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Abstract—This article introduces the Horizon Europe Nim-
bleAI research project, which brings together 19 EU and UK
partners covering most of the semiconductor value chain. Nim-
bleAI leverages key principles of energy-efficient visual sensing
and processing in biological eyes and brains, and harnesses the
latest advances in 3D stacked silicon integration, to create an
integral sensing-processing neuromorphic architecture that effi-
ciently and accurately runs computer vision algorithms in area-
constrained endpoint chips. The rationale behind the NimbleAI
architecture is: sense data only with high information value
and discard data as soon as they are found not to be useful
for the application (in a given context). The NimbleAI sensing-
processing architecture is to be specialized after-deployment by
tunning system-level trade-offs for each particular computer
vision algorithm and deployment environment. The objectives of
NimbleAI are: (1) 100x performance per mW gains compared to
state-of-the-practice solutions (i.e., CPU/GPUs processing frame-
based video); (2) 50x processing latency reduction compared to
CPU/GPUs; (3) energy consumption in the order of tens of mWs;
and (4) silicon area of approx. 50 mm2.

Index Terms—Neuromorphic, computer vision, 3D silicon,
event-based vision, in-memory computing, eFPGA, RISC-V, vir-
tual neural networks, light-field vision, online learning
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I. INTRODUCTION

Processor architectures (e.g., CPU/GPUs) are very inef-
ficient compared to the biological eye-brain system, which
is honed by natural selection and applies the fundamental
energy-saving principle of capturing, processing and storing
data only when necessary. Hence, eyes continuously sense and
encode the changing surrounding environment in a way that
is manageable for the brain.

The recently started NimbleAI project leverages key prin-
ciples of energy-efficient light detection in eyes and visual
information processing in brains to create an integral sensing-
processing neuromorphic chip that adopts the biological data
economy principle at different system levels, and builds upon
the latest advances in 3D stacked silicon integration. NimbleAI
aims to deliver two world’s firsts: (1) a light-field dynamic
vision sensor for monocular image-based depth perception;
and (2) an event-driven end-to-end perception stack (’visual
pathway’) that runs industry standard Convolutional Neural
Networks (CNNs). Since manufacturing a full 3D testchip is
prohibitively expensive, NimbleAI will prototype key com-
ponents via small-scale 2D stand-alone testchips. This cost-
effective use of silicon allows us to produce high confidence
research conclusions and silicon-proven neuromorphic IP.

This article discusses the main functioning principles of
the NimbleAI architecture and existing system-level trade-offs:
(1) sense only significant light changes (visual events) at the
optimal spatio-temporal resolution; (2) distill sensed visual
events to increase information-efficiency; (3) process selected
information-rich events using minimal energy at the optimal
DVFS point; and (4) route event-flows across the 3D stacked
sensing-processing architecture to minimize data movement
along shortest physical paths. The article is organized as
follows. Section II introduces the major challenges of AI-
enabling technologies that are addressed by NimbleAI. Section
III outlines the overall NimbleAI concept and section IV
describes the proposed architecture. Finally, Section V sums
up the main takeaways to conclude the paper.



II. CURRENT CONTEXT AND CHALLENGES

NimbleAI deals with four main interrelated challenges and
limitations of current AI-enabling technologies.

C1.- Complexity of AI models: Accuracy of computer vision
algorithms is commonly opposed to efficiency [1]. CNNs are
typically scaled up to increase accuracy by adding more layers
or by enlarging these to process images at a higher resolution.
On the other hand, state-of-the-practice edge CNNs typically
rely on downscaling the resolution of full input images to
keep workloads manageable by current inefficient processing
architectures (see C3), thus sacrificing accuracy. Inaccuracies
become greater when shrinking large industry standard CNNs
to fit in resource-constrained edge and endpoint devices.

C2.- Performance and latency: State-of-the-practice com-
puter vision systems are frame-based, which means that they
periodically acquire and process full-size images in a layer-
after-layer mode. Hence, the computation of one layer must be
completed on the whole frame before the computation of the
next layer starts. This results in growing inference delays as
algorithms include more layers and sensor resolution increases.

C3.- Energy-efficiency of processor architectures: The cur-
rent state-of-the-practice processor landscape includes general-
purpose (CPU/GPU) and AI-specialized (NPU/TPU) architec-
tures. CPU/GPUs are largely inefficient due to the continuous
back-and-forth transfers of data (and instructions) with mem-
ory [2], whereas efficiency improvements brought about by
NPUs (Neural Processing Units) and TPUs (Tensor Processing
Units) depend to a great extent on the ability of the host
CPU to split AI processing into matrix operations of similar
dimensions to those for which the NPU/TPU architecture was
optimized [3]. State-of-the-art neuromorphic architectures, on
the other hand, implement brain-inspired (event-driven) neural
networks to enormously increase energy-efficiency as they
process only changes in their inputs [4]. Yet, only a few
neuromorphic architectures promise to meet the high energy-
efficiency levels with low energy budgets required at the
endpoint (e.g., Innatera, SynSense, GrAI Matter Labs - GML,
etc.). An important limitation of neuromorphic chips is that
the size of neural networks that can run is restricted by the
implemented neuron count in silicon. Innatera and Synsense
chips implement only 1,000 neurons, greatly limiting their use
to one dimensional applications such as audio. On the other
hand, TrueNorth is the largest chip that IBM has ever built:
at 500 mm2 can hold only 1 M neurons [5] while real-world
(image) applications typically require 10-20 M neurons and
endpoint chips are typically 50 mm2.

C4.- System integration: CPU/GPUs and NPU/TPUs are
not typically integrated such that they can seamlessly and
efficiently process data streams from sensors or interface to
pre- and post-processing kernels. For example, TPUs do not
have image sensor interfaces and hence need to rely on a host
processor to capture and transmit video sequences to the TPU
engine. For each video frame, this process may take factors
more time than the TPU’s actual AI processing of that same
frame. Similar constraints hold for GPU and NPUs.

III. THE NIMBLEAI CONCEPT

NimbleAI considers that processing begins in the sensor.
In fact, important efficiency gains are expected from the
use of in-sensor analogue logic and novel Dynamic Vision
Sensing (DVS) concepts that will be investigated for the
first time in this project. These concepts include: (1) digital-
foveation to dynamically allocate sensing resolution based on
the information value brought about by each sensor region;
and (2) coupling of light-field microlenses with the dynamic
vision sensor to enable event-based light-field perception.

NimbleAI will study techniques to capture and optimally
represent the spatio-temporal evolution of 3D scenes using
minimal visual event-flows that match the optimization fea-
tures implemented in the downstream processing and inference
engines, and thus reduce energy consumption and latency of
the whole architecture. We note that increasing the amount
of meaningful information that can be obtained by scaling up
DVS resolution is in fact one of the major open challenges
in event-based vision [6]. The expectation is that by investing
some computing power and energy to gain some situational
awareness early, a major reduction of the amount of data to be
processed will be achieved, saving lots of energy by doing that.
This is inspired by unconscious visual processing and neural
signalling in biological systems, and hence will be largely
invisible to the user application yet adjustable through user-
driven directives. It is also remarkable that NimbleAI aims to
demonstrate an event-driven end-to-end pipeline that can run
industry standard (large) AI models such as CNNs, to improve
state-of-the-art approaches that are very limited (e.g., [7]).

As shown in Fig. 1, one of the novel system-level bio-
inspired concepts that will be explored are event-driven visual
pathways for optimal sensing and processing of feature-rich
regions of interest (ROIs). We pose that visual pathways
are an elegant way to answer challenge C4 and harness the
increased bandwidth brought about by 3D integration, taking
advantage of the irregular distribution of visual information
and uneven temporal dynamics in the scene. Visual pathways
will be assigned to ROIs in a one-to-one fashion: each pathway
will span the sensor area determined by the assigned ROI
and will include dedicated Through Silicon Viases (TSVs)
to downstream sensed visual events to the processing and
inference engines in the interior layers of the 3D stacked ar-
chitecture. In addition to increasing bandwidth, 3D integration
opens new opportunities to improve efficiency as the DVS
resolution increases. Namely, events can be locally identified
across the 3D structure reducing the number of ID bits needed.
Each visual pathway will be configured independently and
dynamically, from sensor to processing, at the accuracy (e.g.,
sensor resolution) and latency (e.g., DVFS settings) levels
determined for that image region based on its dynamics and
information value.

NimbleAI envisions a two-stage inference approach, where
the two stages will reinforce each other to perform more effi-
ciently as the deployment environments become more familiar
and visual stimuli are better understood.
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Fig. 1: NimbleAI approach (right) vs State-of-the-practice CPU/GPU (left).

1.- An always-on early perception and optimization stage
implements selective attention algorithms to identify ROIs
and configure accordingly the visual pathways. This includes
selecting the most appropriate sensor resolution for each ROI
and routing sensed visual events to the most appropriate
user models (e.g., CNNs) running on downstream engines
for efficient end-to-end region inference. NimbleAI will ex-
plore ultra-low energy and low-latency advantages of Spiking
Neural Networks (SNNs) to power the early perception and
optimization stage, as well as energy-efficient online learning
rules to achieve specialization in dealing with deployment-
specific visual stimuli. Hence, optimization SNNs will re-
ceive inference feedback from user models to continuously
improve on dynamically selecting ROIs. This can be seen as
a partial knowledge transfer from user-trained models to the
early perception and optimization stage to optimize overall
functioning. Hence, energy consumed to complete end-to-end
inference also serves the purpose of adjusting the energy-
saving mechanism in the early optimization stage. SNNs will
also receive performance feedback and voltage/temperature
analytics from monitors embedded along the visual pathways
to continuously learn how to tune the execution conditions to
be more efficient.

2.- An inference stage implements pre- and post-processing
kernels on programmable hardware (i.e., MENTA eFPGA)
and runs industry standard AI models on an event-driven
dataflow accelerator (i.e., GML NeuronFlow) [8]. Processing
in these components will be on-demand and optimized for the
specific characteristics of each ROI. To deal with challenge
C3, NimbleAI will explore the novel concept of Virtual Neural
Networks (VNNs) to allow users run large and accurate event-
driven inference models in only 50 mm2 chips. As shown
in Fig. 1, this concept will be supported by dedicated TSVs
and 3D layers of RAM and NVM that will be architected to
create a high-bandwidth and high-density memory hierarchy
for quickly swapping active and non-active neurons and (parts
of) networks in the dataflow accelerator.

Neuromorphic event- and region-based processing in Nim-
bleAI will help limit the complexity and energy-consumption
of AI models, and thus deal with challenges C1 and C2:
AI models and algorithms that work on selected image re-
gions are simpler than those that work on full images, and

event-driven networks that execute on neuromorphic hardware
only consume energy when there are significant changes in
their neuron states, which are themselves triggered only by
significant changes in input visual data. Hence, as opposed
to state-of-the-practice, which downscale the resolution of
input images to keep workloads manageable, NimbleAI will
process selected full-resolution image parts for better accuracy.
Also, as opposed to state-of-the-practice approaches, where
more complex/accurate AI models translate directly into more
computing and energy consumption, in NimbleAI model com-
plexity to workload translation will be dynamically regulated
through runtime optimization mechanisms that control visual
event generation and processing rates along visual pathways.

This unique optimization approach is opposed to the current
situation in which performance and accuracy trade-offs are
often presented to users as a necessity at the design phase that
remains fixed in deployment. NimbleAI will not oblige users
to choose between accuracy or efficiency. Instead, it will offer
to the user a series of novel runtime system-level optimization
strategies that will be continuously refined by means of online
learning and applied directly on the user-trained models.

IV. THE NIMBLEAI 3D STACKED ARCHITECTURE

This section describes each of the stacked layers in the 3D
NimbleAI chip shown in Fig. 2.
A. Light-field DVS with digital foveation

NimbleAI will implement a digital foveation mechanism to
dynamically group and ungroup DVS pixels in the sensor layer
to form macro-pixels with varying resolution levels across
image regions based on the information value each region
brings to the application. If the selective attention algorithms
(subsection IV.B) identify something potentially meaningful,
DVS macro-pixels in that region will be ungrouped to form
a foveated full-resolution ROI that will be processed by
a dedicated downstream inference engine. Several foveated
regions that match the size, shape, resolution and moving
dynamics of the recognized and tracked objects in the scene
could be sensed simultaneously to achieve the most accurate
results without unnecessarily increasing the amount of data to
be processed.

NimbleAI will also be looking at insect compound eye to
enable 3D perception for accurate depth and motion estima-
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Fig. 2: NimbleAI: conceptual functioning (left) and 3D stacked conceptual architecture (right).

tion. Namely, the project pursues to adapt Raytrix light-field
technology (i.e., micro-lenses) [9], and algorithms to encode
3D visual scenes in the form of sparse events that also include
depth information: (x,y,z,t). The fact that DVS events reflect
moving edges of the objects in the scene and that light-field
algorithms rely on correlations between neighbour data with
lots of redundancy, leads us to think that large amounts of
processing and energy could be saved by combining both
technologies. In fact, it has already been demonstrated that
boundaries-first processing lends well to DVS events while
putting less pressure on the hardware [11]. Note that depth
information opens new opportunities for improving event
selection in the early perception and optimization stage (e.g.,
identify ROIs), as well as for improving perception accuracy
in the inference stage.

NimbleAI will investigate 3D silicon integration to verti-
cally stack the additional in-sensor logic needed to implement
the functionalities described above, and CEA RRAM [10]
to store DVS adjustable parameters (e.g., calibration words
and thresholds), with the objective of reducing the impact
on the pixel footprint and thus support sensor resolution
scaling. NimbleAI will manufacture a DVS testchip with
limited resolution and using affordable technology nodes to
demonstrate the digital foveation and adaptive region-based
sensing mechanisms with adjustable parameters. To demon-
strate 3D perception, a light-field-enabled DVS prototype will
be manufactured coupling a custom-made array of micro-
lenses by Raytrix on a commercial PROPHESEE sensor.
B. Near-sensor early perception and optimization

NimbleAI will explore uses of SNNs to run ultra-energy-
efficient near-sensor visual scene analysis and distill DVS
events, namely: (1) remove unwanted events such as noise
(e.g., events related to textured bodies); (2) provide initial

feature extraction such as edge detection; and (3) delimit
ROIs of almost arbitrary size around collections of identified
key features; i.e., selective attention. SNNs are expected to
respond rapidly to dynamic changes in the visual input as
DVS events will trigger SNN-based processing, helping drive
digital foveation in the DVS with extremely low-latency. In
fact, it has already been demonstrated that complex visual-
cognitive tasks in bees can be modelled with SNN models [12].
Following these findings, NimbleAI will explore models and
topologies of comprehensive SNN-like circuits of the bee brain
to assess how internally generated oscillations combined with
sensory visual events could generate useful types of attentional
performance. Modular and scalable SNN topologies will be
investigated to extract 3D information from light-field DVS
event-flows, analyzing the relations between the size of micro-
lenses, DVS pixels (and macro-pixels) and the number of SNN
neurons (see section IV.A).

One major objective of NimbleAI is to achieve ultra-energy
efficiency by specializing processing to deployment-specific
visual events. This involves optimizing (or refining) processing
of (new) visual inputs using pre-trained neural networks.
In this regard, SNNs are particularly well suited to online
training, as their event-based learning rules typically use only
information local to the synapse, requiring significantly less
computing than the error back-propagation techniques em-
ployed to train traditional artificial neural networks [13]. While
the focus will be on energy-efficient inference, NimbleAI will
also experiment with a range of synaptic plasticity mecha-
nisms such as reinforcement learning and neuromodulation
techniques [14], to explore how meaningful visual behaviour
can be adjusted on-the-fly, using reward/punishment signals
from other parts of the system; e.g., feedback correct/incorrect
selection of ROIs from downstream inference engines.



SNNs will also be explored to make inference and
processing-related optimization decisions. In fact, the rich
temporal dynamics of SNNs are expected to allow them to
harness visual continuity in the scene and make more accurate
workload evolution predictions. At design time, SNNs will be
trained using integrated circuit implementation information,
including: (1) energy-performance curves of inference CNNs
with different DVFS settings, (2) energy-accuracy curves for
different temporal and image resolutions of visual events, and
(3) location-dependent thermal dissipation and transmission
characteristics in the 3D architecture. At runtime, SNNs
will use real-time analytics delivered by activity and V&T
monitors embedded in the architecture as feedback for online
learning (e.g., slack to deadline when completing processing).
NimbleAI will explore mechanisms to capture and represent
the state of event-driven neural networks using data-efficient
encoding schemes to anticipate activity due to neuron state
changes. Furthermore, predictive encoding schemes will also
be explored to only transmit errors relative to predictions and
thus sustain energy-efficient online learning in SNNs.

Following the same philosophy as for DVS, NimbleAI will
design on-chip V&T monitors that generate digital events
when they detect temperature and/or voltage variations above
or below configurable thresholds. These events will be directly
fed into the SNN to take advantage of event-based low-
latency processing. Note that SNN-based processing might be
especially relevant in next-generation ultra fine-grain DVFS
systems to approach brain-like self-regulated energy distribu-
tion mechanisms; i.e., anticipate energy needs across regions.
Although this concept might have a longer-term impact, we
think that providing SNNs with a unified event-based view
of both external (i.e., visual) and internal (i.e., voltage and
temperature) insights is a very interesting approach to explore
holistic optimization decisions that encompass both sensing
and processing.

NimbleAI will rely on using SNN software such as
NEST/NEURON to carry out model and topology exploration,
as well as neuromorphic hardware such as SpiNNaker [14] and
commercial spiking-based chips to test the selected models and
topologies in real-time applications.

C. Inference and processing

NimbleAI will leverage state-of-the-art event-driven
dataflow architectures (i.e., GML NeuronFlow) as main
inference downstream engine. As it occurs with SNNs, the
type of events that are processed by event-driven dataflow
architectures correspond accurately with DVS events, thus
maximizing end-to-end efficiency along visual pathways.
Recent research has shown that industry standard CNNs
designed and trained with popular AI frameworks (e.g.,
TensorFlow) can be converted to equally accurate event-
driven networks with lower computational complexity and
hence greater energy-efficiency [15], [16].

Spatial, temporal and neural activation sparsity will be
effectively exploited in the event-driven inference engine to
improve energy-efficiency and reduce latency. Hence, neuron

compute and event propagation only occurs on sufficiently
significant delta events which have not been filtered out be-
cause of sparsity. The processing through the dataflow engine
proceeds in a systolic array manner, forming “waves” that flow
outwards from physical entry points from 3D stacked layers.
To support visual pathways and optimally benefit from the
DVS foveation approach, the inference engine will be able to
run multiple CNNs simultaneously to which visual event-flows
are streamed through dedicated physical entry points. At each
time, only CNNs that match size, resolution and dynamics of
visual stimuli detected in ROIs will be active.

The NimbleAI inference engine will be enabled for running
large VNNs with improved accuracy on resource- and area-
constrained 50 mm2 chips. Enabling VNNs will require to
design efficient hardware mechanisms to virtually augment the
effective count of neurons integrated in limited chip silicon
area. This will be achieved by enabling store and restore
network parameters and data on a 3D memory hierarchy that
includes stacked high-density RRAM and low-access time
RAM layers. The latter memory hierarchy will implement pre-
fetching and synchronization mechanisms integrated within
the neuron processing pipelines to ensure that neural network
parameters and data are accessed and deployed in a timely
and efficient manner. Moreover, novel techniques to support
compressed synaptic weights, connectivity, and state encoding
and storage will be explored to reduce overall data movement.
To achieve ultra-high RRAM capacity, NimbleAI will explore
and design 3D crosspoint arrays with one-selector/one-resistor
(1S1R) memory architectures [17].

Accompanying the inference engine and VNN-supporting
memory layers, the NimbleAI architecture will also include a
processing layer that implements a RISC-V extensible CPU
and an eFPGA fabric for hosting DSP-like pre- and post-
processing engines. Besides application-specific processing,
this layer will adapt format and properties of incoming visual
event flows to best match the available user-trained CNNs and
exploit the hardware optimization mechanisms implemented
in the inference engine.

The RISC-V CPU and eFPGA fabric will integrate CEA
in-memory computing Computational SRAM (CSRAM) [18]
blocks to exploit vector computation with less data movement.
Furthermore, coupling the CSRAM with eFPGA results in
Closely Coupled DSP-Memory (CCDM) blocks provide data
parallelism at various granularities to deal with data-intensive
operation patterns. Likewise, tightly coupling eFPGA and
CCDM with CPU will allow an existing processor design to
be specialized for application-specific processing by adding
custom instructions (e.g., vector processing and ad-hoc multi-
ply and accumulate) and microarchitecture features, even after
deployment. This integrated adaptable processing architecture
will reduce data traffic between the CPU and the memory by
performing logic, arithmetic, and DSP operations directly in-
memory using CCDM. NimbleAI will study the programming
model for such an integrated processing architecture that
includes CCDM, eFPGA and CPU, and will specify the
instruction format generated by the CPU that ultimately define



the user application code. This programming model will be
implemented and integrated within the HybroGen software
environment for compilation and code generation [19].
D. Physical structure and implementation

A major objective of NimbleAI is to integrate the com-
ponents explained in previous subsections into an optimized
3D stacked silicon architecture, where each layer is to be
implemented using the most appropriate process technology.

To achieve this, the project will develop an EDA tool that
supports novel co-design methodologies covering technology-
aware 3D architecture exploration across layers and integration
to physical implementation. The NimbleAI 3D EDA tool
will build upon MZ Technologies Genio 3D tool [20] and
third-party physical implementation and analysis EDA tools
for 2D IC design. The architecture exploration will consider
technology-related aspects, such as process technology and
component size trade-offs, and will help make decisions
related to layer floor-planning, vertical arrangement of layers,
and inter-layer TSV locations to increase computation density
and performance, boost communication bandwidth and mini-
mize the length of physical paths. A especial focus will be put
in designing thermal models of the 3D architecture to pinpoint
the locations where to insert V&T monitors to increase the
visibility of energy dynamics and thermal dissipation that
guide the runtime optimization decisions.

NimbleAI will be looking into integrating IMEC’s latest
generation of baseline TSV models in a suitable format for the
pathfinding engine in the 3D EDA tool to ensure compatibility
with silicon technologies, including hardware validation of
TSV processes. As shown in Fig. 2, the greatest density of
TSVs is expected to connect the DVS sensor with the near-
sensor logic layer. A significant less amount of TSVs are
expected to connect the near-sensor logic layer to processing
and inference engines in the layers below, as well as to support
control and monitoring data exchanges among layers. Finally,
a medium density of TSVs is expected to support the VNN
mechanism, connecting the Neuronflow cores in the inference
engine with the memory hierarchy layers. Thermal feasibility
and TSV integration limitations will be studied in all these
cases.

V. TAKEAWAYS

NimbleAI takes inspiration from ultra-energy-efficient eye-
brain systems, even combining divergent evolutionary develop-
ments, such as foveation in vertebrate eyes and compound in-
sect eyes. The project expects to deliver 100x energy-efficiency
improvement and 50x latency reduction (w.r.t. CPU/GPUs
processing frame-based video) by using: (1) DVS sensing
with digital foveation and selective attention; (2) event-driven
visual inference at optimal DVFS point; (3) specialized pro-
cessing with in-memory computing; (4) 3D-integrated visual
pathways; and (5) system-level optimizations to continuously
adjust sensing and processing in each visual pathway to
operate jointly at the optimal temporal and data resolution.

NimbleAI will design EDA tools to customize and inte-
grate the technologies and mechanisms above on a sensing-

processing 3D silicon stacked chip. The project will deliver
a prototypic implementation of this 3D architecture using an
FPGA, small-scale 2D stand-alone testchips and commercial
neuromorphic chips. This prototype will be accompanied by
the corresponding programming tools to develop and run
computer vision applications on it. It will be used as a research
vehicle to test novel AI algorithms and runtime optimizations
in use-cases related to medical imaging, autonomous driving,
eye-tracking and space missions. It is expected that findings
coming out from this research will lead to practical implemen-
tations in next-generation commercial chips.
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