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Abstract

Brittle material Mode I fracture may be characterized by the double
cleavage drilled compression test. For linear elastic materials, the crit-
ical energy release rate, or fracture toughness, can be estimated simply
using the linear elastic fracture mechanics. For other types of constitu-
tive behavior, the material parameter has to be determined with numerical
fracture modeling. In this paper, we have used two approaches, the phase-
field damage and the cohesive elements, in order to estimate the critical
energy release rate of an elastoplastic material. Firstly, we assessed the
numerical models and discussed their parameters by comparison of avail-
able data from double cleavage drilled compression experimental tests run
on a silica glass. Both phase-field damage and cohesive zone models were
able to reproduce fracture initiation at the observed macroscopic stress
for the linear elastic material. However, the material toughness could not
be predicted by the phase-field approach due to the result dependence
on the model regularization parameter. Secondly, an elastoplastic methyl
methacrylate polymer was submitted to the compression test in our lab.
Both models were then extended for elastic-perfectly plastic materials.
Crack initiation was obtained at the observed macroscopic strain for simi-
lar critical energy release rate ranges for both approaches, providing good
confidence in the estimated material toughness.1

keywords: Phase-field; Cohesive elements; Fracture mechan-
ics; Compression; Elastoplasticity
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1 Introduction

The double cleavage drilled compression (DCDC) test [1] characterizes well
Mode I fracture of brittle materials such as glasses [2]. It consists in submitting
to quasi-static uniaxial compression, a slender parallelepiped with a circular
hole at its center and vertical pre-cracks at the poles of the hole. The mate-
rial critical energy release rate, Gc, may be estimated by linear elastic fracture
mechanics (LEFM) analysis [2, 3, 4, 5, 6]. The test has been later extended
to other materials such as plaster [7] and glassy polymers [8, 9, 10]. According
to the temperature and the applied strain rate, polymers may show viscoelas-
ticity, elastoplasticity or viscoplasticity. In such cases, the LEFM analysis no
longer applies. Therefore, the present contribution aims at proposing numerical
analyses of the DCDC tests that could be applied beyond linear elasticity. The
phase-field approach and the cohesive zone model (CZM) have been chosen for
their ease of implementation. On one hand, the phase-field approach, based on
energy minimization, presents the advantage of not requiring a predefined crack
path. On the other hand, the CZM is ready to use in several commercial finite
element softwares. For comparison purpose, experimental data obtained on a
linear elastic material have been collected from the literature [2], and tests have
been carried out on an acrylate polymer displaying elastoplasticity.

The phase-field modeling of fracture [11] is a variational approach of Grif-
fith’s energy balance theory. The numerical method, as regularized by [12], has
quickly drawn positive attention for its lack of specific meshing requirement and
its ease of implementation. It has been successfully applied for various elastic
problems ([13, 14] among others), and later extended theoretically to the case
of plasticity [15, 16, 17, 18]. However, the DCDC test brings an additional diffi-
culty since most of the specimen is in compression, and the performance of the
phase-field original formulation remains questionable for such loading conditions
[14]. Few studies [7, 19] have modeled the DCDC test with this approach. They
have reproduced experiments to some level, in the context of linear elasticity
only.

The cohesive zone model [20] has been introduced to account for the separa-
tion of two surfaces. Using finite element analysis, cohesive elements are added
along the expected crack path. These elements satisfy to stress-displacement
laws per se introducing a length scale in the constitutive equations. As both sur-
faces separate, the elements soften and ultimately break. The cohesive elements
have been successfully applied for homogeneous and heterogeneous materials
[21] in elasticity [22] as well as plasticity [23]2. Cohesive elements have already
been applied once to model the DCDC test with an orthorhombic hole in the
case of linear elasticity [24]. While no comparison with experiments was shown,
a positive comparison with the coupled criterion [25] was proposed. Therefore, a
quantitative comparison of the CZM approach for DCDC experiments in linear
elasticity as well as in elastoplasticity is still missing. Finally, the quantitative
comparison of both modeling approaches confronted with actual experimental

2Note that only a few contributions are cited here among the vast literature on CZM
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results remains to be done.
The paper is organized as follows. Next section presents the DCDC test

and the experimental results obtained on an elastoplastic methyl methacrylate
polymer. Section 3 introduces the theoretical and numerical aspects of both
modeling approaches as used. Firstly, the fracture models are applied in linear
elasticity and confronted to data from the literature. Secondly, the models are
used to assess the critical energy release rate of the tested elastoplastic acrylate.

2 Mode I fracture DCDC test

2.1 Test and LEFM analysis

In the double cleavage drilled compression test, a slender parallelepiped with a
circular hole at its center is submitted to a compression loading along its long
direction (Figure 1). Two pre-cracks made at the poles of the hole are then
submitted to Mode I opening. By following the crack propagation with respect
to the applied macroscopic compression stress, one may estimate the material
Mode I critical energy release rate.

Figure 1: Illustration of the DCDC test.

For linear elastic materials, DCDC test fracture mechanics analysis has been
carried out with finite elements [3, 5] and analytical [9] models. Expressions of
the stress intensity factor K, or equivalently the strain energy release rate G,
have been proposed as functions of the applied compression stress σ and of the
sample geometry quantities, W

R and a
R , with 2W the sample width, R the hole

radius and a the current crack length. The critical value Gc is defined as the
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Figure 2: Monotonic uniaxial compression stress with respect to the compression
strain applied at a constant crosshead speed of 0.15 µm/s measured on a solid
cylinder sample.

value of G at which the crack propagates. The LEFM framework has been
successfully applied to DCDC experiments on glasses [2]. However, this test
has been extended to polymers [10], which rarely show linear elasticity, as next
section will illustrate, and for which the LEFM analysis may lead to large errors.

2.2 DCDC test run on an elastoplastic polymer

The material used is a methyl methacrylate (MMA) manufactured by Bostik
with a glass transition temperature of 100 ◦C that is used for joint applications.

First monotonic compression tests were run on solid cylinders of 15 mm
height and 8 mm diameter at quasi-static 0.15 µm/s constant crosshead speed
(approximate constant strain rate of 10−5 s−1 like for the DCDC test). This
test was performed using digital image correlation to observe the local strain
on a speckled flat surface measuring 4 mm in width. The experimental set-
up, involving a CCD camera and multi-axis mounting, is detailed in [26, 27].
Figure 2 illustrates the elastoplastic stress-strain response of the material with
an uncertainty on the yield stress determined by three tests.

Sample mold dimensions were 2L×2W equal to 50×12 mm2, 5.3 mm thick-
ness, and a central hole of 1.5 mm of radius. A diamond wire of 0.3 mm diameter
was used to cut the vertical pre-notches at the poles of the circular hole. The
verticality of the pre-notches was satisfied within a 2◦ angle tolerance.

The DCDC compression tests were conducted on a conventional Instron ten-
sile machine and images of the crack tip were recorded with a JAI SP 20000
camera equipped with a telecentric lens. A two-plane plexiglass setup was used
to prevent any out-of-plane displacement and friction was prevented by adding
a silicone lubricant. The compression loading has been applied at a low constant
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Figure 3: Macroscopic compression stress with respect to the applied compres-
sion strain recorded during the DCDC test. The red bars show the onset of the
crack propagation and represent the uncertainty of the measure.

crosshead speed of 0.5 µm/s (approximately constant strain rate of 10−5s−1).
Figure 3 shows the macroscopic compression stress with respect to applied com-
pression strain. The red bars show the onset of the crack propagation and its
uncertainty, which has been observed at a macroscopic strain of 0.0215 ± 0.0015
on four samples.

The material was transparent enough to estimate the crack length with re-
spect to the applied macroscopic strain by simple image post-processing with
Fiji [28]. As shown in Figure 3, the crack initiates as the material becomes
plastic and the macroscopic stress remains close to constant during the prop-
agation. Figure 4 illustrates how the crack length increases with the applied
macroscopic strain. Cavities appear in front of the notches and nucleate to cre-
ate sharper cracks only at the onset of propagation. Then, both cracks progress
continuously and similarly as the load increases.

Next section presents how the DCDC test will be modeled by the phase-field
approach and the cohesive elements.
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Figure 4: DCDC test - Crack advance length normalized by the hole radius with
respect to the applied macroscopic strain for three specimens.

3 Phase-field approach and cohesive element mod-
eling

3.1 Phase-field approach for DCDC test

3.1.1 Linear elastic behavior

In the variational approach developed in [11, 12, 29], the fracture problem is
solved by finding the displacement field u∗ and the damage field d∗ satisfying,

(u∗, d∗)` = argmin
u∈Uad

ḋ≥0

ξ`(u, d) (1)

with Uad the set of kinematically-admissible displacement fields, and under the
damage irreversibility condition ḋ ≥ 0. We consider here a linear elastic solid Ω,
characterized by its stiffness tensor C and critical energy release rate Gc. The
regularized total energy ξ`, sum of the stored elastic energy density and of the
fracture energy density, writes as,

ξ` (u, d) =

∫
Ω

(
W el +W frac

)
dΩ

W el =
1

2
ε : (1− d)

2 C : ε, W frac =
3Gc

8

(
d

`
+ ` |∇d|2

)
,

(2)

with strain tensor ε = 1
2

(
∇u+∇uT

)
. The length ` is a positive and small

regularization parameter.
Phase-field modeling of compressive tests leads to difficulties that are usually

circumvented by selectively coupling parts of the strain energy density with the
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damage variable [14]. For instance, the following decomposition for isotropic
materials, was introduced [30] to prevent crack nucleation under pure compres-
sion:

W el =
B

2
tr2
(
ε−
)

+ (1− d)
2

(
B

2
tr2
(
ε+
)

+ µ
(
εd : εd

))
,

tr
(
ε+
)

=

{
tr
(
ε
)

if tr
(
ε
)
≥ 0,

0, else if,

tr
(
ε−
)

= tr
(
ε
)
− tr

(
ε+
)
,

(3)

with µ the shear modulus, B the bulk modulus, and εd the deviatoric part

of the strain tensor. For the DCDC test, the use of such a decomposition in-
troduces unrealistic damage at the equator of the poles before the crack starts
propagating along the main axis of the specimen [19]. Therefore, [19] proposed
to use other energy decompositions such as the tension/compression decompo-
sition from [31] and an orthogonal decomposition. A fourth decomposition was
used by [32] in the case of anisotropic fracture properties. The major drawback
of using a specific energy decomposition to reproduce a chosen test is that it
may generate a dependence of the material parameter Gc to the decomposition,
the structure geometry, or the applied loading.

One other possible approach is to keep the decomposition introduced in Eq.
(3) and limit the domain of possible crack propagation. This can be done by
preventing the material to be damaged in some areas. It is known from prior
knowledge and experimental observations that crack initiation is expected to oc-
cur at the pre-crack tip under the current loading conditions and geometry. By
preventing damage at the equator of the circular hole, we can observe damage
concentrating at the pre-crack tip as observed experimentally. It is important
to note that this damage restriction approach is applicable in cases where the
initiation location and the crack path are already known. Nevertheless, it is cru-
cial to acknowledge that crack nucleation, in general, remains an ongoing topic
of debate within the phase-field community [33, 34]. While there are situations
where the loading conditions and geometry may suggest likely nucleation loca-
tions, predicting crack nucleation accurately requires further investigation and
research. It is important to note that the focus of the current study does not
specifically address crack nucleation location. Hence, considering the specific
knowledge we have about initiation and propagation locations for the DCDC
test, we have chosen the second option limiting the damage area to evaluate the
critical energy release rate.

Equation (1) is conventionally solved by an iterative minimization scheme,
that finds local minimums of u and d alternatively until convergence is achieved
[14]. The model has been implemented in finite elements by using the open-
source library Fenics [35]. The minimization of energy with respect to u is lin-
ear, and is solved using the parallel sparse direct solver MUMPS. The constrained
energy minimization with respect to d is solved using PETSC TAO bound con-
strained solver. Meshes were generated by mesh generator Gmsh [36] using an
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unstructured Frontal-Delaunay algorithm with a target element length of `/5 in
the propagation area (where d evolves).

3.1.2 Elastoplasticity

The original variational formulation was extended to elastoplasticity in several
studies [14, 15, 17, 31, 37]. The current paper uses the approach developed by
[14, 17, 37]. The material is considered elastic-perfectly plastic satisfying to the

von Mises yield criterion
√

3
2s : s ≤ σy, with s the deviatoric part of the Cauchy

stress tensor. The minimization problem now reads as:

(u∗, εp
∗, d∗)` = arg min

u∈Uad, ε̇p∈G,

ḋ≥0

ξ`(u, εp, d) (4)

with G is the set of plastically-incompressible strain rates. The total energy
density to minimize writes as,

ξ`

(
u, εp, d

)
=

∫
Ω

1

2

(
ε− εp

)
: (1− d)

2 C :
(
ε− εp

)
dΩ

+

∫
Ω

b (d)

√
2

3
σyp dΩ +

∫
Ω

3Gc
8

(
d

`
+ ` |∇d|2

)
dΩ,

(5)

with p the cumulative plastic strain. The function b(d), generally defined as

(1− d)
2
, is a second damage-dependent degradation function. Finally, the plas-

tic incompressibility condition is ensured by penalization.
At each time-step ti, firstly, the functional ξ` is minimized by finding the op-

timal kinematically-admissible displacement ui and plastically-admissible strain
εp
i while keeping the damage variable di−1 constant. The cumulative plasticity

is computed as pi = pi−1 +‖εpi− εpi−1‖. Secondly, ξ` is minimized with respect

to d while keeping ui and εp
i constant. The second minimization accounts for

the damage irreversibility constraint. This process is repeated iteratively until
convergence is achieved. The energy minimization with respect to εp is solved

using the SNES PETSC solver with a line search technique.

3.2 Cohesive zone model

The basis of the theory [20] is to consider a traction-separation law between
two surfaces. The law accounts for the strength and toughness of the cohesive
forces taking place at the interface. As the surfaces separate, the cohesive forces
soften and ultimately go to zero when the interface breaks.

For simplicity purpose, we consider a triangular traction-separation law, for
which the stress T with respect to the surface separation displacement, δ, is
defined by three parameters only as illustrated in Figure 5.3 The cohesive

3The interested reader will find in [24], a study on the impact of the shape of the damage
function for the DCDC test.
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Figure 5: Illustrations of the cohesive traction-separation law.

element has an initial stiffness of K0 constant as long as the stress holds below
Tc. Once the critical stress Tc is reached, the cohesive element stiffness becomes
KD = (1 − D)K0, with D a damage parameter. In the case of linear damage
(Figure 5), D may write as,

D =
δf (δmax − δc)
δmax(δf − δc)

, (6)

with δc the displacement at damage initiation, δf the displacement at failure
and δmax the maximum separation before break.

The traction-separation law in Figure 5 may be considered for the surface
normal displacement (fracture opening Mode) as well as for the tangential dis-
placement, which accounts for surface separation due to shearing or equivalently
fracture sliding Modes. When tangential displacements are considered δ in Eq.
(6) may write as,

δ =
√
〈δn〉2 + δ2

t + δ2
s (7)

where δt and δs are the tangential displacements (in three dimensions) and
〈.〉 are the Macauley brackets allowing to distinguish normal separation from
normal compression.

Abaqus finite element code [38] was chosen for the simulations. Considering
the dimensions of the geometry and the generally required refinement for CZM
elements [39], 2D calculations have been run using cohesive quads elements
COH2D4 that have zero thicknesses.

Several choices of damage evolution and criterion are possible. We have con-
sidered both tangent and normal traction-separation laws with the same param-
eters. However, one may neglect the tangent separation law like in [24], since as
expected the damage occurs due to Mode I surface opening. We chose to initiate
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damage as soon as either the normal or the tangential stress reaches its critical
values, Tc (Abaqus MAXS criterion). The linear damage evolution Eq. (6) is gov-
erned by the maximum displacement δf , which writes as *DAMAGE EVOLUTION,

TYPE=DISPLACEMENT, SOFTENING=LINEAR. Therefore, numerical results may be
discussed with respect to the three cohesive element parameters K0, Tc and δf
or equivalently K0, Tc and Gc since the energy consumed by the break of an

element,
Tc × δf

2
, is the critical fracture energy released rate Gc.

In order to estimate the load at crack initiation accurately, it is typical to
consider several cohesive elements to cover the length of the cohesive process
zone, lcz, which may be approximated by lcz ≈ MEGc

T 2
c

[39] for linear elastic

materials, with M depending on the model and the geometry of the sample for
slender structures. Note that in our case, M is unknown and may be significantly
smaller than one. Moreover, there is no strict number of elements required over
the cohesive zone length, therefore this number should be chosen large enough
to keep the results unchanged by further refinement but small enough to limit
the duration of calculations. Finally, a regular mesh is recommended along the
cohesive surfaces to avoid damage appearance in unrealistic locations due to
undesired mesh irregularities.

4 Model results for the DCDC test on a linear
elastic material

In order to compare both modeling approaches, we first consider the experimen-
tal results from [2] on DCDC test performed on brittle fused silica. Specimens
of dimensions, length 2L = 75 mm, width 2W = 7.5 mm, thickness D = 6.5
mm, and hole radius R = 1.0 mm with initial cracks of lengths a = 2.0 mm have
been submitted to quasi-static compression loadings. Values of the applied com-
pression stress with respect to the crack progress, reported in Table 1 of [2] will
be used for model comparison. As reported by the authors, crack propagation
in fused silica DCB geometry shows a value of critical stress intensity factor
KIc = 0.74 MPa.m1/2 [40]. They performed a LEFM analysis of the DCDC
test by running finite element plane stress simulations on the same geometry
with various crack lengths, and reached the same value of KIc within a range
of 10%, for input material parameters E = 68974 MPa and ν = 0.16 for the
Young modulus and Poisson’s ratio. The corresponding critical energy release
rate value useful for the simulations coming next is Gc = 7.9 . 10−3 MPa.mm.

4.1 Phase-field simulations

The top half of the DCDC specimen (Figure 1) was modeled and symmetry
conditions were applied at the bottom. The mesh was refined around the hole
and along a vertical strip enclosing the pre-crack (Figure 6). The width of
the strip where the damage is allowed to evolve is represented by the mesh

10



(a) (b)

Figure 6: (a) Illustration of the finite element mesh refinement. (b) Crack length
vs. macroscopic stress for a damaged and undamaged crack tip.

refinement. Simulations were performed in 2D with plane stress assumption.
The damage variable d was set to one on the edges of the tip of the pre-crack.

A compressive displacement was applied at the top of the structure, with a
step increment of 5. 10−4 mm. The crack length is initially equal to the pre-crack
length and then evaluated as the maximum distance from the pole of the hole at
which the damage d reaches the value one. During the loading, the sample first
behaves elastically, then at a given stress, the crack length increases linearly
with the macroscopic stress (Figure 6). Note that setting d equal to one at the
crack tip is essential in the accurate evaluation of the stress at crack initiation.
As a matter of fact, we observed that without pre-damage at the crack tip, the
stress at initiation is significantly overestimated as shown in Figure 6.

To lower the numerical cost of the simulations while preserving good accu-
racy, two areas have been defined with different mesh sizes. Far from the crack,
the mesh size was set to a coarse value of Ms = 0.1 mm, while a finer mesh size

ms =
`

5
is prescribed in the crack propagation vicinity.

We first assessed the impact of the regularization length ` on the numerical
results. We remind that when minimizing Eq. (2), the crack propagates when
the strain energy release rate reaches the numerical value Gnumc = Gc(1 +
3ms

8 ` ) [29]. Therefore, the model parameter Gnumc was set at the experimental
toughness value 7.9 . 10−3 MPa.mm. The obtained crack length with respect to
the resulting compressive stress is shown in Figure 7 for several values of `. Note
that as ` decreases, the numerical results converge toward the experimental one.
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The parameter ` is shown to have a significant impact on the stress value at
crack initiation. In the literature, some authors ([30, 14, 7] for instance) chose
to relate ` to the ultimate strength of an undamaged bar submitted to a uniaxial
tension test. In our case, the value ` = 0.002 mm, giving satisfactory results for
the DCDC test, corresponds to a stress at break of 308 MPa, which does not
match the values between 50 and 110 MPa that may be found in the literature
for similar materials. Finally, as shown in Figure 7, when setting ` = 0.05
mm, corresponding to a reasonable value of ultimate strength of 68 MPa for
the bar in uniaxial tension, Gc had to be increased by about 35% to reproduce
the experimental data. We observe that the model relationship between the
ultimate strength σc, the critical energy release rate Gc and `, which writes as,

` =
3GcE

8σ2
c

(8)

does not apply here. Consequently, in the current study, Gc is regarded as a
material parameter while ` is a numerical parameter not necessarily linked to
the physics of the material.

Next section, we evaluate how cohesive elements perform on the same prob-
lem.

4.2 Cohesive element results

An analysis of the required cohesive mesh size and initial stiffness K0, has been
performed. The top half of the 2D geometry was meshed adding cohesive ele-
ments of 0.03 to 5 microns along the crack path. It was found that 1 micron was
adequate to observe cohesive element break for the material parameter ranges
that have been explored. The initial stiffness of the cohesive elements, K0,
should not modify the material response before damage. Based on this mechan-
ical consideration, a rule of thumb has been proposed by [39] which writes in
our case as, WK0

E � 1, and which has been used as a first guideline. However,
a compression test on the linear elastic geometry without cohesive elements has
served as a reference case to possibly reject values of K0. Several values of K0

from 7.106 to 7.108 MPa/mm were satisfactorily tested regarding the former
criterion. While, as in [24], it was observed that the macroscopic stress at crack
initiation decreases as the initial stiffness K0 increases to finally reach a plateau,
it was also observed that the number of time steps, required to reach the damage
convergence, increases significantly as K0 increases. In the end, the stiffness of
K0 = 7.107 MPa/mm was chosen to provide enough accuracy and to allow test-
ing several material parameters. A maximum macroscopic compression strain
of 0.003 was applied with a maximum strain step of 5. 10−7.

The impact of cohesive the parameters Gc =
Tc×δf

2 and Tc are presented in
Figure 8. First, simulations have been run with the experimental critical energy
released rate Gc = 0.0079 MPa.mm provided by [2], and varying the critical
stress Tc. It is shown that very satisfactory results are obtained for a range of
reasonable values of critical strength. As a result, the crack advance is mostly
driven by Gc. One notes in Figure 8 that the macroscopic stress at propagation
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(a)

(b)

Figure 7: Phase-field fracture modeling of DCDC test [2]. (a) Impact of regular-
ization parameter ` for material constant Gc [2]. (b) Impact of Gc for constant
regularization parameter ` = 0.05 mm.
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varies significantly with Gc. Therefore, the critical energy release rate may be
evaluated rather accurately.

In the end, both models have been able to reproduce the experimental re-
sults. However, we note that if unknown, the critical energy release rate could
be evaluated by the CZM model only. The elastoplastic case is now addressed
by comparing both modeling approaches to our experimental data obtained on
the glassy MMA polymer in section 2.2.

5 DCDC analysis for a viscoplastic polymer

The compression response of the MMA (Figure 2) may be fairly approximated
by an elastic-perfectly plastic behavior with a Young modulus of 1400 MPa,
Poisson’s ratio of 0.4 and yield stress of 34 MPa. The exact geometry of one of
the DCDC samples was reproduced with L = 23.5 mm, W = 5.8 mm, R = 1.5
mm, and a = 3.15 mm. Finally, plane stress 2D simulations have been run for
both modeling approaches. The finite element macroscopic stress-strain curve
compares well to the experimental results as shown in Figure 9. Due to the
plastic plateau, the initiation of the crack propagation will be examined with
respect to the applied compressive strain.

5.1 Phase-field approach results

Only half of the specimen has been considered, and symmetry conditions applied
at the boundary, mesh parameters Ms were set to 0.5 mm and ms = `/5. Initial
full damage, d = 1, was enforced at the crack tip. The compression strain at
crack initiation is determined according to the minimization parameters ` and
Gc.

First, the impact of regularization parameter `, while keeping Gnumc con-
stant, is presented in Figure 10a. For the tested values of `, the damage prop-
agation starts for the same macroscopic strain. Consequently, a fixed value of
` = 0.1 mm was chosen to explore the effect of Gc. As Gc increases the required
macroscopic strain to witness crack initiation increases (Figure 10b). Moreover,
the experimental test is well reproduced when Gc varies between 0.30 and 0.35
MPa.mm.

Figure 11 displays how the damage evolves at the crack tip. It progresses
along a vertical line without reaching the value one, usual sign of complete failure
of the material. Meanwhile, the plasticity that develops along the damage path
remains localized in a narrow area (Figure 12). The global changes of the
elastic, plastic, and fracture energies with respect to the macroscopic applied
displacement shown in Figure 13, helps recognize the initiation of the fracture
well identified by the change of slope of the fracture energy. Moreover, the
smooth increase of the latter highlights a constant propagation rate. This result
is in good qualitative agreement with our experimental observations, once the
pre-notch becomes a sharp crack. A comparison with experimental propagation
rate in Figure 4 can’t be obtained as the failure is not complete. These features
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(a)

(b)

Figure 8: Impact of CZM parameters Tc (a) and Gc (b) on the quasi-static crack
propagation for the linear elastic experimental case [2].
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Figure 9: Comparison of the 2D plane stress macroscopic stress-strain response
to the DCDC test experimental measures.

of incomplete damage process, localized plasticity, and smooth increase of the
fracture energy are in agreement with the theoretical work [17] when plane stress
assumptions are used. Note that when using the plane strain assumption, we
have been able to reproduce the features displayed by [17, 41], with a crack
progressing by jump and plasticity developing ahead of the crack, which is less
representative of the experimental reality. Moreover, the numerical macroscopic
stress-strain response overestimates significantly the experimental response.

5.2 CZM results

The same steps have been applied as for the elastic case to choose the cohesive
element mesh size and their initial stiffness K0, and in the end, values of 10
microns and K0 = 10000 MPa/mm were retained. Unlike in the elasticity
case, the elastic-perfectly plastic case produced convergence difficulties. This
can be explained by the combination of small elements and small time steps
required by the cohesive elements and possibly large deformation induced by
plasticity. In the end, the compression was applied by displacement steps of
5.10−4 mm in order to always observe crack initiation. However, note that
depending on the cohesive element parameters Tc and Gc, the crack propagation
could be witnessed or not, due to numerical divergence happening at early
failure. Therefore, comparison with the crack propagation rate (Figure 4) could
not be performed.

The range of tested values for Tc and Gc was chosen in order to always
witness the plastic plateau on the macroscopic stress-strain curve before crack
initiation, like for the experiments (Figure 3). Figure 14a shows the strain at
failure with respect to the energy release rate Gc for a critical stress Tc equal
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(a)

(b)

Figure 10: Macroscopic strain at damage initiation obtained using phase-field
method (a) Impact of the regularization parameter ` at constant Gc = 0.32
MPa.mm and (b) dependence to the critical energy release rate Gc for ` = 0.1
mm. The blue dashed lines indicate the range of experimental uncertainty
defined by mean value and standard deviation.
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Figure 11: Diffuse damage field and damage value along the damaged area,
obtained using phase-field method and plane stress assumptions.
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Figure 12: Cumulated plasticity in the specimen and along the crack during
propagation, obtained using phase-field method and plane stress assumptions.

Figure 13: Energy changes with respect to the applied compressive displacement
obtained with phase-field method
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to the yield stress. The experiments are well reproduced for a reasonable and
rather narrow range of values of Gc ∈ [0.26, 0.32] MPa.mm. Setting Gc to 0.30
MPa.mm and varying the critical stress at crack initiation, one notes that Tc
has no impact for values Tc ∈ [29, 34] MPa. Consequently, the method seems
adequate to reproduce the DCDC test and estimate the critical energy release
rate of an elastoplastic material.

Both models have been able to reproduce the damage initiation at the exper-
imentally observed macroscopic strain for ranges of values of Gc that overlap.
Therefore, we can confidently estimate Gc at a value of 0.31 ± 0.03 MPa.mm.
When reproducing our experimental data, the dependence of the phase-field re-
sults to ` was negligible, which probably explains that similar values of Gc were
obtained for both phase-field and cohesive zone modeling.

6 Conclusion

Double cleavage drilled compression may be applied to characterize material
Mode I opening fracture. The critical energy release rate, Gc, may be simply
evaluated by LEFM analysis when the material is linear elastic. To extend
this test to elastoplastic materials, we have applied the phase-field approach to
fracture and cohesive elements within a classic finite element framework. Both
models have been compared to data from the literature in the context of linear
elasticity, where Gc is known, and to original data obtained on an elastoplastic
polymer.

In linear elasticity, both damage models can reproduce fracture initiation
at the experimentally observed macroscopic stress. However, the phase-field
model has shown to be sensitive to the regularization parameter `, and several
values of Gc could be obtained according to the chosen value of `. This param-
eter sensitivity has been discussed in the literature at large, and is very much
dependent on the studied case. On the contrary, the cohesive zone model has
shown little dependency on the strength Tc (within reasonable changes) and is
therefore capable to retrieve the value of Gc provided by the LEFM analysis.

For the tested polymer, well approximated by an elastic-perfectly plastic be-
havior, the phase-field approach shows a macroscopic strain at crack initiation
that was independent of ` (again within reasonable changes), which interest-
ingly put all the model dependence on parameter Gc. Both models reproduced
the experimental strain at fracture for similar ranges of values for Gc and a
realistic value of Gc has been reached. However, the CZM approach has shown
limitations in modeling the propagation of the crack in the context of elastic-
perfectly plastic. Nevertheless, this remark cannot be generalized, since crack
propagation was successfully observed when a single-edge notched bending test
was similarly modeled.

In the end, this work has provided two possible fracture models to extract
the critical energy release rate value resulting from a DCDC test run on an
elastic-perfectly plastic material, extending the aforementioned test beyond the
case of linear elastic materials.
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(a)

(b)

Figure 14: Macroscopic strain at crack initiation obtained using CZM (a) with
respect to the critical energy release rate Gc for critical stress Tc = 34 MPa and
(b) according to the critical stress Tc value for Gc = 0.30 MPa.mm. The blue
dashed lines indicate the range of experimental uncertainty defined by mean
value and standard deviation.
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