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A DATA-DRIVEN KRYLOV MODEL ORDER REDUCTION FOR LARGE-SCALE
DYNAMICAL SYSTEMS

M.A. HAMADI †∗, K. JBILOU∗† , AND A. RATNANI∗

Abstract. Dynamical systems that involve non-linearity of the dynamics is a major challenge encountered in
learning these systems. Similarly, the lack of adequate models for phenomena that reflect the governing physics can
be an obstacle to an appropriate analysis. Nonetheless, some numerically or experimentally measured data can be
found. Based on this data, and using a data-driven method such as the Loewner framework, it is possible to manage
this data to derive a high fidelity reduced dynamical system that mimics the behaviour of the original data. In this
paper, we tackle the issue of large amount of data presented by samples of transfer functions in a frequency-domain.
The main step in this framework consists in computing singular value decomposition (SVD) of the Loewner matrix
which provides accurate reduced systems. However, the large amount of data prevents this decomposition from being
computed properly. We exploit the fact that the Loewner and shifted Loewner matrices, the key tools of Loewner
framework, satisfy certain large scale Sylvester matrix equations. Using an extended block Krylov subspace method, a
good approximation in a factored form of the Loewner and shifted Loewner matrices can be obtained and a minimal
computation cost of the SVD is ensured. This method facilitates the process of a large amount of data and guarantees
a good quality of the inferred model at the end of the process. Accuracy and efficiency of our method are assessed in
the final section.

Key words. Interpolation, Krylov subspaces, Loewner framework, Sylvester equation.

1. Introduction. Over the last years, Model Order Reduction (MOR) techniques have gained
substantial attention beyond the scientific computing and computational engineering communities,
and this is due to their reputation as a powerful tool for addressing what the MOR communities refer
to ”the curse of dimensionality”. MOR is a tool capable to overcome this problem by providing lower
order models that are suitable for reproducing the input-output behaviour of the original dynamical
systems at a small marginal cost. These reduced models are characterized by its ease of manipulation
and control, unlike the original high order systems of a complex dynamics. One of the mainstream
methods in MOR is the Krylov subspace projection method, for more details on this method, we refer
the readers to [5, 9, 16, 20]. On the other hand, the Balanced Truncation (BT) method [15, 23, 24],
which is based on discarding the states that are both difficult to reach and to observe. Other materials
and details about MOR techniques can be found in [2, 3, 7] and the references therein.
To construct high fidelity reduced models using the above mentioned methods, access to the entire
structure matrices of the original models has always been necessary. Those methods are known as
intrusive methods. On the contrary, we have the non-intrusive methods which are the main subject of
this paper, and the main goal is to build a low-order model exclusively from data (i.e.,measurements),
which means that the whole process does not require any knowledge about the governing equations
that describe the original dynamical systems.
The Loewner-based approach is among many widely used approaches for deriving the input-output
behaviour of the original dynamical system only from data. This approach was first proposed in [22]
to construct a generalized realization state space problem, coupled with tangential interpolation data.
We refer to ”data” as samples of transfer functions in a frequency-domain, or as the output measured
for an input in a time-domain. In a frequency domain, a data-driven Loewner framework to construct
reduced models was addressed in [12] and an extension to time-domain data was suggested in [26].
We follow the Loewner process which is based on splitting data into left and right data, building the
data-matrices, and finally the key tool of this framework which is the construction of two matrices
L,Ls ∈ CN×N named respectively Loewner and shifted Loewner matrices. Further details about
the fundamental role of these matrices in the proposed approach will be tackled in the next section.
We refer to N by the amount of data that we collect. After setting up the key tool of the Loewner
framework, we come to the final step, which is the computation of the singular value decomposition
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(SVD) of L or a linear combination of (L and Ls) [21], and then inferred a lower order model by
truncating the SVD followed by a projection. Those are the main steps of Loewner framework for
model reduction as it is described in [21, 22]. The authors in [25] have exploited the Cauchy-like
structure of L and Ls in order to avoid the explicit allocation of the two matrices, in particular when
the amount of data N is too large. In [8], the authors proposed an heuristic methodology to collect
the data for learning dynamical systems. A reformulation of the classic Balanced Truncation (BT)
model reduction method has been addressed in [11], where the authors shown how to compute the
product of the Gramians, the key tool of BT, just from data by using some quadrature techniques.
In the last two mentioned papers, the authors obtained good results when the amount of data N is
low or medium, but for large amount of data, no numerical experiments have been reported.

In this paper, we are interested in the field of model reduction for frequency response problems,
and especially, we tackled the issue of large amount of data, since for large N , the SVD of the Loewner
and shifted Loewner matrices L,Ls ∈ CN×N may require a prohibitive computational cost due to the
dense structure (i.e., a matrix with many non-zero components) of such large matrices. To solve this
issue, we exploit the fact that L and Ls satisfy two large scale Sylvester equations with low-rank
right-hand sides expressed as BBT , where B ∈ Cn×s and s � n. We propose to solve those large
scale matrix equations by means of an extended bloc Arnoldi method, which will allow us to construct
a good approximation of L and Ls in a factored form. This factorization would help us to reduce
storage and computation requirements, also it guarantees a proper computation of the SVD of L
in order to get a reduced model that can represent accurately the data. The ADI-Galerkin method
proposed in [6], is another algebraic numerical tool used in [18] to build approximate solutions to large
scale Sylvester equations. The author has shown the effectiveness of using the ADI-Galerkin method
in the computation of the SVD of L when dealing with large N . However, no results regarding the
effectiveness of the constructed reduced model have been reported. A comparison with this method
is presented in the numerical section.

In this work, we propose to use an extended bloc Arnoldi method to find approximate solutions
for large and sparse Sylvester matrix equations of the form

ML− LΛ = BBT , (1.1)

where M,Λ and B are matrices of appropriate dimension. In [17, 27], the authors have shown the
performance of this method for solving large-scale Riccati and Lyapunov matrix equations. As we
mentioned before, in order to construct reduced models that can represent accurately the data, an
SVD of L ∈ CN×N should be established. Our main goal is to find an approximate solution L̃ to L
and use it instead in the computation of the SVD, which will then be used to build the reduced model.
Assume that an approximate solution L̃ has been computed using a numerical Krylov-subspace
method, then according to [1, 19], the approximate solution has the following form

L ≈ L̃ = VmYmV?m,

where Vm ∈ CN×2ms is a basis-matrix of the extended bloc Krylov subspace, Ym ∈ C2ms×2ms is a
small matrix (m� N) and s is the column number of B. To establish an SVD of L ∈ CN×N using our
technique, we will need only to compute the SVD of the small matrix Ym (i.e., [P,Σ, Q] = svd(Ym)),
and then we get

L ≈ VmPΣ(WmQ)?. (1.2)

From the above, it appears that we have achieved a reduction in the computational complexity of
the SVD of L from O(N3) to O(4Nm2s2) where m is the order of the small matrix Ym, and s is the
column number of the low-rank right-hand side of (1.1). This enables us to process vast amount of
data effectively as it is shown in the section of numerical examples.

We propose the following organization of the manuscript by sections. In Section 2, we give a brief
review on the Loewner framework and we describe the main steps of the process. A presentation
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of the extended block Krylov subspace method is shown in Section 3 for solving the two large scale
Sylvester equations associated to the Lowener and shifted Lowener matrices. Finally, in Section 4, the
accuracy and efficiency of our method is evaluated and compared to other known methods.

2. The Loewner framework. A brief introduction to the Loewner framework and its main
steps are described in this section, for more details, we refer the reader to [21, 22] and the references
therein. The Lowener framework is a data-driven and non-intrusive model order reduction method.
In particular, it does not require any governing equations or system matrices that describe the model.
Unlike the classical intrusive methods that require the whole system matrices of the original model to
construct a reduced one.

2.1. Krylov-based methods for intrusive models. We first give a brief description of a
Krylov subspace based model order reduction method; see [9, 14, 20] for more details.
Consider a linear time invariant (LTI) dynamical system given by

(Σ) :

{
E ẋ(t) = Ax(t) +B u(t), x(0) = 0,
y(t) = C x(t) +Du(t),

(2.1)

where x(t) ∈ Rn are the variables (or states if E is non-singular), u(t) ∈ Rq and y(t) ∈ Rp are the
inputs and outputs, respectively. The matrices A, E ∈ Rn×n are large and sparse, B ∈ Rn×q and
CT ∈ Rn×p are supposed to have small number of columns i.e., q, p � n, D ∈ Rp×q. This approach
seeks to construct the following reduced model

(Σ̂) :

{
Ê ˙̂x(t) = Â x̂(t) + B̂ u(t),

ŷ(t) = Ĉ x̂(t) + D̂ u(t),
(2.2)

where Â, Ê ∈ Rr×r, B̂ ∈ Rr×q and ĈT ∈ Rr×p such that r � n. In the frequency domain, the
original and reduced transfer functions associated to the original and the reduced systems are defined
by H(s) = C (sE − A)−1B + D and Ĥ(s) = Ĉ (z Ê − Â)−1 B̂ + D̂, respectively. Then, in order to
measure the accuracy of the resulting reduced system, one can compute the error-norm ‖H− Ĥ‖ with
respect to a certain norm. As it is described in [2, 9], the projection process is as follows, firstly we
define two subspaces as K1 = Range(V) and K2 = Range(W), where V,W ∈ Rn×r are respectively
the corresponding basis matrices. Notice here that K1 are K2 are Krylov-based subspaces associated
to the couple of matrices (A,B) and (A,CT ). After approximating the full order state x(t) by Vx̂,
and enforcing the Petrove-Galerkin condition, we obtain{

WT (EV ẋ(t) −AVx(t)−B u(t)) = 0,
y(t) = CV x(t) +Du(t),

(2.3)

Finally, we get the reduced system (2.2) with the following system matrices

Ê =WTEV, Â =WTAV, B̂ =WTB, Ĉ = CV.

This is a general description of one of the ”intrusive” methods based on projection techniques, which
necessitates a full description of the original system. In the next subsection, we briefly describe the
Loewner framework as a method for solving rationale interpolation problem, as reported in [21].

2.2. Interpolatory reduction method. Assume that we are dealing with the LTI system (2.1)
with p = q > 1, i.e., MIMO (Multiple Input Multiple Output) system. The interpolatory reduction
problem [22] goes as follows.
Given left and right interpolation points with left and right tangential directions respectively by
{µi}li=1 ∈ C, {λj}rj=1 ∈ C, {li}li=1 ∈ Cp and {rj}rj=1 ∈ Cq. These interpolation points and vector

directions are used to describe some left and right response measurements, given by
{
lTi H(µi) = vi

}l
i=1
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and {H(λj)rj = wj}rj=1. As in [21], we seek out the reduced system (2.2) where its transfer function

Ĥ(s) could be considered as an approximate interpolant to H(s), which means that

lTi H(µi) = lTi Ĥ(µi) = vi, i = 1, . . . , l, and H(λj)rj = Ĥ(λj)rj = wj , j = 1, . . . , r. (2.4)

We consider the function Φ(s) = (sE−A)−1 and define the generalized controllability and observability
matrices R and O in terms of the original system matrices of (2.1) Φ, µi, λj and directions li, rj .
These two matrices are given by

R = [Φ(λ1)Br1, . . . ,Φ(λl)Brl] ∈ Cn×l, O =

l1CΦ(µ1),
...

lrCΦ(µr)

 ∈ Cr×n, (2.5)

Lemma 1. Assume that r = l and choose the projection matrices, defined in the previous section,
as the controllability and observability matrices; i.e. V = R and W = O. Then we can construct a
projected (reduced) system of order r satisfying the following interpolation conditions

H(λj)rj = Ĥ(λj)rj , j = 1, . . . , r, and (2.6)

lTi H(µi) = lTi Ĥ(µi), i = 1, . . . , r. (2.7)

Proof. We will describe the process to get the first interpolation condition (2.6), and in a similar
way we can get the one in (2.7). Let us prove that

Φ̂(λj)B̂rj = ej , for j = 1, . . . , r,

where Φ̂(s) = (sÊ − Â)−1. Notice first that

Φ̂(s)−1 = sÊ − Â = O(sE −A)R = OΦ(s)−1R.

On the other hand, the jth column of the matrix R is given by Rej = Φ(λj)Brj , and then
Φ(λj)

−1Rej = Brj . Multiplying the last expression, from the left by O, it follows that

OΦ(λj)
−1Rej = OBrj ⇒ Φ̂(λj)

−1ej = B̂rj ,

Then, multiplying this last equation from the left by Ĉ, it follows that ĈΦ̂(λj)B̂rj = Ĉej then

Ĥ(λj)rj = CRej and finally Ĥ(λj)rj = CΦ(λj)Brj = H(λj)rj .

Remark 1. It is well known that the transfer function of an LTI system is defined using the
system matrices of the associated dynamical system and vice versa. This is actually the reason behind
choosing the Loewner framework as a process, since this framework seeks to find a rational function
that approximates/interpolates the data. Our primarily goal is to find a transfer rational function by
means of Loewner framework, which guarantees that this rational function is indeed the one associated
to the desired reduced model. We always suppose that we do not have access to the structure matrices
of the original system. Our contribution consists in using Krylov-subspace projection techniques via
Loewner framework to exploit models that can represent accurately the data. In our case the data is
described by some frequency domain measurements.

Originally, this framework has been addressed to the rational approximation problem as reported in
[21, 22]. Assuming that we have a pairs of points represented as

(φk,Hk), k = 1, . . . , N,

where Hk ∈ Cp×q are the transfer function measurements corresponding to the frequency φk, for a
system of q inputs and p outputs with q, p� N . The main goal in a rational approximation problem
is to find a rational transfer function H(s) that approximates the data

Hk ≈ H(s = iωk) where ωk = 2πφk and i2 = −1, k = 1, . . . , N,
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in a way that, in some norm, the transfer function H(s = iωk) should be closed to the corresponding
measurements Hk. We assume here that our transfer function satisfies the complex conjugate condition
H(s̄) = H(s) and we consider the following form of our data

(iωk,−iωk,Hk,Hk), k = 1, . . . , N. (2.8)

A crucial step in the Loewner framework is the partition of data into two disjoint sets [21], as it has
a direct impact on the quality of the constructed reduced model. In what follows, we summarize the
most natural classical known partitions

• Half & Half (H&H) : the first set contains the first half of iωk together with their conjugates
and the other set contains the second half of iωk together with their conjugates

{iω1,−iω1, . . . , iωN/2,−iωN/2}︸ ︷︷ ︸
µi, for i=1,...,N (left points)

∪{iωN/2+1,−iωN/2+1, . . . , iωN ,−iωN}︸ ︷︷ ︸
λj , for j=1,...,N (right points)

,

with the corresponding frequency response measurements

{H1,H1, . . . ,HN/2,HN/2} ∪ {HN/2+1,HN/2+1, . . . ,HN ,HN}.

• Odd & Even (O&E) : the first set contains data with odd indices and the other set contains
the even indices

{iω1,−iω1, . . . , iωN−1,−iωN−1}︸ ︷︷ ︸
µi, for i=1,...,N (left points)

∪{iω2,−iω2, . . . , iωN ,−iωN}︸ ︷︷ ︸
λj , for j=1,...,N (right points)

,

with the corresponding frequency response measurements

{H1,H1, . . . ,HN−1,HN−1} ∪ {HN/2+1,HN/2+1, . . . ,HN ,HN}.

Remark 2. In [13], the authors explained that the partition Half & Half (H&H) has more effect
on the decay of the singular values of the Loewner matrix than the partition Odd & Even (O&E), even
for noisy data. Therefore, a truncation index ”r” from the SVD of L, used to construct a r-dimension
reduced model, is found easily by means of the Half & Half (H&H) partition. Both partitions will be
used in the numerical section.

We have mentioned before, that the transfer function measurements Hk are complex p × q matrices
and then, in step two of the loewner framework, chosen tangential directions are used to rewrite
the data matrices (measurements) [21]. We consider li ∈ C1×p and rj ∈ Cq as a left and right
tangential directions respectively, which can be chosen in a heuristic way as columns/rows of the
identity matrix[21]. The left and right vectors of data could be defined as

liHi = vi ∈ Cq, Hjrj = wj ∈ Cp, i, j = 1, . . . , N.

Now, after partitioning the data and defining the left and right vectors, we compute Loewner and
shifted Loewner matrices (L and Ls ∈ CN×N ) as follows ([21, 22, 25])

[L]i,j =
virj − liwj
µi − λj

∈ C, i, j = 1, . . . , N,

and

[Ls]i,j =
µivirj − λjliwj

µi − λj
∈ C, i, j = 1, . . . , N.
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Using the definition of vi and wj given in Subsection 2.2, we get

[L]i,j = −liC(µiE −A)−1E(λjE −A)−1Brj , i, j = 1, . . . , N,

and then

L = −

l
T
1 CΦ(µ1),

...
lTNCΦ(µN )

E [Φ(λ1)Br1, . . . ,Φ(λN )BrN ] .

It is mentioned in [22], that besides the fact that the pairs (E,A,B) and (C,E,A) are controllable
and observable, respectively, if the directions li and rj are chosen properly, the rank of the Loewner
matrix L is equal to the rank of the matrix E. The data (µi, λj , vi, wj) can be presented in the
following matrix format

Λ = diag([λ1, . . . , λN ]) ∈ CN×N , M = diag([µ1, . . . , µN ]) ∈ CN×N ,︸ ︷︷ ︸
N×N diagonal matrices contains the left and right points

(2.9)

L =

l1

...
lN

 ∈ CN×p, R = [r1, . . . , rN ] ∈ Cq×N .

︸ ︷︷ ︸
left and right tangential directions

(2.10)

The left and right vectors are as follows

W = [w1, . . . , wN ] ∈ Cp×N , V =

 v1

...
vN

 ∈ CN×q. (2.11)

The Loewner and shifted Loewner matrices have the following matrix format

L =


v1r1 − l1w1

µ1 − λ1
. . .

v1rN − l1wN
µ1 − λN

...
. . .

...
vNr1 − lNw1

µN − λ1
. . .

vNrN − lNwN
µN − λN

 , Ls =


µ1v1r1 − λ1l1w1

µ1 − λ1
. . .

µ1v1rN − λNl1wN
µ1 − λN

...
. . .

...
µNvNr1 − λ1lNw1

µN − λ1
. . .

µNvNrN − λNlNwN
µN − λN

 .
(2.12)

It is straightforward to check that the two Loewner matrices verify the following Sylvester matrix
equations

ML− LΛ = V R− LW︸ ︷︷ ︸
equation 1

, MLs − LsΛ = MVR− LWΛ︸ ︷︷ ︸
equation 2

, (2.13)

as well as

Ls − LΛ = V R, Ls −ML = LW. (2.14)

Notice here, that if we don’t consider the left and right tangential directions in the above process,
then the components of Loewner and shifted Loewner matrices would be presented as follows [18]

[L]i,j =
Hµ
i −Hλ

j

µi − λj
∈ Cp×q, [Ls]i,j =

µiH
µ
i − λjHλ

j

µi − λj
∈ Cp×q, i, j = 1, . . . , N,
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where Hµ
i , H

λ
j are the transfer functions measurements corresponding to the left and right points µi

and λi, respectively and satisfying the following Sylvester equations

ML− LΛ = EF ?, MLs − LsΛ = GK?,

where M ∈ C(N p)×(N p) and Λ ∈ C(N q)×(N q) are diagonal matrices and their diagonals are defined as

diag(M) =


µ1

µ2

...
µN

 ⊗ 1p ∈ C(N p)×1 and diag(Λ) =


λ1

λ2

...
λN

 ⊗ 1q ∈ C(N q)×1, 1p or q refers to the p or q

dimension columns of ones. The right hand sides are presented as follows

E =


Hµ

1 −Ip
Hµ

2 −Ip
... −Ip

Hµ
N −Ip

 ∈ CN×(p+q), F ? =

[
Iq Iq . . . Iq
Hλ

1 Hλ
2 . . . Hλ

N ,

]
∈ C(p+q)×N

G =


µ1H

µ
1 −Ip

µ2H
µ
2 −Ip

... −Ip
µNH

µ
N −Ip

 ∈ CN×(p+q), and K? =

[
Iq Iq . . . Iq

λ1H
λ
1 λ2H

λ
2 . . . λNH

λ
N ,

]
∈ C(p+q)×N .

2.3. The Loewner processing. After the step of partitioning the data and introducing the
Loewner matrices, we can now obtain a minimal realization by assuming that the data is not redundant

Ê = −L, Â = −Ls, B̂ = V and Ĉ = W.

Here, we have to mention that no reduction was performed to built a model that approximates the
data, only the original amount of data was chosen. A reduction process could be established by
performing a singular value decomposition (SVD) of Loewner matrices. As it is described in [4, 22],
we employed one of the singular value decompositions

[L Ls] = Y1Σ1X
?
1 , or

[
L
Ls

]
= Y2Σ2X

?
2 .

Then we chose a suitable reduction order or truncation index r [21, 22] to get the projection matrices
Yr and Xr in order to built a reduced model of order r. In this work, we will not focus on the
polynomial D-term defined in the description (2.1). The projection matrices Yr and Xr are chosen by
selecting the first r columns of Y and X, respectively from the following SVD of L

L = Y ΣX? ≈ YrΣrX?
r . (2.15)

Finally, an r-order realization of an interpolant of the data can be constructed, and its system matrices
is given as follows

Ê = −Y ?r LXr, Â = −Y ?r LsXr, B̂ = Y ?r V and Ĉ = WXr. (2.16)

We recall that data-driven methods aim to build accurate reduced models from data presented by fre-
quencies and transfer function measurements (2.8) as mentioned earlier, no exact access to the system
matrices as in (2.1) is provided. The main goal is to built a reduced system whose rational transfer
function interpolates the data. A solution to this problem is provided by the Loewner framework [22],

1The superscript ? stands for the complex transpose conjugate, i.e, F ? = F
T

.
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and the following matrices E = −L, A = −Ls, B = V and C = W form a minimal realization of an
interpolant of the data, whose rational transfer function is given by

H(s) = W (Ls − sL)−1V,

and interpolates the data as follows

H(λi)ri = W (Ls − λiL)−1V ri = Hiri = wi, for i = 1, . . . , N, (2.17)

ljH(µj) = ljW (Ls − µjL)−1V = ljHj = vj , for j = 1, . . . , N. (2.18)

Lemma 2. Assume that the matrix pencil (Ls,L) is regular (det(sL−Ls) 6= 0 ∀ s ∈ {µi} ∪ {λj}),
then (2.17) and (2.18) are satisfied.

Proof. Let us check the interpolation condition (2.17). We can easily verify that

(Ls − λiL)ei = Lsei − λiLei,

=


µ1v1ri − λil1wi

µ1 − λi
...

µNvNri − λilNwi
µN − λi

− λi

v1ri − l1wi
µ1 − λi

...
vNri − lNwi
µN − λi

 =

 v1

...
vN

 ri = V ri.

Multiplying the last expression, from the left by (Ls − λiL)−1, we get

ei = (Ls − λiL)−1V ri.

Then we obtain

wi = Wei = W (Ls − λiL)−1V ri = H(λi)ri,

which corresponds to the result (2.17). To get (2.18), we first compute eTj (Ls − µjL) and then the
same proof as above could be used.

We notice that the Loewner matrices (L and Ls ∈ CN×N ), as well as the singular value decom-
position of L, play a fundamental role in the Loewner framework, in the realization of reduced model
without requiring the availability of any system matrices of the original one, except the availability of
measurement data (frequencies and transfer function measurements), and this actually the motivation
behind data-driven model reduction. However, for large amount of data N , the SVD of L ∈ CN×N
requires a prohibitive computational cost, and to solve this problem, we exploit the fact that L fulfils
the Sylvester equation (2.13) with diagonal coefficient matrices. Our attention is focused on finding an
approximate solution by means of numerical linear algebra tools that will ensure proper computation
of the SVD and not the solution of the equation (3.2) itself. In this paper, we focused on a low-rank
approximate solution based on Extended bloc Krylov-subspace.

3. Approximate solution to large Sylvester matrix equations. An extended bloc Arnoldi-
based method to find an approximate solution, for large scale Sylvester matrix equations is described
in this section. This Krylov-subspace method has proven its efficiency for many problems, such as
solving Lyapunov and Riccati equations [17, 27, 28], and also for model order reduction as reported
in [5, 7]. We recall that our focus is not only on using this tool to solve the two large scale Sylvester
equations (2.13), since those two equations are with diagonal coefficient matrices, and one can use
a direct solver as Hessenberg-Schur method [10] that provides a good results, but the actual goal is

to find an approximate solution L̃ to L and use it instead to compute the SVD which will then be
used to build the reduced model. To understand more about our contribution, let us assume that an

8



approximate solution L̃ to L has been computed by using a numerical Krylov-subspace method, then
as we know, and according to [1, 19], the approximate solution has the following form

L ≈ L̃ = VmYmW?
m,

where Vm,Wm ∈ CN×m are some basis-matrices of specific Krylov-subspaces, and Ym ∈ Cm×m is
a small matrix (m � N). To get the SVD of L, we first compute the SVD of the small matrix
[P,Σ, Q] = svd(Ym), and then the SVD of L goes as

L ≈ VmPΣ(WmQ)?. (3.1)

In what follows, we present briefly, a projection method based on an extended Krylov-subspace for
constructing approximate solutions L̃. We recall our large scale Sylvester matrix equation (2.13)

MX −XΛ = V R− LW =
[
V −L

] [R
W

]
= FG?, (3.2)

where the matrices M,Λ ∈ CN×N , L ∈ CN×p, R ∈ Cq×N and W ∈ Cp×N , V ∈ CN×q are presented
in (2.9), (2.10) and (2.11), respectively. The solution X of Eq. (3.2) exists and is unique [10] since
λi(M) − λj(Λ) 6= 0, for i, j = 1, . . . , N, where λi(M) denotes the ith eigenvalue of the matrix M .
Note that the Sylvester equation (3.2) can be written as an N2 × N2 system of linear equations
(IN ⊗ M − Λ? ⊗ IN )vec(X) = vec(FG?), where ⊗ denotes the Kronecker product and vec is a
linear operator defined as vec(X) = [X11, . . . , X1N , X21, . . . , X2N , . . . , . . . , XN1, . . . , XNN ]T ∈ CN×N ,
obtained by stacking the rows of the N ×N matrix X.

3.1. Extended block Krylov-Subspace. Let Q ∈ RN×N and J ∈ RN×s, the extended block
Krylov-subspace [27] can be defined as the union of two classical Krylov subspaces as follows

Kextm (Q, J) = Km(Q, J) ∪ Km(Q−1, Q−1J),

where Km(Q, J) is the subspace spanned by the columns of J,QJ, . . . , Qm−1J , i.e.,

Km(Q, J) = colspan{J,QJ, . . . , Qm−1J}.

The extended block Krylov-subspace Kextm (Q, J) can be seen as

Kextm (Q, J) = colspan{Q−mJ, . . . , Q−1J, J,QJ, . . . , Qm−1J}. (3.3)

In the following algorithm, we summarize the extended block Arnoldi process to built an orthonormal
basis of the extended block Krylov-subspace Kextm (Q, J).

Algorithm 1 The extended block Arnoldi algorithm

• Input : Q ∈ RN×N , J ∈ RN×s and a fixed integer m.
• Compute [V1,Γ

Q] = qr([J,Q−1J ], 0)(skinny qr), V1 = [V1].
• for j = 1 · · ·m− 1

1. Set V
(1)
j : first s columns of Vj ; V

(2)
j : second s columns of Vj .

2. Ṽj+1 = [QV
(1)
j , Q−1V

(2)
j ].

3. Orthogonalization step:
for i = 1, 2 · · · j

Hij = V Ti Ṽj+1.

Ṽj+1 = Ṽj+1 − ViHij .
end for

• qr(Ṽj+1) = Vj+1Hj+1,j (qr decomposition).
• Vj+1 = [Vj , Vj+1].
• End.

9



After m steps, Algorithm 1 builds a matrix Vm = [V1, . . . , Vm] ∈ RN×2ms corresponding to the
orthonormal basis of the extended block Krylov subspace and a block upper Hessenberg matrix Hm ∈
R2ms×2ms whose non-zeros blocks are the Hi,j . Recall that the columns of Vm are mutually orthogonal
since we use a Gram-Schmidt process at step 3 in Algorithm 1. Note that each sub-matrix Hi,j

(1 ≤ i ≤ j ≤ m) is of order 2s × 2s. Let Tm = VTmQVm ∈ R2ms×2ms denotes the restriction of the
matrix Q to the extended block Krylov subspace. It was shown in [27] that Tm is also a block upper
Hessenberg matrix. Assume that m steps of Algorithm 1 have been run, then we get the following
classical algebraic relations

QVm = Vm+1 Tm (3.4)

= Vm Tm + Vm+1 Tm+1,mE
T
m, (3.5)

where Tm = VTm+1QVm ∈ R2(m+1)sp×2ms and Em is the last 2s columns of the identity I2ms. The

upper block Hessenberg matrices Hm and Tm ∈ R2(m+1)s×2ms are partitioned as follows

Hm = [h:,1, . . . , h:,2m] and Tm = [t:,1, . . . , t:,2m] ,

where h:,j and t:,j are the jem block column of order s of Hm ∈ R2(m+1)s×2ms and Tm ∈ R2(m+1)s×2ms,
respectively. Also, we suppose that ΓQ and Hj+1,j are decomposed as

ΓQ =

[
ΓQ11 ΓQ12

0 ΓQ22

]
and Hj+1,j =

[
H

(11)
j+1,j H

(12)
j+1,j

0 H
(22)
j+1,j

]
.

The following proposition allows a simple computation of the columns t:,i of Tm using only columns
h:,j of Hm without involving any matrix-vector products with Q or extra inner products of long
vectors.

Proposition 3.1. ([27]) For j = 1, . . . ,m, the odd block column are given as follows

t:,2j−1 = h:,2j−1,

while the even block column are such that

t:,2 = [ẽ1ΓQ11 − t:,1ΓQ12](ΓQ22)−1, (3.6)

t:,2j+2 = [ẽ2j − t:,1:2j+1h1:2j+1,2j ](H
(22)
j+1,j)

−1, (3.7)

where ẽi = ei ⊗ Is.

3.2. A low-rank approximate solution. In this section, we first describe the extented block
Arnoldi process in order to get a low-rank approximate solution to large scale Sylvester matrix equation
(3.2), for more details see [1, 19]. In the sequel, and for simplicity, we set k = p+ q, i.e., the numbers
of columns of the right-hand sides F and G. We apply simultaneously Algorithm 1 to the pairs (M,F )
and (Λ?, G?), and by considering that m iterations have been achieved, we get VMm ,VΛ

m ∈ CN×2mk

two orthonormal basis matrices as well as two block Hessenberg matrices TMm , TΛ
m ∈ C2mk×2mk. The

approximate solution is given as

Xm = VMm Ym(VΛ
m)?, (3.8)

where Ym ∈ C2mk×2mk is a small matrix obtained by enforcing the Galerkin condition

(VMm )?RmVΛ
m = 0, (3.9)
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and Rm is the residual given by Rm = MXm − XmΛ − FG?. Using (3.8) and (3.9), we get the
following low dimensional Sylvester equation associated to Ym

TMm Ym − YmTΛ
m = FmG

?
m, (3.10)

with Fm = (VMm )?F and Gm = (VΛ
m)?G also given as

Fm = E1
1ΓM11 and Gm = E1

1ΓΛ
11, (3.11)

where E1
1 is the first k columns of the 2mk× 2mk identity matrix, and ΓM11 ,Γ

Λ
11 ∈ Ck×k two matrices

obtained from the QR decomposition of [F,M−1F ] and [G,Λ−1G], respectively, and given as follows

[F,M−1F ] = VM1 ΓM and [G,Λ−1G] = V Λ
1 ΓΛ,

with

ΓM =

[
ΓM11 ΓM12

0 ΓM22

]
and ΓΛ =

[
ΓΛ

11 ΓΛ
12

0 ΓΛ
22

]
.

The purpose of the simplified expression (3.11), is to make the calculations much easier for solving the
low dimensional equation (3.10), by means of a direct method as described in [10]. In the numerical
section, we treat this equation using the built-in MATLAB equation layp.
The iterations are stopped when the residual in a certain norm ‖Rm‖ is less than a chosen tolerance
ε i.e., ‖Rm‖ < ε. However, as m increases and for large scale matrices M , Λ, F and G, a direct
computation of the residual Rm is very expensive. The next result, shows how to compute the
residual norm ‖Rm‖ in an efficient way avoiding extra products with the approximation Xm. We then
show that a factorization of Xm can be established when the convergence is achieved.

Theorem 1. Assume that m iterations of Algorithm 1 have been run and let Xm = VMm Ym(VΛ
m)?

be the obtained approximate solution where Ym solves the low dimensional Sylvester equation (3.10).
Then, the residual norm ‖Rm‖F can be expressed as

‖Rm‖F =
√
r1
m + r2

m, (3.12)

where r1
m = ‖TMm+1,m(Ekm)TYm‖F , r2

m = ‖TΛ
m+1,m(Ekm)TY Λ

m‖F and Ekm is the last k columns of 2mk×
2mk identity matrix. The norm ‖ · ‖F is the Frobenius norm.

It is necessary here to underline the fact that we may encounter difficulties to compute the
approximation Xm = VMm Ym(VΛ

m)? as m increases. To solve this problem, we show in the following
how to represent the approximate solution Xm in factored form. In fact, let Ym = PΣQ? be the SVD
of Ym where Σ is the matrix of the singular values of Ym sorted in decreasing order. Then consider
some tolerance dtol and define Pr, Qr as the first r columns of P and Q, respectively corresponding to
the r singular values of magnitude greater than dtol. Setting Σr = [σ1, · · · , σr], we get Ym ≈ PrΣrQ?r ,
and we obtain the desired factorization as

Xm ≈ Z1
m(Z2

m)?, (3.13)

with Z1
m = VMmPr(Σr)1/2 and Z2

m = VΛ
mQr(Σr)

1/2. We summarize all the results depicted above in
the following algorithm

11



Algorithm 2 Extended block Arnoldi Sylvester algorithm (EBASA)

• Inputs: M, Λ ∈ CN×N , F,G ∈ CN×k(k = p + q), a tolerance ε dtol and a number mmax of
maximum iterations.

• Outputs: the approximate solution Xm ≈ Z1
m(Z2

m)?.
• For m = 1, · · · ,mmax

• Use Algorithm 1 to built VMm ,VΛ
m an orthonormal matrices and TMm ,TΛ

m two block Hessenberg
matrices.

• Solve the low-dimensional Sylvester equation (3.10) using the MATLAB function lyap.
• Compute the residual norm ‖Rm‖ using (3.12), and if it is less than ε, then

1. compute the SVD of Ym = UΣV where Σ = diag[σ1, · · · , σ2m],
2. determine r such that σr+1 < dtol ≤ σr, set Σr = diag[σ1, · · · , σr] and compute Z1

m =
VMmPr(Σr)1/2 and Z2

m = VΛ
mQr(Σr)

1/2,
end if.

• End For

Notice that m is the number of iterations performed by Algorithm 2 to built the approximate
solutions, particularly L ≈ VMm Ym(VΛ

m)?. We denote by r ≤ m � N the truncated number from the
SVD of Ym in order to build an r-dimensional reduced model.
As mentioned earlier, the computation of the Loewner and shifted Loewner matrices is of primary
importance in our approach, also the singular value decomposition of L is crucial for building a
reduced model from original data without requiring any differential equations. When we deal with
small or medium number of data, a direct computation of L,Ls and the SVD of L can be performed
efficiently up to medium sizes. For large problems, the process of data-driven model reduction might
require a prohibitive computational cost. However, and thanks to the extended block Arnoldi Sylvester
algorithm (EBASA), we can obtain good approximations to the Loewner and shifted Loewner matrices
L, Ls in appropriate manner and we can rewrite these approximations in a factored form to reduce
storage and computation required during the process. In the following, we resume the process of our
method based on data-driven Loewner framework via the extended bloc Krylov subspace technique.

Algorithm 3 Loewner framework via Krylov subspace technique

• Input : {ωj = 2πφj ∈ C,Hj ∈ Cp×q}Nj=1 (measurements).

1. Splitting data {ωj , H(iωj)}Nj=1 into left and right data, and then setting up the matrices

{M,Λ, R, L, V,W} as described in Section 2.
2. Solve the two large scale Sylvester equations using Algorithm 2, and get approximate

solutions to L and Ls are constructed.
3. Compute the SVD of Ym, i.e., Ym = PΣQ. In the following, Pr and Qr refer to the first
r columns of P and Q.

• Output : The system matrices of the reduced order model

Er = −Y?rL1(L?2Xr), Ar = −Y?rL1
s((L2

s)
?Xr), Br = Y?rV and Cr = WXr,

where Yr = VMPr, Xr = VΛ
rQr, and we used the technique described in (3.13) to rewrite L

and Ls in a factored form as L ≈ L1L?2 and Ls ≈ L1
s(L2

s)
?.

4. Numerical experiments. In this section, we evaluate the effectiveness of our Algorithm 3
and report the obtained results compared to other known methods on some numerical tests. We show
the accuracy of the obtained reduced models from original data with p = q = 1 (i.e., Single Input
Single Output models, (SISO)), and also with p, q > 1 (i.e., Multiple Input Multiple Output models,
(MIMO)). All the experiments were carried out using MATLAB R2018a on a computer with Intel
® core i7 at 2.6GHz and 16Gb of RAM. As described above, N refers to the cardinality of our data
{ωj , Hj}Nj=1, with ωj = 2πiφj , i

2 = −1 and φj ∈ R are the frequencies. The matrices Hj ∈ Cp×q
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represent samples of transfer function matrices. The data was built according to the following:
- The built-in function in MATLAB logspace to get the logarithmically spaced points φj .
- In some examples, Hj ∈ Cp×q are exactly samples of transfer functions from a benchmark ex-

amples, and in other examples, we obtained the matrices Hj from a dynamic system generated
from n random complex poles (σi ∈ C) and residues (Ri ∈ Cp×q).

H(s) =

n∑
i=1

Ri
s− σi

∈ Cp×q. (4.1)

From Algorithm 3, we get the system matrices (Er, Ar, . . .) of the desired reduced model, where
Hr(s) = Cr(sEr − Ar)−1Br is the associated transfer function that approximates the data, as it is
described in Lemma 2. To measure how well our reduced model can reproduce the behaviour of the
original one, we need to plot the following error vector denoted by err∞where its components are
given by

[err∞]k = σmax(Hk −Hr(ωk)), for k = 1, . . . , N,

where σmax(·) is the largest singular values of the corresponding p× q matrix.

Remark 3. As mentioned in Algorithm 2, k = p + q is the column number of the low-rank
hand sides of the Sylvester equations (2.13). Therefore, the dimension of the computed extended bloc
Krylov-subspace is ”2mk”, particularly in the SISO case, the dimension is 4m.

4.1. SISO-models with small amount of data. In this numerical part, we give a comparison
of our proposed method with Balanced Truncation (BT) [11] that was reformulated to be fitted with
the principals of a data-driven framework using some quadrature techniques. We use three benchmark
models CDplayer, Heat-cont and iss. As the first two models are originally with Multiple Inputs
and Multiple Outputs, we take only the first input and first output to get SISO models. We choose
N = 400 logarithmically spaced points in the interval

[
10−1, 102

]
for CDplayer and iss models, and

N = 120 points for heat-cont model in the interval
[
10−1, 103

]
. We solved the two Sylvester equations

(2.13) by means of Algorithm 2. The iterations were stopped when ‖Rm‖ < ε, with ε=1e-5. We recall
that ‖ · ‖ is the Frobenius norm ‖ · ‖F . We follow [Algorithm 2 (QuadBT), in [11] p. 10], and report the
obtained results for the three models, showing the error norm err∞ by varying the reduction order r
as depicted in Figure 4.1.

4.2. Comparison with the original Loewner framework. We follow the main steps de-
scribed in [22] for the standard data driven approach based on a Loewner framework. The key tool of
this approach is based on the SVD of the Loewner matrix L. We compared these results with those
obtained by our Algorithm 3. We used two benchmark models to generate the frequency response
measurements for beam and FOM models0. For beam-model, we choose N = 1500 logarithmically spaced
points ω ∈ [10−2, 1] scaled by 2π, and for FOM-model we select N = 2500 logarithmically spaced points
ω ∈ [1, 104] scaled by 2π. In this experiment, we used the partition H&H to get the results depicted
in Figure 4.2 for beam-model and in Figure 4.3 for FOM-model. As shown in Figures 4.3 and 4.2, our
Algorithm 3 and the process of the original Loewner framework have a similar results, but regarding
the total computational time (from generating the data to the constructed model) for beam-model, the
original Loewner framework needs 18.38sec while our algorithm needs 12.75sec, and concerning the
FOM-model original Loewner framework needs 28.07sec and our algorithm needs only 1.61sec. Figure
4.2 reports results obtained for the Beam model. In the top plot, we compared the original transfer
function matrices magnitude (i.e., σmax(Hk)) with the ones produced by the standard data driven
approach (i.e., σmax(Hr(ωk))), while the second plot gives the error approximation. In the third and
fourth plots of Figure 4.2, we compared the results obtained by our proposed method with those of
the original data. Figure 4.3 reports results obtained for the FOM-model.

0http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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Fig. 4.1. The error between the original data and the constructed model for different values of r using our method
described in Algorithm 3 (solid line) and Algorithm QuadBT (dashed line) for three benchmark models.

4.3. SISO-model with large amount of data. This subsection reports on the obtained nu-
merical results using a high order SISO systems (i.e., N > 5000 and p = q = 1). We get the samples
{Hj ∈ C}Nj=1 from a dynamic system generated with n = 50 random complex poles and residues as
it is mentioned in the beginning of Section 4. A comparison is also established between our method
and the one described in [18], where the two Sylvester equations (2.13) are solved using ADI-Galerkin
method from [6].
For both methods, we select N logarithmically spaced points ω ∈ [1, 105] where N = {5000, 10000}.
Unfortunately, we cannot know in advance which partition (i.e., H&H or O&E) leads to a fast convergence
and good approximations to the solutions of the two Sylvester equations (2.13), which are considered
the key to built the reduced model. We have observed that using the O&E partition for our method and
using the H&H partition for the one based on ADI-Galerkin process, leads to a good approximations
with minimal computational coast and also to efficient reduced models which is the main purpose of
this paper. Before reviewing the details of our results, we should mention that we have already tried
to switch between the partitions to solve the two Sylvester equations (2.13), using both methods:
Algorithm 2 and the ADI-Galerkin method, and as a consequence, we have obtained better results
than the ones depicted in Table 4.1. However, the computed reduced models are quite far from the
desired ones compared to the original data. The cpu-time mentioned in Table 4.1 refers to the time
needed to compute the approximate solutions for both methods. In Table 4.2, we mentioned the total
time that includes the construction of data, the approximation in a factored form of L and Ls as well
as the projection and plotting steps. When solving the Sylvester equation equa1 (2.13), we stopped
the iterations when the residual norm ‖Rm‖ is less than a fixed tolerance ε = 1e−5. As mentioned
before, we computed ‖Rm‖ in an appropriate way as described in (3.12), and when it comes to the
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Fig. 4.2. Results for Beam-model

ADI-Galerkin method we follow what it has been suggested in [6, 18] where the ‖Rm‖ could be calcu-
lated by using method of power iteration. For equa2 from (2.13), we stopped the iterations when the
residual norm is less than ε′ = 1e−2. The reason behind this choice of ε′ is that for ε′ = 1e−5 or less,
both methods (i.e., ADI-Galerkin and Algorithm 2) need more iterations and will cost a lot of time
to satisfy the convergence criterion, moreover, this choice was sufficient to obtain a satisfied reduced
models as shown in figures below. Notice that the Loewner framework via ADI-Galerkin method in
Figure 4.1 where N = 5000 starts out very well, but apparently, after φ = 105, the method lost its
effectiveness and cannot match the picks. However, from Figure 4.4, our proposed method (Algorithm
3), gives better results. The same remark goes also for N = 10000 as shown in Figures 4.6-4.7.
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Fig. 4.3. Results for FOM-model.

4.4. Large scale MIMO systems. The examples treated here are devoted to high order MIMO
systems (i.e., N > 5000 and p = q = 10). We used (4.1) to get the samples of transfer matrices

Hj ∈ Cp×q and chose N ∈ {5000, . . . , 30 000} logarithmically spaced points {φj}Nj=1 scaled by 2π

in the interval
[
104, 107

]
. We compare again our method with the one described in [18] where the

two Sylvester equations are solved using the ADI-Galerkin approach. Unlike the SISO case, some
left and right directions (2.10) that characterize the right-hand sides of the Sylvester equations (2.13)
must be chosen [21], and in order to conduct a fair comparison, we must select them in a similar
way for both methods. Heuristically, these directions could be chosen as columns-rows of the identity
matrix perturbed with some random columns-rows. In fact, there is no theory behind this specific
choice, but normally this is what we have observed from the numerical experiments. We follow the
same instructions already mentioned in the previous subsection to solve the Sylvester equations (2.13)
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Table 4.1
The obtained results of both methods in the case of SISO systems

Algorithm 2
DATA Sylv. equations (2.13) cpu-time resi. norm (3.12) iter (”m”)

N = 5000 equa1 1.21sec 4.73 × 10−06 40
equa2 6.80sec 0.0050 80

N = 10000 equa1 1.89sec 9.13 × 10−06 39
equa2 1.93sec 0.0895 40

ADI-Galerkin method
DATA Sylv. equations (2.13) cpu-time resi. norm iter (”m”)

N = 5000 equa1 3.87sec 6.07× 10−06 25
equa2 4.40sec 0.0234 50

N = 10000 equa1 25.26 sec 8.39 × 10−06 35
equa2 27.22sec 0.0229 60
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Fig. 4.4. Top : Original frequency measurements (σmax(Hk)) and the approximated model (σmax(Hr(ωk))) by
ADI-Galerkin method. Bottom : The error-norm versus frequencies.

Table 4.2
Total computational time to obtain a reduced model of dimension r.

N = 5000 Algorithm 3 Data-driven via ADI-Galerkin
Total time (sec) 3.37 13.91

Dim. r of the reduced model r = 45 r = 60
N = 10000

Total time (sec) 19.30 69.39
Dim. r of the reduced model r = 57 r = 70

using Algorithm 2 and the ADI-Galerkin method as done in [18]. In Table 4.3 we reported the
cpu-time, the obtained error-norm and the total number of iterations.
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Fig. 4.5. Top : Original frequency measurements (σmax(Hk)) and the approximated model (σmax(Hr(ωk))) using
Algorithm 3. Bottom : The error-norm versus frequencies.
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Fig. 4.6. Top : Original frequency measurements (σmax(Hk)) and the approximated model (σmax(Hr(ωk))) by
ADI-Galerkin method. Bottom : The error-norm versus frequencies.

To visualize the behaviour of the reduced system and to see how it represents the data, we plot in
Figure 4.8 the magnitude of the original transfer function matrices (i.e., σmax(Hk)) with σmax(Hr(ωk))
given by the method described in [18] and based on the ADI-Galerkin approach. Figure 4.9 is devoted
to the same experiment using our method from Algorithm 3.
The key tool to construct models in the standard data-driven via the Loewner framework is to compute
an SVD of the Loewner matrix L ∈ CN×N [22], where we can notice from its definition in (2.12) that
it is a dense matrix. As consequence and if we deal with a large amount of data N , the computation
of the SVD should require a prohibitive computational cost. In Figure 4.10, we reported the results
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Fig. 4.7. Top : Original frequency measurements (σmax(Hk)) and the approximated model (σmax(Hr(ωk))) using
Algorithm 3. Bottom : The error-norm versus frequencies.

Table 4.3
The obtained results of both methods in the case of MIMO systems

Extended Krylov-based method
DATA Sylv. equations (2.13) cpu-time resi. norm (3.12) iter (m)

N = 10 000 equa1 1.97sec 5.90 × 10−07 7
equa2 6.49sec 0.0090 13

N = 20 000 equa1 3.96sec 1.85× 10−07 7
equa2 4.08sec 0.0086 13

N = 30 000 equa1 13.64sec 8.87× 10−08 7
equa2 19.4sec 0.0058 10

ADI-Galerkin method
DATA Sylv. equations (2.13) cpu-time resi. norm iter (”m”)

N = 10 000 equa1 32.47sec 2.40×10−09 6
equa2 39.16sec 0.0017 6

N = 20 000 equa1 312.14sec 6.72× 10−09 6
equa2 281.23sec 0.0053 6

N = 30 000 equa1, equa2 >400sec - -

regarding the computational cpu time to get this decomposition for different values of N . We showed
the time needed to achieve this decomposition using the idea of the proposed method in Algorithm
3 compared to a direct computation using the built-in MATLAB function svd as described in [22].
We can notice from the graph the exponential growth of the cpu-time required to get the SVD as
N increases, which makes this option quite impractical. Here, we need to mention that m is fixed
between 20 and 160, it depends actually on the amount of the data N , which means that when N
increases, m also increases. Recall that 2m(p+ q) is the dimension of the extended Krylov subspace
used to solve the Sylvester equations (2.13).
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Fig. 4.8. Top : Original responses (σmax(Hk)) vs the responses of the reduced system (σmax(Hr(ωk))) constructed
by ADI-Galerkin method. Bottom : The error-norm versus frequencies.
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Fig. 4.9. Top : Original responses (σmax(Hk)) vs the responses of the reduced system (σmax(Hr(ωk))) constructed
by Algorithm 3. Bottom : The error-norm versus frequencies.

Conclusion. In some physics or engineering problems, we deal with complex systems with high
non-linear terms or in some cases we have no access to the system matrices as it is the case for
the problematic brain modelling. All these issues lead to the introduction of data based methods
that are not taking into account governing physics or system’s structure to obtain inferred dynamical
systems simple to manipulate or control. To this end, Loewner approach is among the many widely
used approaches to derive dynamical systems from data. The process of this approach starts by
setting up the data and constructing the Loewner and shifted Loewner matrices (L and Ls), which
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Table 4.4
Total computational time to obtain a reduced model of dimension r

N = 10 000 Algorithm 3 Data-driven via ADI-Galerkin
Total time (sec) 39.75 102.74

Dim. r of the reduced model r = 160 r = 120
N = 20 000

Total time (sec) 199.40 622.15
Dim. r of the reduced model r = 160 r = 120
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Fig. 4.10. The computation time needed to compute the SVD of L ∈ CN×N for different choice of N and for
p = q = 10.

are considered the key tool of this approach. The main problem we have addressed in this paper is
to construct reduced systems from a large amount of data. We have exploited the fact that L and Ls
both satisfy certain Sylvester matrix equations. Then, an extended block Krylov-subspace method
is proposed to compute efficient approximate solutions in a factored form. Two benefits have been
obtained by following this technique such as storage and computations that have been reduced by
means of the use of approximate factored solutions. This also guaranteed a proper SVD computation
of L as described above. Finally, we evaluated our proposed method by providing some examples of
SISO and MIMO systems with comparisons to other known methods.
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