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Reachability Analysis of Linear Parameter-Varying Systems with
Neural Network Controllers

Arash Sadeghzadeh and Pierre-Loic Garoche

Abstract— A method is presented to obtain outer-
approximations of forward reachable sets for Linear
Parameter-Varying (LPV) systems controlled by neural net-
works for safety verification. The method relies on abstracting
the activation functions by optimization-based sector con-
straints. The forward reachable sets are obtained in terms
of solutions to a set of Linear Matrix Inequalities (LMIs). A
numerical example is provided to demonstrate the applicability
of the proposed method. A comparison with some available
methods is also included.

I. INTRODUCTION

In recent years, there has been a growing interest in
employing neural network (NN) controllers to tackle the
control problem of complex nonlinear systems. However,
the nonlinear and large-scale nature of neural networks
makes them hard to analyze. Therefore, developing tools
for safety verification of NN controllers is of paramount
importance. The goal of this paper is to develop a forward
reachability analysis method for the safety verification of
Linear Parameter-Varying (LPV) systems controlled by neu-
ral networks. LPV framework is particularly promising for
modeling of nonlinear (NL) and time-varying (TV) systems,
which enables the extension of the available methods for
linear time-invariant (LTI) systems to NL/TV systems lever-
aging the linear proxy representation.

Safety verification or reachability analysis aims to obtain a
set of regions in the state space that a dynamical system can
evolve to from a set of initial conditions. Having obtained
the reachable sets, one can make sure in advance that the
closed-loop system remains operating in a safe region in the
state space for a finite-time horizon. Safety verification of
closed-loop systems with neural network controllers has been
investigated in some recent studies [1], [2], [3], [4], [5], [6].
An approach for the exact and over-approximate reachability
analysis of deep neural networks with ReLU activation
functions is provided in [4]. However, it seems that the
extension to other types of activation functions is not straight-
forward. In [1], a forward reachability analysis method is
presented for the closed-loop systems with NN controllers.
The approximate reachable sets are obtained using semidef-
inite programming. The method is suitable for linear time-
varying systems. A flow pipe construction scheme to over
approximate the reachable sets for continuous-time systems
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is presented in [2]. The proposed method is based on gen-
erating a polynomial mapping using regression from input-
output samples. This approach, however, is only applicable to
ReLU activation functions. A reachability analysis approach
based on Bernstein polynomials is developed in [3] for
NN controlled systems with Lipschitz continuous activation
functions.

Motivated by the above methods, in this paper, we propose
a semidefinite program (SDP) for reachability analysis of
LPV systems in feedback interconnection with NN con-
trollers. Leveraging the LPV methodology to model the non-
linear systems, our proposed method is applicable for NL/TV
systems. The method relies on abstracting the activation
functions in the NN controller by optimization-based sector
constraints. The proposed method can be considered as an
extension of the method in [1] for LPV systems. Moreover,
considering the approximation-based sector constraints can
lead to less conservative reachable sets in comparison with
the local sector constraints [7]. The proposed method is able
to handle different kinds of activation function.

The notation is fairly standard. In this paper, 0n×m is an
n×m zero matrix and In is an n× n identity matrix. The
subscript for the dimension may be dropped if the sizes of
matrices are clear from the context. In a symmetric matrix,
? denotes the transpose of an off-diagonal block. For the
ease of notation, diag(·) is employed to represent the block
diagonal concatenation of input vector arguments.

II. PROBLEM DEFINITION

Consider the following LPV discrete-time system with nθ
scheduling variables θ(k) := [θ1(k) · · · θnθ (k)]

> ∈ Θ ⊂ Rnθ
as follows:

G : x(k + 1) = A (θ(k))x(k) +B (θ(k))u(k) (1)

where x : Z+ → X ⊂ Rnx is the state vector and u : Z+ →
U ⊂ Rnu is the input. X and U are assumed to be compact
polyhedra with known vertices containing the origin. The
scheduling variable vector θ(k) is defined by

θ(k) := µ(x(k)), (2)

where µ : X → Θ ⊆ Rnθ is a bounded and smooth static
real-valued nonlinear function of x(k). Furthermore, it is
supposed that A(θ) and B(θ), with compatible dimensions,
are affine functions with respect to θ(k), i.e. we have

M(θ(k)) :=

nθ∑
i=1

θi(k)Mi,
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Fig. 1. Feedback system with plant G and NN controller Π.

where M(θ) represents either A(θ) or B(θ). Mi i =
1, · · · , nθ are constant real matrices with compatible dimen-
sions. The scheduling variable vector θ(k) is assumed to lie
in a hyperrectangle Θ defined as follows:

θi ≤ θi(k) ≤ θi, i = 1, · · · , nθ (3)

with the a priori known values of θi, θi for i = 1, · · · , nθ.
Suppose that G is controlled by a NN controller Π(x(k)) :
Rnx → Rnu , which is a L-layer feed-forward fully con-
nected NN given as follows:

a0(k) = x(k),

v[l](k) = W [l]a[l−1](k) + b[l], l = 1, · · · , L (4)

a[l](k) = Φ[l](v[l](k)), l = 1, · · · , L
u(k) = W [L+1]a[L](k) + b[L+1],

where a[l] ∈ Rnl l = 1, · · · , L is the output of lth layer
having nl neurons. W [l] ∈ Rnl×nl−1 and b[l] are weight
matrices and bias vectors of the lth layer, respectively. The
closed-loop system is shown in Fig. 1. It is supposed that
the activation function Φ[l] is applied element-wise. Thus,
considering

v[l] :=
[
v

[l]
1 v

[l]
2 · · · v

[l]
nl

]>
∈ Rnl ,

we have

Φ[l](v[l]) :=
[
φ[l](v

[l]
1 ) φ[l](v

[l]
2 ) · · · φ[l](v

[l]
nl)

]>
,

(5)
where φ[l] : R → R represents the activation function
of lth layer. In the sequel, without loss of generality, we
assume that φ[l](v) = tanh(v). However, different kinds
of activation functions can also be considered in a similar
manner.

Let us define the closed-loop system as:

x(k + 1) = H (x(k)), x(0) = x0 (6)

where the initial state x0 lies in an initially known ellipsoid
E0 ⊆ X. Thus, we have

E0 :

[
x0

1

]>
Υ0

[
x0

1

]
≤ 0, Υ0 ∈ Snx+1. (7)

To proceed, let us first define the forward reachable set
Rk+1(Ek) at instant k + 1 for a given set of current states
Ek as follows:

Rk+1 := {x(k + 1) | x(k + 1) = H (x(k)), x(k) ∈ Ek} .
(8)

It is worth mentioning that the reachable set Rk+1 can be
of any shape convex or non-convex.
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Fig. 2. LFT representation for the NN controller Π(x(k)).

The problem we tackle in this paper is to iteratively
compute a sequence of minimum-volume ellipsoids Ek, k =
1, · · · , N for an initially given set E0 so that Ek contains the
reachable set Rk, i.e. Rk ⊆ Ek, for the finite-time horizon
N ≥ 0. The problem in hand can be formulated as follows:

min volume Ek (9)
s.t. Rk(Ek−1) ⊆ Ek

for k = 1, · · · , N . In the subsequent sections, we derive
an LMI relaxation of the optimization problem (9). This
way, the sequence of outer-approximation ellipsoids of the
reachable sets can be computed iteratively starting from
given E0 by solving a sequence of semidefinite programming
(SDP) problems.

III. OPTIMIZATION-BASED SECTOR CONSTRAINT ON THE
ACTIVATION FUNCTIONS

The nonlinear activation functions in the NN controller
Π(x(k)) are the major stumbling block to formulate the
optimization problem (9) as an LMI problem. To cope with
the nonlinearity of the activation functions, one can resort to
sector constraints. Contrary to the available methods in the
literature, the sector constraints are obtained by solving a set
of convex optimization problems in this paper.

First of all, leveraging the linear fractional transformation
(LFT) representation of the NN controller shown in Fig. 2,
one can represent the NN controller Π(x(k)) as follows:

[
u(k)
v(k)

]
:= N

 x(k)
w(k)

1

 , (10)

w(k) = Φ(v(k)), (11)

where

N :=

[
Nux Nuw Nub
Nvx Nvw Nvb

]

=



0 0 0 · · · W [L+1] b[L+1]

W [1] 0 · · · 0 0 b[1]

0 W [2] · · · 0 0 b[2]

...
...

. . .
...

...
...

0 0 · · · W [L] 0 b[L]


(12)



with

v(k) :=

 v[1](k)
...

v[L](k)

 , w(k) :=

 w[1](k)
...

w[L](k)

 ,
Φ(v) :=

 Φ[1](v[1])
...

Φ[L](v[L])

 ∈ RnΦ , nΦ := n1 + · · ·+ nL.

The proposed sector constraint for the activation functions
is defined below.

Definition 1: Suppose that m,h, v,m, h, v are given. The
nonlinear function φ : R→ R fulfills the sector constraint if
both

L(v) := mv + h ≤ φ(v), (13)

L(v) := mv + h ≥ φ(v), (14)

hold for all v ≤ v ≤ v.
To obtain the tightest sector constraint, one can consider the
following optimization problem:

minm,h,m,h
∥∥(m−m)v + (h− h)

∥∥
2

(15)

s.t. (13), (14) ∀v ∈ [v, v]

which is obviously a non-convex one since φ(v) = tanh(v)
is a non-convex function. To overcome this difficulty, one
can resort to a fine grid for v in the desired interval v ≤
v ≤ v, which leads to a convex optimization problem. After
finding m,h,m, h from the optimization problem (15), we
can rewrite the sector constraints (13) and (14) as a quadratic
constraint as follows [7]:

(L(v)− φ(v))(φ(v)− L(v)) ≥ 0. (16)

As an example, sector constraint for the tanh function is
illustrated in Fig. 3 considering v = −1.5 and v = 0.9. The
obtained upper and lower lines are L(v) = 0.687v + 0.125
and L(v) = 0.783v − 0.071, respectively.

To be able to obtain the sector constraints for all neurons
in the NN controller, we need first to compute the upper and
lower bounds v and v for each neuron. Let us first define

v[l] :=
[
v

[l]
1 · · · v

[l]
nl

]>
∈ Rnl ,

v[l] :=
[
v

[l]
1 · · · v

[l]
nl

]>
∈ Rnl ,

where v[l]
i and v[l]

i for i = 1, · · · , nl represent the upper and
lower values related to the ith neuron of the lth layer.

For the first layer in the NN controller, v[l] and v[l] can
be computed using the following optimization problems:

v
[1]
i := min

x(k)
W

[1]
i x(k) + b

[1]
i (17)

s.t. x(k) ∈ Ek,

v
[1]
i := max

x(k)
W

[1]
i x(k) + b

[1]
i (18)

s.t. x(k) ∈ Ek
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Fig. 3. Sector constraint on the tanh activation function.

for i = 1, · · · , n1. Subsequently, since tanh is a nondecreas-
ing function, we can obtain the upper and lower bounds on
a[1](k) as follows:

a[1] = tanh(v[1]), a[1] = tanh(v[1]).

Now that we obtain a[1] and a[1], the upper and lower bounds
v[l] and v[l] can be computed using propagation through
all the layers of the NN controller. Using classical affine
arithmetic operators, we can define the center

v[l]
c :=

1

2
W [l](a[l−1] + a[l−1]),

and the radius

v[l]
r :=

1

2
abs
(
W [l](a[l−1] − a[l−1])

)
.

We have then

v[l] = v[l]
c − v[l]

r , v[l] = v[l]
c + v[l]

r ,

for l = 2, · · · , L. Note that

a[l] = tanh(v[l]), a[l] = tanh(v[l]).

After finding v[l] and a[l] for l = 1, · · · , L, we are able to
obtain the values m

[l]
i , h[l]

i , m[l]
i ,h

[l]

i corresponding to the
neuron i in the layer l, using the optimization problem (15).
Afterwards, the quadratic constraints[

L
[l]

i (v
[l]
i )− φ[l](v

[l]
i )
] [
φ[l](v

[l]
i )− L[l]

i (v
[l]
i )
]
≥ 0, (19)

where

L
[l]

i (v
[l]
i ) = m

[l]
i v

[l]
i + h

[l]

i , L
[l]
i (v

[l]
i ) = m

[l]
i v

[l]
i + h

[l]
i ,

can be reformulated as a unique quadratic constraint using
the following lemma:

Lemma 1: Suppose that m[l]
i , h[l]

i , v[l]
i , m[l]

i , h
[l]

i , v[l]
i are

given for all l = 1, · · · , L and i = 1, · · · , nl. Assume that



the sector constraints (19) hold for all l = 1, · · · , L and
i = 1, · · · , nl. Then there exists λ ∈ RnΦ

+ such that

0 ≤

 v
w
1

>Υa

 v
w
1

 ,
holds, where

Υa :=

 −MΛM 1
2Λ(M+M) − 1

2Λ(Mh+Mh)

? −Λ 1
2Λ(h+ h)

? ? −h>Λh

 ,
m :=

[
m

[1]
1 · · · m

[1]
n1 · · · m

[L]
1 · · · m

[L]
nL

]>
,

m :=
[
m

[1]
1 · · · m

[1]
n1 · · · m

[L]
1 · · · m

[L]
nL

]>
,

h :=
[
h

[1]

1 · · · h
[1]

n1
· · · h

[L]

1 · · · h
[L]

nL

]>
,

h :=
[
h

[1]
1 · · · h[1]

n1
· · · h

[L]
1 · · · h[L]

nL

]>
,

M = diag(m), M = diag(m), Λ = diag(λ).
Proof: For any v ∈ RnΦ and w = Φ(v), we have v
w
1

>Υa

 v
w
1

 =

L∑
l=1

nl∑
i=1

λj

[
L

[l]

i (v
[l]
i )− φ[l](v

[l]
i )
] [
φ[l](v

[l]
i )− L[l]

i (v
[l]
i )
]
,

where j = i+
∑l−1
m=1 nm. If (19) holds for all l = 1, · · · , L

and i = 1, · · · , nl, then each term in the aforementioned sum
is non-negative, thus, (20) holds.

IV. OUTER-APPROXIMATION OF ONE-STEP AHEAD
REACHABLE SET

In this section, using the quadratic constraint (20) on the
activation functions, we formulate the problem of computing
one-step ahead reachable set. To this aim, we describe first
the outer-approximation of the reachable set at instant k+ 1
as an ellipsoid. Then, the proposed optimization problem to
find the outer-approximation of the reachable set is provided.

A. Representing reachable set as a quadratic constraint

One can describe the outer-approximation of the reachable
set at instant k + 1 as follows:

‖Mrx(k + 1) + Fr‖2 ≤ 1. (20)

This represents an ellipsoid in which Mr ∈ Rnx×nx and
Fr ∈ Rnx determine the orientation, center, and the size of
the ellipsoid. Note that (20) can alternatively be represented
as

Er : 0 ≥ (21)[
x(k + 1)

1

]> [
M>r Mr M>r Fr
F>r Mr F>r Fr − 1

]
︸ ︷︷ ︸

Υr

[
x(k + 1)

1

]
.

(22)

Suppose that x(k) is known, then, the state vector x(k + 1)
can be obtained by (1) when u(k) is given by (10)-(12). We
get

x(k + 1) =
[
A(θ(k)) +B(θ(k))Nux B(θ(k))Nuw

B(θ(k))Nub
]
x̆(k), (23)

where x̆(k) :=
[
x(k)> w(k)> 1

]>
. This way, (20) can

be described as

x̆(k)>Γ>r (θ)ΥrΓr(θ)x̆(k) ≤ 0, (24)

which represents a quadratic constraint, where

Γr(θ) :=[
A(θ(k)) +B(θ(k))Nux B(θ(k))Nuw B(θ(k))Nub

0 0 1

]
.

B. Outer-approximation of reachable set

It is supposed that the state vector of the closed-loop
system at instant k lies in Ek given by

Ek :

[
x(k)

1

]>
Υk

[
x(k)

1

]
≤ 0, (25)

which can be rewritten as follows:

x̆(k)>Γ>k ΥkΓkx̆(k) ≤ 0, (26)

where
Γk =

[
I 0 0
0 0 1

]
.

Similarly, the quadratic constraint (20) on the activation
functions can also be reformulated as:

x̆(k)>Γ>a ΥaΓax̆(k) ≥ 0, (27)

since we have v(k)
w(k)

1

 =

 Nvx Nvw Nvb
0 I 0
0 0 1


︸ ︷︷ ︸

Γa

x̆(k).

Note that at instant k, the scheduling variable vector θ(k)
lies in a much smaller hyperrectangle than Θ considering the
current possible values for x(k). To be able to obtain a tighter
reachable set, we need to obtain a momentary hyperrectangle
based on the current possible values of states. Since it is
assumed that x(k) ∈ Ek at instant k, so one is able to
compute the related momentary hyperrectangle considering
θ(k) = µ(x(k)) by defining θ(k) and θ(k) as follows:

θi(k) := max θi(k) (28)
s.t. θ(k) = µ(x(k)), x(k) ∈ Ek

and

θi(k) := min θi(k) (29)
s.t. θ(k) = µ(x(k)), x(k) ∈ Ek

for all i = 1, · · · , nθ. Therefore, θ(k) lies in a hyperrectangle
Θk (with 2nθ vertices) described as follows:

θi(k) ≤ θi(k) ≤ θi(k), i = 1, · · · , nθ.



Note that Θk ⊆ Θ. If µ(x(k)) is a convex function on Ek,
then one can easily solve the convex optimization problems
(28) and (29); otherwise, one may resort to a very fine
gridding of X to obtain θi(k) and θi(k).

Next theorem states our proposed method regarding the
computation of the outer-approximation of one-step ahead
reachable set.

Theorem 1: Consider the closed-loop system (6). Assume
that m[l]

i , h[l]
i , v[l]

i , m[l]
i , h

[l]

i , v[l]
i are given for the NN

controller for all l = 1, · · · , L and i = 1, · · · , nl . Moreover,
suppose that the quadratic constraint (20) holds for the
activation functions. Furthermore, assume that Ek is known
and x(k) ∈ Ek at instant k. If there exists a scalar τ > 0
and λ ∈ RnΦ

+ such that

Γ>r (θ)ΥrΓr(θ) + Γ>a ΥaΓa − τΓ>k ΥkΓk ≤ 0 (30)

holds for all θ ∈ Θk, then Er ⊇ Rk+1(Ek).
Proof: Post- and pre-multiplying (30) by x̆(k) and its

transpose, respectively, and considering (26) and (27), one
obtains

x̆(k)>Γ>r (θ)ΥrΓr(θ)x̆(k) ≤ 0,

which implies (21) considering the fact that (24) is equivalent
to (21).

In order to find the outer-approximation of the reachable
set, one should solve (30); nonetheless, condition (30) is not
an LMI with respect to the decision variables Mr, Fr, λ and
τ due to the multiplication terms of Mr and Fr in Υr. On top
of that, condition (30) is an infinite-dimensional inequality
since θ may get any value in Θk. In the next section, a finite-
dimensional LMI relaxation for (30) is provided, using the
polytopic structure of Θk.

V. LMI RELAXATION

Let us define

e :=
[

01×nx 1
]
, Lr :=

[
Mr Fr

]
,

which immediately implies

Υr = L>r Lr − e>e. (31)

Now, using Schur complement formula [8] and taking into
account (31), inequality (30) can be equivalently rewritten asΓ>a ΥaΓa − τΓ>k ΥkΓk − Γr(θ)

>e>eΓr(θ) ?

LrΓr(θ) −I

 ≤ 0,

(32)
which is an LMI with respect to the decision variables Mr,
Fr (Lr), λ, τ . However, it is still an infinite-dimensional
LMI condition. In the following lemma, leveraging the same
method as in [9], a finite-dimensional relaxation for (32) is
provided.

Lemma 2: If the following conditions{
Ξ(i,i) ≤ 0, i = 1, · · · , 2nθ ,

Ξ(i,j) + Ξ(j,i) ≤ 0, i = 1, · · · , 2nθ − 1, j = i, · · · , 2nθ
(33)

hold, then (32) holds for all θ ∈ Θk, where

Ξ(i,j) := Γ>a ΥaΓa − τΓ>k ΥkΓk − Γ>r (θ(i))e>eΓr(θ
(j)) ?

LrΓr(θ
(i)) −I

 .
in which θ(i) and θ(j) represents the ith and jth vertices of
the hyperrectangle Θk.

Proof: For any value θ(k) in Θk, we have

θ(k) =

2nθ∑
i=1

αiθ
(i), αi ≥ 0,

2nθ∑
i=1

αi = 1.

Considering the fact that A(θ) and B(θ) appear linearly in
Γr(θ), and they are also linear function of θ, one can describe
Γr(θ)

>e>eΓr(θ) and LrΓr(θ) as follows:

Γr(θ)
>e>eΓr(θ) =

2nθ∑
i=1

2nθ∑
j=1

αiαjΓr(θ
(i))>e>eΓr(θ

(j))

(34)

LrΓr(θ) =

2nθ∑
i=1

2nθ∑
j=1

αiαjLrΓr(θ
(i)), (35)

since
∑2nθ

i=1 αi =
∑2nθ

j=1 αj = 1.
Now, considering (34) and (35), we getΓ>a ΥaΓa − τΓ>k ΥkΓk − Γr(θ)

>e>eΓr(θ) ?

LrΓr(θ) −I

 =

2nθ∑
i=1

αiαiΞ
(i,i) +

2nθ−1∑
i=1

2nθ∑
j=i

αiαj

(
Ξ(i,j) + Ξ(j,i)

)
,

which immediately implies that when (33) holds then (32)
holds for all θ ∈ Θk since αi and αj are not negative.

Applying Theorem 1 and Lemma 2, we obtain a minimum-
volume ellipsoid that encloses Rk+1(Ek), solving the follow-
ing optimization problem:

min
Mr,Fr,τ,λ

− log det(Mr) (36)

s.t. (33)

which is a SDP problem. Since E0 is known, the outer-
approximation of one-step ahead reachable sets can be it-
eratively computed for a finite-time horizon k = 1, · · · , N .

VI. NUMERICAL ILLUSTRATION

In this section, the applicability of the proposed method
is evaluated using a numerical example. To solve the LMI
problem (36), YALMIP [10] interface with the LMI solver
MOSEK [11] are utilized. Furthermore, CVX [12] a package
for specifying and solving convex programs, is used to solve
the convex optimization problems.
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Fig. 4. Gray ellipsoids: Outer-approximations of the reachable sets for
finite-time horizon N = 10. Green ellipsoid: the initial set E0.

A. Inverted Pendulum

Consider the problem of balancing an inverted pendulum
on a cart. The inverted pendulum can be modeled by the
following discrete-time LPV model:

x(k + 1) =

[
1 T

g
l Tθ 1− κ

ml2T

]
x(k) +

[
0
T
ml2

]
u(k),

(37)
x = [ϑ ϑ̇]> is the state vector where ϑ denotes the angular
position (rad) and u is the control input (Nm). Let us consider
gravity constant g = 9.8 m/s2, mass m = 0.15 Kg, length
l = 0.5 m, friction coefficient κ = 0.05 Nms/rad, and the
sampling time T = 0.02.

We use the same NN controller as in [7] to stabilize the
inverted pendulum. It is a 2-layer NN with n1 = n2 = 32 and
tanh as the activation function for both layers. The control
input is supposed to restricted to −0.7 ≤ u(t) ≤ 0.7 due to
practical limitations. To cope with the input saturation, we
consider a third layer for the NN controller whose activation
function is the saturation function.

Using the optimization problem (36), we iteratively com-
pute a sequence of ellipsoidal outer-approximations of the
reachable sets for a finite-time horizon N = 10. To do so,
the initial state vector is supposed to lie in the following
given ellipsoid:

E0 :

(
x1(0)− 0.3

0.01

)2

+

(
x2(0)− 2

0.1

)2

≤ 1

The outer-approximations of the reachable sets are illustrated
in Fig. 4. To have an insight on the conservativeness of
the obtained reachable sets, time-domain simulation of the
closed-loop system considering 10 randomly selected initial
states from E0 is performed. The results are given in Fig.
5. One can clearly see that all the trajectories remain in the
computed reachable sets.

For the sake of comparison, we have applied the presented
method in [1] on the inverted pendulum. To do so, we have
slightly modified the method of [1] in order to cope with
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Fig. 5. System operation trajectories starting from some random initial
states in E0.
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Fig. 6. Blue ellipsoids: the reachable set obtained by the proposed method.
Red ellipsoids: the reachable set obtained by the method in [1].

the tanh activation functions instead of the ReLU ones. To
have a fair comparison, we use the local sector constraints to
bound the activation functions as QCs [7] for the method of
[1]. In Fig. 6, the ellipsoids obtained by our method and that
of [1] are depicted. Obviously, our proposed method results
in tighter outer-approximations of the reachable sets, which
implies that the proposed method is capable of providing less
conservative results.

VII. CONCLUSION

In this paper, we have developed a new method to ad-
dress the reachability analysis problem of LPV systems in
feedback interconnection with NN controllers. Leveraging
the LPV methodology to model the nonlinear systems, the
approach can successfully be employed for nonlinear/time-
varying systems. The method relies on abstracting the ac-
tivation functions in the NN controller by optimization-
based sector constraints. We have shown that considering
the approximation-based sector constraints can lead to less
conservative reachable sets in comparison with some of the



available methods in the literature. The proposed method is
capable of handling different kinds of activation function.
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