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ARTICLE OPEN

Concurrent multi-peak Bragg coherent x-ray diffraction
imaging of 3D nanocrystal lattice displacement via global
optimization
Siddharth Maddali 1, Travis D. Frazer1, Nazar Delegan 1,2, Katherine J. Harmon1, Sean E. Sullivan 1,2, Marc Allain3, Wonsuk Cha 4,
Alan Dibos5, Ishwor Poudyal1, Saugat Kandel 4, Youssef S. G. Nashed6,8, F. Joseph Heremans1,2,7, Hoydoo You 1, Yue Cao1 and
Stephan O. Hruszkewycz1✉

In this paper we demonstrated a method to reconstruct vector-valued lattice distortion fields within nanoscale crystals by
optimization of a forward model of multi-reflection Bragg coherent diffraction imaging (MR-BCDI) data. The method flexibly
accounts for geometric factors that arise when making BCDI measurements, is amenable to efficient inversion with modern
optimization toolkits, and allows for globally constraining a single image reconstruction to multiple Bragg peak measurements. This
is enabled by a forward model that emulates the multiple Bragg peaks of a MR-BCDI experiment from a single estimate of the 3D
crystal sample. We present this forward model, we implement it within the stochastic gradient descent optimization framework,
and we demonstrate it with simulated and experimental data of nanocrystals with inhomogeneous internal lattice displacement.
We find that utilizing a global optimization approach to MR-BCDI affords a reliable path to convergence of data which is otherwise
challenging to reconstruct.

npj Computational Materials            (2023) 9:77 ; https://doi.org/10.1038/s41524-023-01022-7

INTRODUCTION
Bragg coherent diffraction imaging (BCDI) is a synchrotron-based
characterization technique that utilizes coherent x-ray illumination
and three-dimensional (3D) phase retrieval algorithms to inter-
rogate the internal structure of sub-micron-sized crystalline
materials at spatial scales of tens of nanometers1,2. This is possible
because Bragg coherent diffraction is sensitive to the shape of the
crystal and its internal atomic lattice displacement field projected
along the direction of the scattering vector. This information is
encoded in the amplitude and phase of the complex-valued wave
that creates a fringe pattern about the diffracted Bragg peak.
However, as with other x-ray scattering techniques which face the
crystallographic “phase problem,” BCDI measurements record only
the intensity of the diffracted wave, providing no direct
information as to the phase. Thus phase retrieval approaches
are needed to gain access to the reconstructed 3D image of the
crystal and its internal lattice distortion field. The typical approach
to solving this phase problem in BCDI is via iterative methods3–5

that update an estimate of the 3D image based on the error
between its diffraction (emulated via a ‘forward model’) and the
experimentally observed diffraction of a Bragg peak from the
sample. BCDI of this sort uses a family of relatively straightforward
iterative phase retrieval algorithms to reconstruct the spatial
distribution of a single scalar component of the lattice distortion
field of a nanocrystal, with many examples in the literature from
diverse materials systems6–8. BCDI methods have also been
developed to directly retrieve the full 3D lattice distortion field
in a nanocrystal by solving the phase retrieval problems for

multiple BCDI datasets from different independent Bragg reflec-
tions of the same crystal.
The multi-reflection approach (MR-BCDI) involves a more

complex measurement as compared to standard BCDI, requiring
multiple Bragg peaks from a single nanoparticle to be measured9.
This further complicates the image reconstruction process by
imposing additional constraints, which then become difficult to
reconcile simultaneously with the target image of interest. Various
strategies of MR-BCDI image reconstruction have been developed
that either utilize phase retrieval methods adapted from standard
single-Bragg-peak approaches to reconstruct experimental data
sets10–12, or that explore more sophisticated multi-Bragg peak
reconstruction concepts within the realm of simplified simulated
data13,14 that are more difficult to translate to as-measured MR-
BCDI data sets.
In this work, we introduce an MR-BCDI reconstruction approach

that can reconstruct experimental data directly and that is
compatible with modern optimization methods. As compared to
other MR-BCDI methods, our approach enables global fitting to the
full set of intensity patterns from multiple Bragg peaks in order to
determine the scattering volume of a crystal and its internal lattice
distortion field, affording a much more reliable path to convergence.
In this paper, we present this forward model, we implement it within
the stochastic gradient descent optimization framework common in
machine learning model training, and we demonstrate the method
with simulated and experimental data. We focus in particular on
enabling accurate reconstructions of crystals that contain disconti-
nuities in their lattice distortion fields.
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RESULTS
The multi-reflection BCDI forward model
A comprehensive forward model for MR-BCDI must tackle several
prominent challenges inherent to the geometry of the measure-
ment. First, each Bragg peak measurement is sensitive to a specific
projection of the displacement field u within the crystal sample
along the reciprocal lattice vector G of the measured reflection.
Second, the crystal and detector must be physically rotated to
different orientations to satisfy each different Bragg reflection,
resulting in different orientations (or views) of the sample with
respect to the detector. Third, the reciprocal space sampling basis
of each Bragg peak is generally different and non-orthogonal. This
comes about because parallel 2D slices of the 3D diffraction
intensity patterns about each Bragg peak are obtained via a fine
angular scan (rocking curve) of the crystal by one of the sample
rotation stages of the diffractometer after the sample and detector
are oriented for diffraction. Thus, flexible multi-axis rotation and
adaptable and accurate re-sampling of the sample object space to
the different bases dictated by the measured data are needed.
A final requirement, as discussed in the next section, is that in

order for this forward model to be suitable for inversion using
modern numerical optimization toolkits available as part of
machine learning packages, it should be composable of differenti-
able elementary functions. This allows global optimization of a loss
function based on rapid evaluation of gradients through the
numerical process of automatic differentiation, which has recently
gained traction in x-ray coherent diffraction imaging15. As we
describe here, our MR-BCDI forward model is designed to
accommodate these requirements.
The forward model for MR-BCDI is built upon a reference frame

in which relevant conventions and operations can be defined. To
describe the nanocrystal containing a distortion field we wish to
reconstruct, we adopt a right-handed ortho-normal laboratory
frame ½̂s1 ŝ2 ŝ3� (Fig. 1). This frame is defined such that the incident
x-ray beam path ki is coincident with ŝ3, and ŝ2 is vertically
upward. In this frame, we define the following quantities needed
for the forward model:

● The three-dimensional scalar field AðxÞ and the 3D vector
field u(x), respectively denoting the spatial distribution of
scattering amplitude and the spatial distribution of the relative
lattice displacement vector within the crystal at locations
x 2 R3. We assume AðxÞ 2 ½0; 1� and define A : R3 ! R and
u : R3 ! R3.

● The bounding box V that should be larger than the expected
size of the crystal. Outside of this volume, the condition
AðxÞ ¼ 0 and u(x)= 0 is enforced. A and u are discretized on
a given grid within V with a voxel size s0 along each of the
Cartesian axes ½̂s1 ŝ2 ŝ3�. Typical voxel sizes s0 for BCDI
experiments are ~ 10-nm due to the resolution limits of the
method, a length scale that spans many lattice unit cells in the
physical crystal.

● The reciprocal lattice vectors corresponding to the multiple
Bragg reflections (M in number) measured within a MR-BCDI
data set are denoted by the set fGigMi¼1. The physical units of
the Gi are chosen to be the inverse of those chosen for u(x),
i.e., ∥Gi∥= 1/di, where di is the corresponding spacing of
atomic planes diffracting to a given peak.

● The 3 × 3 rotation matrices fRigMi¼1 that act upon the
nanocrystal in the lab frame to bring its crystal lattice into
each of the Gi Bragg conditions. This matrix represents a
composite rotation of the object to orient the set of sample
rotation stages and the detector positioning stages used in
the MR-BCDI measurement, providing the orientation of the
sample as viewed from the detector. We note that Ri
represents an active rotation of the object that can be
implemented by applying a complementary passive rotation
R�1

i to the coordinates of that object, as is done in this work.
● The 3 × 3 matrices fBðiÞ

realg
M

i¼1 whose columns form a basis of
3D sampling vectors in real space in the frame k̂1, k̂2, k̂3 of the
detector (see Fig. 1). The elements of fBðiÞ

realg
M

i¼1 are determined
by the corresponding reciprocal basis matrix fBðiÞ

recipg
M

i¼1
which

depends on the detector pixel size, detector orientation, the
angular increments of the rocking curve, sample rotation axis,
and the signal-space array size chosen to encompass the
Bragg peak. It is important to note that fBðiÞ

realg
M

i¼1 for every
Bragg peak scan is unique.

● Dataset-dependent scaling factors fχ i χ i 2 Rj gMi¼1 for the
scattering amplitude A that rescales the sample exit wave
amplitude of the model to correspond to the relative
intensities of the set of 3D Bragg peak measurements.

These elements can be used to make a MR-BCDI forward model
that addresses the above-mentioned challenges and makes the
inversion of the forward model tractable. The projection of u(x)
along Gi allows the 3D complex-valued amplitude and phase of
the crystal exit wave field for a given Bragg reflection to be
determined as has been established in the BCDI literature:

Fig. 1 BCDI measurement schematic. BCDI setup at Beamline 34-ID-C of the Advanced Photon Source showing the laboratory and detector
frames ½̂s1 ŝ2 ŝ3� and ½k̂1 k̂2 k̂3� for a single Bragg condition. The diffractometer rotations in this figure can be redefined as needed to generate
forward models of MR-BCDI measurements at other synchrotron beam lines with differing geometries. ki and kf are drawn to satisfy the
current diffraction condition with the area detector shown.
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ψðiÞðxÞ ¼ AðxÞ exp½ι2πGT
i uðxÞ�. The complex-valued object consis-

tent with the i’th sample orientation in the reference frame of the
detector is given by ψðiÞðR�1

i xÞ � AðR�1
i xÞ exp½ι2πGT

i uðR�1
i xÞ�

and represents the 3D object exit wave to be propagated to the
far field for a particular Bragg reflection.
With the object in the detector coordinate frame, the issue of

non-orthogonal reciprocal space sampling in BCDI and how to
account for its impact in the reconstruction image space also
needs to be accounted for. Here, we use the construction of Breal

as derived in Reference16,17 as a means to account for this effect.
BðiÞ
real is defined with respect to the i’th detector frame and

originates from the reciprocal space sampling basis BðiÞ
recip. Using

the real space basis BðiÞ
real, the i’th object exit wave can be

appropriately discretized by applying it to the 3D pixel array index
space of the Bragg peak measurement. This can be implemented
by defining m, a 3 × Nvox matrix of integer array coordinates with
Nvox being the total number of voxels in the data of the BCDI scan
under consideration. Thus, we can substitute x with the
discretized BðiÞ

realm:

ψðiÞ
m ¼ ψðiÞ R�1

i BðiÞ
realm

� �
¼ A R�1

i BðiÞ
realm

� �
exp ι2πGT

i u R�1
i BðiÞ

realm
� �h i

(1)

The quantity Brealm produces a grid of sampling points in real
space along a non-orthogonal basis. The discrete Fourier trans-
form (DFT) of ψðiÞ

m from Equation (1) yields the far field diffraction
pattern Ψ(i) sampled on the conjugate grid BðiÞ

recipn of the
measurement data space, where the integer vector set n is
equivalent to m. Both m and n define the equivalent 3D array
index space of the diffraction pattern (n) and of the sample (m).
We distinguish these indices in a manner consistent with the
convention of DFT notation. This construction links the discrete
sampling of both sample space and signal space via the DFT and
affords significant flexibility to apply different rotation and
coordinate transformations of the sample corresponding to
different Bragg peak measurements:

ψðiÞ
m ¼ ψðiÞ R�1

i BðiÞ
realm

� �
ÐF
F�1

ΨðiÞ R�1
i BðiÞ

recipn
� �

¼ ΨðiÞ
n (2)

A necessary condition for implementing our forward model is that,
prior to rotations into the detector frame, AðxÞ and u(x) need to
be discretized in the lab frame along an orthonormal grid with
spacing s0 that is similar to the magnitude of the values of Breal for
the series of Bragg reflection data sets. As a consequence, the
elements of all BðiÞ

real should be narrowly distributed about a mean
value, which can be used to designate s0. Additionally, the degree
of orthogonality of each BðiÞ

real basis should be as high as possible.
Both of these factors inform the design of angular rocking curve
scans with suitable angular motors and angular increments at
each Bragg peak. (More detail on this topic is found in the
Supplementary Information.)
Another important aspect is the size of the object bounding box

V relative to the total size of the buffered array in which it is nested.
For each combined re-sampling and rotation transformation
Ti � R�1

i BðiÞ
real, the object will be sheared, rotated, and rescaled,

as will the bounding box. Since our implementation of the MR-BCDI
forward problem uses the fast Fourier transform, it must be ensured
that the bounding box V , after transformation into each of the M
detector frames, spans less than half of the number of voxels along
each array axis. The implications of this requirement in terms of the
measurement is that the intensity fringe pattern of each Bragg peak
should be oversampled. This mirrors the well-known sampling
condition for single-peak BCDI measurements.
A remaining requirement of the forward model, provided that

our aim is to use modern optimization for its inversion, is that
Equations (1) and (2) be implemented with readily differentiable
operators. In order to achieve this efficiently, we used Fourier
interpolation based operations akin to those in the image

processing community18–20 to implement the re-sampling and
rotation Ti. More details regarding the operations we used are
given in the Supplementary Information.

The MR-BCDI inverse problem
Having established a forward model for multi-reflection BCDI,
establishing an inverse problem becomes a matter of expressing a
loss function and implementing an automatic-differentiation-
based optimization algorithm. The loss function we utilize for
MR-BCDI, Lmulti, represents the mean error in signal amplitude per
BCDI data set, aggregated over the number of data sets:

Lmulti½A;u� ¼
XM
i¼1

1
Nvox

X
n

���F χ iAðT imÞeι2πGT
i uðT imÞ

n o���
n
�

ffiffiffiffiffi
IðiÞn

q� �2

(3)

The quantities A, u, and the global scaling factors χi are treated as
parameters to be optimized. In this expression, χ represents the
set of M scaling factors, and IðiÞn is the measured diffraction data
corresponding to the i’th Bragg reflection. The scaling factors χ are
needed to reconcile the different diffraction signal strengths
encountered at different Bragg peaks with the constraint that
A 2 ½0; 1�. Nvox,the number of voxels in a single BCDI data set, is
1283 in all of the examples in this paper. We note that by using

ffiffi
I

p
,

the MR-BCDI loss function mirrors what is typically used in
coherent diffraction phase retrieval approaches21,22.
It is important to consider the degree to which the above

optimization problem is overdetermined. This can be established by
taking V to have an edge size of n voxels within a buffered array of
size N (with n<N/2). Combining χ, A, and the three scalar
components of u yields M+ 4n3 unknowns. The number of
measurements (total pixels in the data constraint space) is given by
MN3, for M BCDI scans. The MR-BCDI problem is therefore over-
determined by a factor of MN3/(M+ 4n3). In the case of our first
numerical test presented below, M= 5, N= 128 and n= 46. This
gives an overdetermination factor of ~ 27 which is significantly higher
than the minimum required 1. We note further that we require M ≥ 3
Bragg peak measurements with non-coplanar Gi reciprocal lattice
vectors to ensure that the optimization is overdetermined in u(x), as
has been established in prior MR-BCDI literature11,13,14,23.
It is convenient for optimization to implement the constraint

A 2 ½0; 1� analytically by defining an activation field α in order to
reconcile the fact that the relative scaling of the expected values
of A and the values of u may take on very different values and
variances, which can complicate optimization. Thus, the scalar
field α(x) is defined such that:

AðxÞ ¼ 1
2

1þ tanh
αðxÞ
α0

� 	� �
(4)

where the constant α0 scales the rate of gradient descent of A.
This allows α to take on any value but will result in A being
bracketed within the interval [0, 1]. With this definition, we see
that A ’ 0 for α(x)≪ 0 and A ’ 1 for α(x)≫ 1. The transition
between 0 and 1 in the neighborhood of α(x)= 0 is controlled by
the positive hyperparameter α0. Qualitatively, a larger value of α0
results in a smaller gradient descent step for A at x (as is seen by
differentiating Equation (4) with respect to α), and a more gradual
and controlled approach of A to its intended value. Smaller α0
results in A converging through sporadic switching between
values close to 0 and 1, which is much less controlled. We found
that α0= 1 best served our global convergence rate, and have
used this for all reconstructions in this paper. Given this analytical
framing of the constraint, the optimization problem to be solved
in practice is:

α?; u?; χ? ¼ argmin
α;u;χ

Lmulti A½α�;u; χ½ �
A? ¼ A½α?�

(5)
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where the ⋆ indicates optimal values that produce minimum error.
The loss minimization problem framed above can be solved by

implementing an optimization algorithm such as stochastic
gradient descent (SCG)24,25. Modern machine learning software
toolkits offer the opportunity to do so efficiently and with relative
ease. In each iteration of a gradient descent approach, the
gradient of the loss function is evaluated with respect to the
quantities of interest, and the quantities are updated via an
increment proportional to the negative of the gradient. Thus, the
total error is expected to be lower for the next iteration, and new
gradients and updates are calculated and applied iteratively until
improvements in error plateau. Stochastic gradient descent, which
is applied in this work, applies gradient descent to different
changing subsets of the constraint set. This strategy is valuable in
cases where the starting guesses of the quantities of interest are
likely far from the eventual solutions, and coarse updates based
on gradients with respect to subsets of the full constraint space
prove effective in reducing error in early iterations. In our work,
α⋆, u⋆, χ⋆ are updated first by constraining to two of the available
Bragg peaks data sets. Then a gradually stricter global constraint
to the data is imposed as the reconstruction progresses by
constraining to an increasing number of Bragg peaks until the
complete data set is used as the basis of the update.
Owing to the complexity of our MR-BCDI model, we implement

SCG using automatic differentiation (AD) using the PyTorch toolkit,
which simplifies evaluation of the loss function and its gradient.
AD-based optimization evaluates the gradient automatically and
exactly via the chain rule applied repeatedly to the constituent
elementary functions. This feature allows increasingly complicated
forward models of coherent diffraction to be developed
corresponding to more sophisticated measurements, enabling
image inversion without the need to derive loss function gradients
analytically. Given the complexity of the forward model presented
here, MR-BCDI leverages this ability. The use of AD optimization
does require that the mathematical operations composing the
forward model be differentiable, as we have taken care to enforce
here. In this work, we implement the “Adam” optimization
algorithm, which is an extension of SCG that is commonly used
in machine learning, in a Python-based MR-BCDI reconstruction
software26 for CPU and GPU hardware using PyTorch27.
Lastly, we note that the optimal solution in Equation (5) does

not preclude the universal twin solution, akin to the twin image
degeneracy in single-reflection BCDI28. In other words, the crystal
defined by the transformations AðxÞ ! Að�xÞ and u(x)→− u(−
x) in the same lab frame is also a solution to the MR-BCDI
problem, in that it results in indistinguishable diffraction patterns
for the same diffraction geometry. Thus, no matter its implemen-
tation, MR-BCDI is still susceptible to a reconstruction degeneracy,
but our global optimization will converge to one twin solution or
the other without requiring intervention to align individual phase
retrieval instances12. Typical ambiguities associated with real-
space coordinate origin and phase offset present in single-Bragg-
peak BCDI are mitigated in our approach because a single object is
the subject of iterative update from all Bragg peaks. This forces
consistency of the spatial position of the object. Also, because our
reconstruction problem aims to image lattice distortion rather
than the phase of the exit wavefield, phase offsets are not
an issue.

Method demonstration
In this section we present three reconstruction results with the
MR-BCDI technique described above. Two of these use numeri-
cally synthesized coherent Bragg diffraction intensity data sets
from digital nanocrystals. In the numerical studies, one crystal has
a slowly varying continuous inhomogeneous distortion field and
the other has a discontinuous, winding displacement field, which
emulates two orthogonal screw dislocations within the crystal. The

third reconstruction is from experimental diffraction data consist-
ing of six Bragg reflections of a silicon carbide (SiC) nanocrystal
measured using BCDI at Beamline 34-ID-C of the Advanced
Photon Source. In each case, we present the MR-BCDI reconstruc-
tion of the scattering amplitude AðxÞ and the lattice deformation
u(x). All reconstructions were performed using a single Nvidia
Tesla P100 GPU with 16 GB of RAM, and typical reconstruction
times were 2-4 hours.
We have adopted the matrix coordinate convention for all the

cross-section plots in this paper. As an example, a cross-section
image labeled as X− Y implies that the X-axis is directed from top
to bottom along the image, and the Y-axis from left to right. The
third axis (in this example, the Z-axis) emerges out of the plane of
the figure in order to maintain right-handedness. The X, Y, and Z
axes correspond to the laboratory frame of reference (i.e., the ŝ1,
ŝ2 and ŝ3 directions in Fig. 1, respectively). With this convention,
we ensure that the reference frame of the reconstructed crystal is
consistent with the programmed order of the array axes in the
multi-dimensional FFT routines in Python and PyTorch.

Simulated crystal without dislocations. A synthetic crystal with
arbitrary facets was generated on a Cartesian grid of size
128 × 128 × 128 voxels, with a voxel size of s0= 12 nm along
each axis in the laboratory frame (½̂s1 ŝ2 ŝ3� in Fig. 1). To emulate
realistic BCDI scans at a diverse set of sample and detector
orientations, a face-centered cubic (FCC) gold lattice with a lattice
constant of a0= 4.078 Åwas assumed for the simulated particle.
The orientation of the FCC unit cell with respect to the lab frame
was assigned arbitrarily. A slowly-varying internal field u(x) was
created by first generating uniform random samples for the three
components of u(x) (−0.1a0 ≤ ui(x) ≤ 0.1a0) and then retaining the
long-period variations by convolving each ui(x) with a low-pass
filter. The crystal spanned (39, 39, 40) voxels along the laboratory
frame axes, and a cubic bounding box V of size 46 × 46 × 46
voxels was chosen for the reconstruction.
Numerical MR-BCDI diffraction data were generated in a

manner consistent with the measurement of a real FCC-
structured crystal at the BCDI diffractometer at the APS Sector
34-ID-C beamline. The angular rotations available at that
diffractometer (Fig. 1) were emulated as coordinate rotations
about cardinal lab frame axes as follows: the sample rotation stage
θ and the detector rotation stage δ were coordinate transforma-
tions about ŝ2, and the sample rotation stage ϕ and the detector
rotation stage γ are coordinate transformations about ŝ1. With this
convention, the orientations of θ, δ, and γ needed to satisfy the
½111�, ½111�, ½220�, ½202� and ½022� Bragg reflections with an x-ray
energy of 9 keV were determined (with ϕ held at 0) and used to
make up the composite rotation Ri as discussed in detail in26.
Since either the θ or ϕ sample rotation axes could be used to
emulate the angular rocking curve for each Bragg peak, the
rotation axis that provided a higher degree of orthogonality of the
basis set [qiqjqk] was chosen (details in the Supplementary
Information). Following the forward model described above, ψðiÞ

m
and Ψ

ðiÞ
n were calculated for each Bragg peak. To create a

simulated MR-BCDI data set, the ΨðiÞ
n were squared to generate the

far-field intensity distributions, the peak intensities for each data
set were scaled to 105 photon counts in the highest-intensity pixel
(consistent with high-quality experimental BCDI data), and
Poissonian fluctuations consistent with the scaled intensity fields
were added to emulate counting statistics.
For the MR-BCDI reconstruction, the crystal was initialized to a

constant-amplitude cube (A ¼ 1) occupying the entire
46 × 46 × 46 bounding box with no interior lattice distortion
(u= 0). This was achieved by setting α(x) from Equation (4) to 2
and α0= 1 for all pixels within V . Each of the global scaling
factors χi was initialized to match the total energy ∑n∥Ψn∥2 of the
corresponding simulated Bragg intensity pattern. An Adam
optimizer29 with an initial learning rate of 0.005 was employed.
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A total variation (TV) regularizer was applied to α(x) with a
coupling constant of 10−5. During optimization, u(x) was
constrained so as not to extend beyond the magnitude of the
lattice plane separations ± a0/2 in each of the [100], [010] and
[001] crystallographic directions of the model. This constraint
may be employed without loss of generality and is discussed
further in the Supplementary Information. The optimization was
carried out sequentially over increasingly larger ‘minibatches’ of
the BCDI data, as summarized in Table 1 of Methods. After each
optimization epoch, a median filter with a kernel size of 3 × 3 × 3
voxels was applied to the reconstructed lattice distortion field
u(x) in order to remove spurious isolated discontinuities induced
by phase wraps. In the final epoch the full set of 5 Bragg peaks
was used, and for the last 1000 iterations of this epoch, the

Table 1. Sequential optimization plan for dislocation-free crystal.

Epoch Number of minibatches Scans in minibatch Iterations per minibatch

1 400 2 6

2 320 3 12

3 240 3 25

4 160 3 50

5 80 3 100

6 40 4 200

7 20 4 400

8 1 5 (full dataset) 2000

Note: The BCDI scans within each minibatch were randomly selected.

Fig. 2 MR-BCDI results from simulated crystal. a Ground truth (top) and reconstructed (bottom) cross-sections of the electron density AðxÞ
of the synthetic strained crystal with no internal dislocations. The array size represents the original bounding box chosen for reconstruction,
i.e., 46 pixels along each lab frame axis. The spatial resolution was estimated by fitting an error function to the reconstructed electron density
along the dashed line (see Fig. 3c). b Orthogonal cross sections of ground truth lattice distortion components u1(x), u2(x) and u3(x) The length
scale is the same as in a. c Corresponding sections of the reconstructed lattice distortion. The scales shown for u in this and subsequent
Figures are in units of fractional lattice constant [− 0.05α0, 0.05α0]. For comparison, this scale translates to a scale of [−0.1, 0.1] radians when
considering the GTu scalar field projection corresponding to the [002] Bragg peak.
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voxels in the crystal for which A> 0:2 were optimized with the
other voxels held constant to refine the solution within the
crystal interior.
Figure 2 shows a comparison of the ground truth and the

reconstructed quantities AðxÞ and u(x) on the lab frame grid
after the optimization schedule was completed. Orthogonal
cross-sections of the three components of u(x) are shown from
the reconstruction alongside those from the known model
(ground truth). The degree of similarity between the ground
truth and reconstructed u(x) quantities is evidenced by compar-
ing the histograms of the voxel-by-voxel components of u(x)

(Fig. 3b). Point-to-point residuals were also calculated for all
voxels with A>0:5, and the histogram of these residuals is
sharply peaked at u= 0, indicating good agreement between
reconstruction and ground truth. The second peak in residuals
originates from imperfect spatial alignment of the estimated
object and ground truth, which results in higher residuals near
the object edges. The spatial resolution of the reconstruction was
estimated by fitting an error function to the density profile AðxÞ
along the dashed line shown in Fig. 3c. This error function has a
characteristic width of σ= 0.788 pixels, which gives a spatial
resolution estimate of

ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
σ ’ 1:86 pixels. Figure 4 shows the

Fig. 3 Figures of merit for simulated crystal reconstruction. a Trend in multi-reflection loss function given by Equation (3) for the
dislocation-free synthetic crystal. The units of this loss function are chosen not to mirror a physical quantity, but as result of a noise model
robust to Poissonian noise that is routinely used in BCDI phase retrieval approaches. The red lines denote the beginning of a new optimization
epoch. b Histogram of the simulated and reconstructed components of the vector u(x), along with point-to-point residuals of each vector
component. c Error function fit to the reconstructed profile along the dashed line in Fig. 2a (X-Y slice). The spatial resolution was estimated
from this fit to be≃ 1.86 pixels, or≃ 23 nm.

Fig. 4 Comparison of simulated and reconstructed diffraction patterns. Cross-sections of the noisy simulated (top) and reconstructed
(bottom) coherent diffraction patterns from the five Bragg peaks chosen for the dislocation-free synthetic crystal. The reconstructed
diffraction patterns are shown here without the scaling effect of the χi, but rather scaled to match the corresponding simulated intensity
peaks. To fully match the color scales, each reconstructed diffraction was clipped below to the smallest nonzero photon count in the
corresponding signal (i.e., 1 photon).
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comparison of two-dimensional cuts of the reconstructed
diffraction patterns at the end of the last epoch alongside the
ground truth simulated diffraction used as constraints, showing
good agreement.
The progression of the loss function Lmulti½A;u� over the entire

optimization process is shown in Fig. 3a and has several
noteworthy features. The dashed lines in Fig. 3a indicate the
beginning of each new optimization epoch. Within each epoch,
the rapid oscillations are attributed to the abrupt change in the
loss function landscape due to each new randomized minibatch.
For example, in the first epoch, the loss function is successively
optimized over 400 sets of 2 randomly selected BCDI scans for 6
iterations each. Whenever a new randomized set of scans is used,
the loss function landscape abruptly changes from its previous
state, and the gradient descent evaluates a different error.
We also performed single-Bragg-peak phase retrieval of the 5

BCDI simulated data sets using standard methods3,4 in order to
demonstrate the advantage of our MR-BCDI method, and the
results are shown in Supplementary Fig. 2. It is apparent that the
MR-BCDI reconstructed electron density from Fig. 2a is more
uniform than what was obtained from phase retrieval of
individual peaks, indicating that applying the global set of
constraints to a single AðxÞ mitigates spurious fluctuations that
are difficult to avoid in single-peak BCDI reconstructions. A
deterioration of spatial resolution was also observed with the
single-peak reconstructions (3.06 pixels resolution estimated by
error function fitting), again stemming from the fact that single
peak reconstructions do not benefit from a coupling across
related data.

Simulated crystal with screw dislocations. A second synthetic
crystal with arbitrary facets was generated on the same lab-frame
grid as above (s0= 12 nm), and as before, the crystallographic
lattice structure of gold was adopted with a new initial lab frame
crystal orientation. Using this crystal lattice orientation frame, a
u(x) field was calculated to simulate two spatially separated screw
dislocations within the crystal volume, with dislocation lines along
the orthogonal [111] and ½220� crystallographic directions. For this
simulation, the respective Burgers vector magnitudes ∥b∥ for the
screw dislocations were set to: kbk111 ¼ a0=

ffiffiffi
3

p
and

kbk220 ¼ a0=
ffiffiffi
8

p
. The u(x) fields for each dislocation were

calculated with the continuum model of lattice distortion for
screw dislocations, as in other BCDI work30,31, and the net
displacement field was modeled as the vector sum of the
displacement fields of the pair of screw dislocations. The
simulation procedure of calculating the BCDI data sets, including
the selection criterion for Bragg reflections, selection of rocking

directions, and introduction of Poisson noise, followed the same
procedure as for the dislocation-free crystal. Four Bragg peaks
with high reciprocal-space mutual orthogonality were chosen for
modeling BCDI intensity patterns: [200], [002], [202] and ½220�. The
simulation box V was chosen to be 40 × 40 × 40 voxels in size. The
Adam optimizer was initialized with a learning rate of 0.02, the
object initialization was done as in the previous example, and a
similar optimization schedule was used (see Table 2 in Methods).
The final optimization stretch for the interior voxels of the object
was carried out for 5000 iterations constrained by all four Bragg
peak data sets. A median filter of size 7 × 7 × 7 voxels was applied
to the components of u(x) after each optimization epoch.
Figure 5 compares the simulated and reconstructed electron

densities AðxÞ and u(x), and Fig. 6 compares Bragg peak intensity
distributions. (Reconstruction metrics are shown in Supplementary
Fig. 4). As in the dislocation-free case, there is good agreement
between the simulation and reconstructed images as well as in
the diffraction intensity patterns. One noteworthy feature of this
reconstruction is the presence of regions of low electron density
where the discontinuous lattice distortion in the u(x) field
intersects the plane of the figure (regions indicated with blue
arrows) and the surface of the crystal (regions circled in red). This
effect is attributed to the fact that the highest spatial resolution
components of the signal (the “high-q” regions of the detector)
are suppressed with the introduction of Poisson counting statistics
into the simulated BCDI data sets, effectively imposing a low-pass
spatial filter on the reconstructed image.
As before, a comparison was also made to BCDI images

reconstructed from the individual Bragg peak data sets from the
dislocated crystal lattice using convention phase retrieval
approaches. The recipe used was the same for the dislocation-
free crystal. A representative amplitude cross-section of a single-
peak BCDI image from the [202] Bragg peak is show in Fig. 7. From
this image, it is clear by comparing to Fig. 5 that the conventional
phase retrieval approach from a single peak struggles to converge
to the uniform amplitude distribution expected in the ground
truth.

Silicon carbide nanocrystal. Here, we describe a MR-BCDI
reconstruction from experimental data acquired from a silicon
carbide (SiC) nanoparticle fabricated from a bulk substrate in a
manner similar to fabrication methods of SiC quantum sen-
sors32–37. The sample was fabricated using lithography and wet
etching methods from a bulk single crystal of single-polymorph
SiC with a hexagonal 4H structure (lattice parameters a= 3.073 Å
and c= 10.053 Å). (The fabrication process is described in the
Methods Section.) The shape of the sample was intentionally
chosen to be an asymmetric “D”-shaped column with tapering
edges fabricated such that the macroscopic facets approximately
aligned to low-index lattice planes in the underlying crystal, as
shown schematically in Fig. 8a. The sample that was studied is
shown in the scanning electron micrograph in Fig. 8b, oriented
with the edge of the “D” shape laying flat on the silicon substrate
that was used to support the crystal during BCDI measurement. As
an intentional result of the fabrication process, only the region of
the sample inside the red circle retained a highly crystalline
structure and contributed to the measured BCDI peaks.
The beamline at 34-ID-C of the Advanced Photon Source was

used to measure BCDI data from six Bragg reflections from this
crystal: ½1011�, ½1010�, ½0112�, ½0110�, ½0111� and ½1013�. At each
Bragg condition, rocking curves were performed via fine angular
steps of the θ motor in order to record 3D coherent diffraction
intensity data sets with a pixelated area detector, resulting in raw
BCDI data sets of 256 × 256 images with 80 steps along the
rocking curve. In terms of signal strength, the maximum pixel
intensities in each of the 6 measured Bragg peaks were
respectively: 40,980, 16,072, 32,661, 14,577, 34,123 and 7805 peak
photons.

Table 2. Optimization plan for crystal with orthogonal screw
dislocations along [111] and ½220�.

Epoch Number of
minibatches

Scans in
minibatch

Iterations per
minibatch

1 800 2 3

2 400 2 6

3 320 2 12

4 240 3 25

5 160 3 50

6 80 3 100

7 40 3 200

8 20 3 400

9 1 4 (full dataset) 2000

Note: The BCDI scans within each minibatch were randomly selected.
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Several steps were taken to process this data for MR-BCDI
reconstruction. The data sets were clipped to a size of 128 × 128
pixels in the detector plane, and the angular rocking curve
dimensions of the data sets were zero-padded to a size of 128,
resulting in a cubic data array space of 128 × 128 × 128 voxels for
each Bragg peak. This uniform array size ensured that the Ti
transformation operations acts as intended. The lab frame crystal
orientation of the SiC particle was determined by a least squares
optimization of the crystal orientation (expressed as a 3-parameter
rotation vector) over the δ, γ and θmotor orientations of all 6 BCDI
scans with the Nelder-Mead optimizer38. From this crystal
orientation, the set of appropriately oriented reciprocal space
lattice vectors Gi that are needed for MR-BCDI reconstruction were
generated.

The MR-BCDI reconstruction was performed on the data from
the SiC particle in much the same was as for the simulated data.
Figure 8c shows the measured and inferred diffraction patterns,
showing close agreement, as in the previous cases. Figure 9a
depicts the progression of the loss function for the optimization
scheme described in Table 3 of the Supplementary Information.
Figure 9b shows the electron density after optimization of the
interior voxels with A> 0:1. Also shown is the contour at
A ¼ 0:65, depicting the approximate surface of the crystal. Figure
9c shows the reconstructed components of u(x) within this
contour. Figure 10 shows the corresponding 3D isosurface plots of
the components of u, with the color scale denoting the spatially
varying lattice distortion in nanometers. We see from the absence
of discontinuities in the u field that the particle contains a

Fig. 5 MR-BCDI results from simulated crystal with dislocations. a Ground truth (top) and reconstructed (bottom) electron density cross-
sections of the synthetic strained crystal with two orthogonal screw dislocations. The array size represents the original bounding box chosen
for reconstruction, i.e., 40 pixels along each lab frame axis. The arrows indicate the points of intersection of the dislocation cores with the
figure plane. b Orthogonal cross sections of ground truth lattice distortion components u1(x), u2(x) and u3(x). c Corresponding cross section
for the reconstructed lattice distortion. The length scale is the same as a. The regions of discontinuity in the lattice distortion match with the
drop in electron density in a. The arrows show the location of the modeled dislocation cores. The circled regions show imperfect
reconstruction at locations where the lattice discontinuity meets the crystal surface.
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smoothly varying lattice displacement field and no dislocations.
Further, morphological features of the reconstructed image
correspond as expected with the features of the SiC crystal,
including the “D”-shaped cross-section of the nanoparticle, the
particle aspect ratio, and the tapering edges.

DISCUSSION
In this paper we demonstrated a method by which to reconstruct
vector-valued lattice distortion fields within nanocrystals by optimi-
zation of a comprehensive forward model of multi-Bragg-peak BCDI
data. This forward model flexibly accounts for important geometric
factors that arise when making BCDI measurements, is amenable to
efficient inversion with modern optimization toolkits, and allows for
globally constraining a single image reconstruction to multiple Bragg
peak measurements. A key feature of our method is the fact that the
forward model we developed to reconcile multiple Bragg peak
measurements from a single originating crystal does so by emulating
the native measurement space associated with BCDI rocking curve

data sets. We also note that our reconstruction approach obviates
the need for trial-and-error fixed point projection recipes and
reduces the need for intermittent support updates via the shrink-
wrap algorithm4. Our formulation of MR-BCDI offers another
potential advantage in that it permits the analytical interrogation
of the high-dimensional solution space in the neighborhood of the
true solution, opening the door to rigorous uncertainty analysis
where fixed-point-iteration-based methods fall short.
In implementing our MR-BCDI method, we have demonstrated

successful reconstructions of the 3D electron density and displace-
ment field for both numerical and experimental data. Crucially, we
have shown that crystals with both smoothly varying displacement
fields as well as ones with discontinuities in lattice displacement due
to, for example, the presence of dislocations, are reconstructable
with our approach. In addition, this work brings coherent diffraction
methods further into the scope of global optimization techni-
ques15,39–42, thereby enabling the use of highly optimized software
packages capable of handling large data volumes and running on
seemingly ever-improving high-performance computing hardware.
The use of AD within a machine learning framework also makes the
development and testing of more sophisticated cost functions that
make use of regularizers based on a-priori information for potentially
improved MR-BCDI reconstructions in certain situations.
The demonstration of lattice displacement reconstruction within

an individual SiC nanoparticle motivates the use of MR-BCDI in
science domains where structural inhomogeneities at nanometric
length scales impact materials performance and properties. For
example, the case of SiC demonstrated in this work is pertinent to the
field of quantum sensing. In a SiC nanoparticle quantum sensor, the
sensitivity of near-surface optically active point defects to changes in
temperature, magnetic field, and mechanical stress is exploited in
order to measure these quantities in media where the nanoparticles
can be dispersed32–37. Latent inhomogeneous lattice distortion fields
within these crystal sensors detract from the precision of such
measurements. Thus, quantum sensor fabrication methods aim to
minimize such lattice distortion fields. As we demonstrated here, MR-
BCDI provides a means by which to assess this key metric.

METHODS
Sequential optimization plans
In Tables 1–3 we specify the optimization plans used in the three
reconstructions corresponding to the simulated crystal without

Fig. 6 Comparison of simulated and reconstructed diffraction patterns. Cross-sections of the noisy simulated (top) and reconstructed
(bottom) coherent diffraction patterns from the five Bragg peaks chosen for the gold crystal with two orthogonal screw dislocations.

Fig. 7 Reconstructed amplitude from a single Bragg peak of the
simulated data set. a An individual amplitude reconstruction ∥ψ(i)∥
from phase retrieval applied to the BCDI virtual data set of the [202]
Bragg peak of the crystal with screw dislocations, using the recipe in
Section B of the Supplementary Information. The cross section
shown displays prominent fluctuations in electron density that are
not present in the MR-BCDI reconstructions by virtue of the
coupling effect of multiple data sets in a single optimization of
the object. Note that the aspect ratio of the central slice of the
object is not as it appears in Fig. 5a because the output of standard
single-peak BCDI phase retrieval is not shear corrected.
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Fig. 8 Silicon carbide nanoparticle used for experimental demonstration of MR-BCDI. a Schematic of the design of the lithographically
fabricated SiC nanoparticle with facets aligned closely with crystallographic directions of the parent 4H single crystal substrate. b A scanning
electron micrograph of the nanoparticle used in the study. The portion of the particle that retained a high degree of crystallinity from which
BCDI scans were done is circled in red. c A central slice through the six Bragg peaks measured from this crystal (top row), alongside this same
slice after MR-BCDI optimization and image reconstruction (bottom row).

Fig. 9 Loss function and interior lattice displacement of SiC particle reconstruction. a Loss function trend for the SiC crystal reconstruction,
for the optimization plan shown in Table 3 of the Supplementary Information. b Final estimated SiC nanocrystal electron density A, from a
highly permissive mask threshold of 0.1. The red line is the contour at a threshold of A ¼ 0:65, representing the approximate crystal surface.
c Reconstructed components of the lattice distortion within the SiC crystal (centered at zero volume-averaged distortion in each dimension),
within the estimated crystal surface at A ¼ 0:65.
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dislocations (Table 1), the simulated crystal with dislocations
(Table 2), and the experimental data set from a nanoparticle of SiC
(Table 3).

Silicon carbide nanoparticle fabrication
Here, we specify the method of fabrication of the SiC crystal used
in the experimental demonstration of our MR-BCDI approach. The
SiC nanoparticles were fabricated from a single 4H-SiC wafer with
an i-p-n doping structure. The wafer had a 400nm-thick intrinsic
SiC layer with an intrinsice < 1015atoms/cm3 defect content, a
2μm-thick p-type layer with < 1019atoms/cm3 of aluminum dopant
atoms, and a 0.5mm-thick n-type layer with < 1018atoms/cm3 of
nitrogen dopant atoms. The wafer was diced (5 × 5mm), electon-
beam lithographically patterned (bi-layer PMMA 495K-A3/950K-
A6; 1000μC/cm2 dose, 3-minute development in 1:3 MIBK:IPA at
room temperature), and metallized (10 nm of Ti and 60 nm of Cr
via e-beam evaporation) to transfer the D-shaped array pattern
onto the SiC. The D shape flat of the lithographic pattern was
aligned to the crystallographic ½1120� direction (see Fig. 8 in the
main text). To fabricate particles that adopt the profile of the
surface pattern, the SiC was etched (SF6-Ar ICP/RIE dry-etching)
with the Ti/Cr acting as a hard mask. The 1.2 μm etch depth
exposed the p-type layer for subsequent photo-electrochemical
(PEC) etching of the nano-particles. The etch-defined nanopillars
were then PEC etched (0.2M KOH, -0.3V biased etch under 365nm
UV illumination at < 500 mW) to partially and selectively remove
the p-type SiC to allow for nanoparticle formation and subsequent
detachment. For this particular experimental run, the p-type SiC
was underetched, resulting in a weakly scattering, porous p-type
tether remaining which did not contribute to the BCDI signal (as
shown in Fig. 8b in the main text). These nanoparticle arrays were
stamp-transferred to a PMMA-coated silicon substrate. The wafers
were baked at the PMMA glass transition temperature, which

locked the nanoparticles on the Si substrate. The nanoparticles
were arranged on the Si wafer in 100 μm pitched arrays bordered
by macroscopic fiducials consisting of tightly packed nanoparti-
cles. Finally, the PMMA was O2 etched away, leaving pristine SiC
nanoparticle arrays on the Si substrate that were then conformally
covered with alumina (22 nm thick) via ALD to help adhere them
to the substrate.

DATA AVAILABILITY
The simulated and experimental BCDI data sets, along with the reconstruction results,
are publicly available in HDF5 format in the siddharth-maddali/mrbcdi
repository in Github, through the Git Large File System (LFS).

CODE AVAILABILITY
The MR-BCDI Python module, along with the Jupyter notebooks for reconstructions,
are publicly available in the siddharth-maddali/mrbcdi repository in Github.
The software for conventional phase retrieval is publicly available in the
siddharth-maddali/Phaser repository in Github.
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