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ABSTRACT

A new nonparametric estimator of the conditional mode when the regressors are functionals is
proposed. The main aim of this paper is to establish the almost complete convergence (with rate)
of the constructed estimator is estimate under general assumptions in nonparametric functional
statistics. A simulation study is carried out to examine illustrate, the finite samples behavior of
the constructed estimator. Finally, a discussion highlighting the impact of this new estimator in
nonparametric functional data analysis is also given.

1. Introduction
The modal regression is one of the most common predictor models in nonparametric statistics. It constitutes a valu-
able alternative predictor to the classical regression expressed by the conditional expectation. It is well known that
the conditional mode is more informative than the classical regression in some particular cases. We cite for instance,
when the conditional density is un-symmetric, has multi-modal or if the white noise has heavy-tail distribution (see
Collomb et al. 1987).
In this work, we focus in the case when the regressors belong to a functional space. Noting that absence of graphical
tool to define the structure of the relationship between the functional explanatory variables and the scalar response
provides motivation for seeking unstructure models that allow to exploit this link without preliminary assumption.
Thus, the nonparametric models are more flexible than the parametric approach when the observations are functional.
The functional nonparametric statistics has received extensive attention during the last two decades. It was popularized
by the monograph of Ferraty and Vieu (2006). Since the publication of this monograph, numerous studies have been
performed to evaluate the co-variation between functional input variable and output scalar one. The reader interested
by the recent developments in this emerging field of nonparametric functional data analysis may turn to the survey
papers of Geenens (2015), Ling and Vieu (2018) and Chowdhury and Chaudhuri (2019). More generally, we refer
to some journal special issues, Goia el al. 2016, Aneiros et al. (2019a, 2019b) for recent advances in FDA. In this
context, the nonparametric estimation of the conditional mode have been investigated by many authors. For instance,
we cite Ezzahrioui and Ould Saïd (2008) for the asymptotic normality of the kernel estimator of the conditional mode,
Dabo-Niang et al. (2015) for theLp consistency and the asymptotic normality of the same estimator in the spatial case.
Ling et al. (2016) studied the nonparametric estimation of the conditional mode in the ergodic functional time series
case. They established the almost sure consistency of the constructed estimator of the modal regression with missing
at random (MAR) responses. More recent advances in the functional conditional mode estimation can be found in
Bouanani et al. (2020) and the references therein.
While all these authors estimate the conditional mode by maximizing the kernel estimator of the conditional density
function, in this paper we estimate this model using the robust estimator of the quantile regression. This estimation
strategy allows to increases the robustness of the conditional mode estimation and broaden the scope of its applica-
tion to the supervised classification problems. It should be noted that the robustness property is fundamental for the
prediction issues. It permits to give a stable predictor that keeps its nice properties even if the conditions of the ideal
situation are not verified. It is also worth noting that, our main asymptotic result is the establishment of the almost
complete of the constructed under standards conditions. Because of the the new estimator is constructed from one
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On the robustification of the functional modal regression

kernel, the convergence rate is obtained under less restrictive assumptions than the double kernels estimator. The easy
implementation of the new estimator as well as its robustness are emphasized in this paper.
The paper is organized as follows. We present our model in Section 2. In Section 3, we give some notations, hypothe-
ses and the main results. Section 4 is devoted to some discussions on the nice features of our approach. In the last
section we conduct a simulation study to examine the feasibility of the constructed estimator.

2. The model
Let (Xi, Yi) for i = 1,… , n be n pairs of independent random vectors that we assume drawn from the pair (X, Y )which
is valued in  × ℝ, where  is a semi-metric space equipped with a semi-metric d. In what follows, we fix a point
x in  , consider a given neighborhood x of x and assume that the regular version of the conditional distribution
function of Y a given X = x, denoted by F (⋅|x), exists in the neighborhood x of x. Moreover, we suppose that
F (⋅|x) is strictly increasing and has a continuous density f (y|x) with respect to (w.r.t.) Lebesgue’s measure over ℝ.
The conditional mode is defined as maximizer of the conditional density over given compact S

�(x) = argmax
y∈S

f (y|x),

which is usually estimated nonparametrically by

�̃(x) argmax
y∈S

f̂ (y|x),

where f̂ is the double kernel estimator of the conditional density function (see, Ferraty et al.. (2006)). Alternatively,
we focus, in this paper, another estimator based on the derivative of the conditional quantile which is more robust.
Indeed, let � ∈ F−1(S|x) = [�x, �x] ⊂ (0, 1), and t(�|x) the conditional quantile of order � given X = x. Using a
similar ideas of Ota et al. (2019), in linear case, we assume that t(�|x) is of class C1, such that f (t(�|x)|x) > 0, and
we write that

t′(�|x) =
)t(�|x)
)�

= 1
f (t(�|x)|x)

.

Thus, the conditional mode can be defined as

�(x) = t(��|x) (1)

with
�� = arg min

�∈[�x,�x]
t′(�|x).

Therefore, the natural estimator of the conditional mode is

�̂(x) = t̂(�̂�|x) (2)

where
�̂� = arg min

�∈[�x,�x]
t̂′(�|x).

with t̂ and t̂′ are, respectively, estimators of the conditional quantile and its derivative. For sake of simplification, we
estimate the derivative t′(�|x), � ∈ (0, 1) by

t̂′(�|x) =
t̂(� + bn|x) − t̂(� − bn|x)

2bn
.

where bn is a sequence of positive real numbers has the same role of the bandwidth parameter in the kernel smoothing.
So, all it remains to construct is a robust estimator of the conditional quantile. To do that, we use the fact that the �tℎ
conditional quantile t(�|x) can be defined as the unique solution with respect to (w.r.t) � of the optimization problem

min
�∈ℝ

E
[

��(Y , �) |X = x
]

(3)
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where ��(Y , �) = (2�−1)(Y − � )+ |Y − � |. Thus, the robust conditional mode estimation is obtained by taking in (2)

t̂(�|x) = argmin
�∈ℝ

Ψ̂(�, �|x) (4)

where

Ψ̂(�, �|x) =
∑n
i=1K(a

−1
n d(x,Xi))��(Yi − � )

∑n
i=1K(a−1n d(x,Xi))

, ∀� ∈ ℝ

with K is a kernel function and an is a sequence of positive real numbers which goes to zero as n goes to infinity.
Of course, the existence and the unicity of the conditional mode �(x) is insured by the continuity and the strict in-
creasing of the conditional distribution function F (⋅|x). Whereas the estimator �̂(x) is not necessarily unique, so, the
remainder of the paper concerns any value �̂(x) by the minimizers (4).
The main goal of this paper is to establish the asymptotic property of the estimator �̂(x) of �(x) when the explanatory
variable X is valued in the semi-metric space  . As for as we known the present contribution is the first one that
use this strategy to construct an estimator of the conditional mode even in the multivariate case. Of course, the finite
dimensional case ( = ℝp) can be viewed as particular case of this study. Therefore, the importance of this kind of
functional data analysis is mainly due to the fact that it covers both functional and non functional cases. It worth to
noting that the functional case is more interesting, not only for the fundamental problems they formulate, but also for
many applications they may allow. More motivations on this topic can be found in Bosq (2000), Ramsay and Silverman
(2005) and Ferraty and Vieu (2006), Aneiros et al.. (2019a, 2019b) and the references therein.

3. Main results
All along the paper, when no confusion will be possible, we will denote by C or C ′ some strictly positive generic
constants and we setB(x, ℎ) =

{

x′ ∈  ∶ d(x′, x) < ℎ
}

. Now, we list some required conditions that are necessary in
deriving the almost complete convergence of �̂(x) of �(x).

(H1) ℙ(X ∈ B(x, r)) = �x(r) > 0. Besides, �x(r)→ 0 as r→ 0.

(H2) The functions t(⋅|x) is of classC3([�x, �x]) andF (⋅|x) such that the following Lipschitz’s condition for all (x1, x2) ∈
x ×x, |F (� |x1) − F (� |x2)| ≤ Cd�(x1, x2) for some � > 0, wherex denotes a
neighborhood of x.

(H3) K is a function with support (0, 1) such that 0 < C ′ < K(u) < C <∞.

(H4) The smoothing parameters an and bn satisfy limn→∞
log n

nbn�x(an)
= 0

The conditions (H1)-(H4) are less standard in the nonparametric functional data analysis (NFDA). Condition (H1) is
indispensable in NFDA and the function �x(.) can be explicitly given for several continuous processes (see Ferraty and
Vieu (2006)). While the regularity conditions is necessary to explore the functional space of the nonparametric path
of the studied. Such assumption has a great impact on the bias term in the convergence rate of �̂(x). Finally conditions
(H3)-(H4) concern the kernel K and the bandwidths an and bn which cover the technical aspect of the estimator �̂(x).
They are less restrictive than the usual technical conditions in the conditional mode estimation because the present
approach requires one kernel instead to the conditional density approach that requires two kernels.
The following Theorem gives the almost-complete (a.co.) convergence of �̂(x). 1

Theorem 1. Under assumptions (H1)-(H4) and if inf
�∈(0,1)

)3t(�|x)
)�

> 0 we have:

�̂(x) − �(x) = O(ab∕2n ) + O(b1∕2n ) + O
⎛

⎜

⎜

⎝

(

log n
n bn�x(an)

)
1
4 ⎞
⎟

⎟

⎠

a.co.

1Let (zn)n∈ℕ be a sequence of real r.v.’s; we say that zn converges almost completely (a.co.) to zero if, and only if, ∀� > 0,
∑∞
n=1 ℙ(|zn| > 0) <

∞. Moreover, let (un)n∈ℕ∗ be a sequence of positive real numbers; we say that zn = Oa.co.(un) if, and only if, ∃� > 0,
∑∞
n=1 ℙ(|zn| > �un) < ∞:

This kind of convergence implies both almost sure convergence and convergence in probability (cf. Sarda and Vieu (2000) for details).
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Remark 1. Let’s point out that, as all smoothing analysis, the bandwidth parameter an has a great influence on the
quality of the estimator. It is well known that in the curve estimation by the kernel method, a parameter that is too
small causes the appearance of artificial details in the graph of the estimator, however for a large enough value of the
bandwidth an, the majority of the features is on the contrary erased. Therefore, the choice of the bandwidth an is a
central question in nonparametric estimation. In the literature, we know that there are mainly three methods, i) "the
rule of thumb", ii) "the plug-in" and iii) "the cross-validation". Each method has its merits and drawbacks. The very

popular one is the latter and its main idea is to minimize the following criterion CVan =
1

n − 1

n
∑

i=1

(

Yi − �̂−i, an (Xi)
)2

where �̂−i, an (Xi) is the estimator of �(⋅) obtained by raising the observation (Xi, Yi) in the sense of practical point
of view. Even if the latter has the drawbacks that it is very variable and can give an underestimation of (anopt ), it
remains the most common used method in practical point of view. Then in our simulation study, we have adopted the
cross-validation method.

4. Sketch of the proof
The proof of Theorem 1 is based on some standard analytical arguments. Indeed, we write

�̂(x) − �(x) ≤ t̂(�̂�|x) − t(��|x)
= t̂(�̂�|x) − t(�̂�|x) + t(�̂�|x) − t(��|x)

≤ sup�∈[�x�x] |̂t(�|x) − t(�|x)| + t(�̂�|x) − t(��|x).
(5)

Concerning the second term of the right quantity we use the Taylor expansion to prove that

t(�̂�|x) − t(��|x) = (�̂� − ��)t′(�∗� |x), �∗� being in (�̂� , ��). (6)

On the other hand, because of �� is minimizer of t′(⋅|x), then

t′(�̂�|x) − t′(��|x) = (�̂� − ��)2t
′′′
(�∗∗� |x), where �∗∗� ∈ (�̂� , ��). (7)

Moreover,

t′(�̂�|x) − t′(��|x) = t′(�̂�|x) − t̂′(�̂�|x) + t̂′(�̂�|x) − t(��|x)
≤ |t′(�̂�|x) − t̂′(�̂�|x)| + |min� t̂′(�|x) − min� t′(�|x)|

≤ 2 sup�∈[�x,�x] |t̂
′(�|x) − t′(�|x)|

(8)

Combining Equations (5)-(8) to write that

|�̂(x) − �(x)| ≤ C

(

sup
�∈[�x,�x]

|̂t(�|x) − t(�|x)| +
√

sup
�∈[�x,�x]

|t̂′(�|x) − t′(�|x)|

)

.

Now, using the definition t̂′(�|x) to get, for n large enough

t̂′(�|x) − t′(�|x) =
t̂(� + bn|x) − t(� + bn|x) + t(� − bn|x) − t̂(� − bn|x)

2bn
+
t(� + bn|x) − t(�|x) + t(�|x) − t(� − bn|x) − 2bnt′(�|x)

2bn

≤ Cb−1n sup
�∈(�x−bn,�x+bn)

|̂t(�|x) − t(�|x)| + O(bn)

So, all what is left to be evaluated that, for n large enough, we have sup�∈(0,1) |̂t(�|x) − t(�|x)|. Thus, Theorem 1 is
consequence of the following Proposition
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Figure 1: Functional explanatory variables

Proposition 1. Under assumptions of Theorem 1, we have for n large enough

sup
�∈(0,1)

|̂t(�|x) − t(�|x)| = O(abn) + Oa.co.
⎛

⎜

⎜

⎝

(

log n
n�x(an)

)
1
2 ⎞
⎟

⎟

⎠

.

The proof of this proposition is based on the Bahadur representation of the conditional quantile. The latter is conse-
quence of the following lemmas.

Lemma 1. Let Fn be a sequence of decreasing real random functions and An be a random real sequence such that
An = oa.co.(1) and sup

|�|≤M
|Fn(�) + �� − An| = oa.co.(1) for certain constants �,M > 0.

Then, for any real random sequence �n such that Fn(�n) = oa.co.(1), we have:
∞
∑

n=1
ℙ
{

|�n| ≥M
}

< ∞.

The detailed proof can be obtained from the authors.

5. Numerical analysis
The main aim of this section is to show the easy implementation of the proposed estimator in the prediction analysis

and to examine its insensitivity to the outliers. To do that, we generate a sample of functional random observations
(Xi)i=1,…,n using the following formula

Xi(t1 = 0.2(cos(W1t))2 + 2cos((W1 + t)2) + 0.2(W1t) ∗ 2

where W1 is random variable distributed as uniform on (0, 0.5). All the curves Xi’s are discretized on the same grid
generated from 100 equispaced measurements in (0, �). The generated curves are displayed in Fig. 1.

Next, we draw a scalar response observations using the following nonparametric regression model

Yi = R(Xi) + �i, i = 1,… n.

where the operator R is defined by

R(x) = 2∫

�

0
x(t)dt.
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Observe that the conditional distribution of Y givenX is closely linked to the distribution of the white noise �i. So, to
highlight the robustness of �̂ compared to the classical estimator

�̃(x) = argmax
∑n
i=1K(a

−1
n d(x,Xi))K(b−1n (y − Yi))

∑n
i=1 bnK(a−1n d(x,Xi))

we consider two types of white noise distributions: heavy tailed and light tailed distributions. Specifically, we simu-
late, for the first case, �i from Levy-distribution m = 0, s = 2 which is heavy tailed distribution. While for the second
situation, we use the Gumbel distribution � = 0.5, � = 2 ( as light tailed distribution) to generate �i. Recall that the
heavy tailed distributions tend to have many outliers with very high values.
Undoubtedly, the easy implementation of �̂ depends to the flexibility of the choice of parameters involved in its def-
inition. Precisely, the practical use of the estimator �̂ is based on the selection of the kernel K and the bandwidth
parameters (an, bn) and the semi-metric d. Concerning the prediction by the estimator �̃, we use the routine funo-
pare.mode.lcv developed by Ferraty and Vieu (2006) which is available on the website2. Specifically, we applied this
routine with a quadratic kernel on the interval (0, 1) and the metric of L2 between the B-splines smoothed curves. The
optimal bandwidths in �̃ were chosen by the cross-validation method over a discrete set of bandwidth values defined
by the nearest neighbors. Therefore, in order to conduct a fair comparison between the two predictors, we use the
same kernel, the same metric and the same rule to select the smoothing parameters in �̂(x). Finally, the finite sample
behaviour of the estimators �̂ and �̃ is examined in the prediction context by splitting randomly for several times into
two subsets: the learning sample ( 100 observations) and the testing sample (50 observations). The learning sample is
used to compute the estimators �̂ and �̃ as predictors of the response values of the testing sample. In order to compare
the stability of both estimators against different frequencies of outliers in the data, we repeat this prediction process 50
times. For each time, we calculate the Mean Absolute Error (MAE) values

MAE(�̈) = 1
50

50
∑

i=1
|Yi − �̈(Xi)|,

where the observations (Xi, Yi) represent the testing sample and �̈ means either �̂ or �̃. The prediction error for both
situations (heavy tailed distribution and light-tailed distribution) are ploted in the following figures 2, 3.

It is clear that, even if both estimators has a similar precision in certain situation (see the light-tailed distribution
case, figure 3), the prediction error of the estimator �̂ is more stable than the predictor �̃. In sense that the variability
of MAE(�̂) is lower than MAE(�̃). This statement is confirmed by the interquartile range of the MAE (IQR-MAE). In
particular, the IQR-MAE for the heavy-tailed distribution case is equal to 5.11 for the predictor �̃ versus 2.86 for the
predictor �̂. However there is small difference for the light-tailed distribution, the IQR-MAE of predictors (�̃ and �̂)
are respectively 0.86, 0.69. In conclusion, we can say that the estimator �̂ enhance considerably the robustness of the
modal regression, as predictor model, by decreasing its sensitivity to d the outliers.

6. Discussion and Comments
6.0.1. On the features of the estimation method
Compared to the classical estimator based on the conditional density estimation, our new estimator has a several ad-
vantages. Indeed, the use of the L1 conditional quantile allows to increases the robustness of the conditional mode
estimation and reduces the parameters involved in its estimator which is very beneficial of the computational time of
the predictor. In addition, the new estimator offers the possibility to increase the scope of application of the modale
regression using the principe of the binary quantile regression. In order to highlight the main features of the new esti-
mator compared to the classical one, we discus in the rest of this section the principal motivations of the new estimator.

2http://www.lsp.ups-tlse.fr/staph/npfda
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Figure 2: The MAE error in the heavy distribution case
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Figure 3: The MAE error in the light distribution case

Feature 1: The robustness and the accuracy
It is well known that the convergence rate or the accuracy for any estimator is closely linked to the considered assump-
tions. In sense that good properties are usually obtained under strong hypotheses that are very difficult to check in
practice. For this reason, the robustness of the estimation method is very important for the practical issues. It permits
to keep good properties even when the hypotheses of the ideal situation are not fully verified. Thus, the main nice
feature of our approach is the possibility to construct a new estimator with high robustness property without impacting
the accuracy of the conditional mode function. Indeed, it is clear that the obtained convergence rate has the same
structure as all previous studies in nonparametric analysis by kernel smoothing in functional statistics. But, the use of

Azzi et al.: Preprint submitted to Elsevier Page 7 of 9
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the quantile regression improve the robustness of the conditional mode function. On the other hand, the asymptotic
property of the new estimator is also depends on the estimation of the sparsity function t′(�|x). In this work, we
have opted for a simple, fast and robust estimator of t′(�|x) which can be implemented easily in practice using the L1
quantile regression. However, in the multivariate statistics literature, there exit some alternative estimators of t′(�|x)
constructed from the density estimation of the residue (see, Jones (1992) or Belloni et al. (2019) and the references
therein) . So it will be interesting in the future to study if these alternative estimators of t′(�|x) can improve the con-
vergence rate of the conditional mode estimation without loss in robustness.
Feature 2: Supervised classification by conditional mode function
The second main feature of the present approach is the possibility to employ the conditional mode as classifier in the
supervised curves classification. It concerns the case where the output variable Y is a binary random variable which
is expressed by Y = 1{C} where C is a given class. This question has been studied by Ferraty and Vieu (2006). Their
algorithm is based on the estimation ℙ(C|X) = E[Y |X] to decide on the affectation of X to the class C . Specifically,
the curve x is affected to the class C if ℙ(C|X = x) is greater than ℙ(C̄|X = x), where C̄ is the complementary set of
C . The estimation of these conditional probabilities is performed by the functional version of the Nadaraya-Watson’s
estimator of the E[Y |X]. Now, using the binary quantile regression ideas developed in Manski (1985) to define an
alternative classifier based on the modal regression. Indeed, considered the following binary regression

Y = r(X) + " and the class C is characterised by C = {Y > 0}.

Therefore, by some simple analytical arguments we prove that

ℙ(C|X) ≤ 1 − � ⇔ t(�|x) ≤ 0.

Thus, our new classification rule affect the new curve x to the class C according the sign of �̂(x).

6.1. Some future tracks
The estimation of the conditional mode using the quantile regression offers some important tracks for the future. In fact
the quantile regression behaves in various statistical procedures. It can be treated as linear model (see, Cardot et al..
2005) ), semiparametric model (see Crambes et al.. 2016)) as well as nonparametric model. At this stage, the present
estimation method can be combined to the different versions of the quantile regression provide a linear estimator of
the conditional mode or semiparametric estimator of the modal regression. Therefore, the first naturel prospect of
this work is to study the linear (or semiparametric) estimation of the regression model. Noting that the parametric
technique is very fast and does not require a large sample size and does not affected by the dimensionality curse. On
the other hand, the local linear estimation of the conditional quantile studied by Al-Awadhi et al.. (2019), allows to
construct an alternative nonparametric estimator of the conditional mode. The latter is also important to reduce the
bias term of the classical kernel estimator. Thus the study of the asymptotic property of the local linear estimator of
the regression model using the quantile function is also an important open question of the present work. A challenging
task would be to consider an extension of our results to the censored data and dependent observations, which requires
nontrivial mathematics, that goes well beyond the scope of the present paper.
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