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Abstract
Background: In recent years, researchers have been advocating for the integration of ambulatory gait monitoring as a
complementary approach to traditional fall risk assessments. However, current research relies on dedicated inertial sensors that
are fixed on a specific body part. This limitation impacts the acceptance and adoption of such devices.
Objective: Our study objective is twofold: (1) to propose a set of step-based fall risk parameters that can be obtained
independently of the sensor placement by using a ubiquitous step detection method and (2) to evaluate their association with
prospective falls.
Methods: A reanalysis was conducted on the 1-week ambulatory inertial data from the StandingTall study, which was
originally described by Delbaere et al. The data were from 301 community-dwelling older people and contained fall occurren-
ces over a 12-month follow-up period. Using the ubiquitous and robust step detection method Smartstep, which is agnostic
to sensor placement, a range of step-based fall risk parameters can be calculated based on walking bouts of 200 steps. These
parameters are known to describe different dimensions of gait (ie, variability, complexity, intensity, and quantity). First,
the correlation between parameters was studied. Then, the number of parameters was reduced through stepwise backward
elimination. Finally, the association of parameters with prospective falls was assessed through a negative binomial regression
model using the area under the curve metric.
Results: The built model had an area under the curve of 0.69, which is comparable to models exclusively built on fixed sensor
placement. A higher fall risk was noted with higher gait variability (coefficient of variance of stride time), intensity (cadence),
and quantity (number of steps) and lower gait complexity (sample entropy and fractal exponent).
Conclusions: These findings highlight the potential of our method for comprehensive and accurate fall risk assessments,
independent of sensor placement. This approach has promising implications for ambulatory gait monitoring and fall risk
monitoring using consumer-grade devices.
Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN12615000138583; https://www.anzctr.org.au/
Trial/Registration/TrialReview.aspx?id=367746
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Introduction
Falls in older people are a major cause of mobility loss,
morbidity, and mortality. With over one-third of people
aged 65 years and older falling at least once a year [1],
identifying individuals at risk and providing them with
appropriate interventions is crucial [2]. However, traditional
approaches typically rely on a single clinical evaluation
session (eg, St Thomas's Risk Assessment Tool in Falling
Elderly Inpatients [3] or the Balance Evaluation Systems
Test and its variants [4]) and have demonstrated inconsis-
tent and limited predictive power. Therefore, recent stud-
ies have moved toward continuous monitoring approaches.
For example, positive results were obtained using electronic
health records from long-term care facility residents [5].
However, this approach is restricted to a specific population
in a specific setting and, therefore, might not apply to the
general population.

Fall risk biomarkers based on ambulatory gait monitor-
ing are increasingly used to complement the initial clinical
evaluations [6-10]. Such daily-life gait monitoring offers
improved performance of fall prediction by incorporating
daily-life gait, which enables the assessment of participants’
actual gait performance in real-life situations rather than
solely in laboratory settings [9,11,12]. For example, van
Schooten et al [8] showed that adding 7-day ambulatory
measures to clinical measures increases the ability of the
model to discriminate people who sustained a fall during the
12-month follow-up period from those who did not: the area
under the curve (AUC) increased from 0.68 to 0.82.

Numerous models have been proposed for predicting falls
based on sensor-based data. However, the vast majority of
these models lack essential properties required for generaliz-
ability [13]. Only a few study remained [8,10,14,15] when
focusing exclusively on studies that meet three criteria: (1)
reliance on ambulatory or real-life inertial data collected
from a single unit, (2) the use of prospective falls collected
during a follow-up period as a criteria to identify fallers,
and (3) the inclusion of a sufficient population of commun-
ity-dwelling older people (>100). These studies draw from
a similar data set to the one used in this study, but they
differ slightly in terms of the types of fall predictors (different
gait domains), modeling approaches (binomial regressions
with extreme or median value of predictors [8,10], survivor
analysis [14], and the use of deep learning techniques [15]),
and subsets of the database used. The resulting AUC ranged
from 0.71, when using only accelerometric data [8], to as high
as 0.74, when selecting gait data samples [15]; the AUC was
even higher when incorporating clinical variables (0.81-0.82)
[8,10]. These results showed that fall risk can be predicted
with a reasonable accuracy when using ambulatory gait data
obtained with a single inertial measurement unit placed on the
lower torso.

Consumer-grade devices, such as smartphones and
smartwatches, almost systematically embed inertial measure-
ment unit sensors whose quality is largely sufficient for gait
monitoring applications (eg, the study by Manor et al [16]).
More importantly, they are well accepted and already widely
available. The integration of gait monitoring into consumer-
grade devices would enable the monitoring of fall risk on
a large scale, which could lead to a substantial improve-
ment in fall risk identification and subsequent prevention.
However, up until now, ambulatory gait monitoring of fall
risk parameters has been limited to a dedicated inertial
sensor and a fixed body placement, usually on the trunk
or feet. Switching to consumer-grade device monitoring
presents several challenges. Some issues relate to the devices
themselves, such as memory and battery use. However, one
of the most critical challenges is to develop a gait-monitoring
approach that can withstand the flexibility of consumer-grade
device placement (eg, wrist or pocket) and carrying modes for
handheld devices (eg, swinging, hand in pocket, or texting).
Indeed, imposing a fixed body position or type of motion
strongly limits the utility of the approach [17]. A ubiquitous
solution should be (1) predictive of prospective falls, (2)
independent of sensor placement, and (3) modest in terms of
data processing (ie, computational cost, size of data set, and
complexity of method).

One of the key issues to making the solution ubiquitous is
the type of parameters from which fall risk is estimated. Most
fall prediction models rely on parameters estimated from the
inertial sensor time series, such as the Lyapunov exponents
[8,10]. These signal-based parameters are indeed relatively
straightforward to calculate. However, a major drawback is
that they are affected by sensor placement both in terms of
value and the strength of their association with the risk of
falls [18,19].

In this context, fall risk estimated using parameters
calculated based on step instants offers potential, with
promising results in laboratory settings and pathological gait
[20-23]. Importantly, there exists a robust step detection
method that allows the estimation of these step instants
independently of sensor placement. An example is the recent
Smartstep algorithm [24], relying on 2 machine learning
models (1 for the gyroscope and 1 for the accelerometer
data) plus a decision process that determines which machine
learning model is to be used as the main step detector. Its
robustness against sensor body placements (waist, pants or
jacket pockets, or handheld), different walking conditions,
and real-life challenges (eg, blind people walking outside
with or without aids, older adults in a hospital hallway open
to the public, etc) has been demonstrated [24,25]. Using
Smartstep, it is thus possible to estimate some step-based
parameters independently of the sensor placement. They
can be gait variability indicators such as the SD and coeffi-
cient of variance of stride time, gait complexity indicators
such as fractal exponent and sample entropy of stride time,
gait intensity indicators such as cadence, and gait quantity
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indicators such as the total number of steps. Demonstrating
that fall risk can be assessed using such step-based param-
eters calculated from ambulatory data could be a decisive
step toward a ubiquitous fall risk prediction solution that is
insensitive to device location.

Therefore, this study aims to evaluate the association of
step-based parameters, calculated using the ubiquitous step
detection method Smartstep, and prospective falls [24]. The
study is a secondary analysis using a data set collected by

Delbaere et al [26]. It involves ambulatory gait inertial signals
from the lower back.

Methods
Overview
An overview of the whole approach is depicted in Figure 1
[24,26].

Figure 1. Overview of the approach used to build a fall risk prediction model based on ambulatory inertial measurement unit data. AUC: area under
the curve.

Data Set
This study analyzed ambulatory inertial data from the
StandingTall study, which is described by Delbaere et al
[26]. The data set includes valid inertial sensor data of
301 older people aged >70 years, who are independent in
activities of daily living and without cognitive impairment,
progressive neurological disease, or any other unstable or
acute medical condition precluding exercise. Half of the
participants were assigned to an intervention group and
followed a balance-exercise program (StandingTall), whereas
the other half were assigned to a health education control
group. Participants wore a triaxial accelerometer (DynaPort

MoveMonitor, McRoberts) for 1 week. This accelerometer
had a sample rate of 100 Hz and was worn tightly on the
lower back using an elastic belt. Participants were instructed
to wear the accelerometer at all times, except during aquatic
activities such as swimming or showering. Prospective fall
incidences were obtained over a 12-month follow-up period
using weekly fall diaries through a tablet computer. A fall
was defined as “an unexpected event in which the participant
comes to rest on the ground, floor or lower level” [27].
Table 1 summarizes the demographic characteristics of the
participants.

Table 1. Demographic characteristic of the participants.
Characteristics Fallers (n=116) Nonfallers (n=185)
Age (y), mean (SD) 78 (5) 77 (5)
Female, n (%) 81 (69.8) 122 (65.9)
BMI (kg/m²), mean (SD) 28 (6) 28 (5)

Walking Bout and Step Detection
Nonwear periods were removed using the algorithm of van
Hees et al [28], and sedentary or inactive periods were
removed using the accelerometer cutoff points based on
the study by Migueles et al [29]. Walking bouts were then
detected in 2 steps. First, Smartstep [24] was used to detect
steps. Then, the detected steps were grouped into a walk-
ing bout if they were separated by less than 2 seconds.
Only walking bouts longer than 200 steps, or 120 seconds
of walking on average, were considered in this study. This
criterion was chosen for different reasons: (1) shorter walking

bouts might lead to inconclusive results [30,31], and (2)
the application of some algorithms to calculate certain fall
risk parameters requires a minimum number of data points
[32,33].
Fall Risk Parameters
A total of 12 step-based fall risk parameters were calculated.
They describe four main gait domains:

1. Gait quantity: the total number of walking bouts, total
number of steps, and average number of steps per
walking bout

2. Gait intensity: cadence, step time, and stride time
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3. Gait variability: coefficient of variance of stride time
and step time

4. Gait complexity: fractal exponent and sample entropy
calculated on stride and step time series

The initiation and termination phases of gait in each walking
bout were discarded by removing the first 5 and last 5
steps of all walking bouts. Gait variability, intensity, and
quantity parameters were calculated considering all remain-
ing steps of the walking bouts. Gait complexity parameters
were calculated on the middle 200 steps (ie, longer walking
bouts were cut into a constant length of 200 steps), because
the gait complexity parameters used (fractal exponent and
sample entropy) are known to be dependent on the number
of data points considered. Using different numbers of data
points between walking bouts and participants would lead to
inconsistent results.
Statistical Analysis

Correlation Between Fall Risk Parameters
For each participant, we estimated the median of all fall
risk parameters over all walking bouts. Spearman correlations
were performed to assess the relationship between the fall
risk parameters. Correlation coefficients between 0.7 and 1.0
were considered strong, between 0.4 and 0.7 were considered
moderate, and between 0 and 0.4 were considered weak.

Statistical Model
We used a negative binomial regression model to assess the
relationship between fall risk parameters and the occurrence
of falls (being a faller vs nonfaller) during the follow-up
period. We corrected for inclusion in the intervention group
as a covariate to cancel out its potential effect. Different
combinations of uncorrelated gait parameters were chosen as
candidates for the model.

The interaction between gait quantity and other explora-
tory parameters was also considered because earlier research
showed that such interactions may exist [8]. Parameters that
gave the best performance were retained. Then, a backward
elimination of these parameters was done in the following
way. Using cross-validation, the data were split into 10
different subsets, each containing 70% of the population. A
model was built on each subset. A parameter was retained
if it was stable across all 10 models (ie, the mean and SD
of P values through the models’ coefficients were less than
.20). This means that the parameter maintained its stability
for every chosen subset. In addition, the interaction of group
allocation with the selected gait parameters were added to
control for the potential effect of the intervention on the
predictive ability of gait for falls.

Evaluation of Model
The model was evaluated using 2 methods. First, a train-
ing-testing split evaluation involved training and testing the
model on the same data set. This approach was chosen for
the ease of comparison with existing literature. Second, a
repeated learning-testing cross-validation [34] was used for
a more robust assessment. In this process, the data set was
randomly divided into an 80% training set and a 20% testing
set. This division was repeated 10 times and the results from
each cross-validation were averaged. Concerning cross-vali-
dation, the ShuffleSplit method from the Python scikit-learn
package (Python Software Foundation) was used. At each
fold, the method shuffled the data set and split it into a
80% training group and a 20% testing group. The model was
created or tuned in the training group and evaluated in the
testing group. The AUC was calculated at each stage. The
model’s performance and stability were evaluated through the
mean and SD of the AUC.
Ethical Considerations
No ethical approval was required since data for this study
were obtained from a previous study (StandingTall study
[26]), whose reanalysis is covered by its ethics approval.

Results
The selection of long walking bouts (>200 steps) caused the
exclusion of 6% (18/301) of the population. The correlation
heat map between fall risk parameters is shown in Figure 2.
Gait quantity had moderate correlations with gait intensity
and variability. Gait intensity had moderate correlations with
gait complexity and strong correlations with gait variability.
Finally, gait complexity and variability were not correlated.

The final fall prediction model included the total number
of steps, cadence, coefficient of variance of stride time, fractal
exponent on step time, sample entropy on stride time, and
sample entropy on step time. The AUC of this model, which
was trained and tested on the whole data set, was 0.69. The
cross-validated AUC was 0.67 (SD 0.05). The model can be
accessed via a public data set [35].

Table 2 displays the coefficients and P values of the fall
risk parameters based on z-transformed data. All parame-
ter coefficients were statistically significant at P<.05. The
likelihood of being a faller increased with lower gait
complexity, higher gait variability, higher gait quantity, and
higher gait intensity.
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Figure 2. Correlation heat map between the different fall risk parameters. CoV: coefficient of variance; DFA: detrended fractal analysis; SE: sample
entropy.

Table 2. Multivariable negative binomial regression of selected falling risk parameters built with the whole population at a minimum of 200 steps. B
coefficient and P values were based on z-transformed data. The area under the curve was 0.69.
Gait domain and parameter B coefficient P value
Quantity

Number of steps 0.20 .03
Intensity

Cadence (steps/min) 1.50 .02
Variability

CoVa of stride time 0.43 <.001
Complexity

DFAb on step time −1.79 .02
SEc on step time −1.08 .04
SE on stride time −1.30 .04

aCoV: coefficient of variance.
bDFA: detrended fractal analysis.
cSE: sample entropy.
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Discussion
Principal Findings
To our knowledge, this is the first study that used step-based
parameters, obtained with a ubiquitous step detection method,
to predict fall risk based on a large-scale, real-life gait
monitoring data set.

First, the developed model demonstrated an AUC of 0.69
when tested and trained on the same data set and an AUC
of 0.67 (SD 0.05) with cross-validation. These results are
comparable to prediction models built solely on ambulatory
data collected with a single inertial sensor (AUC=0.68-0.74)
[8,10,15].

Unlike these models that rely on signal-based parame-
ters—that is, requiring a fixed sensor placement, usually
on the lower back—our proposed model relies on step-
based parameters. These parameters can reliably be estima-
ted independently of the sensor placement using Smartstep,
a step detection algorithm whose robustness against sen-
sor placement, population, and walking conditions has
been demonstrated in previous validation studies [24,25].
This represents a great improvement in terms of accept-
ability and potential dissemination of such monitoring
approaches. Furthermore, the integration of simple initial
clinical assessments into these models can enhance their
performance [8].

The coefficients obtained from our model (see Table 2)
are in line with previous findings, suggesting that older
people at high risk of falls have lower gait complexity (as
indicate by negative regression coefficients for detrended
fractal analysis on step time, sample entropy on step time,
and sample entropy on stride time) and higher gait variabil-
ity and gait quantity (as indicated by positive regression
coefficients for coefficient of variance of stride time and the
number of steps, respectively). These findings are consis-
tent with previous studies on fall risk and pathological gait
[8,22,36,37]. However, the positive regression coefficient
for gait intensity (cadence) seems to show that higher gait
intensity would be associated with a higher risk of falling,
which was not reported in the literature. It is important to
further investigate whether this result is a modeling arti-
fact due to the simplicity of our model [38] (eg, potential
nonlinearity or interactions with another parameter were not
included) or whether this is a meaningful finding.

The correlation matrix suggested that gait variability in
real life is associated with cadence or gait intensity, sim-
ilar to previous findings in laboratory settings [39]. Gait
complexity was also correlated with gait intensity, which
aligns with the effect of gait speed on complexity in other
studies [40]. The correlation between such parameters has not
been studied before in ambulatory gait settings. This study
provides a foundation for future studies using such variables
in ambulatory settings.

Limitations
This study has several limitations. First, the inertial data were
collected from a fixed body placement on the lower back.
We expect the Smartstep step detection method to be robust
against sensor placement, as previously demonstrated [24,25].
However, future research should confirm this by carrying
out a similar study with a different or uncontrolled sensor
placement. Second, the study excluded short walking bouts
(<200 steps), which in turn excluded individuals who do
not walk long enough (18/301, 6% of the population). This
walking period (approximately 2 min) cannot be achieved
within the home. Thus, it obliges the person to go for walks
outdoors, likely selecting more fit and active older people.
Future studies should focus on including and analyzing short
walking bouts and identifying fall risk parameters relevant
to those with short walking bouts. Another limitation comes
from the use of a relatively simple model (negative binomial
regression) to link the occurrence of falls with the fall risk
parameters. This traditional approach might have limitations
in capturing more complex relationships between risk factors
and occurrence of falls (such as nonlinear relations or
critical thresholds) and, thus, could impede the understand-
ing of individual effects of multiple related parameters [38].
Although the primary objective of this study was to dem-
onstrate the feasibility of fall prediction from acceleromet-
ric data independent of the sensor placement, the logical
next step would be to further investigate the modeling
approach. This could include investigating data aggregation
[41] or using more advanced meta-modeling approaches [38].
Furthermore, as the generalization of fall prediction models
has been identified as a known challenge [13,42], it would be
interesting to test the resulting fall prediction model on a new
cohort.
Implications and Future Work
The results of this study suggest that fall risk parameters can
be monitored if a robust step detection algorithm is applied.
This study provides the groundwork for using consumer-
grade devices for fall risk monitoring. Future work can
include two main topics: (1) improving the fall prediction
model and (2) implementing and testing the approach on
consumer-grade devices.

Several tracks could be considered to improve the fall
prediction. Adding health data (eg, history of falls, results
of clinical tests, and questionnaires) should further increase
the model’s performance. Other propositions include adding
parameters related to turning quality, GPS position, and gait
spatial parameters to enhance fall prediction. More advanced
modeling approaches could also be investigated.

Technical aspects and user acceptability are important
considerations for implementing the approach on consumer-
grade devices. The initial challenges to be tackled relate to
the computation capacity, memory requirements, and battery
consumption of consumer-grade devices. An option that
we are currently considering is running the step detection
algorithm in real time, detecting step instants, and saving
them to the device for further analysis.
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Finally, in this study, we focused primarily on predicting
the risk of falls from a 1-week record period. An auspicious
perspective offered by the proposed ubiquitous approach
would be to monitor the evolution of the risk of falls or of
chosen fall risk parameters through long periods and bring
more insights into how they build up toward a fall event.
Conclusion
Our study addresses the limitations of traditional fall risk
assessments by proposing a set of step-based fall risk
parameters that can be obtained independently of sensor

placement. Our results demonstrated that the proposed
parameters were comparable to models using fixed sensor
placement. Specifically, higher gait variability, intensity,
and quantity were associated with an increased fall risk,
whereas lower gait complexity was also identified as a
significant factor. These findings highlight the potential
of our method for comprehensive and accurate fall risk
assessments, independent of sensor placement, thus offering
promising implications for ambulatory gait monitoring and
fall prevention strategies.
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