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ABSTRACT 15 

The effects of sea-level changes and anoxia on Devonian trilobites have been studied for a 16 

long time but the importance of palaeogeographic and tectonic events in this key-period is 17 

still not well understood. In the Devonian, trilobites invaded many different marine 18 

environments and areas in North Africa where important palaeogeographic changes occurred. 19 

Distribution patterns of trilobites through time and space have been analysed using a 20 

hierarchical cluster analysis and diversity indices. Our examination of the literature suggests 21 

that trilobites were scarce during the Lochkovian before an important diversification in the 22 

Pragian. Trilobites flourished in many North African regions without there being important 23 

taxonomic differences between basins, because of free migration in relatively flat palaeo-24 

topography and homogeneous environments. During the Middle Devonian, early Variscan 25 
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tectonic movements transformed the Eastern Anti-Atlas area into a basin with a platform 26 

topography. Geographical barriers such as deep basins prevented trilobite migrations. At the 27 

beginning of the Eifelian, the reduction of migration between the different regions of this area 28 

coincided with a decrease in diversity. Consequently, tectonic events played an important role 29 

in the decline of trilobites during the Middle Devonian, especially when these were combined 30 

with sea-level changes and anoxic/hypoxic events. A recovery occurred in the Famennian 31 

involving only new genera. As at the global scale, cyrtosymbolines developed in shallow seas 32 

whereas phacopids evolved in deeper environments. The basin and platform system still 33 

hampered migrations although sea-level variations led to episodic exchanges. The late 34 

Famennian regression reduced trilobite diversity dramatically in the study area. 35 
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1. Introduction 47 

During the Devonian, trilobite communities were strongly influenced by spatial and 48 

temporal ecological changes at the global scale as well as regionally (Crônier & Van Viersen, 49 

2007; Abe & Lieberman, 2012; Crônier & François, 2014; Bignon & Crônier, 2015). The 50 
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development of hospitable shallow platforms during the Early Devonian led to a trilobite 51 

diversification (Chlupáč, 1994) but the sea-level changes and anoxic/hypoxic events during 52 

the Middle Devonian caused a sharp decrease of their diversity (Feist, 1991; Lerosey-Aubril 53 

& Feist, 2012). These kinds of spatial and temporal palaeoenvironmental changes were 54 

observed in the trilobite communities from North Africa (Bault et al., 2021). This area was 55 

located on the continental shelf of north-western Gondwana (McKellar & Chatterton, 2009) 56 

and was flooded during the Silurian transgression (Bultynck & Walliser, 2000) leading to a 57 

Devonian epicontinental sea (Kauffman, 1998). Thus, an abundant and diverse trilobite fauna 58 

proliferated during the Early Devonian before a long decline due to events that occurred 59 

during the Middle and Late Devonian. 60 

To understand the trilobite response to palaeoenvironmental changes and their biodiversity 61 

dynamics at a regional scale, our study is focused on the Devonian North African 62 

communities from two well-known areas, i.e., the Moroccan Anti-Atlas and the Algerian 63 

Ougarta Range. These two areas are famous for their detailed stratigraphy, their numerous 64 

faunal studies and their recognised environmental changes (Wendt et al., 1984; Wendt, 1985, 65 

1993, 2021a, 2021b; Wendt & Belka, 1991; Benhamou et al., 2004; Ouali Mehadji et al., 66 

2011; Abbache et al., 2019; Frey et al., 2019). The trilobite fauna from this North African 67 

area was first studied by Le Maître (1952) followed by numerous publications by G. Alberti 68 

(e.g. 1964, 1966a, 1966b, 1967a, 1967b, 1969, 1970, 1981a, 1981b, 1982, 1983) and H. 69 

Alberti (e.g. 1972, 1973, 1974, 1975a, 1975b, 1976a, 1976b). This area is still studied 70 

nowadays as is reflected in more recent publications by Becker et al. (2018), Crônier et al. 71 

(2018a-b), Feist & Belka (2018), Feist & Weyer (2018), Zaplaski & Klug (2018), Van 72 

Viersen & Lerouge (2019) and Chatterton et al. (2020). There were many taxonomic changes 73 

in the study area throughout the Devonian including periods of great taxonomic diversity 74 

among the trilobites, following trends identified on a global scale (Chlupáč, 1994; Bault et al., 75 
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2021). The Anti-Atlas Range and Ougarta Range also provided a high diversity of 76 

environments exhibiting temporal and geographical changes because of sea-level fluctuations. 77 

The Variscan tectonic events led to different palaeotopographies (Hollard, 1967, 1981; 78 

Wendt, 1985; Bultynck & Walliser, 2000).  79 

The present work concentrates on trilobite occurrences to analyse the dynamic of trilobite 80 

faunas confronted with environmental changes in time and space and to thus understand how 81 

the diversity of trilobites may be influenced by the diversity and nature of environments. 82 

Trilobite associations were determined by performing multivariate analyses before their 83 

diversity and ecology were assessed. 84 

 85 

2. Geological settings 86 

The Moroccan study area, i.e., the Anti-Atlas Range, extends from the Dra region in the 87 

south-west toward the north-east, to the Tafilalt in Morocco and ends below the Bechar Basin 88 

in Algeria (Hollard, 1967). The Algerian study area, i.e., the Ougarta Range (Saoura Valley, 89 

North-western Algerian Sahara), extends towards the north-west, in the Anti-Atlas (Fig. 1A). 90 

During the Devonian, the study area included numerous marine basins, which were part of the 91 

Sahara platform, a passive continental margin of Gondwana (Wendt et al., 1984). From the 92 

south-west toward the north-east, these basins are the Foum Zguid area, the Maïder Basin and 93 

Tafilalt Basin in the eastern Anti-Atlas in Morocco, the Ougarta Basin and to the North the 94 

Bechar Basin (i.e., Ben Zireg area) in Algeria (Fig. 1B). 95 

Fig. 1 near here 96 

The current correlation based on conodonts between the Tafilalt and the Maïder formations 97 

(Bultynck & Walliser, 2000) is associated here with their main environmental characteristics 98 

(Fig. 2). The succession of formations of Ougarta was described by Boumendjel et al. (1997). 99 

Although the connection between the Devonian strata of the Ougarta Range and those of the 100 
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Anti-Atlas region are covered by the Cretaceous ‘Kem-Kem Group’ (Benhamou et al., 2004), 101 

the similar basinal facies found in these areas suggests a connection during the Devonian 102 

(Hollard, 1967; Wendt et al., 1984). The northern and western parts of the Maïder region were 103 

continental during the main part of the Devonian and were only flooded during the Famennian 104 

when the sea level rose (Kaufmann, 1998). Figure 2 summarises the formations studied along 105 

with their dominant lithologies (Fig. 2). 106 

Fig. 2 near here 107 

 108 

Early Devonian 109 

In the Lower Devonian, the eastern Moroccan Anti-Atlas was characterised by rather 110 

uniform facies (i.e., Maïder and Tafilalt; Fig. 2) varying mostly in thickness due to a 111 

homoclinal carbonate ramp topography (Lubeseder et al., 2010). However, palaeocurrents 112 

indicate the presence of a shallow pelagic platform in the Tafilalt with two distinct slope 113 

directions - one to the south-west and the other to the north-east (Wendt, 1995). The dominant 114 

sedimentology consists of shales interbedded with cephalopod limestones (Kaufmann, 1998). 115 

In Algeria, the Ougarta corresponded to a platform (Ouali Mehadji et al., 2011).  116 

The Lochkovian deposits of the eastern Anti-Atlas are mainly composed of shales and 117 

black graptolite limestones (Fig. 2). These deposits reflect relatively deep environments, 118 

which are not favourable for benthic faunas (Morzadec, 2001; Klug et al., 2013; Frey et al., 119 

2014). In the Tafilalt, the particular Hamar Lagdad area is characterised by volcanic tuff 120 

deposits (Hollard, 1967; Klug et al., 2018). At the end of Lochkovian and the beginning of 121 

Pragian, a regressive phase enabled benthic faunas to develop (Hollard, 1967; Morzadec, 122 

2001). Nevertheless, Bultynck and Walliser (2000) reported a dominance of shales and 123 

hemipelagic limestones in the eastern part of the Anti-Atlas whereas the western part was 124 

composed of neritic deposits. At the same time, in the Hamar Laghdad area, a reef system 125 
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settled on volcanic shoals (Hollard, 1981; Brachert et al., 1992). In the Ougarta Basin, the late 126 

Lochkovian-Pragian regressive phase led to a mud-dominated platform environment 127 

subjected to storm and fair-weather waves while to the north the Bechar Basin corresponded 128 

to a carbonate platform (Ouali Mehadji et al., 2011). 129 

During the early Emsian (Fig. 2), limestones and argillaceous limestones still covered the 130 

Anti-Atlas without important environmental changes (Hollard, 1967) and are very 131 

fossiliferous (Kaufmann, 1998; Klug et al., 2008; De Baets et al., 2010). Conversely, in the 132 

Foum Zguid area shallow environmental conditions above storm-wave base led to sandstone 133 

deposits despite transgressive sequences (Jansen et al., 2004; Ouanaimi & Lazreq 2008). In 134 

Algeria, the Ougarta Basin deepened from the late Pragian due to a subsidence phase and was 135 

covered by shales and marls while the Bechar Basin became more siliciclastic (Ouali Mehadji 136 

et al., 2011). 137 

The transition between the early and late Emsian was marked by a global transgression: in 138 

the Anti-Atlas the Daleje event (House, 1985) led to green shale deposits in a basinal 139 

environment (Kaufmann, 1998). Hollard (1967) noted a difference of faunas and facies 140 

between the Maïder and the Tafilalt with the Tafilalt becoming more argillaceous with a less 141 

diverse benthic fauna than the Maïder (Fig. 2). The northern Tafilalt was a pelagic platform 142 

with thinner deposits (Kaufmann, 1998). In Algeria, the Ougarta Basin remained deep and 143 

dominated by shales and marls (Ouali Mehadji et al., 2011) whereas the Bechar Basin was 144 

covered by shales and siltstones (Massa, 1965). At the end of the Emsian, limestone deposits 145 

formed in the Anti-Atlas (Fig. 2) because of a fall in the sea level. Conversely, the Foum 146 

Zguid area was characterised by shales and nodular limestones corresponding to more open 147 

water and hemipelagic conditions (Jansen et al., 2004). Based on trilobites, Chatterton et al. 148 

(2006) confirmed the establishment of a relatively deep environment, which was below the 149 

storm wave base but within the photic zone while the north of the Dra Valley was deepening. 150 



 

7 

This area was influenced by the tectonic subsidence triggered by the Variscan extent phase 151 

(Ouanaimi & Lazreq, 2008). In Ougarta, the regression led to a shoreface or a foreshore 152 

environment with sandstone deposits (Ouali Mehadji et al., 2011).  153 

 154 

Middle Devonian 155 

During the Middle Devonian, the collision of Gondwana and Laurussia resulted in the 156 

Variscan orogeny. In the Anti-Atlas, this episode is marked by the development of a neritic 157 

shelf followed by a platform and basin system, accompanied by palaeoenvironmental changes 158 

(Wendt et al., 1984; Kaufmann, 1998; Baidder et al., 2008; Wendt, 2021a). The first phase of 159 

this tectonic movement occurred at the Emsian/Eifelian boundary (Lubeseder et al., 2010). 160 

The Maïder Basin separated the Tafilalt Platform in the north-east from the Maïder Platform 161 

in the south-west (Fig. 3). While the Maïder Platform was emerging, the Tafilalt Platform 162 

remained a pelagic platform with the north-eastern Dra Valley and the Ougarta Basin 163 

deepening to a distal ramp (Limam et al., 2021). 164 

The Foum Zguid area continued its transition toward a hemipelagic platform from the 165 

Emsian onwards (Jansen et al., 2004). During the Eifelian, marlstones and shales became 166 

increasingly important. To the north-east, the environment was less uniform. Kaufmann 167 

(1998) explained that three different facies occurred in the Maïder and the Tafilalt. A neritic 168 

facies characterised by argillaceous wackestones and numerous fossils was present in the 169 

northern and western parts of the Maïder near the emerged Maïder Platform. A neritic fauna 170 

including trilobites developed in the limestones of the western side of the Maïder Platform at 171 

Jbel Ou Driss (Bultynck, 1985; Feist & Orth, 2000). Condensed pelagic deposits, i.e., 172 

condensed nodular limestones and marls with abundant fossils, accumulated in the pelagic 173 

Tafilalt Platform. These two platforms corresponded to shallow water environments (Wendt 174 

et al., 1984). Finally, a basinal facies existed in the centre of the Maïder Basin and to the east 175 
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of the Tafilalt Platform in the Tafilalt Basin. It mainly corresponded to marlstones and shales 176 

with scattered faunas. Wendt et al. (1984) specified that the Maïder Basin was deeper than the 177 

Tafilalt Basin. In Algeria, the Ougarta Basin became deeper during the Eifelian, from a 178 

foreshore environment at the end of the Emsian to a distal platform (Maillet et al., 2013; 179 

Crônier et al., 2018a). Henceforth, hemipelagic deposits were found as marlstones 180 

interbedded with thin-bedded limestones. 181 

The global transgression events of the Middle Devonian were well pronounced in the Anti-182 

Atlas (Kaufmann, 1998). The successive Choteč and Kačák events corresponded to hypoxies, 183 

which was probably due to a sea level rise during the Eifelian leading to black shale deposits 184 

(Kaufmann, 1998; Döring, 2002). 185 

The differentiation between platforms and basins in the eastern Anti-Atlas continued to 186 

intensify in the Givetian. On the edge of the Maïder Platform, coral-stromatoporoid 187 

limestones developed and extended to the early Givetian (Kaufmann, 1998). A second 188 

tectonic phase of early Variscan movements occurred during the middle Givetian (Lubeseder 189 

et al., 2010). It implied the subsidence of the Maïder Basin, which induced the extension of 190 

the basinal facies (Kaufmann, 1998). The mid-Givetian Taghanic event was identified in 191 

Morocco and Algeria with shale deposits and condensed layers (Kaufmann, 1998). The distal 192 

platform of the Ougarta region continued to subside during the Givetian with shale deposits 193 

interbedded with limestones (Maillet et al., 2013). To the north, the Bechar Basin showed 194 

similar facies to the Tafilalt Platform with the appearance of pseudonodular limestones in the 195 

Givetian (Massa, 1965). 196 

Fig. 3 near here 197 

 198 

Late Devonian 199 

During the Late Devonian, the Anti-Atlas Range and Ougarta Range were influenced by 200 
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the same regional events (Benhamou et al., 2004). Variscan tectonics intensified in the eastern 201 

Anti-Atlas, which is reflected in differences of facies and thickness (Hollard, 1974; Wendt, 202 

1985, 1988; Wendt & Belka, 1991; Belka et al., 1999; Frey et al., 2019) resulting in the 203 

differentiation of basins and platforms (Wendt et al., 1984, 2021a, 2021b; Michard et al., 204 

2008). The active extensional dislocation of the former platform caused by early Variscan 205 

tectonic movements and differential subsidence (Wendt et al., 1984) led to the differentiation 206 

of two sub-basins; i.e., the Tafilalt Basin, a slowly subsiding shallow basin in the east and the 207 

Maïder Basin, a rapidly subsiding basin in the west (Fig. 3). These two sub-basins were 208 

connected via the narrow N-S Cephalopod Ridge, i.e., the Tafilalt Platform with shallower 209 

water (Wendt, 1985, 1995; Wendt et al., 2006; Toto et al., 2008; Lubeseder et al., 2010). At 210 

the beginning of the Frasnian, the Tafilalt Platform emerged before being flooded again 211 

(Michard et al., 2008) and the Maïder Platform partly emerged (Wendt et al., 1985). On the 212 

north-western margin of the Algerian Sahara, a tectono-eustatic control is reflected in 213 

differences in lateral facies and thickness in sediments accumulated on a distal platform and 214 

in basins (Abbache et al., 2019). The Late Devonian marked the most important phase of 215 

epirogenic movements in the Saoura leading to an important subsidence (Benhamou et al., 216 

2004). The Upper Devonian is characterised by alternate deposits of clay-sand and limestone, 217 

especially including "griottes" nodular limestones with benthic and pelagic faunas, which 218 

indicates an opening to marine environments (Crônier et al., 2018a; Abbache et al., 2019). 219 

In North Africa, a transgression occurred during the Late Devonian. In Morocco, the 220 

highest sea-level occurred in the late Famennian (Wendt & Belka, 1991; Becker et al., 2004). 221 

In the Ougarta, the high stand occurred at the end of the Frasnian but the sea-level stayed high 222 

with high stand deposits until the late Famennian (Ouali Mehadji et al., 2012) when a 223 

regression led to shallower environments in Morocco and Algeria. 224 

During the Frasnian, in the Anti-Atlas a clay sedimentation with sideritic and nodular 225 
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levels (Frey et al., 2019) developed in the Tafilalt Basin and the Maïder Basin and even 226 

occasionally on the Tafilalt Platform, reflecting rising sea levels (Wendt, 1988; Lubeseder et 227 

al., 2010; Frey et al., 2019). At the same time, sandy limestones, thick-bedded crinoid or 228 

cephalopod limestones rich in nektonic and planktonic faunas associated with black 229 

bituminous shales were deposited on the Tafilalt Platform (Wendt, 1985; Michard et al., 2008; 230 

Frey et al., 2019). A condensed sedimentation took place in the south-western Maïder Basin 231 

and on the northern Tafilalt Platform (Wendt, 1988; Wendt & Belka, 1991; Hüneke, 2006), 232 

probably reflecting a differentiation in both water depth and oxygen availability (Frey et al., 233 

2019). In the late Frasnian, shallow subtidal to supratidal deposits developed in the Tafilalt 234 

Platform that are characterised by strongly reduced thicknesses and the Maïder Platform 235 

emerged (Wendt et al., 1984; Wendt & Belka, 1991). In the south-eastern part of the Maïder 236 

Basin, the Kellwasser levels are represented by dark and massive cephalopod limestones 237 

(Wendt & Belka, 1991; Frey et al., 2019). The Ougarta Basin is the continuation of these 238 

Tafilalt and Maïder basins to the south-east in the Algerian Sahara (Wendt et al., 1984; 239 

Wendt, 1985; Abbache et al., 2019). In this area, the top of the Cheffar el Ahmar Formation is 240 

a distal ramp sedimentation with green shales interbedded with nodular limestones followed 241 

by “griotte” limestones interbedded with red shales. The fauna consists of ammonoids, 242 

ostracods and chitinozoans (Abbache et al., 2019). 243 

During the Famennian, a marly and nodular calcareous sedimentation developed in the 244 

Tafilalt Basin, in shallow environments. At the same time basinal facies dominated by shaly 245 

and calcareous sedimentation with intercalations of siliciclastic turbidites were laid down in 246 

the Maïder Basin, in deeper environments (Wendt et al., 1984; Döring, 2002) with diverse 247 

cephalopods (Korn & Bockwinkel, 2017). In the Tafilalt Platform, deposits of quartz-rich 248 

brachiopod coquinas, crinoidal limestones, thick-bedded cephalod limestones and nodular 249 

limestones formed during the early Famennian. Similar facies were found in the eastern 250 
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Maïder Platform (Wendt, 1985). A deeper environment like a slope or basin with shale 251 

deposits characterised the Ougarta region. Pyritised ammonoids and brachiopods were found 252 

in nodular limestones interbedded with shales (Abbache et al., 2019). The deepening of the 253 

Ougarta trough was probably due to subsidence and not to transgression (Ouali Mehadji et al., 254 

2012). The deepening continued during the middle and late Famennian in the Tafilalt 255 

Platform where marls and nodular limestones were deposited in slightly deeper environments 256 

and debris flows and slumps on the margins during the late Famennian (Wendt et al., 1984). 257 

Locally, limestones varied greatly in thickness and fossil content (cephalopods, crinoids, 258 

brachiopods). Sedimentology documented phases of moderate to good aeration in more or 259 

less shallow water conditions (Wendt et al., 1984; Wendt, 1988). The continuous deepening 260 

during the late Famennian led to the decrease of diversity of benthic faunas (Wendt et al., 261 

1984) while the centre of Maïder Platform was henceforth flooded and pelagic cephalopod 262 

limestone accumulated (Wendt, 1985). The Ougarta region remained deep during the middle 263 

and the late Famennian and became a basin with a restricted water circulation (Benhamou et 264 

al., 2004; Abbache et al., 2019). In this environment, red “griottes” limestones were deposited 265 

with shaly beds and turbidites (Ouali Mehadji et al., 2012; Abbache et al., 2019). 266 

Ammonoids, brachiopods and trilobites were found within the nodular limestones (Benhamou 267 

et al., 2004; Crônier et al., 2013; Mottequin et al., 2015, Allaire et al., 2020). Although this 268 

facies is not an indicator of palaeobathymetry (Benhamou et al., 2004), Abbache et al. (2019) 269 

concluded that these sediments were deposited in a basinal environment. The Nereites 270 

ichnofacies confirms this kind of deep environment (Bendella et al., 2014). Ouali Mehadji et 271 

al. (2012) identified a narrow basin during the middle Famennian leading to a more 272 

homogeneous elongated basin in the late Famennian. 273 

At the end of the Famennian, a fine-grained clastic sedimentation, the Hangenberg Black 274 

Shale, was sedimented in most parts of north-western Africa (Kaiser et al., 2011; Klug et al., 275 
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2016). Sandy marls and cross-bedded sandstones covered the southern part of the Tafilalt 276 

Platform (Wendt et al., 1984). In Ougarta, sandstone beds occurred that were devoid of fossils 277 

and sometimes included channels (Abbache et al., 2019). Within sandstones assigned to the 278 

“Grès de Ouarourout” Formation, Ouali Mehadji et al. (2012) identified the maximal 279 

regression surface.  280 

At the beginning of the Tournaisian, the Tafilalt and southern Maïder Platforms 281 

corresponded to a deltaic environment (Wendt et al., 1984). The Ougarta region corresponded 282 

to a siliciclastic platform (Abbache et al., 2019) with temporary emersions leading to deltaic 283 

environments or lagoons (Ouali Mehadji et al., 2012). 284 

In the southern Ougarta region, in the Erg Djermel area, no trilobites were found within the 285 

Upper Devonian deposits, i.e., in black shale deposits corresponding to deep environments 286 

from the Frasnian to the late Famennian (Abbache et al., 2019). In the north of Ougarta, in the 287 

Ben-Zireg area, trilobites have not yet to be recorded within “griottes” calcareous deposits 288 

associated with rare shaly layers corresponding to a middle to distal platform (Abbache et al., 289 

2019). In Morocco, the Foum Zguid area and the Dra Valley deepened from the Eifelian to 290 

the late Famennian due to global transgression (Becker et al., 2004). These deep environments 291 

are not favourable to the development of trilobite communities and thus fossils are rare apart 292 

from ammonoids and crinoids (Hollard, 1963; Becker et al., 2004). 293 

 294 

3. Material and methods 295 

3.1. Material 296 

In order to analyse the trilobite records and their shifts, we completed an existing dataset 297 

(Bault et al., 2021) based on the occurrence of trilobites from Morocco and Algeria (Fig. 1). 298 

77 studies from the literature were considered because of their updated taxonomy and/or good 299 

temporal resolution (Appendix A). The dataset contains 2892 specimens (Appendix B) from 300 
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the Lochkovian to the Famennian distributed within 69 localities from five basins (Fig. 1). 301 

Sections separated by a few hundred metres were combined within the same locality. To 302 

avoid possible duplicates the specimen count was restricted to only the highest number of 303 

complete exoskeletons plus the disarticulated cephala or pygidia per occurrence. Other parts 304 

of trilobites such as free cheeks or hypostomes were not included. For each relevant 305 

occurrence, the dataset contains the following information: taxonomic information, 306 

abundance, location, stratigraphic position (substages) and lithological information 307 

(formations). Throughout our data compilation work, only genera were considered to 308 

maximise potential correlations between the distinct assemblages, as many species are only 309 

described locally. Species level is often inadequate for biodiversity purposes (Cecca, 2002). 310 

As the Late Devonian Phacops Emmrich 1839 differs from the Early and the Middle 311 

Devonian representatives of the genus, they were counted as a distinct genus called Phacops 312 

sensu lato (Crônier et al., 2011). We used a preliminary revision of asteropygines in open 313 

nomenclature while waiting for the revision of the whole subfamily. As a result, previous 314 

Metacanthina species M. issoumourensis Morzadec, 2001, and M. maderensis Morzadec, 315 

2001 are joined with Minicryphaeus giganteus Bignon et al., 2014 in the Genus 1, whereas 316 

Asteropyge wallacei Termier and Termier, 1950 is included in the Genus 2. Overall, the 317 

dataset comprises 135 genera (Appendix B) used for biodiversity indices (see section 4.3). 318 

However, we excluded genera found in only one sample because they did not provide any 319 

linkage with others samples for the clustering, which led to a selection of 67 genera spread 320 

over 123 samples (or assemblages) used for a cluster analysis. 321 

 322 

3.2. Clustering 323 

An analysis of associations was carried out using 123 samples at a given substage and 324 

formation to help us understand the temporal and spatial relationships between trilobite faunas 325 
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and their environments. The term association is used here for recurrent assemblages of 326 

trilobites with a similar taxonomic composition (Brenchley & Harper, 1998; Crônier & Van 327 

Viersen, 2007; Crônier & François, 2014; Bignon & Crônier, 2015). To reduce sampling bias 328 

the relative abundances of 67 genera were quantified in seven classes, i.e., the percentage of 329 

the abundance of each genus in a sample (Harnik, 2009). Indeed, the number of specimens is 330 

influenced by the sampling effort (Thompson, 2004), which cannot be estimated as our data 331 

were obtained from various bibliographic references.  332 

Data were analysed using a hierarchical cluster analysis (HCA). This agglomerating 333 

technique groups recurring samples according to their level of taxonomic similarity (Davis, 334 

1986; Harper, 1999; Hammer & Harper, 2008). It produces dendrograms highlighting the 335 

relationships in two modes - an R-mode clustering, grouping the taxa according to their 336 

probability of co-occurrence and a Q-mode clustering, grouping the samples, i.e., of similar 337 

generic composition. HCA was carried out using the average linkage algorithm and the 338 

Pearson correlation similarity index (Hammer & Harper, 2008).  339 

To identify environmental gradients, a Detrended Correspondence Analysis (DCA) was 340 

carried out. Correspondence Analysis (CA) is suitable for grouping samples from taxonomic 341 

abundance (Greenacre, 1984; Jongman & Jongman, 1995; Legendre & Legendre, 1998) but 342 

DCA is more reliable (Hammer & Harper, 2008; Holland et al., 2001; Bonelli & Patzkowsky 343 

2008) for reducing the Pinocchio (Fig. SUPPL. A1) and arch effects (Fig. SUPPL. A2). This 344 

ordination method maximises the correspondences between taxa and samples. It also provides 345 

ordination scores for both taxa and samples according to the relative abundance of taxa by 346 

involving a compression of the total information along the first axis, which often reflects 347 

paleoenvironmental gradients (Hammer & Harper, 2008). Unfortunately, several taxa need 348 

modern revision to clarify their generic determination. Moreover, microfacies analyses would 349 
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be suitable for a better characterization of the environments. In their absence, an additional 350 

DCA would improve our determination of the relationships between some samples. 351 

Finally, an analysis of similarities (ANOSIM) was carried out to statistically test the 352 

differences in the generic composition of groups of taxa. This non-parametric test is based on 353 

Bray-Curtis dissimilarity values as it only uses the rank order of dissimilarity values between 354 

groups and within groups (Clarke, 1993; Hammer & Harper, 2008). P-values were obtained 355 

through 5000 random permutations. 356 

 357 

3.3. Diversity indices 358 

To complete the multivariate analysis information and help understand the impact of 359 

migrations and environmental changes on the diversity, α and β diversities (Whittaker, 1960) 360 

were estimated. The total taxa diversity is determined by the mean taxa diversity at the habitat 361 

level (α) and the differentiation among habitats (β). The Shannon index H’ of α diversity was 362 

used to take into account the number of taxa within a sample (taxa richness) and the 363 

individual distribution within these taxa (taxa equitability). It considers the relative abundance 364 

of each taxon and gives weight to rare species. This index varies from 0 for a sample with 365 

only one single taxon to high values for samples with many taxa.              
 
   , 366 

with S the number of taxa and    
  
 

, with ni the number of individuals of the taxon i and N 367 

the number of individuals for all taxa. The Shannon index H’ of α diversity was estimated 368 

through time according to substages or formations and through environment according to 369 

associations. Diversity for associations is calculated as the mean taxonomic richness of 370 

samples of each association while the diversity for substages or formations is calculated as the 371 

total taxonomic richness in these stratigraphic units.  372 

Several measures related to compositional heterogeneity of β diversity were used to 373 

quantify differentiation (Baselga, 2010; Balsega & Orme, 2012). The first measure is an index 374 
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of taxa replacement (i.e., turnover) emphasizing the role of rare taxa as the difference in taxa 375 

composition between localities measured as Simpson dissimilarity (i.e., turnover component 376 

of Sørensen dissimilarity). This measure enables the identification of the environmental 377 

impact or spatial and temporal constraints on the number of taxa that are replaced between 378 

localities (Qian et al., 2005). The second measure is an index of nestedness, which occurs 379 

when taxa-poor assemblages are a subset of more diverse assemblages (Wright & Reeves, 380 

1992; Ulrich & Gotelli, 2007) measured as nestedness-resultant component of Sørensen 381 

dissimilarity (Baselga, 2010). This measure indicates non-random species loss as common 382 

species are less likely to disappear (Gaston et al., 2000). The last measure is an index of the 383 

Overall β diversity measured as Sørensen dissimilarity (Sørensen, 1948) corresponding to the 384 

global taxonomic difference between samples. Components of β diversity were estimated 385 

through time between substages and through environment between associations.  386 

HCA, ANOSIM, DCA and Shannon index H’ were achieved by using the software PAST 387 

v3.24 (Hammer et al., 2001). β diversity was computed by using the ‘Betapart’ package 388 

(Baselga & Orme, 2012) in the R statistical environment (version 3.6.3; R Core Team 2020). 389 

 390 

4. Results 391 

4.1. Delineated associations and faunal gradients 392 

The 67 trilobite genera distributed within the 123 assemblages are grouped into 16 393 

associations or occurrences, in four main clusters by HCA (Fig. 4; details in fig. Suppl. B). 394 

Details of each trilobite association are given in table.  395 

Table near here 396 

Cluster I groups five associations (i.e., Morzadecops Association Ia, Ganetops Association 397 

Ib, Montanproetus Association Ic, Sculptoproetus Association Id and Piriproetus Association 398 

Ie), covering the entire Early Devonian and the early Eifelian; Cluster II groups six 399 
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associations (i.e., Hollardops Association IIa, Morocops Association IIb, Gerastos 400 

Association IIc, Chotecops Association IId, Paralejurus Association IIe and Psychopyge 401 

Association IIf), from the Pragian to the Givetian; Cluster III groups only one association 402 

(Lepidoproetus Association IIIa) mainly found in the Maïder during the Pragian. Finally, 403 

Cluster IV groups all four associations (Cyrtosymbolina association IVa, Osmolskabole 404 

Association IVb, Trimerocephalus Association IVc and Phacops s.l. Association IVd) 405 

restricted to the Late Devonian (Famennian) of the Tafilalt and Ougarta. The ANOSIM results 406 

show a significant difference between the 16 associations (R coefficient = 0.59, p value = 407 

0.0002).  408 

Fig. 4 near here 409 

DCA enabled us to offset HCA limits and better understand the spatio-temporal 410 

distribution of the assemblages according to their taxonomic record. The Famennian samples 411 

did not share trilobites with the Early and Middle Devonian (Fig. 4) so they were removed 412 

from DCA to avoid a Pinocchio effect and were analysed in an additional DCA (Fig. 5). 413 

Similarly, the early Famennian samples BJ-Fa26 and Be-Fa26 were removed. 414 

Fig. 5 near here 415 

For the Early and Middle Devonian, DCA shows a time trend (Fig. 5A). The Early 416 

Devonian (Lochkovian, Pragian and early Emsian) associations show the highest values on 417 

both DC1 and DC2 axes, whereas the Middle Devonian associations show the lowest values 418 

on both DC1 and DC2 axes (Fig. 5A). The Early Devonian associations group mostly the 419 

Order Phacopida, whereas the Middle Devonian associations group mostly the Order Proetida 420 

(Fig. 5A).  421 

However, a look at the results in detail shows five associations are not overlapped by 422 

others along one axis of DCA or another. The Chotecops, Morzadecops, Ganetops and 423 

Sculptoproetus associations are clearly independent along the DC1 axis and the Paralejurus 424 
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and Lepidoproetus associations alone appear along the DC2 axis in the higher values (Fig. 425 

5A). These associations belong to either the Lochkovian, or Pragian, or early Emsian or 426 

Givetian. In contrast, late Emsian and Eifelian associations were strongly overlaid on both 427 

axes. 428 

For the Famennian, DCA shows a geographic gradient along DC1 axis, from Ougarta with 429 

the lowest values to the Tafilalt having the highest ones (Fig. 5B). 430 

 431 

4.2. Temporal and spatial distribution of clusters 432 

4.2.1. Early Devonian 433 

Details of temporal and spatial distributions are given in supplementary figures (Figs. 434 

SUPPL. C to H). During the Lochkovian, trilobites seemed restricted to the Ougarta Basin. 435 

They were few and dominated by the Ganetops genus (within Ass. IIb), which was the sole 436 

genus in the southern part of the Ougarta region (Fig. 6). To the North, Ganetops was 437 

associated with the Morzadecops genus at Zerhamra - the only genus capable of persisting in 438 

the Pragian, which thus occurs in another association (i.e., Morzadecops Association Ia). 439 

At the beginning of the Pragian, trilobites flourished in the Anti-Atlas area but are 440 

unknown from the Ougarta Basin. Four associations covered this period but two were more 441 

dominant, widespread over all the Anti-Atlas and intersected (Fig. 4), the Lepidoproetus (IIIa) 442 

and Paralejurus (IIe) associations. The Paralejurus Association occurred in the Ben Zireg 443 

area and developed in the Tafilalt and the Maïder areas too, whereas the Lepidoproetus 444 

Association occurred predominantly in the Maïder area although it occurred also in the south-445 

western part of the Tafilalt area (Fig. 6). These two widespread associations were strongly 446 

affected during the Emsian: the Paralejurus Association (IIe) disappeared and the 447 

Lepidoproetus Association (IIIa) occurred only in the Dra Valley (at Lansser locality) for the 448 

last time in the late Emsian. The Sculptoproetus Association (Id) and Morocops Association 449 
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(IIb) appeared in the Maïder area (respectively at Timarzite and Maharch localities) during 450 

the Pragian but were rarer. They developed considerably during the Emsian where they 451 

occurred in almost all basins (Fig. 6). The Emsian is represented by nine associations (Fig. 4). 452 

In addition to the three associations, which had already occurred in the Pragian, five new ones 453 

appeared in the early Emsian and an additional association in the late Emsian. The 454 

Morzadecops Association (Ia) proliferated everywhere in the early Emsian but disappeared 455 

immediately afterwards. The Psychopyge (IIf) and Hollardops (IIa) associations originated in 456 

the early Emsian of Ougarta and then colonised the Anti-Atlas area during the late Emsian 457 

(Fig. 6). The Montanproetus (Ic) Association lasted until the late Emsian and extended from 458 

the Anti-Atlas toward the west (Ben Zireg). The two latter associations were rare during the 459 

Emsian: The Piriproetus Association (IIe) is present only in two north-western Tafilalt 460 

localities (Gara Mdouard-Jbel Issoumour) and the Gerastos Association (IIc) only during the 461 

late Emsian of the Maïder area (Jbel Issoumour SW). 462 

Fig. 6 near here 463 

 464 

4.2.2. Middle Devonian 465 

Five Early Devonian associations are still found in the Eifelian but the Hollardops and 466 

Sculptoproetus associations disappeared after the early Eifelian. These associations were 467 

already rare and restricted to one basin: the Hollardops Association was restricted to the 468 

western part of the study area (i.e., Maïder and Foum Zguid areas) and the Sculptoproetus 469 

Association stayed confined in the Tafilalt area (Jbel Amlane, Fig. 7). In contrast, the 470 

Morocops Association continued to be widespread in different basins during the early Eifelian 471 

but also disappeared in the late Eifelian in many places despite a last occurrence (i.e., 472 

presence of Koneprusia) during the late Givetian in the north-western Tafilalt (Ras el Kebbar 473 

locality). Similarly, the Piriproetus Association (Ie), which appeared in the northern Tafilalt 474 
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during the Emsian, proliferated during the early Eifelian but has not been recorded in strata 475 

laid down later. They developed everywhere in the northern Tafilalt area but never occurred 476 

elsewhere. Conversely, the Gerastos Association (IIc) occupied exclusively the Maïder area 477 

where it appeared during the late Emsian although some Gerastos were also found 478 

outnumbered in one Tafilalt locality and one Dra Valley locality. During the Givetian, the 479 

Gerastos Association (IIh) was still limited to the Maïder area but also developed in the 480 

western part of the platform at Jbel Ou Driss (Fig. 7). Finally, the Chotecops Association (IId) 481 

was first identified in the Ougarta area (Ouarourout) during the early Eifelian before invading 482 

the Tafilalt area during late Eifelian (Fig. 7). The Chotecops Association (IIj) was still found 483 

in the western and the southern Tafilalt area during the Givetian but was apparently no longer 484 

present in Algeria. All these associations disappeared at the end of the Givetian. 485 

Fig. 7 near here 486 

 487 

4.2.3. Late Devonian 488 

Only one genus occurred in the study area during the Frasnian, at Marhouma in the 489 

Ougarta region. Chlupacops is not found in another stage or in another locality and has not 490 

been attributed to a particular association. 491 

During the early Famennian, the Tafilalt area was only occupied in its northern part (at Bin 492 

Jbilit-Bordj Est locality) by the genus Cyrtosymbolina (from Ass. IVa, Fig. 8). At the same 493 

time, in the western Ougarta (Marhouma), the biodiversity was greater with three identified 494 

genera, which are equally abundant within the Trimerocephalus Association (IVc). When the 495 

Cyrtosymbolina association disappeared during the middle Famennian, the Trimerocephalus 496 

Association invaded the Ougarta region but also the western edge of the Tafilalt area. In the 497 

extreme south-east of this area (Tamtert Zereg locality), the new Phacops s.l. Association 498 

(IVd) appeared. This genus is also associated with Trimerocephalus in the Tafilalt area 499 
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(‘KeA-Fb34’ sample) (Fig. 4). The Phacops s.l. Association replaced the Trimerocephalus 500 

Association in many late Famennian localities although Trimerocephalus remained only at 501 

Bechir locality (Ougarta). However, none of these two associations have been found in the 502 

uppermost Famennian. In the Tafilalt area, the Osmolskabole Association (IVb) replaced the 503 

Cyrtosymbolina Association (IVa) in many places from the middle Famennian and persisted 504 

until the latest Famennian where they occurred only in the extreme north-western part (at 505 

‘Bordj Est’ locality, Fig. 8). Osmolskabole was found with Trimerocephalus and Phacops s.l. 506 

only at Korb-el-Atil (Morocco) during the middle Famennian. 507 

Fig. 8 near here 508 

 509 

4.3. Evolution of biodiversity indices through time 510 

α and β diversity were low in the late Lochkovian with Shannon index H’ of 1.06 and 511 

overall β diversity of 0.2 (Fig. 9A). Then, the diversity indices increased during the Pragian 512 

reaching a plateau of high diversity until the early Eifelian with Shannon index H’ > 2 and 513 

overall β diversity > 0.9. The diversity indices decreased progressively during the late Eifelian 514 

to the early Givetian, before a sharp decrease from the middle Givetian to the end of the 515 

Frasnian with null or almost null values. In the early Famennian, both α and β diversity 516 

indices increased again. However, when the α diversity index stayed low compared to that of 517 

the Early and the Middle Devonian with a Shannon index H’ of 0.84, overall β diversity 518 

reached values similar to the Early Devonian. In the late Famennian, α diversity increased to 519 

1.89 before decreasing in the latest Famennian. During this period, overall β diversity evolved 520 

differently with a slight decrease in the middle Famennian followed by an increase in the late 521 

Famennian, the time of the highest disparity of the Late Devonian (Fig. 9A). Components 522 

related to compositional heterogeneity of β diversity show different trends. The β turnover 523 

component follows the overall β diversity trends whereas the β nestedness component always 524 
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shows lower values (Fig. 9A) indicating that most of the β diversity corresponds to the 525 

replacement of genera by others in different localities (Balsega, 2010). Moreover, β 526 

nestedness component changed exactly oppositely to the overall β diversity in the Early and 527 

the Middle Devonian (Fig. 9A). Consequently, during periods of low diversity, the localities 528 

with smaller numbers of species were subsets of biotas found in localities with greater 529 

trilobite diversity. 530 

Fig. 9 near here 531 

Trilobite association of the Tafilalt remained diverse during nearly all the Devonian 532 

contrary to the Maïder and Ougarta where the associations contained in the formations were 533 

unevenly diverse (Fig. 9B). Although the presence of trilobites at Ben Zireg and Foum Zguid 534 

areas were not continuous through time, Shannon index H’ was relatively high as in the other 535 

basins (Fig. 9B). The formations from the late Emsian and the Eifelian contained the most 536 

diverse trilobite faunas in all basins (Fig. 9B). 537 

 538 

5. Palaeoenvironments of trilobite associations 539 

It is widely known that trilobite associations vary between regions but the ecological 540 

drivers are largely unknown. HCA performed on the Devonian trilobite taxa of Morocco and 541 

Algeria enabled us to delineate twelve Early and/or Middle Devonian associations and four 542 

Late Devonian associations. The associations reflect distinctive taxonomic affinities and 543 

palaeoenvironmental preferences. Similar analyses on Devonian trilobites from the Ardenne 544 

Massif showed that trilobite associations were dependent on palaeobathymetric domains and 545 

sea-level variations (Crônier & Van Viersen, 2007). Subsequently, these associations (most 546 

particularly during the Givetian) where highlighted as equilibrated communities were able to 547 

maintain their organisation during rather strong and short environmental perturbations. These 548 
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associations were able to flourish again during similar favourable environmental conditions. 549 

Only global events influenced the trilobite association (Bignon & Crônier, 2015). 550 

During the Lochkovian, trilobites were rare in the study area. Only Ganetops, 551 

Protacanthina and to a lesser extent, Morzadecops, proliferated during the late Lochkovian in 552 

the Ougarta region (Ass. IIa). These asteropygines preferred the shallow siliciclastic 553 

environment of the Saoura Valley (Fig. 6; Morzadec, 1997) and similar environmental 554 

settings, also developing in the Iberian and Cantabric ranges and in the Armorican Massif 555 

(Morzadec, 1992). Subsequently, an increasing number of trilobites began to populate the 556 

region. Their remains are frequently found in the strata, whose carbonate content is also 557 

increasing. This suggests a lower sea-level and concerns distinct invertebrate faunas (Frey et 558 

al., 2014). In such environments, the Lepidoproetus Association (IIIa) flourished; proetids 559 

like Lepidoproetus, Dalejeproetus and Podoliproetus preferred these rather shallow 560 

environments with open marine conditions (Johnson & Fortey, 2012). The Lepidoproetus 561 

Association survived during the late Emsian of the Dra Valley in deeper water environments. 562 

Trilobites of this association are usually found in calcareous shales deposited above the photic 563 

zone but probably below the storm weather wave base (Chatterton et al., 2006). However, 564 

only Hollandiella was encountered in these deeper environments and in layers above the 565 

transgressive Daleje event (House, 1985).  566 

During the Pragian, the Paralejurus Association (IId) also established itself (Fig. 6). 567 

Paralejurus and Reedops were predominant in limestones at intermediate depth but also in 568 

shallower environments such as the bioherms of Hamar Laghdad (McKellar & Chatterton, 569 

2009). Reedops was probably semi-infaunal or infaunal (McKellar & Chatterton, 2009) 570 

whereas Schraut & Feist (2004) excluded a semi-endobenthic life habit for Paralejurus. 571 

Consequently, these two genera were rarely found together notwithstanding some exceptions - 572 

Paralejurus co-occurred with Reedops cephalotes hamlagdadianus Alberti 1983 but the latter 573 
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species appears to have been ecologically more flexible with respect to the type of substrate 574 

(Chlupáč, 1977). During this period, the Sculptoproetus Association (IIe) developed and is 575 

often found in the nodular marly limestones from the north-eastern part of Jbel Issoumour 576 

(Alberti, 1967b, 1969), indicating a slightly deeper environment than those preferred Pragian 577 

associations. The Sculptoproetus Association evolved during the Emsian; Sculptoproetus 578 

abounds in marly limestones indicating an intermediate water depth environment (Fig. 6). 579 

During the Emsian, Morzadecops first associated with other asteropygines during the 580 

Lochkovian, flourished and dominated the Morzadecops Association (Ia). Morzadecops 581 

occurs in marls and limestones interbedded with clay in moderately shallow water depth 582 

environments (Klug et al., 2008). The Montanproetus Association (Ic) also developed during 583 

the Emsian but it was mainly found in calcareous deposits in shallow carbonate environments 584 

(Fig. 6). The associated Kayserops preferred a more shallow environment (Morzadec, 2001). 585 

Psychopyge is widely distributed in several marine basins during the Emsian. It was rarely 586 

associated to other genera (Fig. 4) and dominated the Psychopyge Association (IIf). The 587 

Psychopyge are present in marls or limestones interbedded in thick marl deposits from 588 

relatively distal environments dominated by pelagic faunas (Morzadec, 1988). 589 

Although the Morocops Association (IIb) was first encountered during the Pragian at the 590 

Maharch locality with the presence of Cyphaspis (Van Viersen & Holland, 2016), it 591 

proliferated in the late Emsian and the early Eifelian. This association was dominated by 592 

Morocops, which co-occurred with Cyphaspis and Austerops. The presence of Austerops 593 

could indicate a pioneer community (Khaldi et al., 2016). The Morocops Association also 594 

developed in the moderately deep-water environment of the Dra Valley (Chatterton et al., 595 

2006) and the platform environment of Ougarta after the late Emsian transgression (Khaldi et 596 

al., 2016). It was also able to live in the epicontinental basin between fair weather and storm 597 

wave base of Hamar Laghdad (Brachert et al., 1992). Hence, the Morocops Association 598 
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abounded in a water environment below the fair-weather wave base. At the same time, the 599 

Piriproetus Association (Ia) was encountered at the edge of the pelagic Tafilalt Platform in 600 

moderate depth below the fair-weather wave base (Figs. 6,7); Kaufmann, 1998; Chatterton et 601 

al., 2020). Piriproetus occurred in a facies dominated by marly limestones but they 602 

disappeared from this environment after the early Eifelian.  603 

During the late Emsian, the Hollardops Association (IIa) also flourished and was 604 

dominated by Hollardops, Timsaloproetus and Erbenochile. These taxa proliferated in marls 605 

or limestones interbedded within marls. They were mostly present in Ougarta, an area 606 

considered relatively deep and dominated by shales (Ouali Mehadji et al., 2011) (Fig. 6). A 607 

similar environment developed in the western Dra Valley where Timsaloproetus was found 608 

(Chatterton et al., 2006). Hollardops enjoyed in intermediate water depth below fair-weather 609 

wave base like in the Maïder and the Ougarta region (Chatterton & Gibb, 2010) but they 610 

disappeared with a more open marine environment (Morzadec, 2001). Finally, Erbenochile 611 

proliferated in relatively deep marine environments (Chatterton et al., 2006), which 612 

corroborates the moderately deep marine conditions such as an offshore transition for the 613 

Hollardops Association. The Gerastos Association (IIc) also flourished during the Emsian at 614 

Jbel Issoumour South-west (Fig. 6). In this balanced community (Fig. 4), Morocops or 615 

Cyphaspis did not prevail over Gerastos contrary to many late Emsian assemblages affiliated 616 

with the Morocops Association. Conversely, the Gerastos associations from the Middle 617 

Devonian were dominated by Gerastos, which was the only genus in many localities (Fig. 4). 618 

Gerastos is found in limestones from the Maïder where they found detritus for food in the 619 

shallow shelf marine environment (Gibb & Chatterton, 2010). 620 

The Chotecops Association (IId) was the only association to appear and expand during the 621 

Middle Devonian and was dominated by Chotecops associated with Helmutia and 622 

Struveaspis. The Chotecops Association was encountered in Ougarta and Tafilalt (Fig. 7) in 623 



 

26 

marls or in thin limestone layers in marl deposits from the quiet environments of a distal 624 

platform or basin (Feist & Orth, 2000; Crônier et al., 2018a).  625 

All the associations that appeared during the Early or Middle Devonian disappeared in the 626 

late Givetian. Only Chlupacops, a genus with reduced-eyed taxa was found in the limestones 627 

of deep marine environments in the Ougarta Basin (Feist et al., 2016).  628 

After the Kellwasser event, trilobites were rare in the study area. The first trilobite after the 629 

crisis was Cyrtosymbolina in the early Famennian. The increasing depth of water during the 630 

Famennian (Wendt et al., 1984; Wendt & Belka, 1991; Abbache et al., 2019) led to trilobites 631 

flourishing again, which meant we could use them to examine the relationships between 632 

different basins over time. During the early Famennian, only cyrtosymbolines proliferated in 633 

the shallow pelagic Tafilalt Platform in the Cyrtosymbolina Association (IVa). They became 634 

common in the photic offshore environments of North Africa and many other places 635 

(Lerosey-Aubril & Feist, 2012). Members of the Cyrtosymbolina Association occur mainly in 636 

limestones but also in marlstones and argillaceous limestones, such as shallow carbonate 637 

marine environments (Fig. 8).  638 

In the Ougarta Basin, blind trilobites such as Trimerocephalus, Trifoliops and Enygmapyge 639 

occurred since the early Famennian. The Trimerocephalus Association (IVc) established in 640 

many localities of the Ougarta Basin (Fig. 8) in deep marine environments of the slopes and 641 

basins. They were collected from rare often nodular limestones indicating a weak water 642 

circulation (Benhamou et al., 2004; Crônier et al., 2013). Trimerocephalus also occurred at 643 

Korb-el-Atil in the Tafilalt Basin associated with Osmolskabole and Phacops sensu lato (Fig. 644 

8) within a marine environment dominated by shales (Wendt & Belka, 1991). During the late 645 

Famennian, the Trimerocephalus Association is only found at Béchir, again in a deep marine 646 

environment, before its demise at the end of the Famennian.  647 
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The Osmolskabole Association (IVb) appeared during the middle Famennian in the 648 

limestones of the Tafilalt Platform (Fig. 8) because they appreciated the photic offshore 649 

environment. Consequently, this pelagic platform became convenient for the members of this 650 

association because of the sea-level rise (Wendt & Belka 1991). The Osmolskabole 651 

Association also flourished in the deeper marine environments of the slowly subsiding Tafilalt 652 

Basin (at Korb-el-Atil and Ouidane Chebbi localities), in argillaceaous limestones. 653 

Nonetheless, this association did not occur in the Maïder Basin because this area was deeper 654 

than the Tafilalt Basin (Wendt et al., 1984).  655 

During the late Famennian, Cyrtosymbolines were still abundant in the Tafilalt Platform. 656 

However, the Osmolskabole Association was no longer present in the Tafilalt Basin, probably 657 

due to a transgression (Wendt & Belka, 1991; Becker et al., 2004). At the end of the 658 

Famennian, the Osmolskabole Association is still found in the limestones of the north Tafilalt 659 

Platform whereas the south became a deltaic area (Wendt et al., 1984). Indeed, trilobites did 660 

not appreciate brackish water although some attempts to colonize these environments 661 

happened in the clade history (Mángano et al., 2021). The Osmolskabole Association and 662 

cyrtosymbolines in general were restricted to moderate water depth environments from 663 

platform to slope, which are represented today by limestone deposits. 664 

Finally, the Phacops s.l. Association (IVd) flourished in the Ougarta region (at Tamtert 665 

Zereg locality) during the Famennian, to the east of the location of the Trimerocephalus 666 

Association (Fig. 8) in nodular ‘griotte’ limestones corresponding to a basinal environment 667 

(Benhamou et al., 2004). The Phacops s.l. Association extended into the late Famennian with 668 

the continuous deepening of this area (Wendt et al., 1984; Wendt & Belka, 1991; Abbache et 669 

al., 2019) and replaced the Trimerocephalus Association (at Marhouma locality). The 670 

Phacops s.l. Association still abounds in nodular limestones alternating with claystones, or in 671 

marlstones, in moderate to deep marine environments such as basins. Samples with Phacops 672 
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s.l. are generally slightly younger than those of Trimerocephalus even if these two genera 673 

may co-occur (Crônier et al., 2013). Therefore, a progressive replacement occurred in the 674 

Ougarta Basin in the deeper offshore environment and already recognised at the global scale 675 

(Crônier & François, 2014). At the end of the Famennian, a sea-level drop occurred and all 676 

the deep water trilobites disappeared from the studied area. 677 

 678 

6. Connection between basins and their history through time 679 

6.1. Lochkovian 680 

Trilobite diversity was low in the study area in the Lochkovian (Fig. 9A). They only 681 

occurred in the Saoura Valley where trilobites populated the sediment surface in the late 682 

Lochkovian after a regional regression (Ouali Mehadji et al., 2011). Only asteropygines lived 683 

in these shallow siliciclastic environments (Morzadec, 1997). To the west, the eastern Anti-684 

Atlas became too deep to allow benthic faunas to settle during the Lochkovian (Hollard, 685 

1967) and thus, this environment was neither favourable for asteropygines (Morzadec, 1992), 686 

nor for other trilobites as they were completely absent from this area. 687 

 688 

6.2. Pragian 689 

The Pragian regression led to a higher carbonate content with more sand in the Saoura 690 

Valley where asteropygines no longer proliferated (Morzadec, 1997; Ouali Mehadji et al., 691 

2011). Indeed, the composition of trilobite associations was linked to the sediment 692 

accumulation rate and the type of shelf (Bignon & Crônier, 2015) and no other trilobites 693 

replaced them. The eastern Anti-Atlas became more carbonate too (Hollard, 1963; Kaufmann, 694 

1998). New trilobite communities were established (Hollard, 1967; Morzadec, 2001) in these 695 

favourable environments leading to a strong increase of their diversity in North Africa (Fig. 696 

9A) simultaneously to the global Pragian diversification (Chlupáč, 1994, Bault et al., 2021). 697 
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However, despite this high diversity three genera dominated the shallow water environments 698 

of the Anti-Atlas region: Paralejurus, Reedops and Lepidoproetus. These genera and some 699 

other genera, constituted two associations: the Paralejurus Associations was dominant in the 700 

Maïder and the Lepidoproetus Association was dominant in the Tafilalt (Fig. 6). Nevertheless, 701 

the Paralejurus Association developed to the west in the Tafilalt and in the north of the 702 

Ougarta region at Ben Zireg and to the east near Foum Zguid. Thus, there was a strong 703 

connection between these different basins during the Pragian. This is due to a relatively 704 

homogeneous environment in the Anti-Atlas region at this time, considered as a homoclinal 705 

ramp (Kaufmann, 1998; Lubeseder et al., 2010). Exchanges also occurred with the 706 

neighbouring Bechar area, which was facilitated by the same carbonate platform environment 707 

(Ouali Mehadji et al., 2011) and with the south-west Foum Zguid area where Reedops and 708 

Cyphaspis were reported. All the Pragian trilobites populated in a relatively shallow 709 

environment of various carbonate platforms. However, Paralejurus and its associated 710 

trilobites preferred slightly deeper environments than Lepidoproetus, which is why they rarely 711 

co-occurred. The shoal of Hamar Laghdad (Hollard, 1981, Brachert et al., 1992; Klug et al., 712 

2018) showed a high diversity of trilobites. 713 

 714 

6.3. Emsian 715 

In the early Emsian, diversity decreased (Fig. 9A). While the Pragian dominant species 716 

almost disappeared from the studied area, other genera proliferated despite no important 717 

environmental changes in the Anti-Atlas (Kaufmann, 1998). Morzadecops spread over the 718 

entire eastern Anti-Atlas and Sculptoproetus lived in the Tafilalt. In the Ougarta region, a 719 

local transgression (Ouali Mehadji et al., 2011) led to a comeback of trilobites with the 720 

moderately deep water genus Psychopyge but no connection existed with the Anti-Atlas; 721 

Ougarta region remained isolated from other basins to the west and to the north. The Bechar 722 
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basin was also excluded from the trilobite dispersal with Prodrevermannia the only genus 723 

occurring in that region (Alberti, 1983). Morzadecops, which preferred a shallow environment 724 

(Morzadec, 2001), could not proliferate in the Ougarta region. However, although 725 

Sculptoproetus lived in moderately deep-water (Chatterton et al., 2006), it was not found in 726 

the Ougarta region. Hence, the deep waters of the Tafilalt Basin between Ougarta and Anti-727 

Atlas prevented the dispersal of shallow and moderately deep-water trilobites from one of 728 

these regions to the other. 729 

In Morocco, the Maïder and Tafilalt platforms were still connected and the Morzadecops 730 

Association (Ia) flourished in both areas. However, the Sculptoproetus Association (Id) was 731 

restricted to the Tafilalt area while it appeared in the Maïder area during the Pragian. The 732 

Tafilalt area being typically shallower than the Maïder area (Wendt, 1995), trilobites migrated 733 

to shallower places but no transgression occurred at this time (Kaufmann, 1998). There were 734 

no more dispersal to the south-west as the Foum Zguid area became shallower (Jansen et al., 735 

2004) where trilobites did not develop. 736 

During the late Emsian Daleje transgression (Johnson et al., 1985; Kaufmann, 1998; 737 

House, 2002), the studied area became deeper (Kaufmann, 1998, Belka et al., 1999). 738 

Trilobites developed in this new environment leading to the highest α diversity and a high β 739 

diversity (Fig. 9A) simultaneously with the global diversity peak (Chlupáč, 1994; Adrain, 740 

2008). Late Emsian trilobites constituted a stable equilibrium community. Some of the 741 

common trilobites of the Pragian persisted into the early Emsian, such as Paralejurus, 742 

Reedops and Sculptoproetus. However, no Pragian or early Emsian trilobite genus became 743 

common in the late Emsian; they were all declining and restricted to few areas. The only 744 

exception was Psychopyge, which invaded the Anti-Atlas. Thus, during this period of 745 

diversification, the genera quickly renewed themselves by showing innovations and novelties 746 

(Chlupáč, 1994). Numerous genera appeared in the late Emsian and among them with the 747 
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phacopids Morocops and Hollardops respectively dominating the Anti-Atlas (Crônier et al., 748 

2018b) and the Ougarta region. Connections between the different basins were strong, 749 

favoured by the relatively homogeneous environments in North Africa, moderately deep 750 

water, with an important proportion of muddy regions (now shales) covering the platforms 751 

(Hollard, 1967; Kaufmann, 1998; Jansen et al., 2004; Chatterton et al., 2006; Ouali Mehadji et 752 

al., 2011). Exchanges between Anti-Atlas and the deeper Ougarta region became possible: 753 

Hollardops and Erbenochile occurred in Ougarta, Maïder and Dra Valley (Morzadec, 2001; 754 

Chatterton et al., 2006; Chatterton & Gibb, 2010; Khaldi et al., 2016). Psychopyge were also 755 

found in both the eastern Anti-Atlas and the Ougarta region (Fig. 6). Although the Tafilalt and 756 

Maïder areas became different during the late Emsian in terms of both facies and fauna 757 

(Hollard, 1967), a strong connection was present between these two areas. Sculptoproetus 758 

proliferated in the Maïder area suggesting an invasion from the Tafilalt area. At the same 759 

time, Morocops, as well as Cyphaspis, flourished in the Tafilalt, Maïder and near Foum Zguid 760 

areas. Ben Zireg was also involved in the exchanges with Montanproetus existing in the 761 

Bechar Basin and the Maïder area. Nevertheless, it remains difficult to demonstrate the supply 762 

of trilobites from one basin to another without a finer temporal resolution. Although trilobite 763 

exchanges were numerous, some trilobites remained restricted to a basin such as Gerastos and 764 

Piriproetus in the Maïder Basin. Significant taxonomic turnovers occurred between the late 765 

Emsian localities as is highlighted by the high β diversity (Fig. 9). More important local 766 

environment variability in the eastern Anti-Atlas (Hollard, 1967) is a potential explanation for 767 

this high taxonomic turnover. 768 

 769 

6.4. Eifelian 770 

The transition between the Early and Middle Devonian was marked by the onset of 771 

tectonic events leading to a platform and basin topography (Wendt et al., 1984; Kaufmann, 772 
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1998; Lubeseder et al., 2010). This event is due to the Variscan orogeny, which disrupted the 773 

eastern Anti-Atlas. A deep basin (i.e., Maïder Basin) separated two platforms (i.e., Maïder 774 

and Tafilalt platforms). As most trilobites lived in shallow environments, they did not cross 775 

the basin to invade other localities. More specifically, the deep Maïder Basin acted as a 776 

natural barrier, which led to the development of distinct trilobite communities in the Middle 777 

Devonian. This barrier also effectively prevented the dispersion of these communities by 778 

pelagic or planktonic larvae, which had been identified in several Devonian trilobites (Speyer 779 

& Chatterton, 1989; Chatterton et al., 1990; Chatterton & Speyer, 1997). Indeed, these 780 

protaspides could not cross this deep basin because of unfavourable paleocurrents, 781 

paleoenvironmental conditions, or/and a too wide distance for their life duration. 782 

Consequently, in contrast to the Lower Devonian, trilobite distributions of the Eifelian show 783 

almost no connections between the Tafilalt and Maïder areas. To the west of the Maïder 784 

Basin, Gerastos and Cyphaspis evolved whereas Piriproetus then Chotecops developed in the 785 

Tafilalt (Fig. 7). The trilobites from the west of the Maïder Basin evolved in a relatively 786 

shallow environment (Gibb & Chatterton, 2010) and did not cross the deep Maïder Basin 787 

(Wendt et al., 1984). On the other hand, Cyphaspis occurred to the south-west at Foum Zguid 788 

(Van Viersen & Holland, 2016) showing a connection between the Maïder and the western 789 

Anti-Atlas areas. Gerastos that appeared in the late Emsian, proliferated in the Maïder during 790 

the Eifelian and covered the edges of the Maïder Platform including the western part at the 791 

Jbel Ou Driss locality (Fig. 7). Gerastos replaced Morocops during the Middle Devonian in 792 

the shallow neritic environments, while the distribution of this genus decreased from late 793 

Emsian to be restricted in some Maïder localities. To the eastern side of the Maïder Basin, a 794 

community of trilobites dominated by the genus Piriproetus (Ass. Id) expanded in the pelagic 795 

Tafilalt Platform. The trilobites from this association living in a moderately deep environment 796 

were unable to cross the Maïder Basin. While no connection existed to the west of Tafilalt, 797 
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trilobite exchanges still occurred to the east. Indeed, Chotecops, present in deep environments 798 

(Feist & Orth, 2000; Crônier et al., 2018a) occurred in both Tafilalt and Ougarta areas. 799 

Variscan orogeny created a basin between the Tafilalt and the Ougarta areas but this basin 800 

seems shallower than the Maïder Basin (Kaufmann, 1998) thus enabling Chotecops to cross 801 

this basin to invade new localities but not Piriproetus. Chotecops probably never settled in the 802 

Maïder because this basin was too deep. Moreover, they did not flourish in the shallow 803 

environments of the Maïder Platform margins. Austerops, present in Ougarta, Maïder and Dra 804 

Valley, was the only genus living on both sides of the Maïder Basin (Chatterton et al., 2006; 805 

McKellar & Chatterton, 2009; Crônier et al., 2018a). Its presence in these areas was recorded 806 

since the late Emsian (Fig. 6). 807 

In both Tafilalt and Maïder, the Eifelian faunas replaced those of the Emsian and the 808 

trilobite associations were influenced by the palaeobathymetry (Crônier & Van Viersen, 809 

2007). The origination rate and trilobite changes were not particularly high at the 810 

Emsian/Eifelian boundary on an overall scale (Chlupáč, 1994; Lerosey-Aubril & Feist, 2012). 811 

Thus, North-African faunal changes rather seemed attributed to topographic changes where 812 

some trilobite genera took advantage of this new heterogeneous environment. 813 

 814 

6.5. Givetian 815 

The overall Middle Devonian Choteč, Kačak and Taghanic events (House, 2002; Becker et 816 

al., 2016) had an impact on trilobites and their diversity at the overall scale (Lerosey-Aubril & 817 

Feist, 2012) and from North Africa (Fig. 9A). Most of them disappeared during the Givetian 818 

and only three associations have been reported in the studied area: the Gerastos Association 819 

with Gerastos sometimes associated with Cornuproetus or Cyphaspis in the Maïder area; the 820 

Chotecops Association dominated by Chotecops and Helmutia in the Tafilalt area and the 821 

Morocops Association at Ras el Kebbar locality (Maïder). The same distinction between areas 822 
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was identified during the Eifelian. However, the presence of Gerastos at the Jbel Ziata 823 

locality in the Tafilalt (Feist & Orth, 2000) associated with Chotecops showed that trilobite 824 

exchanges were rare but remained possible. The weak regressive regime during the early 825 

Givetian enabled such migrations from the Maïder to the Tafilalt areas (Lubeseder et al., 826 

2003) as well as the proximity of the Maïder Platform with the Tafilalt Platform to the north 827 

of the Maïder Basin (Kaufmann, 1998). All the trilobites occurred in the eastern Anti-Atlas, 828 

whereas the Foum Zguid area and the Ougarta Basin seem relatively depopulated. Unlike in 829 

the Ardenne Massif (North of France), the Kačak event did not lead to a replacement of 830 

faunas in North Africa (Bignon & Crônier, 2015) but instead to an extinction of existing 831 

faunas. However, like in the North of France, the environmental changes favoured Dechenella 832 

in the Tafilalt (Feist & Orth, 2000). 833 

 834 

6.6. Frasnian 835 

Overall, the Frasnian trilobite record is scarce (Feist, 1991; Lerosey-Aubril & Feist, 2012). 836 

In the studied North African area, the reduced-eyes Chlupacops was the only genus 837 

encountered in the Ougarta Basin in deep environments (Feist et al., 2016). This basin seems 838 

to have been disconnected from the others. The low trilobite diversity recorded during the 839 

Frasnian could be explained by unfavourably shallow environmental conditions in the eastern 840 

Anti-Atlas (Wendt et al., 1984, Wendt & Belka, 1991) whereas Feist (2002) described 841 

trilobites from an outer platform environment in the neighbouring Meseta Central in 842 

Morocco. 843 

 844 

6.7. Famennian 845 

After the Kellwasser crisis, some trilobites developed worldwide. While, cyrtosymbolines 846 

proliferated in the shallow outer platform (Lerosey-Aubril & Feist, 2012), in deeper 847 
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environments such as basins, reduced-eyed and blind phacopids and proetids developed 848 

(Chlupáč, 1994; Lerosey-Aubril & Feist, 2012). A similar process occurred in North Africa 849 

where cyrtosymbolines appeared during the early Famennian in the shallow Tafilalt Platform 850 

and constituted a pioneer community. At the same time, in the deeper Ougarta Basin, the 851 

number of blind phacopids increased. No trilobites have been found in the Maïder for this 852 

period. No dispersal routes seem to have existed between the different basins at that time: the 853 

Trimerocephalus Association was encountered in the Ougarta Basin, while the 854 

Cyrtosymbolina Association was encountered in the Tafilalt area. Cyrtosymbolines could not 855 

cross the deep Maïder and Tafilalt basins as the Tafilalt Platform acts as a natural barrier to 856 

stop deep water trilobites coming from Ougarta. This trend remained through the Late 857 

Devonian. In contrast, the distal platform of Ben Zireg (Abbache et al., 2019) seems to have 858 

been a favourable environment to host trilobites but none have been found yet in the nodular 859 

limestones and shales. Trilobite studies based upon localities at Ben Zireg since Alberti 860 

(1983) remain scarce and this could explain the absence of trilobites in addition to the 861 

sedimentary gaps (Abbache et al., 2019). Trilobites were absent throughout the Famennian in 862 

the Maïder Basin, probably deposited in deeper water than that of the Tafilalt Basin (Wendt et 863 

al., 1984; Kaufmann, 1998). Crônier & François (2014) suggested a depth superior to 60 m 864 

for blind genera (i.e., Trimerocephalus) and Feist et al. (2016) indicated an offshore 865 

environment near or beyond the limit of the photic zone. However, with its depth of 200 to 866 

400 metres, the Maïder Basin had much deeper steep slopes according to stratigraphic studies 867 

(Wendt et al., 1984). The Tafilalt Platform also acted as a barrier to trilobite dispersal. 868 

The sea-level rise of the middle Famennian (Wendt et al., 1984; Wendt & Belka, 1991; 869 

Abbache et al., 2019) allowed the proliferation of deep-sea phacopids. They were present at 870 

that time, in many Ougarta localities and a connection appeared between the Tafilalt and 871 

Ougarta areas. Exchanges were possible because the Tafilalt Basin and the Ougarta Basin 872 
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were probably interconnected during the Late Devonian (Wendt et al., 1984; Wendt, 1985; 873 

Abbache et al., 2019). However, dispersal apparently only occurred from the Ougarta Basin to 874 

the Tafilalt area, i.e., from deeper to shallower environments. Indeed, this unidirectional 875 

supply of biodiversity suggests that only the deep-living taxa of Ougarta were able to cross 876 

the deep basin between the Ougarta and the Tafilalt. The moderately deep-water taxa Phacops 877 

s.l. and Trimerocephalus present in the Ougarta region were able to colonise the margins of 878 

the quite deep Tafilalt Basin. Shallower areas also enabled the development of other trilobite 879 

communities with new cyrtosymbolines appearing in the Tafilalt Platform dominated by the 880 

Osmolskabole genus (Alberti, 1973, 1974, 1975a, 1976a, 1976b; Lerosey-Aubril & Feist, 881 

2005; Lerosey-Aubril & Feist, 2006). Because of the deepening of this area, they were 882 

adapted to intermediate water depths and could have settled in the margins of this relatively 883 

shallow Tafilalt Basin (Wendt et al., 1984) although they were still unable to cross a deep 884 

basin to establish themselves in the Ougarta region. Moreover, in the intermediate 885 

water/depth, other taxa developed during the middle Famennian. These were the large eyed 886 

Phacops s.l., which proliferated in the deeper part of the shallow Tafilalt Platform, associated 887 

with Trimerocephalus or Osmolskabole. On the other hand, Phacops s.l. only occurred in the 888 

shallower part of Ougarta region to the south-east. 889 

During the late Famennian, this connection was disrupted and the Tafilalt and Ougarta 890 

areas are represented by two separate communities (Fig. 8). Despite the deepening of the 891 

Tafilalt basin at this time, no trace of deep-water phacopids has been found there although 892 

they were still present in the Ougarta Basin. Two explanations are possible - first, that they 893 

were present but still not sampled and secondly, that a natural barrier, which has still not been 894 

identified between the two basins prevented any trilobite exchange. This kind of natural 895 

barrier could have resulted from the deepening between Ougarta and Tafilalt areas, preventing 896 

any crossing of trilobites, or, alternatively, from a very shallow barrier, formed in the context 897 
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of Variscan orogeny, which was not favourable to Famennian trilobites (Hollard, 1974, 898 

Wendt et al., 1984). Unfortunately, this area was covered by Cretaceous deposits (Benhamou 899 

et al., 2004) thus preventing any information on the evolution of this basin. Cyrtosymbolines 900 

were restricted to the shallowest part of Tafilalt, to the North. During this period of highstand 901 

sea-level (Wendt & Belka, 1991), the rest of the Tafilalt was probably too deep to host them. 902 

In contrast, Trimerocephalus has been recorded in the Ougarta region for this time in just one 903 

locality, while Phacops s.l. dominated the rest of this area. These phacopids tended to replace 904 

Trimerocephalus in the late Famennian (Crônier & François, 2014). 905 

Finally, at the end of the Famennian, a regression occurred leading to a deltaic 906 

environment with sandstone deposits in the eastern Anti-Atlas and Ougarta region (Wendt et 907 

al., 1984; Kaiser et al., 2011; Abbache et al., 2019). This environment was unfavourable for 908 

many benthic organisms and all deep-sea trilobites disappeared from these areas. Only two 909 

cyrtosymbolines (i.e., Pusillabole and Pseudowaribole) remained in the shallow water 910 

environment of the northern Tafilalt and were apparently unable to migrate to the Ougarta 911 

Basin, which was probably too deep (Fig. 8). It is difficult to understand the facies 912 

distribution of the Tafilalt because of the scarce outcrops and the potential reworking due to 913 

debris flows (Wendt et al., 1984). 914 

Originations and migrations always occurred from the shallower part of Tafilalt and 915 

Ougarta region. In the Tafilalt, trilobites appeared in the shallowest part of the Tafilalt 916 

Platform, located to the north (Wendt & Belka, 1991) before becoming a deeper basin in the 917 

south. Trilobite migrations seemed to have started in its south-eastern part of the Ougarta 918 

Basin. The Trimerocephalus Association from the early Famennian and the Phacops s.l. 919 

Association from the middle Famennian appeared respectively at the Marhouma and Tamtert 920 

Zereg localities (Fig. 8). These localities corresponded to an epicontinental platform 921 

(Benhamou et al., 2004) and represented the shallowest part of the Ougarta Basin. Then, 922 
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following their occurrences, each genus invaded the deepest north-western part and 923 

dominated the basin (Fig. 8). However, an influence from the south-west was unlikely 924 

because the environment in the Gourara area was deep with basinal deposits (Benhamou et 925 

al., 2004; Abbache et al., 2019). 926 

 927 

6.8. Tectonical impact on trilobite faunas 928 

During the Early Devonian, the Anti-Atlas area had a rather homogeneous environment 929 

(Lubeseder et al., 2010). In this context, faunal changes were linked to global environmental 930 

changes with first, the Pragian regression, which led to environmental changes driving faunal 931 

changes (Chlupáč, 1994; Morzadec, 1997, 2001). Similar changes occurred in Bohemia with 932 

the development of Reedops and Odontochile (Chlupáč et al., 1985). Then, the Daleje 933 

transgression (Kaufmann, 1998; House, 2002) affected the North African trilobites with the 934 

development of new faunas dominated among others by Morocops and Hollardops, adapted 935 

to slightly deeper environments (Fig. 6). The same trend occurred worldwide, with 936 

diversifications and innovations, particularly in offshore facies (Chlupáč, 1994). From the 937 

Middle Devonian, the Variscan orogeny started to influence the regional topography (Wendt 938 

et al., 1984; Kaufmann, 1998) and global events (sea-level changes and continental drift) were 939 

no longer the only cause of biodiversity changes. Obviously, the Middle Devonian events 940 

influenced the trilobite faunas, both quantitatively (Bault et al. 2021) and qualitatively (Fig. 941 

7). Similarly, an important turnover occurred with the Kellwasser events (Lerosey-Aubril & 942 

Feist, 2012) and consequently, the Famennian trilobites had nothing in common with their 943 

predecessors in North Africa (Fig. 4). However, from the Eifelian, there were faunal 944 

differences between nearby areas (Fig. 7). These differences were well marked in Morocco 945 

and Algeria with strong differences between Maïder and Tafilalt whereas in other places such 946 

as the Ardenne Massif, the faunas were still subject only to global changes (Bignon & 947 
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Crônier, 2015). The basin and platform topography affected the trilobites because of their 948 

bathymetrical preferences (Morzadec, 2001; Chatterton et al., 2006). Rapid changes and 949 

instability made unpredictable regional conditions indicating that North African trilobite 950 

communities conform to Gleasonian models where 'species-individualistic' responses to 951 

environmental changes became prevalent in community ecology (Gleason, 1927). Regular 952 

local and/or global changes hampered the ecological stasis spotted in other communities 953 

(Brett et al., 1996). 954 

Unlike topography, the type of sedimentation had a low impact on North African trilobites, 955 

except for those due to global changes at the Lochkovian-Pragian boundary. Moreover, the 956 

associations seemed less dependant on the sedimentation type laterally. For instance, 957 

Gerastos has been found both in thick-layered limestones and in calcareous mudstones 958 

interbedded with shales (Gibb & Chatterton, 2010). This kind of equilibrium community has 959 

been already noted in the Middle Devonian trilobites of the Ardenne Massif (Bignon & 960 

Crônier, 2015). Indeed, the Dechenella association raised and flourished when carbonate 961 

platform environments appeared at the end of the Eifelian. This community was able to 962 

maintain its organization during several dismantling episodes of the platform during the 963 

Givetian, corresponding to a mixed carbonate-siliciclatic ramp. Only the global Taghanic 964 

event of the late Givetian (House, 1985) broke the stability of this community. A similar 965 

signal has currently been highlighted in Morocco regarding the stability of trilobite 966 

organization despite environmental variations restricted in local and temporal terms (Hollard, 967 

1963, 1967; Bultynck & Walliser, 2000; Lubeseder et al., 2010). 968 

 969 

7. Conclusions 970 

During the Devonian, the Anti-Atlas Range and its Algerian extensions were located on 971 

the Saharan Platform, a passive continental margin of Gondwana. This area underwent several 972 
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ecological changes due to regional and global events with many sea-level changes, 973 

anoxic/hypoxic events and tectonic events occurring throughout the Devonian. All these 974 

changes affected the composition of trilobite communities and their diversity. 975 

Trilobites were not well dispersed between the different areas of Northern Africa because 976 

of spatial and temporal environmental changes. Devonian trilobites can be assigned to 16 977 

associations with 12 of these associations existing during the Early and Middle Devonian and 978 

four exclusively during the Famennian. Each of these trilobite associations flourished in a 979 

specific environment, which was favourable for some genera but less so for others. In 980 

siliciclastic environments, asteropygines prospered in the Ougarta region during the 981 

Lochkovian, while the Pragian regression allowed the diversification of many trilobites in 982 

shallow water environments. Both trilobite diversity and the number of associations further 983 

increased during the Emsian. During this period, the different basins were well 984 

interconnected. Faunal exchanges were facilitated by the absence of strong ecological or 985 

topographical barriers and further favoured by a relatively homogeneous environment. The 986 

Variscan orogeny modified the palaeogeographic setting during the Middle Devonian towards 987 

a platform and basin topology. Geographical barriers formed and trilobite associations 988 

became restricted to smaller areas with poor connections between them. This regional tectonic 989 

context coupled with more widespread Middle Devonian events affected trilobites, which 990 

were almost eradicated from this area in the Frasnian. After the Kellwasser events, trilobites 991 

once again flourished regionally and globally although not to the diversity levels of the 992 

Emsian or Eifelian. During the same period, cyrtosymboline associations proliferated in 993 

shallow platform environments, while phacopid associations proliferated in deeper water 994 

environments. Finally, new sea-level and sedimentological changes in the latest Famennian 995 

led to the disappearance of numerous trilobites in the Northern African area under study. 996 

 997 
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Figures 1383 

 1384 

Fig. 1. (A) Simplified geological map of Morocco and Algeria (modified from Crônier et al. 1385 

2018b) and location of the five study areas in North Africa within the Anti-Atlas and Ougarta 1386 

Ranges. (B) Geographical location of the 69 studied localities from the Maïder/Tafilalt area in 1387 

Morocco and from the Ougarta area in Algeria. 1388 

 1389 

Fig. 2. Main lithology for each formation present in the five Moroccan Anti-Atlas and 1390 

western Algeria basins for the Devonian. Formation names in black, ID of samples in red. 1391 

Ages from Cohen et al. (2013, updated). 1392 

 1393 

Fig. 3. Geographical map of the eastern Anti-Atlas in Morocco with the limits of the Maïder 1394 

Platform and Basin and the Tafilalt Platform and Basin in the Middle and Late Devonian 1395 

(Modified from Wendt & Belka, 1991 and Frey et al., 2019). 1396 

 1397 

Fig. 4. Simplified dendogram with R and Q modes from hierarchical cluster analysis (HCA) 1398 

using the average linkage method as correlation setting and the Pearson correlation index as 1399 

similarity index (Hammer & Harper, 2008). 67 taxa (genera) are clustered according to 123 1400 

analysed samples (localities) from the Devonian of North Africa. Four clusters (I to IV) and 1401 

16 associations are identified. Sample names and proportions of each occurrence are given in 1402 

Fig. SUPPL. B). 1403 

 1404 

Fig. 5. Scatter plot of North African samples according to DCA for (A) the Early and Middle 1405 

Devonian, and (B) the Famennian; DC1 and DC2 axes reflecting potential environment 1406 

gradient. Eigenvalues for DC1 and DC2 axes are respectively 0.96 and 0.91 for the Early and 1407 
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Middle Devonian with 105 samples, 0.95 and 0.09 for the Famennian with 16 samples. 1408 

Associations defined by clustering have been reported: 12 associations for the Early and 1409 

Middle Devonian, and 4 associations for the Famennian. 1410 

 1411 

Fig. 6. Simplified diagrams exhibiting the different facies within five studied areas and their 1412 

spatio-temporal evolution during the Early Devonian. Associations defined by clustering have 1413 

been reported. 1414 

 1415 

Fig. 7. Simplified diagrams exhibiting the different facies within five studied areas and their 1416 

spatio-temporal evolution during the Middle Devonian and Frasnian. Associations defined by 1417 

clustering have been reported. 1418 

 1419 

Fig. 8. Simplified diagrams exhibiting the different facies within five studied areas and their 1420 

spatio-temporal evolution during the Famennian. Associations defined by clustering have 1421 

been reported. 1422 

 1423 

Fig. 9. Diversity indices. (A) Diversity through time: α diversity estimated with Shannon 1424 

Index H’, Overall β Diversity and its components, i.e., β Turnover component and β 1425 

Nestedness component determined with Sorensen dissimilarity. (B) α Diversity per formation 1426 

from five areas. (C) α Diversity and Overall β Diversity per association. Ages from Cohen et 1427 

al. (2013, updated). 1428 

 1429 

Table. 1. Trilobite associations and their environmental, faunal and temporal features. The 1430 

remark column includes data on: diversity (Fig. 9) and occurrences (Appendix A and B). 1431 
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Reattributions of samples were made using DCA data (Fig. 5). Bold font indicates the main 1432 

characteristic for the associations. 1433 

  1434 
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Supplemental figures 1435 

 1436 

Fig. A. Scatter plot of North African samples according to Correspondence Analysis (CA) for 1437 

the Early and Middle Devonian. (1) CA1 and CA2 showing a Pinocchio effect, and (2) CA2 1438 

and CA3 showing an arch effect. 1439 

 1440 

Fig. B. Dendogram with R and Q modes from hierarchical cluster analysis (HCA) using the 1441 

average linkage method as correlation setting and the Pearson correlation index as similarity 1442 

index (Hammer & Harper, 2008). 67 taxa (genera) are clustered according to 123 analysed 1443 

samples (localities) from the Devonian of North Africa. Four clusters (I to IV) and 16 1444 

associations are identified. Occurrences of genera in samples are given in proportion of the 1445 

total number of genera in the sample. 1446 

 1447 

Fig. C. Geographical localisation of associations defined by clustering in the five studied 1448 

Moroccan and Algerian areas for the Lochkovian. 1449 

 1450 

Fig. D. Geographical localisation of associations defined by clustering in the five studied 1451 

Moroccan and Algerian areas for the Pragian. 1452 

 1453 

Fig. E. Geographical localisation of associations defined by clustering in the five studied 1454 

Moroccan and Algerian areas for the Emsian. 1455 

 1456 

Fig. F. Geographical localisation of associations defined by clustering in the five studied 1457 

Moroccan and Algerian areas for the Eifelian. 1458 

 1459 
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Fig. G. Geographical localisation of associations defined by clustering in the five studied 1460 

Moroccan and Algerian areas for the Givetian. 1461 

 1462 

Fig. H. Geographical localisation of associations defined by clustering in the five studied 1463 

Moroccan and Algerian areas for the Fammenian.  1464 



 

62 

Appendix. Supplementary data 1465 

 1466 

Appendix A. Dataset constructed with 77 publications (Appendix B). 1467 

 1468 

Appendix B. Compilation of 77 selected publications with sufficient chronostratigraphic 1469 

information to calibrate occurrences at the stage and substage levels and taxonomic 1470 

information to up-to-date taxonomy; set of references constituting a relatively complete fossil 1471 

record of the Devonian in the Moroccan Anti-Atlas and western Algerian basins.  1472 
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