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ABSTRACT In classical graph signal processing (GSP), the underlying topological structures are restricted
in terms of dimensionality. A graph or a 1-complex is a combinatorial object that models binary relations,
which do not directly capture complex high arity relations. One possible high dimensional generalization
of graphs is a simplicial complex. In this paper, we develop a signal processing framework on simplicial
complexes with vertex signals, which recovers the traditional GSP theory. We introduce the concept of a
generalized Laplacian, which allows us to embed a simplicial complex into a traditional graph and hence
perform signal processing similar to traditional GSP.We show that the generalized Laplacian satisfies several
desirable properties, same as the graph Laplacian. We propose a method to learn 2-complex structures and
demonstrate how to perform signal processing by applying the generalized Laplacian on both synthetic and
real data. We observe performance gains in our experiments when 2-complexes are used to model the data,
compared to the traditional GSP approach of restricting to 1-complexes.

INDEX TERMS Graph Signal Processing, multidimensional data, simplicial complex.

I. INTRODUCTION
Over the heterogeneous landscape of data analytics, data
come in various diverse forms incorporating simple binary
relations to relations of high arity. One way to abstract rela-
tionships inherent in the data and to avoid insensitive met-
rics is to incorporate topological properties of the data (its
shape) into data analytics. Graph signal processing (GSP)
[1]–[8] is one of the approaches that allow this. From signals
recorded on networks such as sensor or social networks,
GSP uses the topology of the graph in performing sampling,
translation and filtering of the signals. Recently, GSP-based
graph convolution neural networks have also received much
attention [9]–[12].

GSP, as useful a tool as it is, still has its limitations.
The vast data landscape includes complex data, such as
high dimensional manifolds, or point clouds possessing high
dimensional geometric features (cf. Fig. 1). For example,
2D meshes can be used to approximate surfaces and high
dimensional simplicial complexes [13] can be used to model
discrete point clouds. Another example is in social networks
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such as Facebook, where an edge represents a friendship
relation but higher arity edges can represent family links or
the inclusion in the same groups. This model also works
for group conversations or other user groups in social net-
works. In addition, some complex interactions cannot be
fully grasped by reducing them to binary relations. This is
the case in chemistry, where two molecules might inter-
act only in the presence of a third that serves as catalyst
[14], [15], or with datasets such as folksonomies, where
data are ternary or quaternary relations [16]. Therefore, it is
necessary to go beyond graphs to fully capture these more
complex interaction mechanisms.

Moreover, in many applications, a graph learning proce-
dure is involved based on information such as geometric dis-
tance, vertex feature similarity and graph signals [17]–[21].
Due to the lack of a definite meaning for edge connections,
it is arguable whether a graph is the best geometric object
for signal processing. For these reasons, there is a need for
a framework that permits signal processing on such high
dimensional geometric objects.

Simplicial complexes, as a high dimensional generaliza-
tion of graphs, are independently found in many fields of
computer science and mathematics. Simplicial complexes
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FIGURE 1. (a) Approximation of a 2D surface with a 2-complex from
Wikimedia Commons. (b) Model of a point cloud (top), together with a
simplicial complex built on it (bottom).

can be used to model and approximate any reasonable (topo-
logical) space according to the simplicial approximation
theorem [13]. They are already used in topological data
analysis [22], representation of surfaces in high dimensions,
and modeling of complex networks [23]. In this paper,
we extend the signal processing toolbox to include meth-
ods on simplicial complexes. Our goal is develop a GSP
framework for signals defined on vertices but have high arity
relations that can be modeled using simplicial complexes.

Despite the fact that the subject is relatively new, a few
attempts have been made to develop signal processing meth-
ods over simplicial complexes [24]–[29]. In [24], [25] the
authors develop a signal processing framework using a differ-
ential operator on simplicial chain complexes. They mainly
consider complexes up to dimension two, even though their
framework is more general and allows simplicial complexes
of arbitrary dimension. Their framework considers flow data
and signals associated with high dimensional simplexes such
as edges and faces, and not only vertices. In [26], the authors
study not a hypergraph framework, but a community aware
type of GSP. This allows to highlight some groups of highly
connected vertices in a way that is stronger than the Laplacian
matrix. In [27], [28], the authors propose an approach on
meet or join semi-lattices that uses lattice operators as the
shift. Finally, in [29] the authors propose a framework on
hypergraphs using tensor decomposition. Simplicial com-
plexes are a class of hypergraph, and their framework also
considers signals on vertices but their approach is different
from ours in the following way. One of the main challenges
is the mathematical representation of the hypergraph. When
dealing with hypergraph representation, there are two main
options. The first one, matrix-based representation, uses a
modified adjacency matrix, while the second uses tensors to
encode incidence in hyperedges. In [30], the authors claim
that both approaches have shortcomings: tensor algebra is
hard to understand, and this slows the process of using those
representations in real life applications and industry, while for
matrix-based representation, the difficulty lies in encoding
a shift operator. In [29], they detail a complete framework
for hypergraph signal processing using tensor decomposition,
together with extensive examples of applications. We choose
instead to focus on matrix-based representations of simplicial
complexes, trying our hand at designing a shift operator.

In our paper, we propose a new signal processing frame-
work for signals on vertices of simplicial complexes. Our
approach makes full use of the geometric structure and
strictly generalizes traditional GSP by introducing general-
ized Laplacians. Signal processing tasks can thus be per-
formed similar to traditional GSP. Although for the later
part of the paper, we focus on 2-complexes for illustration
purposes, our approach can be easily generalized to higher
order complexes. Throughout this paper, a weighted graph
refers to a graph whose edge weights are positive.

The rest of the paper is organized as follows. We briefly
recall fundamentals of simplicial complexes in Section II.
In Section III, we introduce a general way to construct
Laplacians on metric spaces, and then apply this approach
to simplicial complexes. We focus on the special case of
2-complexes in Section IV and describe a procedure to con-
struct 2-complex structures on a given graph. We present
numerical results in Section V and conclude in Section VI.
A preliminary version of this work was presented in [31].
In this paper, we present a more thorough theoretical discus-
sion with rigorous proofs of all results and included further
experiments.

In terms of common notations, 1n is used to denote a
simplex, whileX (possibly with a subscript) is for a simplicial
complex. G (possibly with a subscript) is used to denote a
graph. We use L (possibly with subscript) for a Laplacian
or generalized Laplacian. We use boldface letters for graph
signals and transformations, and a graph signal is usually
denoted by x. We refer the readers to the main text for less
common notations.

II. SIMPLICIAL COMPLEXES
In this section, we give a brief self-contained overview of the
theory of simplicial complexes. We refer the interested reader
to [13], [32] for more details.
Definition 1: The standard n-simplex (or dimension n sim-

plex) 1n is defined as

1n =

{
(x0, . . . , xn) ∈ Rn+1

+

n∑
i=0

xi = 1

}
.

Any topological space homeomorphic to the standard
n-simplex is called an n-simplex. In 1n, if we require k > 0
coordinates being 0, we obtain an (n − k)-simplex, called a
face.
A simplicial complex X (see Fig. 2 for an example) is a set

of simplexes such that any face from a simplex of X is also in
X and the intersection for any two simplexes σ1, σ2 ∈ X is a
face of both σ1 and σ2. A simplex of X is called maximal if it
is not the face of any other simplexes.

We shall primarily focus on finite simplicial complexes,
i.e., a finite set of simplexes. The dimension dimX of X is
the largest dimension of a simplex in X . An m-dimensional
simplicial complex is called an m-complex. A 1-complex
is then a graph in the traditional sense. For each m ≥ 0,
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the subset of m-simplexes of X and their faces is called its
m-skeleton, denoted by Xm.
Combinatorially, if we do not want to specify an exact

homeomorphism of a n-simplex X with1n, we may just rep-
resent it by n+1 labels. Therefore, its faces are just subsets of
the labels. It is worth pointing out that according to the above
definition, a simplicial complex is a set of topological spaces,
each homeomorphic to a simplex and they are related to each
other by face relations. However, it is possible to produce a
concrete geometric object for each simplicial complex.
Definition 2: The geometric realization of a simplicial

complex X is the topological space obtained by gluing sim-
plexes with common faces.
Example 1: Let X be a finite simplicial complex consisting

of two types of simplexes E and V . Each simplex in E is
1-dimensional and V contains only 0 simplexes. The geomet-
ric realization of X is nothing but a graph with vertex set V
and edge set E. More generally, for any simplicial complex X,
the geometric realization of its 1-skeleton X1 is a graph in the
usual sense.

For convenience, we shall not distinguish a simplicial com-
plex from its geometric realization when no confusion arises.

FIGURE 2. (a) X is (the geometric realization) of a 3-complex with a
maximal 3-simplex, two maximal 2-simplexes and three maximal
1-simplexes. (b) X1 is a connected graph with 15 edges and 9 vertices.

A useful notion is the barycenter of a simplex. Consider an
n-simplex X ∼= 1n in a Euclidean space such that

X =

 ∑
0≤i≤n

tivi
∑
0≤i≤n

ti = 1, 0 ≤ ti ≤ 1, ∀i

 , (1)

where v0, . . . , vn are affinely independent (i.e., v1 −
v0, . . . , vn − v0 are linearly independent). The barycenter (or
the center of gravity) is the point

u =
1

n+ 1

n∑
i=0

vi. (2)

In this paper, we say that a simplicial complex X is
weighted if X1 is a weighted graph. Otherwise, we may
make an unweighted simplicial complex becomeweighted by
assigning length 1 to each 1-simplex. In this way,X0 becomes
a metric space. It is important to notice that we do not require
weights associated with simplexes of dimension at least 2.
In practice, such information might be harder to obtain. For
example, on a 2D mesh, it is usually harder to find the area
of each triangular component.

A more general notion than simplicial complex is that of a
hypergraph [33], [34]. A hypergraph H = (V ,E) is a pair
where V is a set of vertices and E is a set of non-empty
subsets of V , called hyperedges. Each simplicial complex X
might be viewed as a hypergraph HX = (X0,E), where the
vertex set is the 0-skeleton of X and a set of vertices of each
simplex of dimension at least 1 is a hyperedge. Conversely,
not all hypergraphs are simplicial complexes since any sub-
set of a hyperedge might not be a hyperedge, violating the
face condition of Definition 1. For each hypergraph H , the
associated simplicial complex XH whose vertices are spanned
by hyperedges in E as well as all their proper subsets is
the smallest simplicial complex containing H . Therefore, the
signal processing framework developed in this paper can be
directly applied to each hypergraph H , or more precisely, the
associated simplicial complex XH .

III. GENERALIZED LAPLACIAN
A. THE ABSTRACT CONSTRUCTION
Recall that graph signal processing relies heavily on the
notion of a shift operator. A popular choice is the graph Lapla-
cian. In this section, we generalize this notion for simplicial
complexes with vertex signals.

Our approach is to embed the vertices of a given simplicial
complex and their corresponding signals in a bigger graph,
where the additional vertices and edges are designed to cap-
ture the high arity relationships expressed by the simplicial
complex. The generalized Laplacian is then a combination of
a linear transformation and the Laplacian of the bigger graph.
In particular, we want this generalized Laplacian to have the
usual properties of a graph Laplacian: symmetric positive
semi-definite with the constant vector as an eigenvector with
eigenvalue zero. We propose the following definition.
Definition 3: Let X be a finite simplicial complex. A gen-

eralized Laplacian consists of the following data: (A)
(A) a weighted, undirected graph GX = (V ,E),
(B) a function f : X0

→ V , and
(C) a linear transformation T : R|X0

|
→ R|V |,

such that the following holds: (a), nolistsep
(a) The function f is injective.
(b) For each v ∈ X0 and x ∈ R|X0

|, the f (v)-component of
T(x) is the same as the v-component of x.

(c) The sum of each row of T (written as a transformation
matrix) is a constant.

Let LGX be the Laplacian of the weighted graph GX . The
generalized Laplacian associated with the data (GX , f ,T) is
defined as

L(GX ,f ,T ) = T′ ◦ LGX ◦ T : R
|X0
|
→ R|X

0
|,

where T′ denotes the adjoint (transpose) of T. We abbreviate
L(GX ,f ,T) by LX if no confusion arises from the context.
Intuitively, we require that f is injective to ensure that

f ‘‘embeds’’ X0 in GX so that we may perform the shift
operation on GX . Conditions (b) and (c) on T say that the
signal on v ∈ X0 is preserved at its image f (v) in GX , while
signals on V\f (X ) are formed from an averaging process.
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Note that the traditional graph Laplacian for a 1-complex X
is a special case of a generalized Laplacian with both f and T
being the identity maps.

We further remark that Definition 3 can be applied to finite
metric spaces with slight modifications.
Lemma 1: Suppose X is a simplicial complex and LX is a

generalized Laplacian as in Definition 3. Then, the following
holds: (a)
(a) LX is symmetric.
(b) LX is positive semi-definite.
(c) Constant signals are in the 0-eigenspace of LX . The

0-eigenspace E0 of LX is 1-dimensional if and only if
GX is connected.
Proof:

(a) LX is symmetric because GX is assumed to be undi-
rected and hence LGX is symmetric.

(b) Similar to (a), LX is positive semi-definite because LGX
is positive semi-definite.

(c) As the sum of each row ofT is a constant, if x ∈ R|X0
| is

a constant vector, then so isT(x). Since constant vectors
are in the 0-eigenspace of LGX , we have LGX ◦T(x) =
0 and hence LX (x) = 0. Therefore, the dimension of
E0 is at least 1. Now assume that x is in E0. We have

0 = 〈x,LX (x)〉 = 〈T(x),LGX ◦ T(x)〉.

Consequently, T(x) belongs to the 0-eigenspace of
LGX , which is 1-dimensional if and only if GX is con-
nected. By Condition (b), the operator T is injective.
Therefore, E0 is 1-dimensional if and only if T(E0) is
1-dimensional, which is in turn equivalent to GX being
connected as we just observed. �

By Lemma 1, the generalized Laplacian LX enjoys a few
desired properties. In particular, being symmetric permits an
orthonormal basis consisting of eigenvectors of LX . There-
fore, one can devise a Fourier theory analogous to traditional
GSP. Moreover, as LX is positive semi-definite, we may
perform smoothness based learning. The constant vectors
belonging to the 0-eigenspace is also desirable as it agrees
with the intuition that ‘‘constant signals are smoothest’’.

On the other hand, Lemma 1 asserts that LX is indeed
very similar to the Laplacian of a graph even for higher
dimensional complexes. The theory will be less useful if we
are only able to produce weighted graph Laplacians, which
we shall prove to be false in Lemma 2 after we propose a
choice of (GX , f ,T) below. To this point, we introduce the
following notion.
Definition 4: We say that LX is graph type if all the diag-

onal entries of LX are non-negative and all the off-diagonal
entries are non-positive.

B. GENERALIZED LAPLACIAN MADE EXPLICIT
1) THE CONSTRUCTION
We give an explicit construction of LX together with a
canonical choice of GX , f and T. For the simplest case,
assume X ∼= 1n is a weighted n-simplex where n ≥ 2.
We defer the case n = 1 towards the end of this subsection.

For n ≥ 2, X is homeomorphic to the standard n-simplex and
its 1-skeleton X1 is a weighted graph with edge weights given
by the weight function w(·, ·). We label the vertices of X by
X0
= {v0, . . . , vn}. The graph GX = (V ,E) is constructed

as follows: Let V = {v0, . . . , vn, u} with a single additional
vertex u, which is taken to be the barycenter of X . There is
no edge between vi and vj for any pair 0 ≤ i 6= j ≤ n.
On the other hand, there is an edge connecting vi and u for
each 0 ≤ i ≤ n.
The edge weight d(vi, u) between vi and u in GX is com-

puted as follows:

d(vi, u) =
(
n
2

)−1 ∑
vi 6=vj 6=vk 6=vi

(vj, vk )vi , (3)

where

(vj, vk )vi =
1
2
(w(vi, vj)+ w(vi, vk )− w(vj, vk ))

is the Gromov product [35], [36]. Illustrations for X ∼=
12 and X ∼= 13 are shown in Fig. 3. When n = 2, we recover
pairwise distances in GX between the vertices v0, v1 and v2
in X , in the sense that for each pair of vertices vi, vj, we have
d(vi, u)+ d(vj, u) = w(vi, vj).

FIGURE 3. Graphical illustration of GX for X ∼= 12 and X ∼= 13.

We have a canonical choice for f : f (vi) = vi for 0 ≤ i ≤ n.
For T, it is identity on each vi-component for 0 ≤ i ≤ n,
while the average is assigned to the u-component. In matrix
form,

T =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
1/(n+ 1) 1/(n+ 1) . . . 1/(n+ 1)

 .
It is straightforward to check that (GX ,T, f ) satisfies the
conditions of Definition 3. Thus, we have an associated gen-
eralized Laplacian LX .
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For a general finite simplicial complex X , we have a
decomposition Xmax as the subset of the maximal simplexes
in X and the generalized Laplacian is defined as:

LX =
∑

σ∈Xmax
Lσ , (4)

where the summation is over all maximal simplexes of X with
appropriate embedding of the vertex indices of σ in X .
We now consider the case where X itself is a graph. In this

case, the maximal simplexes are just edges (i.e., 11). For
an edge e = (v1, v2) with weight w, the associated graph
Ge with a barycenter contains only 3 vertices, v1, v2 and
an additional vertex u. Therefore, in this case, formula (3)
no longer applies. On the other hand, to apply Definition 3,
we choose GX to be X itself and both f and T be the identity
map. Therefore, we recover LX as the usual graph Laplacian.

2) MOTIVATION AND INSIGHTS
To give motivation and insights into the above construc-
tion, we consider both theoretical (topological) and practical
aspects.

First of all, we notice that for X ∼= 1n, it is topologi-
cally (homotopy) equivalent to a point [32], meaning that it
can be continuously deformed to a point. Therefore, if we
want to approximate X by a graph GX that preserves this
topological property, thenGX cannot contain a cycle andmust
be a tree. In addition, if we do not want to break the symmetry
of the vertices, the most natural step to do so is to add one
additional vertex (the barycenter) connected to every vertex
in the original graph. The edge weights of GX are chosen to
approximate the metric of X .

FIGURE 4. In (a), the sensors are located in an unblocked terrain; while
in (b), the terrain is partially blocked.

Next, we describe a practical scenario to give a signal
processing motivation. Consider the case (Fig. 4) of three
sensors that are pairwise connected. If the area containing
sensors are blocked, for example by geographic terrain such
as mountains (Fig. 4(b)), it is reasonable to model the connec-
tions between the sensors by a graph with 3 edges. However,
if the sensors are located in an unblocked terrain (Fig. 4(a)),
it may no longer be reasonable to use a graph to model the
sensor relationships, as there are additional paths from one
sensor to another via the interior region. If f is a signal
recorded by the sensors, an one-step cyclic shift in Fig. 4(a)
is expected to have a stronger ‘‘smoothing’’ or ‘‘averaging’’
effect than in Fig. 4(a). The approach we propose indeed
satisfies such a requirement as we effectively have an initial
averaging step.

IV. 2-COMPLEXES
In this section, we focus on 2-complexes, which is suffi-
cient for most applications. We first discuss the explicit con-
struction in Section III-B in the context of 2-complexes and
present spectral and shift invariance results. We then propose
a method to learn 2-complex structures from graph data, and
finally briefly indicate some signal processing tasks that can
be achieved using our generalized Laplacian framework.

A. GENERALIZED LAPLACIANS FOR 2-COMPLEXES
For a weighted 2-simplex X ∼= 12, assume that the edge
weights are w(v0, v1),w(v0, v2) and w(v1, v2). Using the
explicit construction proposed in Section III-B, the edge
weights of GX are (c.f. Fig. 3):

a = (v1, v2)v0 = (w(v0, v2)+ w(v0, v1)− w(v1, v2))/2,

b = (v0, v2)v1 = (w(v1, v2)+ w(v0, v1)− w(v0, v2))/2,

c = (v0, v1)v2 = (w(v0, v2)+ w(v1, v2)− w(v0, v1))/2.

If the edge weights in X satisfy the triangle inequality, then
a ≥ 0, b ≥ 0, c ≥ 0. Conversely, given a ≥ 0, b ≥ 0, c ≥ 0,
we are able to recover the edge weights by taking pairwise
sums.

The generalized Laplacian LX is then given by:

LX =

1 0 0 1/3
0 1 0 1/3
0 0 1 1/3



a 0 0 −a
0 b 0 −b
0 0 c −c
−a −b −c a+ b+ c



×


1 0 0
0 1 0
0 0 1
1/3 1/3 1/3


=

1
9

 b+ c+ 4a c− 2a− 2b b− 2a− 2c
c− 2a− 2b a+ c+ 4b a− 2b− 2c
b− 2a− 2c a− 2b− 2c a+ b+ 4c

 . (5)

Definition 5: Define the shape constant γX of X as

γX = min{ 5w(vi,vj)−w(vi,vk )−w(vj,vk )
2 :

{i, j, k} = {0, 1, 2}}.
In general, γX can be negative. This happens when there

is at least one very short edge in X . We use this observation
to address an issue left over from the previous section. The
following lemma shows that LX is not necessarily of graph
type (cf. Definition 4), i.e., the generalized Laplacian given
in Definition 3 need not be a weighted graph Laplacian.
Lemma 2: Suppose X ∼= 12 is a 2-simplex. Then LX in (5)

is of graph type if and only if γX ≥ 0.
Proof: A direct computation shows that

−γX = max{c− 2a− 2b, b− 2a− 2c, a− 2b− 2c}.

As the diagonal entries of LX in (5) are all positive, it is of
graph-type if and only if −γX ≤ 0, i.e., γX ≥ 0.

In the case of a 2-simplex, we may also give the following
interpretation of LX in (5) with the graph Laplacian LX1 of
the 1-skeleton X1. Consider a graph signal x = (x0, x1, x2)′
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on the vertices {v0, v1, v2}. Let y be the first order difference
(x2 − x1, x0 − x2, x1 − x0)′. By a direct computation, one
observes that LX is determined by

9〈x,LX (x)〉 = 〈y,LX1 (y)〉,

which says that LX has similar effect as a second order
difference. More specifically, it is proportional to the sum
of the square of the second order differences in the signal
components of x. However, this point-of-view cannot be
generalized beyond dimension 2.

From (4), if X is a general 2-complex, the generalized
Laplacian LX takes contribution from the generalized Lapla-
cians of 2-simplexes computed as above and the usual edge
Laplacians. We next study spectral properties of LX . In par-
ticular, we want to compare LX and LX1 as the latter is well-
studied. We write A � B if B − A is positive semi-definite.
Moreover, for each edge e ∈ E of X1, let ke be the number
of 2-simplexes in X containing e. Set kmax = maxe∈E ke and
kmin = mine∈E ke.
Lemma 3: Suppose X is a finite 2-complex with each edge

of length 1. Then LX given by the explicit construction in
Section III-B satisfies

1
6
max{∗}kmin, 1 · LX1 � LX �

kmax

6
LX1 .

Proof: We sketch the main idea of the proof. It suffices
to show L = LX − max{ kmin

6 ,
1
6 } · LX1 or L = kmax

6 LX1 − LX
is the Laplacian of a (possibly disconnected) graph. For this,
one only needs to compute the off-diagonal entries of L and
show that they are non-positive. It suffices to notice that each
edge e = (vi, vj) contributes −1 to the (i, j)-th entry of LX1 ;
and −ke/6 to the (i, j)-th entry of LX .

If X is a 2D-mesh (triangulation) of a compact 2-manifold,
then kmin = 1 and kmax = 2. This is because at most two 2-
simplexes can share a common edge and along the boundary
each edge is contained in a single 2-simplex.

Recall that a filterF is shift invariant with respect to (w.r.t.)
LX1 if F ◦ LX1 = LX1 ◦ F . Notice it guarantees some other
invariance properties such as permutation invariance. If the
graph Laplacian LX1 does not have repeated eigenvalues, then
F is shift invariant if and only if F = P(LX1 ) for some
polynomial P of degree at most |X0

| − 1. The shift invariant
family is of particular interest and they are readily estimated
as one only has to learn the polynomial coefficients. Due
to this fact, LX will be less interesting if it is shift invariant
w.r.t. LX1 , e.g., when X is a single 2-simplex with equal edge
weights (more examples are shown in Fig. 5). However, this
does not happen in general.
Proposition 1: Suppose X is a 2-complex with X1 being a

connected graph and such that the following conditions hold
(illustrated in Fig. 6):
(a) In X, any two 2-simplexes are not connected by a direct

edge.
(b) In X, if a vertex v is not contained in any 2-simplex,

then it is connected to at most one 2-simplex. There is
at least one such vertex.

(c) Each edge is contained in at most one 2-simplex.

FIGURE 5. In (a), if all the edge weights are the same then LX = 1/3LX1 is
shift invariant w.r.t. LX1 . However, in (b), as long as the 4 red vertices are
contained in a graph G (at the center), then LX is not shift invariant w.r.t.
LX1 by Proposition 1, even if we allow arbitrary positive edge weights.

Then the generalized Laplacian LX given by the explicit
construction in Section III-B is not shift invariant w.r.t. LX1 .

Proof: See Apendix A.

FIGURE 6. Illustration of the two situations disallowed by the first two
conditions of Proposition 1.

B. CONSTRUCT 2-COMPLEXES
In this subsection, we present an approach to learn a
2-complex structure X given an undirected graphG = (V ,E)
such that X1

= G and X0
= V . If G is an unweighted

graph, we assignweight 1 to each edge. Otherwise, if pairwise
similarities of V are given, then we define the weight between
two vertices to be the inverse of the similarity (i.e., we want
two vertices to be closer if they are more similar). Therefore,
without loss of generality, we may assume that X1

= G is
weighted.We also assume that all edgeweights inG are finite.

To construct a suitable 2-complex X that is consistent
with G, we proceed as follows. We first identify the set CX0

of all possible 2-simplexes. Depending on the problem, there
are two main cases:

1) If X1
= G is given, then a triplet of vertices (u, v,w)

belongs toCX0 if and only if (u, v), (u,w) and (v,w) are
all edges of G.

2) If only X0
= V is given, then we assume CX0 contains

any triplet of distinct vertices in V .
Given two non-negative numbers r1 ≤ r2, we define

CX0 (r1, r2) to be the subset of CX0 consisting of triplets
whose pairwise edge weights are within the inter-
val [r1, r2]. Hence, we have the fundamental filtration
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∅ = CX0 (0, 0) ⊂ CX0 (0, r) ⊂ CX0 (0, r ′) ⊂ CX0 (0,∞) =
CX0 for r ≤ r ′. Next, we perform the following steps:
(a) Order all the 2-simplexes of CX0 in a queue Q (illus-

trated in Fig. 7): (i),nolistsep
(i) Choose r0 = 0 ≤ r1 ≤ . . . ≤ rm such

that CX0 = CX0 (0, rm). A simplex in CX0 (0, ri)
is ordered before that in CX0 (0, ri+1)\CX0 (0, ri),
i.e., triangles with small edge weights first.

(ii) We order the 2-simplexes of CX0 (ri, ri+1) in such
a way that 2-simplexes sharing more edges are
ordered later in the queue (withmore details given
below).

(b) Partition Q as a disjoint union Q =
⋃

1≤i≤pQi such
that their sizes are approximately uniform.

(c) Let X0 be X0
∪ X1. For each 1 ≤ i ≤ p, where p is

a chosen upper limit, we construct a 2-complex Xi by
adding the 2-simplexes ofQi (and the associated edges)
to Xi−1. We form the associated generalized Laplacians
LXi using the procedure outlined in Section IV-A.

(d) Perform signal processing tasks using one of LXi . This
step is problem dependent, which in particular relies on
the given signal and usually involves an optimization
step. We shall be more explicit in Section V-A.

For completeness, we propose one algorithm for
Step (a)(ii):
(1) For each i, we randomly order all the 2-simplexes of

CX0 (ri, ri+1).
(2) We want to inductively re-order the members of

CX0 (ri, ri+1) from the initial ordering in Step IV-B
above. Let s1 be the first 2-simplex in CX0 (ri, ri+1).
Starting from j = 1, suppose we have already
ordered s1, . . . , sj ∈ CX0 (ri, ri+1). They are fixed with-
out further modifications. Search for the rest of the
2-simplexes of CX0 (ri, ri+1). If a 2-simplex s is shar-
ing a common edge with sj, re-order CX0 (ri, ri+1)
by placing s at the end of CX0 (ri, ri+1). Once all
s ∈ CX0 (ri, ri+1)\{s1, . . . , sj} is gone through once,
repeat the procedure by incrementing j, i.e., fixing
s1, . . . , sj+1 where sj+1 is the next 2-simplex in the
ordering after sj, and compare sk , k ≥ j+ 2 with sj+1.

C. SIGNAL PROCESSING OVER 2-COMPLEXES
Given a graphG = (V ,E) and with L being one of the gener-
alized Laplacians LX0 , . . . ,LXp constructed in Section IV-B,
one may perform signal processing tasks, such as defining
Fourier transform, frequency domain, sampling and filtering,
similar to traditional GSP [1], as we now briefly recall.
Let L2(V ) be the space of signals on the vertex set V and
{xi0 ≤ i ≤ |V | − 1} be an orthonormal eigenbasis of L
(recall Lemma 11) corresponding to eigenvalues or graph
frequencies λ0 ≤ λ1 ≤ · · · ≤ λ|V |−1.
(a) Fourier transform: For a signal x ∈ L2(V ), its Fourier

transform is given by

x̂(i) = 〈x, xi〉,

FIGURE 7. In this example, (a) shows the graph G. The blue 2-simplexes
in (b) are (randomly) ordered first in Q. After which, we have the pink
2-simplexes in (c). Finally, the green 2-simplexes are ordered last in Q.

for 0 ≤ i ≤ |V |−1. The inverse transformation is given
by:

x =
∑

0≤i≤|V |−1

x̂(i)xi.

(b) Bandlimit and bandpass filters: Suppose B is a subset
of {0, . . . , |V | − 1}. A signal x ∈ L2(V ) has bandlimit
B if x̂(i) = 〈x, xi〉 = 0 for i /∈ B. The bandpass
filter associated with B is given by x 7→

∑
i∈B x̂(i)xi.

For denoising and data-compression, one may consider
bandpass filters associated withB consisting of indices;
while for anomaly detection, one may instead choose B
containing large indices.

(c) Downsampling: If a signal x ∈ L2(V ) is bandlimited
with B of small size, we can recover x by sampling
signal values at a carefully chosen subset V ′ ⊂ V of
size |V ′| = |B| (V ′ is called a uniqueness set [37]).
This is called downsampling.

(d) Convolution: A convolution is a generalization of band-
pass filters. A convolution kernel is a signal z ∈ L2(V ).
The associated convolution filter x 7→ z ∗ x is defined
by requiring ẑ ∗ x(i) = ẑ(i)̂x(i) for 0 ≤ i ≤ |V | − 1.

(e) Shift invariant filters: A filter F is shift invariant w.r.t.
L if F ◦ L = L ◦ F . Suppose L does not have
repeated eigenvalues. Then a shift invariant filter F is a
polynomial of L.

V. NUMERICAL RESULTS
In this section, we perform numerical experiments using
either synthetic and real data. Each experiment or dataset is
associated with a graph G. We apply the 2-complex learning
procedure in Section IV-B to obtain the generalized Lapla-
cians LX0 , . . . ,LXp . Our objective is to provide insights into
the properties of these generalized Laplacians and which
achieve the best performance metric. In particular, the base-
line comparison is with the usual graph Laplacian LX0 .
In terms of complexity, once the Laplacians are obtained,
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signal processing with any of LXi , 0 ≤ i ≤ p is of the same
complexity.

A. STRUCTURE LEARNING
We consider the Enron email graph1 G with n = 500 vertices
and 6815 pair-wisely connected triplets [38].

1) PROPERTIES OF GENERALIZED LAPLACIANS
We first provide some insights into the properties of the
generalized Laplacians constructed as in Section IV-B. Let
these be LXi for 0 ≤ i ≤ p = 20whereXi is the corresponding
2-complex and X0 = G. The spectrum of the generalized
Laplacians LXi for 0 ≤ i ≤ 20 are plotted in Fig. 8. In our
case, the number of pair-wisely connected triplets (6815) is
small as compared to the size of the graph (500), as the
number of ways choosing 3 vertices among n vertices is of
order O(n3). As a consequence, the triplets for our G do not
share many common edges. Therefore, as i grows, entries of
LXi tend to have smaller magnitude thus yielding a shift of the
spectrum towards 0, as we observed in Fig. 8 (c.f. Lemma 3).
However, the situation can reverse if a graph is densely con-
nected with a large amount of pair-wisely connected triplets.
Moreover, we observe that the spectrum pattern more or less
stabilize beyond i = 10, which suggests that we may choose
smaller p as the spectrum stratify the eigenbasis according to
smoothness.

FIGURE 8. The plot shows the eigenvalue distribution (the horizontal
axis) of LX0

= LG to LX20
from bottom-to-top, for the Enron email graph.

The spectrum tends to shift to the left, which indicate a ‘‘more
connected’’ structure.

For further investigation of the relations among the gener-
alized Laplacians LXi , we perform the following experiments.
For each 0 ≤ i ≤ 20, we generate graph signals by using the
first r = 30% of the eigenvectors of LXi with random coef-
ficients drawn uniformly from [0, 1]. For each such signal fi
and 0 ≤ j 6= i ≤ 20, we ‘‘compress’’ it w.r.t. LXj as fi,j =
Vr,jV ′r,jfi and compute the error εi,j =

∥∥fi − fi,j
∥∥. We average

over different instances of fi for each 0 ≤ i, j ≤ 20. The
heatmap for the resulting average εi,j is shown in Fig. 9.
We see that it is more or less symmetric. For small i, j, εi,j
is large even if |i − j| is small. However, for large i, j, εi,j is
always relatively small.

1https://snap.stanford.edu/data/email-Enron.html

FIGURE 9. Heatmap for average εi,j as given by the (i, j )-th box.

2) PERFORMANCE EVALUATION
We construct a 2-complexX by randomly adding 2-simplexes
for pair-wisely connected triplets in G. We suppose that G =
X1 is observed and X is unobserved. Let B = {x1, . . . , xn} be
an orthonormal eigenbasis of the generalized Laplacian LX as
constructed in Section IV-A, arranged according to increasing
order of their associated eigenvalues. We randomly generate
a set S1 of signals from the span of the first r1 ∈ (0, 1]
proportion of the eigenbasis B. Let Vr1,i be the matrix whose
columns are the orthonormal eigenvectors corresponding to
the first r1 proportion of the eigenvalues of LXi . Then the
estimated simplicial complex Xb and its Laplacian LXb is
obtained by solving the optimization problem:

b = argmin0≤i≤p=20
∑
f∈S1

∥∥Vr1,iV ′r1,if− f
∥∥2
2 . (6)

We generate a set S2 from the first r2 ≤ r1 of the base
signals in B, considered as a set of compressible signals.
We want to estimate the signal compression error of the
estimated Laplacian LXb as:

ε =
∑
f∈S2

∥∥Vr2,bV ′r2,bf− f
∥∥
2 .

For comparison, we perform the same estimation on the
usual graph Laplacian LX0 , for which we do not consider high
dimensional structures. On average for different choices of X ,
as compared to using LX0 , the reduction in compression error
with LXb is summarized in Table 1.

TABLE 1. Reduction in compression error.

Finally, we introduce anomalies to signals in a new set S3
(with r1 = 2r2 = 50%) by perturbing the signal value at one
random vertex. We perform spectrum analysis of the anoma-
lous signals using both LXb and LX0 . Two typical examples
of the spectral plots are shown in Fig. 10 (note that we plot
only the high graph frequencies). We see that using LXb (red),
the anomalous behavior is more easily detected by inspecting
high frequency portions.
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FIGURE 10. In the plots, the horizontal axis is for the graph frequency
indices and the vertical axis is for the graph frequency coefficients.
We have two sets of high frequency component plots, each consists of a
group of four images. The top row of each set shows the plot for normal
signals and the bottom row shows the plot for abnormal signals. For each
set, the left figures (blue) are plots for LX0

and the right figures (red) are
the plots for LXb

. The anomalous behavior is more visible for LXb
. Note

that the case on the first set is ideal in the sense that LXb
happens to be

Laplacian that used to generate the signal.

B. ANOMALY DETECTION
The graph used in this subsection is a weather station network
in the United States with 197 vertices.2 The graph G for the
weather station network is constructed using the k-nearest
neighbor algorithm based on the geographical locations of the
weather stations. The graph G has 495 edges and 395 pair-
wisely connected triplets.

As in Section IV-B, we construct Xi and LXi for 0 ≤ i ≤
p = 20.We perform anomaly detection with real dataset. The
signals on G are daily temperatures recorded over the year

2http://www.ncdc.noaa.gov/data-access/land-based-station-data/
station-metadata

2013.3 For a daily temperature graph signal x, we introduce
anomaly to x by randomly perturbing the value of x at a single
vertex. The resulting signal is denoted by xa.
As mentioned in Section V-A, we may look at the high

frequency components of the Fourier transform of xa, decom-
posed w.r.t. LXi for 0 ≤ i ≤ p, to detect if there is an
anomaly. The experiment details are given as follows. We fix
numbers 0 < r, τ < 1 and let L ∈ {LXi0 ≤ i ≤ p}.
For each instance, we randomly choose a date, and let the
temperature signals on the 4 consecutive days starting from
the chosen date be x1, x2, x3 and x, respectively. The signal
xa is the perturbed version of x. Suppose that we only observe
the normal signals x1, x2, x3 and the anomalous signal xa.
We perform graph Fourier transform w.r.t. L on x1, x2, x3 and
xa to obtain x̂1, x̂2, x̂3 and x̂a, respectively. Define

α = max
j=1,2,3;197r≤k≤197

|̂xj(k)|,

β = max
197r≤k≤197

|̂xa(k)|

as a measure of magnitude of the high frequency components
of the signals. We declare that xa is abnormal if β/α > 1+τ .

We run experiments with r = 0.2 and two choices of
τ = 0.05, 0.2. We average over 5000 instances for each set
of parameters. We are interested in the performance in terms
of percentage of successful detections under the following
scenarios: S1
S1 L = LX0 , the usual graph Laplacian for all levels of

perturbation.
S2 The best performance among LXi for each level of

perturbation.
S3 Anomaly is declared when at least a third of the gener-

alized Laplacians LXi , 0 ≤ i ≤ p say so.
One should note that when we set perturbation at 0, we obtain
the false positive rate.

FIGURE 11. Performance of anomaly detection on the US weather station
network.

The results are summarized in Fig. 11. For both cases of
τ = 0.05, 0.2, the best simplicial structure corresponding to
scenario V-B, is X6 when approximately 30% of pair-wisely
connected triplets are added as 2-simplexes. It has a consis-
tent overall performance. We see that in general, we do gain
benefits by working with a simplicial complex instead of a
graph in anomaly detection. There is little difference in the
false positive rate between scenarios V-B and V-B.

3ftp://ftp.ncdc.noaa.gov/pub/data/gsod
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Moreover, by aggregating observations from different
Laplacians LXi together, we have a much better rate of suc-
cessful detection for large perturbations. For τ = 0.05, the
false positive rate is relatively large, while for τ = 0.2, there
is no significant loss in false positive rate.

C. NOISY LABEL CORRECTION
In this experiment, we consider noisy label correction with
the following experimental setup. On a graph G with n
vertices, suppose every vertex v belongs to a class among
k classes, and thus has a class label x(v) ∈ {1, . . . , k}.
We assume that a certain percentage of the labels are cor-
rupted by noise. Our objective is to recover the true label.
We view the vector of labels x = (x(v))v∈V as a graph signal.

An approach is to apply a convolution filter to the noisy
labels. More specifically, let xb be the graph signal of noisy
labels and L be a shift operator. Fix a number 0 < r < 1 and
a scaling factor 0 ≤ s < 1.We first find the Fourier transform
x̂b of xb w.r.t. L. To denoise, we scale down x̂b(i), rn ≤ i ≤ n
by the factor s to obtain yb. To obtain the recovered label,
we round off the inverse transform of yb to obtain labels in
{1, . . . , k}.
The purpose of this paper is to investigate the gain or

loss of using simplicial complexes over traditional graphs.
Therefore, we apply the same set of parameters for different
choices of L. As in Sections V-A and V-B, we construct Xi
and LXi for 0 ≤ i ≤ p = 10.
The graphs we consider are citation graphs: Citeseer

(2120 vertices, 3679 edges and 1084 triangles) and Cora
(2485 vertices, 5069 edges and 1558 triangles) [10], [39].
We briefly recall that for both graphs each vertex represents a
document, and the label is the category of the document. The
edges are citations links, forming the citation graphs.

For each experiment, we add white Gaussian noise to
randomly selected 60% of the labels, with a constant signal-
to-noise ratio (SNR) in dB. As a consequence, the observed
labels might be non-integer values deviating from true labels.
As we add relatively large noise, rounding-off gives wrong
labels inmost cases.We perform denoisingwith r = 0.01 and
s = 0.9, as suggested by sample frequency plot of x and xb
shown in Fig. 12. For each set of parameters, we average over
500 experiments.

In terms of the reducing the amount of erroneous labels,
different generalized Laplacians LXi , 0 ≤ i ≤ p perform
without noticeable difference. Therefore, for each instance,
we determine the LXi yielding the largest amount of correct
labels. For each i, we can estimate the fraction of instances for
which LXi is the best. The results are summarized in Tables 2
and 3. We boldface the three top performers across each row
of the tables. In addition, the top performer is highlighted in
blue.

From the results, we observe that LX1 has the best
overall performance consistently, which is when approxi-
mately 10% of pair-wisely connected triplets are added as
2-simplexes. Moreover, LX0 ,LX1 ,LX3 have consistent over-
all best performance. As a general trend however, the

FIGURE 12. A sample frequency plot of the actual labels x (red) and noisy
labels xb (blue) in the graph frequency index range ≈ 0.01n to n.
We observe fluctuations for both x and xb, while the amplitudes of x is
smaller in general.

performance drops if a large amount of 2-simplexes are
added, e.g., in X9 and X10.

TABLE 2. Proportion of instances as best performer in citeseer.

TABLE 3. Proportion of instances as best performer in cora.

VI. CONCLUSION
In this paper, we have proposed a signal processing frame-
work for signals on simplicial complexes. To do so, we intro-
duced a generalized Laplacian that allows us to embed high
order simplicial complexes in a graph. We showed that this
generalized Laplacian includes the traditional graph Lapla-
cian as a special case and enjoys several properties same as
the graph Laplacian. In particular, it admits an eigenbasis,
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which allows us to perform signal processing in a way similar
to traditional GSP. We test the framework with both syn-
thetic and real datasets, and observe that performance gains
are achieved by working with simplicial complexes and our
generalized Laplacian.

The simplicity of our framework allows natural adapta-
tion of various GSP formulations and approaches to sim-
plicial complexes. An interesting future research direction
is to explore various such adaptations and generalizations,
including continuous filter estimation and data driven end-
to-end learning on simplicial complexes.

APPENDIX I. NON SHIFT INVARIANCE
In this appendix, we assume X is a 2-complex and discuss
conditions that ensure LX given by the explicit construction
in Section III-B is not shift invariant w.r.t. LX1 . We are mainly
interested in geometric conditions, which can be observed
directly from the shape of X . As a corollary, we prove Propo-
sition 1. For convenience, we introduce the following notion.
Definition 6: If a matrix M is the Laplacian of a weighted

graph G, then we say M is of graph type G. We say that a
2-complex X has distinctive 2-simplexes if (a) either LX−LX1

or LX1 − LX is of graph type G; and (b) if an edge belongs to
a 2-simplex of X, then it also exists in G.

Recall kmax and kmin as introduced before Lemma 3.
Lemma 4: X has distinctive 2-simplexes if any of the fol-

lowing holds:

(a) kmax ≤ 1, i.e., each edge is contained in at most one
2-simplex.

(b) kmax ≤ 2 and all the edges have weight 1.
(c) kmin ≥ 4 and all the edges have weight 1.

Proof: For claim (a), from Lemma 1(c), any constant
vector is in the kernel of L = LX1 − LX , and the sum of each
row of L is 0. If (vi, vj) is an edge of X not contained in any
2-simplex, then the (i, j)-th entry of L is 0. This is because
the (i, j)-th entries of LX1 and LX are both negative of the
weight of (vi, vj). It suffices to show that if (vi, vj), i 6= j,
is any edge contained in a 2-simplex, then the (i, j)-th entry
of L is negative. Let a > 0 be the weight of (vi, vj) and
b > 0, c > 0 be the weights of the other two edges of the
2-simplex containing (vi, vj). A direct calculation shows that
the (i, j)-th entry of L is −(13a+ b+ c)/18 < 0.
Claims (b) and (c) can be shown by the same argument by

considering LX1 − LX and LX − LX1 respectively.
Assume for the rest of this appendix that X has distinctive

2-simplexes. We want to study common eigenvectors of both
LX1 and LX . To this end, we divide the discussion into two
parts: for such an eigenvector, whether the corresponding
eigenvalues are the same or different.
Definition 7: We say that a vertex v is 1-interior if it is

not contained in any 2-simplex and 2-interior if each edge
containing v belongs to a 2-simplex (see Fig. 13 for an
example).
Lemma 5: (a) Let K be the vector space spanned by

common eigenvectors of LX and LX1 that share the

FIGURE 13. In this example, both blue vertices are 1-interior and the red
vertex is 2-interior. The black and green vertices are neither of these. For
the parameters in Lemma 55 m1 = 2, m2 = 2 and m3 = 1. Moreover,
in Lemma 66, m4 = 3 counts the three green vertices.

same corresponding eigenvalues w.r.t. LX1 and LX .
Then K is a subspace of ker(LX − LX1 ).

(b) Let m1 be the number of 1-interior vertices of X, m2 be
the number of connected components of the small-
est complex containing all the 2-simplexes of X, and
m3 be the number of such components containing some
2-interior vertices. Then dimK ≤ m1 + m2 − m3.

Proof:
(a) As we assume that X has distinctive 2-simplexes, LX1−

LX = LG or−LG for some graphGwhose positive edge
weights are supported on 2-simplexes of X . Therefore,
if w is a common eigenvector of LX and LX1 with the
same eigenvalue, then LG(w) = 0, i.e., w ∈ ker(LG).
As ker(LG) is a vector space, K as spanned by these v’s
is also contained in ker(LG).

(b) Notice that the dimension of ker(LG) is the same as the
number of connected components of G. More specifi-
cally, each signal in ker(LG) is constant on each compo-
nent. The set of connected components ofG consists of
the following: (1) each 1-interior vertex of X is an iso-
lated component ofG, and (2) a collection of connected
2-simplexes. They are of sizes m1 and m2 respectively.
Suppose a component C of the second type contains a
2-interior vertex v andw is a common eigenvector of LX
and LX1 with the same eigenvalue λ > 0. Therefore,
w ∈ ker(LG). As v is 2-interior and w is constant
on C , for any neighbor v′ of v in X , w(v) = w(v′).
As a consequence, LX (w)(v) =

∑
v′ w
′(v, v′)(w(v) −

w(v′)) = 0, where the sum is over all neighbors v′ of
v and w′(·, ·) are the weights derived from (5). On the
other hand, LX (w)(v) = λw(v), and hence w(v) = 0.
Furthermore, w is 0 on all of C as w is constant on C .
Hence, the vectors of K vanish on such a C . Therefore,
dimK ≤ m1 + m2 − m3. �

Nowwe consider common eigenvectors of LX1 and LX with
different eigenvalues.
Lemma 6: Suppose w is a common eigenvector of LX1 and

LX with different eigenvalues. Then
(a) w is 0 at 1-interior vertices of X.
(b) If a vertex v belongs to a 2-simplex and any 1-interior

neighbor of v is not connected to any other vertex
belonging to a 2-simplex, then w is 0 at v. Denote
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the number of such vertices by m4 (see Fig. 13 for an
example).
Proof: Suppose the eigenvalues of w are λ1 6= λ2.

(a) Let v be a 1-interior vertex. Then LX (w)(v) = LX1 (w)(v)
as the 1-hop neighborhood of v in X and X1 are identi-
cal. This implies that λ1w(v) = λ2w(v). This is possible
only if w(v) = 0 as λ1 6= λ2.

(b) Let v′ be a 1-interior neighbor of v. By (a), w(v′) = 0.
As v′ is not connected to any other vertex belonging to
a 2-simplex, w is 0 at the neighbors of v′ except at v
again by (a). Hence 0 = LX1 (w)(v′) = aw(v), where a
is the positive edgeweight between v and v′. This forces
w(v) = 0 and proves (b). �

Now, we are ready to state and prove the main result of this
section.
Theorem 1: Suppose X is a 2-complex, X1 is a connected

graph, |X0
| = n and m1, . . . ,m4 and K are as defined in

Lemma 5 and Lemma 6. If dimK ≤ m1+m4 < n, then there
does not exist any orthonormal basis consisting of common
eigenvectors of both LX1 and LX . In particular, this holds if
m2 ≤ m3 + m4 and m1 + m4 < n.

Proof: Suppose on the contrary thatW = {w1, . . . ,wn}
is an orthonormal basis consisting of common eigenvectors
of LX1 and LX . There are at most dimK vectors of W each
sharing the same corresponding eigenvalue w.r.t. LX1 and LX .
Without loss of generality, assume they are {w1, . . . ,wdimK }

and let w1 be the constant vector (1/
√
n, . . . , 1/

√
n)′. More-

over, by re-indexing, we further assume that the first m1 +

m4 indices correspond to the set S of 1-interior vertices and
vertices satisfying Lemma 6(b).

By abuse of notation, write W for the n× n matrix whose
i-th column is wi. As the columns ofW form an orthonormal
basis, so do the rows ofW. On the other hand, by Lemma 6,
only the leading (m1 + m4) × dimK block W1 of the first
m1 +m4 rows ofW can contain non-zero entries. Hence, the
rows of W1 forms an orthonormal system. This shows that
m1 + m4 ≤ dimK .

We claim that m1 + m4 6= dimK . For otherwise, W1 is
a dimK × dimK matrix with orthonormal rows. Hence, the
columns ofW1 also forms an orthonormal system. However,
this is impossible as the norm of the first column of W1 is
dimK/n < 1.

Therefore, we have shown that m1+m4 < dimK with the
existence ofW. This contradicts the assumption that dimK ≤
m1 + m4. Furthermore, the condition m2 ≤ m3 + m4 implies
that dimK ≤ m1 + m4 by Lemma 5(b).

As a corollary, we can prove Proposition 1 by counting.
First of all, by condition (c) in Proposition 1, X has distinctive
2-simplexes. In order to show LX is not shift invariant w.r.t.
LX1 , we want to prove that they cannot have a common
orthonormal eigenbasis. By Theorem 1, it suffices to show
that m2 ≤ m4 under the assumptions of Theorem 1. Let
C be a union of 2-simplexes contributing 1 to m2 in X .
In C , there is at least one vertex vC connected to a 1-interior
point for otherwise, we can either add another 2-simplex to
enlargeC or X contains no 1-interior point, which contradicts

condition (b) in Proposition 1. Moreover, vC cannot be shared
by another connected union of 2-simplexes by condition (a) in
Proposition 1. In conclusion, C 7→ vC is a one-one map and
hence m2 ≤ m4, and Proposition 1 follows.
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