoidea. The origination of the Tornoceratoidea did not lead to 
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any changes in the morphospace; they plot in the same area with some species of the 

Agoniatitoidea and the Anarcestoidea (Fig. 6). 

During the Givetian, the density of documented shapes in the morphospace increased 

significantly towards high PC2 scores (Fig. 5), highlighting the diversification of forms 

characterised by a higher degree of overlap (Fig. 4). With the disappearance of the most 

compressed forms of the Agoniatitoidea, the middle left-most part of the morphospace 

became empty (Figs 4–6), while new forms characterised by more depressed whorl profiles 

diversified (expansion of the distribution towards lower PC1 scores; Fig. 6). The most 

depressed forms that were present during the Eifelian disappeared with the disappearance of 

the Anarcestoidea; however, they are partially replaced by the Pharciceratoidea, which 

occupied a large part of the morphospace during the Givetian (intervals GIV-1 and GIV-2, 

Fig. 6). The Pharciceratoidea emerged in the first Givetian interval (GIV-1, biozones 20 to 24; 

Fig. 6, App. S5), where they were already characterised by a wide range of morphologies, 

particularly in the degree of whorl overlap (Fig. 6). In addition, the new superfamily 

Gephuroceratoidea appeared; they are located in the same area as the Agoniatitoidea, but 

possessed a smaller range of morphology (Fig. 6). The Tornoceratoidea still occupied a 

restricted part in the morphospace where they cluster in the central area. During the second 

Givetian interval (GIV-2, biozones 25 to 30; Fig. 6, App. S5), the Pharciceratoidea 

distribution generally expanded towards lower PC1 values, due to the presence of more 

compressed forms. The Tornoceratoidea diversified and occupied a larger part of the 

morphospace by expanding their distribution towards higher PC1 and PC2 values (Fig. 6). 

While the area occupied by the Agoniatitoidea decreased, the area occupied by the 

Gephuroceratoidea expanded and they showed a relatively large range of morphologies. 

In summary, a progressive trend towards a higher overlapping degree is observed in the 

ammonoids from the Emsian to the Givetian (Figs 4–5). During the three stages, the density is 
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relatively high towards high PC1 values (0.2–0.4), and towards moderate to low PC2 values (-

0.2–0.0) (Fig. 5); this trend underlines the dominance of moderately depressed whorl profiles 

with a moderate degree of overlap (average morphology in terms of compression and 

overlap). 

 

Morphological disparity trends.—The squared Euclidean distance and the SoV  (density-

based disparity indices; Figs 7–8) show a long increasing trend from the early Emsian to the 

late Eifelian, followed by a slow decrease until the late Givetian where moderate disparity 

values are recorded.  

The sum of ranges (i.e. size-based disparity indices)) also records a progressive increase 

from the Emsian to the Eifelian, with very high values being reached in the first Eifelian 

interval. Then the disparity significantly decreased and reached moderate values in the first 

Givetian interval, to finally increase in the second Givetian interval to reach a level slightly 

lower than the Eifelian maximum (Fig. 8).  

The position based disparity index (average displacement = average distance from 

centre; Fig. 8) records high values during the two first Emsian intervals, then the values 

decreased and remained relatively low through the Eifelian and Givetian. This trend reflects 

the morphospace occupation change occurring through the late Emsian: with the appearance 

of new conch shapes the ammonoids started to explore the central part of the morphospace 

(Fig. 6). In other words, the early Emsian ancestral shapes do not constitute an average 

morphology from which the diversification occurred in all directions; we rather have an 

oriented diversification towards positive values of PCs 1 and 2 (see Fig. 6). 

In summary, in terms of density and size, a global rise in disparity is recorded from the 

Emsian to the Eifelian, followed by a decreasing trend occurring from the Eifelian to the 

Givetian (Figs 7–8). Variations at the biozone resolution show the same global trends (Figs 9–
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10). The relatively high disparity recorded in the last Emsian interval (Figs 7–8) results in part 

from the ammonoid species occurring in the Sellanarcestes wenkenbachi Zone (biozone 8; 

Figs 9–10), where a large area of the morphospace is occupied (App. S3). The peak in the first 

Eifelian interval mainly results from the disparity recorded in the Cabrieroceras zones 

(biozones 14 and 15; Figs 9–10, App. S4). During the Givetian, the highest levels of disparity 

are recorded in late Givetian biozones (Figs 9–10, App. S5).  

Some peaks result from the co-occurrence of superfamilies with different morphologies 

(e.g. Anarcestoidea and Agoniatitoidea during the Eifelian; Agoniatitoidea, 

Gephuroceratoidea and Pharciceratoidea during the Givetian; Figs 6–7, 9), while others are 

associated with the predominance of one superfamily with an important morphological 

variation (e.g. Mimagoniatitoidea during the second Emsian interval; Figs 6–7, 9). 

 

Early burst pattern and correlation between disparity and diversity—To test for the 

occurrence of an early burst of shape diversity, we applied the approach proposed by Whalen 

et al. (2020). This approach allows to compare the measured disparity estimated using the 

convex hull area computed for PCs 1 and 2, with the expected variations of this index 

calculated considering the number of species in each bins (i.e. null model; Fig. 11). The 

measured values of this disparity estimator show similar variations as the SoR (Figs 8, 10, 

11), since they both constitute size-based disparity indices. Despite the rapid increase in 

disparity recorded through the Emsian, the results do not suggest any evidence for an early 

burst: The disparity of Emsian ammonoids from Morocco does not exceed the null 

expectation given the concomitant increase in taxonomic diversity (Fig. 11). It is in fact 

generally lower than expected considering a null hypothesis of random appearance of new 

morphologies in the morphospace. 
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Correlation tests between the disparity indices and the number of species (diversity) 

were assessed using Pearson’s approach (Haining 1991; Pearson 1896); the data were 

detrended using the method of Graeme T. Lloyd 

(https://www.graemetlloyd.com/methgd.html) before testing correlations (results of the 

correlations tests are available in App. S6). At the interval resolution (N=7), the correlation 

tests fail to find significant correlation between species disparity and species diversity for all 

indices (all p-values > 0.05; see App. S6). At the biozone resolution (N=30), the size-based 

disparity indices (i.e. sum of ranges and convex hull area) show significant correlations with 

the number of species (p-values << 0.010; see App. S6); while for the other indices (i.e., sum 

of variances, squared Euclidean distance and average displacement) the correlation tests fail 

to find a significant correlation with diversity (all p-values > 0.05; see App. S6).   

 

Impacts of Early and Middle Devonian events.—The Upper Zlíchov Event (late early Emsian) 

is associated with a global minor transgression and with the spreading of hypoxic conditions 

(García-Alcalde 1997; Becker and Aboussalam 2011; Ferrova et al. 2012, 2013; Aboussalam 

et al. 2015). In Morocco, this event correlates with moderate disparity values and low 

taxonomic richness (Figs 9–10).  

The Daleje Event (early late Emsian) corresponds to global sea level rise (House 1985, 

2002; Ferrova et al. 2012, 2013; Aboussalam et al. 2015). Although the last representatives of 

the Mimosphinctoidea became extinct during this global transgressive event, diversity 

increased with the emergence of the Anarcestoidea (Figs 9–10). In terms of disparity, the size-

based indices (i.e. sum of ranges and convex hull area, Figs 10–11) record a significant 

increase. The density-based disparity estimators (i.e. sum of variances and squared Euclidean 

distance) also show a slight increase but not significant. The average displacement decrease 

https://www.graemetlloyd.com/methgd.html
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considerably and significantly through this time interval, reflecting the important change in 

morphospace occupation (App. S3). 

The Choteč Event (early Eifelian) is associated with a pulse of eutrophication and with 

an important turnover observed in many groups of organisms (Chlupáč and Kukal 1986, 

1988). Impressive evidence of sudden flooding associated with anoxic facies was documented 

in the Anti-Atlas of Morocco (Becker and House 1994, 2000; Becker and Aboussalam 2013). 

In this time interval, the taxonomic richness is rather moderate. The disparity is relatively 

high in terms of size and density, but low in terms of position; no significant changes are 

recorded (Figs 9–11). 

The Kačák Event (latest Eifelian) is a global extinction event (major marine faunal 

turnover) considered to be caused by climate change (House 1996b, 2002; Suttner et al. 

2017). An occurrence of black shales associated with widespread hypoxic/anoxic conditions 

was documented (Suttner et al. 2017). The species diversity of the Moroccan ammonoids 

decreased drastically after the Kačák events. In terms of morphological disparity fluctuations, 

the size-based indices record a significant decrease after the Kačák Event (Figs 10–11); the 

density-based indices also show a decrease, but very slight and not significant (Figs. 9–10). 

The morphospace occupation become restricted after the Kačák Event (compare the two last 

Eifelian biozones with the first Givetian one, Apps S4–S5). Interestingly, the decrease in 

disparity appears less sharp than the decrease in diversity.  

The Taghanic Event (middle–late Givetian) corresponds to a multi-phased global crisis 

that led to major turnover in many groups of organisms (House 2002; Aboussalam and Becker 

2011; Turnau 2014; Maillet et al. 2015; Narkiewicz et al. 2016). Like other events, it is 

associated with sudden climate changes including greenhouse overheating pulses and sea 

level fluctuations (Aboussalam and Becker 2011; Zambito et al. 2012). In the Anti-Atlas, no 
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significant changes are recorded in terms of both diversity and disparity; both remain 

relatively stable during this time interval (Figs 9–11). 

 

Discussion 

 

The major pattern highlighted by the geometric analysis of ammonoid whorl profiles is 

a rapid increase in the range of whorl profile disparity in early ammonoid evolution, reaching 

a stabilisation in the late Emsian to early Eifelian (i.e. see size and density disparity metrics; 

Figs 7–11). This might be related to the rapid morphological evolution from loosely coiled or 

advolute conchs to those with increasingly overlapping whorls (Klug and Korn 2004; De 

Baets et al. 2012, 2013). This is consistent with the variations of the position-based disparity 

estimator; a shift is visible between the Emsian and the rest of the studied time interval (Fig. 

10). This trend towards a higher degree of whorl overlap continued throughout the Givetian, 

where the involute forms with high whorl overlap are more diverse (Fig. 5).  

The morphospace based on the conch morphometry ratios (App. S7) also highlights that 

ammonoids already displayed a wide range of morphologies in the Emsian; this also shows a 

trend towards a higher degree of whorl overlap from the Early to the Middle Devonian (i.e., 

exploration of the bottom-left part of the morphospace through the Middle Devonian 

corresponding to the appearance of more involute conch with a higher degree of overlap, App. 

S7). Comparing the disparity based on whorl profile and conch morphometry ratios, 

respectively, the same general trends are observed (Fig. 8, App. S8). At the interval 

resolution, the size and density-based disparity estimators show a rapidly increasing disparity 

through the Early Devonian followed by a moderate and relatively progressive decrease 

through the Middle Devonian (Fig. 8, App. S8); the position-based disparity estimator shows 
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high values in the two first Emsian intervals, then the values decrease significantly and stay 

low during the Middle Devonian (Fig. 8, App. S8). Despite these similar general trends, 

however, differences can be recognised: regarding the size-based disparity indices, the conch 

ratio disparity had an earlier maximum (late Emsian) than the whorl profile disparity (early 

Eifelian) (compare the variations of the sum of ranges and convex hull area for the whorl 

profiles and conch morphometry ratios, respectively; Figs 8, 11, Apps S8, S9). The 

Agoniatitoidea that emerged through the early Emsian are characterised by a wide range of 

whorl profile shapes, while range in terms of conch morphometry ratios (overall shape of the 

conch) is more restricted. With its extreme shape, Mimotornoceras djemeli (represented by 

the topmost dot in the morphospace), contributes clearly to the high disparity values recorded 

in the first Eifelian interval (Fig. 8).  

In ammonoids, the loosely coiled conch constitutes the plesiomorphic state of 

morphology, since they are interpreted to have descended from bactritoid ancestors with 

straight conical or slightly curved conchs (Schindewolf 1933; Erben 1964; Korn 2001; Klug 

and Korn 2004; Kröger and Mapes 2007; Klug et al. 2015; Cichowolski and Rustán 2017). De 

Baets et al. (2012) documented the simultaneous increase in coiling of the inner whorls and 

the disappearance of the umbilical window in several Early Devonian ammonoid lineages. 

These trends, as well as the trend towards a higher degree of whorl overlap in the adult stage, 

may have affected the swimming capabilities and fecundity in ammonoids (Klug and Korn 

2004; De Baets et al. 2012). The repeated coiling trends might be a response to increased 

predatory pressure as proposed for various molluscs groups (e.g. Nützel and Frýda 2003; 

Kröger 2005; De Baets et al. 2012, 2013; Klug et al. 2017; Dzik 2020). During the Devonian, 

various predatory groups capable of preying on ammonoids were already well established 

(Whalen and Briggs 2018; Ferrón and Donoghue 2022). The ammonoid conch geometry can 

be interpreted as the result of tradeoffs between different functional ecological tasks (e.g. 
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hydrodynamics, economy of shell material, shell growth, compactness) (Tendler et al. 2015, 

see also Hebdon et al. 2022).The loosely coiled conch was considered as an optimised 

morphology for an economy of shell material (Tendler et al. 2015). However, they are 

mechanically weaker and hydrodynamically less favourable; they can be crushed more easily 

by predators than tightly coiled conchs (Brett and Walker 2002; Nützel and Frýda 2003; 

Kröger 2005; Wagner and Erwin 2006; Klug 2007; De Baets et al. 2012). Following this idea, 

this trend towards increased coiling of the conch was usually interpreted as the result of 

adaptative pressures coupled with improved hydrodynamics. This allows for a higher 

swimming velocity and improved manoeuvrability (Chamberlain 1976, 1981; Klug 2001a; 

Korn and Klug 2003; Klug et al. 2008a, b, 2016; Monnet et al. 2011; De Baets et al. 2013; 

Frey et al. 2014; Naglik et al. 2015; Tendler et al. 2015), providing an advantage to escape 

from predators. The diversification of vertebrate nektonic predators, including fishes, and the 

escalation of their swimming capabilities was more complex and gradual than previously 

understood (Klug et al. 2010, 2017; compare with Whalen and Briggs 2018, and Ferrón and 

Donoghue 2022). Nevertheless, various or repeated pulses of increase in coiling may have 

occurred in conjunction with radiation pulses of active predators (Kröger 2005). But other 

factors might be involved; increased coiling also correlates with increasing fecundity as well 

as decreasing embryo size, leading to an increase in reproductive rates (Klug 2001a, 2007; De 

Baets et al. 2012, 2013, 2015; compare Ritterbush et al. 2014). It appears likely that tighter 

coiling enhanced swimming and reproductive capabilities of these cephalopods. However, 

this evolutionary tendency could be also driven by competition in a diversity-saturated habitat 

together with availability of abundant planktonic food (e.g., Klug et al. 2010) while the 

radiation of nekton might have been more smeared out (Whalen and Briggs 2018, and Ferrón 

and Donoghue 2022). It has at least been plausibly suggested that many ammonoids, 

compared to other pelagic groups, had a more passive life history with reduced mobility 
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potential and reduced capacities for larger prey items based on their small estimated buccal 

masses and hyponomes (Walton and Korn 2018).  

The changes in conch morphology of early ammonoids occurred simultaneously and 

convergently (or even in parallel) in various taxa (Korn and Klug 2003; Kröger 2005; Monnet 

et al. 2011, 2015; De Baets et al. 2013; Klug et al. 2015; Naglik et al. 2019). This supports the 

hypothesis that the evolutionary trend towards more densely coiled conchs was ecologically 

driven. In any case, the change in coiling modified the syn vivo shell orientation in such way 

that the aperture became horizontally aligned with the centre of mass, enabling the 

ammonoids having higher swimming speeds (Saunders and Shapiro 1986; Klug 2001a; Klug 

et al. 2008b; Hoffmann et al. 2015; Naglik et al. 2015). 

Independent of these adaptative explanations, morphological changes of the early 

ammonoid conchs might also have resulted from a random walk biased by left-wall effects 

(i.e. constructional constraints; Monnet et al. 2011, 2015). In that case, the hypotheses about 

ecological trends mentioned above just describe side-effects of other trends; but all these 

explanations may also have worked in concert.  

Regarding disparity patterns, Korn and Klug (2012) documented an important increase 

through the Emsian followed by a sharp decrease during the Eifelian and Givetian. This result 

was based on linear (conch) measurements. Our geometric morphometric analysis of whorl 

profiles also captures this general pattern of decreasing disparity through the Middle 

Devonian, but the drop down is not that sharp and we can see that the disparity has rather 

decreased moderately and progressively after the rapid increase observed during the Emsian 

(see the fluctuations at the interval resolution, Figs 7–8). The significant increase in disparity 

occurring during the Emsian is recorded based on both conch morphometry ratios and whorl 

profiles (Fig. 8, App. S8); therefore, in the initial phase of their evolutionary history, the 

ammonoids rather quickly explored the range of available shapes. Interestingly, we can see 
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that this increase began even earlier than the increase in taxonomic diversity that characterises 

the late Emsian (Figs 7–10). The results of Whalen et al. (2020) show high disparity levels in 

the evolution of the late Emsian and earliest Givetian ammonoids. Our results corroborate the 

high disparity reached in the late Emsian, but do not show any disparity pike in the earliest 

Givetian (Fig. 10); for the Moroccan ammonoids the disparity rather increased later in the late 

Givetian, and also reached a high level in the Eifelian (Fig. 10). 

 Our results confirm that the ammonoids reached a high disparity early in their 

evolution. However, according to the results obtained by applying the test of Whalen et al. 

(2020) for early burst evolution, this rise does not exceed the expectations given diversity (for 

the whorl profiles as well as for the conch morphometry ratios; Fig. 11, App. S9). In fact, 

disparity is consistently lower than the values expected under the null distribution. This may 

suggest that this test is overly conservative. Indeed, this might be explained by the fact that 

the null distribution is produced under the assumption that any (really sampled) morphology 

may appear in the morphospace, no matter what the morphospace of the previous time 

interval was. Therefore, morphologies differing completely from their putative ancestral stock 

of species are allowed to appear, potentially producing an overestimate of disparity, when 

compared for example to a Brownian motion. Under Brownian motion, the test of Whalen et 

al. (2020) would have to be modified to account for the fact that new morphologies are less 

likely to appear further away from standing morphologies. Such modification would certainly 

decrease the distribution of disparity values, and render the test less conservative. 

Notwithstanding these criticisms, as it stands, the test does not allow us to state firmly that the 

early increase in disparity observed in ammonoids corresponds to an early burst pattern or not.  

Although the ‘early high disparity’ model  has been documented for many animal clades 

(Foote 1994, 1997; Erwin 2007; Hughes et al. 2013; Benton et al. 2014; Oyston et al. 2015; 

Wagner 2018), it seems that this trend is not the predominant pattern throughout the 
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Phanerozoic and that is even rather rare (Whalen et al. 2020).The development of a less 

conservative test for this pattern, although not the aim of the current paper, might help solve 

this open debate on the frequency of early burst patterns through evolution.  

The complex relationship between taxonomic diversity and morphological disparity has 

been widely investigated and debated; some studies showed a decoupling (e.g. Fortey et al. 

1996; Bapst et al. 2012; Missagia et al. 2023) while others demonstrated that the two signals 

could be coupled (e.g. Whalen et al. 2020; Bault et al. 2023). For our two analyses, whorl 

profiles and conch morphometry ratios, correlations between taxonomic diversity and the 

size-based disparity indices (i.e., sum of ranges and convex hull area for PCs 1 and 2) are 

evidenced at the biozone resolution; but for all other indices correlation tests failed to find 

correlation with the number of species at both the interval and biozone resolutions (App. S9). 

According to our results, it appears that diversity and disparity are partially decoupled; this 

may be dependent on the type of indices used. As such, studies investigating these 

correlations might benefit from systematically including several of these indices. 

 

Conclusions 

 

The disparity signal is complex, and different patterns can be caught depending on what type 

of index we are looking at. According to the size and density-based disparity estimators, a 

significant rise in ammonoid disparity occurred during the Early Devonian, confirming that 

ammonoids achieved high disparity levels early in their evolutionary history. Nevertheless, 

according to the test carried out, we found no evidence for an early burst pattern in the 

regional disparity dataset: the measured disparity does not exceed the expectations of the null 

model, which may however be too conservative. The position-based disparity index shows a 

distinct pattern, compared to the other indices; a sharp decrease is recorded from the early to 

https://www.synonym.com/synonyms/nevertheless
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the late Emsian, reflecting a shift in the morphospace occupation.  Thereafter, the disparity 

shows ups and downs following a general moderately decreasing trend trough the Middle 

Devonian.  Among the events occurring during the studied time interval, just the Kačák Event 

appears to have impacted the disparity, but only partly: the size-based disparity estimators 

record a significant decrease after the event, however, the other type of indices do not show 

significant fluctuations. Diversity and disparity appear partially decoupled (i.e. correlation 

tests only reveal significant correlations for the size-based disparity indices, at the biozone 

resolution). From the Early to the Middle Devonian, a progressive trend towards a higher 

degree of whorl overlap is recorded. The involute conchs with a high whorl overlap are 

particularly abundant in the Givetian; the involute morphologies correspond to shapes 

interpreted to be optimised for hydrodynamic efficiency allowing improved swimming 

abilities (Tendler et al. 2015; Klug et al. 2016). This pattern fits well with the presence of 

nektonic predators that were already well established during the Devonian, which may have 

induced a selective pressure in favour of tighter coiled conchs, more suited to changing 

environments than the Emsian loosely coiled relatives that finally disappeared. The shift 

recorded by the position-based index through the Early Devonian reflects this transition 

towards more involute conchs. 
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FIGURE CAPTIONS 

 

Fig. 1. Simplified geological map of Morocco (modified from Klug 2002a). 

 

Fig. 2. Stratigraphic scheme for the Early and Middle Devonian of the Anti-Atlas of Morocco, 

showing the distribution of superfamilies through time. Ammonoid biozonation from (Klug 

2002a; Aboussalam and Becker 2011; Bockwinkel et al. 2015; Becker et al. 2019). Absolute 
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ages from the Geological Time Scale v. 5.0 (Walker et al. 2019). Sobolewia n. sp. and 

Afromaenioceras n. sp. have been introduced by Becker et al. (2004), and Lunupharciceras n. 

sp. by Aboussalam and Becker (2011); these new taxa have not yet been formally described 

but they are mentioned in several studies where they are used to establish the biozonation (e.g. 

Becker et al. 2004; Aboussalam and Becker 2011). 

 

Fig. 3. Ammonoid morphology and dataset. A, Morphology of an ammonoid; as an example, 

the outline of the whorl profile taken at the maximum conch diameter is highlighted in red 

(modified from De Baets et al. 2010). B, Dataset analysed here; compilation of drawings of 

whorl profile outlines corresponding to Early and Middle Devonian ammonoids from 

Morocco. 

 

Fig. 4. Morphospace occupation observed for the Early and Middle Devonian, based on the 

analysis of the whorl profiles, with representative examples of shapes. The first two axes 

explain 95.7% of the variance. 

 

Fig. 5. Diagrams showing the morphospace occupation observed for the three stages 

constituting the Early and Middle Devonian, with level contours and density curves; based on 

the analysis of the whorl profiles. 

  

Fig. 6. Evolution of the morphospace occupation through the seven intervals constituting the 

Early and Middle Devonian, showing the distribution of ammonoid superfamilies; based on 

the analysis of the whorl profiles. See Fig. 2 for interval labels. 

 



43 

 

Fig. 7. Relative contribution of ammonoid superfamilies to diversity and disparity (squared 

Euclidean distance); based on the analysis of the whorl profiles. See Fig. 2 for interval labels. 

 

Fig. 8. Evolution of disparity through the Early and Middle Devonian (estimated by sum of 

ranges, sum of variances and average displacement); based on the analysis of the whorl 

profiles. Error bars are computed after 1000 bootstraps. The sampled-in-bin diversity is 

indicated in blue bars. See Fig. 2 for interval labels. 

 

Fig. 9. Evolution of the relative contribution of ammonoid superfamilies to diversity and 

disparity (mean squared Euclidean distance to the centroid) through the Early and Middle 

Devonian ammonoid zones (biozones numbered from 1 to 30, see Fig. 2); based on the 

analysis of the whorl profiles. 

 

Fig. 10. Evolution of disparity through the 30 studied biozones representing the Early and 

Middle Devonian (estimated by sum of ranges, sum of variances and average displacement); 

based on the analysis of the whorl profiles. Error bars are computed after 1000 bootstraps. 

The sampled-in-bin diversity is indicated in blue bars. 

 

Fig. 11. Variations of the convex hull area computed for PCs 1 and 2, based on the analysis of 

the whorl profiles through the Early and Middle Devonian. Comparison of the measured 

values with the expected values given diversity, computed by applying the null model of 

Whalen et al. (2020). 
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Appendix S1. Linear measurements used to compute the conch morphometry ratios: Conch 

Width Index (CWI = ww/dm1), Umbilical Width Index (UWI = uw/dm1), Whorl Expansion 

Rate (WER = (dm1/dm2)
2
), Whorl Width Index (WWI = ww/wh) and Imprint Zone Rate 

(IZR = (wh-ah)/wh). 

 

Appendix S2. Crossplots showing the distribution of the whorl profiles along the first (PC1) 

and the second axes (PC2) of the PCA, depending of the imprint zone rate (IZR) and the 

whorl wide index (WWI). 

 

Appendix S3. Evolution of the morphospace occupation through the nine ammonoid zones 

constituting the Emsian of Morocco; based on the analysis of the whorl profiles. 

 

Appendix S4. Evolution of the morphospace occupation through the 10 ammonoid zones 

constituting the Eifelian of Morocco; based on the analysis of the whorl profiles. 

 

Appendix S5. Evolution of the morphospace occupation through the 11 ammonoid zones 

constituting the Givetian of Morocco; based on the analysis of the whorl profiles. 

 

App. S6. Table showing the results of the Pearson’s correlation tests. 

 

Appendix S7. Morphospace occupation observed for the Early and Middle Devonian, based 

on the analysis of the conch morphometry ratios (CWI, UWI, WER, WWI, IZR), with 

representative examples of shapes. The first two axes explain 85.9% of the variance. 
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Appendix S8. Evolution of disparity through the Early and Middle Devonian (estimated by 

mean pairwise distance, sum of ranges and sum of variances); based on the analysis of the 

conch morphometry ratios (CWI, UWI, WER, WWI, IZR). Error bars are computed after 

1000 bootstraps. The sampled-in-bin diversity is indicated in blue bars. See Fig. 2 for interval 

labels. 

 

App. S9. Variations of the convex hull area computed for PCs 1 and 2, based on the analysis 

of the conch morphometry ratios through the Early and Middle Devonian. Comparison of the 

measured values with the expected values given diversity, computed by applying the null 

model of Whalen et al. (2020). 

 

 


