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Abstract

Addressing global environmental crises such as anthropogenic climate change requires the

consistent adoption of proenvironmental behavior by a large part of a population. Here, we

develop a mathematical model of a simple behavior-environment feedback loop to ask how

the individual assessment of the environmental state combines with social interactions to

influence the consistent adoption of proenvironmental behavior, and how this feeds back to

the perceived environmental state. In this stochastic individual-based model, individuals can

switch between two behaviors, ‘active’ (or actively proenvironmental) and ‘baseline’, differ-

ing in their perceived cost (higher for the active behavior) and environmental impact (lower

for the active behavior). We show that the deterministic dynamics and the stochastic fluctua-

tions of the system can be approximated by ordinary differential equations and a Ornstein-

Uhlenbeck type process. By definition, the proenvironmental behavior is adopted consis-

tently when, at population stationary state, its frequency is high and random fluctuations in

frequency are small. We find that the combination of social and environmental feedbacks

can promote the spread of costly proenvironmental behavior when neither, operating in iso-

lation, would. To be adopted consistently, strong social pressure for proenvironmental

action is necessary but not sufficient—social interactions must occur on a faster timescale

compared to individual assessment, and the difference in environmental impact must be

small. This simple model suggests a scenario to achieve large reductions in environmental

impact, which involves incrementally more active and potentially more costly behavior being

consistently adopted under increasing social pressure for proenvironmentalism.

Author summary

Reducing global environmental degradation such as climate warming requires the adop-

tion of consistent proenvironmental behaviors. But we, as individuals, tend to act in
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response to alarming events, and relax when things seem to get better. Can this tendency

to behave inconsistently be countered by social interactions and social pressure? We

explore this question by developing a simple mathematical model. We find that social

interactions, in combination with our own individual perception of population’s environ-

mental impact, can indeed promote the consistent adoption of costly environmental

behavior, but only when the social pressure for proenvironmentalism is strong enough.

Our model suggests a possible path through ‘small steps’ from ‘business as usual’ behavior

to active behavior with large reduction of the environmental impact. In the small-steps

scenario, a gradual buildup of social pressure for proenvironmentalism can lead to a large

reduction in perceived environmental impact even if the active behaviors adopted by the

population become incrementally more costly. Thus, creating contexts that are conducive

to strong social pressure for proenvironmentalism, through communication and public

policy, appears both critical and powerful to achieve behavioral change that can make a

difference.

Introduction

Why don’t we all act more decisively in the face of global environmental crises such as climate

change or biodiversity loss? Achieving climate and biodiversity targets set by international

agreements (e.g. Paris accord, Aichi convention) ultimately requires consistent behavioral

changes within and across societies. At the level of individuals, limiting climate change or bio-

diversity loss requires consistent consumer choices with reduced net environmental impact.

As citizens, individuals must consistently promote governmental policies that favor proenvir-

onmental actions. Leaders and senior managers, as individuals, should make consistent deci-

sions to influence greenhouse gas emissions and natural resource use by large organizations

and industries.

For many individuals, adopting a proenvironmental behavior is not straightforward.

Indeed the decision amounts to accepting certain short-term costs and reductions in living

standards in order to mitigate against higher but uncertain losses that may be far in the future

[1]. Individual behavioral responses to this collective-risk social dilemma [2] are not all-or-

nothing, however. Between those who unconditionally accept or unconditionally deny the

need for action towards environmental sustainability, the vast majority of people do not

engage consistently in either way. Rather, non-ideologically polarized individuals tend to show

inconsistent behavior as they change opinion, revise their intention, or switch behavior during

their lifetime [3], possibly on very short timescales [4].

Such a behavioral inconsistency can be due to various mechanisms. Individuals who engage

in some kind of proenvironmental action may lose motivation to “take the next step”. In this

case, action limits intention for more, a pattern called tokenism [1]. In the same vein, the

rebound effect occurs when some mitigating effort is diminished or erased by the individual’s

subsequent actions [5]. For example, after acquiring a more fuel-efficient vehicle (an active

mitigating behavior), owners tend to drive them farther, in effect reverting to their baseline

environmental impact [6]. Other patterns of inconsistent behavior involve responses to

extreme climatic events. Exposure to a climate-related hazard such as wildfires increases sup-

port for costly, pro-climate ballot measures in subsequent local elections [7]; but the degree of

personal concern about climate change is related to the temperature anomaly only over a few

months in the past [8]. Thus, outside of the most politically polarized groups, the influence of

environmental anomalies can be strong, but it decays rapidly [9].
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Mathematical modeling of human-environment dynamics can help identify pathways

toward proenvironmental behavior consistency. Game-theoretic models with environmental

feedbacks, or eco-evolutionary games, have been developed to study coupled environmental

and behavior dynamics [10–14]. Specific examples address the use of a natural resource such

as farmland [15], water [16] or forest [17]. A key aspect of these behavior-environment models

[12, 18, 19] based on ‘imitation dynamics’ [20] is that individuals’ behavioral decisions are

only made in the context of their interaction with others. Yet factors that are not tied to social

encounters, such as the individual’s own experience and perception of the environmental

state, may play a key role in environmental decisions. This is core to the conceptual framework

that Schill et al. (2019) [21] recently put forth, building on behavioral economics and cognitive

psychology, for understanding human behavior in the face of sustainability challenges. In this

framework, individuals create social and environmental contexts that change dynamically

with continuous feedback to their behavior. Following Schill et al. (2019) [21] we hypothesize

that the dynamics of environmental behavior are shaped both by social context and the indi-

viduals’ private environmental experience.

Here we implement this hypothesis by constructing a simple mathematical stochastic

model based on individual-level rules. Each individual has a negative impact on their environ-

ment that depends on their behavior—the impact of an active, proenvironmental behavior

being less than the impact of the baseline behavior. Individuals can change their behavior in

response to both social interactions and their own perception of environmental degradation.

The environmental state and the individuals’ behavior are modeled as continuous and discrete

variables, respectively, and the different processes affecting the state of the behavior-environ-

ment system play out on different time scales. We use the model to investigate the determi-

nants of proenvironmental behavior consistency. We say that a behavior is adopted

consistently when its frequency at stationary state is high and the stochastic fluctuations in fre-

quency are small. Our model analysis addresses how the individual assessment of environmen-

tal degradation combines with social interactions to determine the consistent adoption of

proenvironmental behavior, and how this feeds back to the perceived environmental state. In

particular, we ask whether larger costs of, or weak social pressure on, proenvironmental behav-

ior make the consistent adoption of proenvironmental behavior less likely; and whether a

slower pace of change in the perceived environmental state can promote consistency.

Results

Model overview

We consider a population of N agents that interact among themselves and perceive the state of

the environment (more or less degraded) through a single environmental variable, e. Individ-

ual behavior and their environmental impact are modeled on a short enough timescale so that

N remains constant. The e variable measures the perceived environmental state on a continu-

ous scale, with larger e corresponding to an environment perceived as more degraded. The e
variable can be seen as an indicator or summary statistics of the perceived level of environmen-

tal degradation, whose variation is driven by the population level of environmental action,

intention, or awareness, such as the spread of renewable energy, the adoption of plant-based

diets, the reduced consumption of non-essential goods, or the prominence of pro-environ-

mental demonstrations and other public calls for proenvironmental action. At any time t each

individual can express one of two behaviors: baseline (denoted by B) or active (denoted by A).

When expressing behavior A, an agent actively seeks to reduce their negative environmental

impact compared to the baseline impact of behavior B. This is modeled by assuming that an

agent in state A increases the perceived environmental impact of the population by an amount
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lA, which is less than the environmental impact, lB, of behavior B (per capita). We also assume

that lA is positive meaning that the population influences the environment by its own exis-

tence. Agents can switch between behaviors A and B.

In the Methods we expound the mathematical derivation of a model for the joint dynamics

of the frequency of behavior A and the perceived environmental degradation. Notations are

listed in Table 1. We assume that the dynamics of the perceived environnemental state follows

a deterministic continuous process. We define parameter ℓ as representing the timescale at

which individuals’ behavior affects the perceived environmental state: the higher ℓ, the faster

the perceived environmental state changes due to individuals’ behavior. In a population where

all agents express behavior A (B, respectively), the rate of change of the environment perceived

as minimally (maximally) degraded is proportional to lA (lB) and the stationary value of the

perceived environmental state is lA (lB). In a population where both behaviors are expressed,

the perceived environmental state varies between lA and lB.

Any agent may switch at any time between behaviors A and B as a result of encounters with

other agents (modeling social interactions). We define κ as a scaling parameter controlling the

rate of switching behavior via social interactions (modeled as encounters with other agents).

The rate at which an agent changes its behavior upon encountering another agent depends on

the attractiveness of the alternate behavior, which is determined by the perceived payoff differ-

ential between the two behaviors, and the social pressure. We use parameters γi, i = A or B, the

payoff from adopting behavior i, and δi, the social pressure for behavior i. We denote the pay-

off difference between behaviors A and B, or payoff differential, by β = γA − γB. We say that the

active behavior A is costly when the payoff differential, β, is negative. The payoff differential

may be positive if, for example, the active behavior A is actually incentivized through public

policy.

Any agent may also switch behavior at any time based on their assessment of the environ-

mental state. Agents tend to adopt the alternate behavior when they perceive the

Table 1. Parameter definitions and default values.

Notation Parameter description Default

value

A, B Active vs. Baseline behaviors

N Size of the population

NA;N
t ;NB;N

t Number of individuals expressing behavior A or B at time t

XN
t ; EN

t Frequency of individuals with behavior A; perceived environmental state at time t
(dimensionless)

xt; et Deterministic frequency of individuals with behavior A; deterministic perceived

environmental state at time t (dimensionless)

κ Encounter rate (inverse of unit time) 1

τ Individual sensitivity to the environment (inverse of unit time)

ℓ Environmental reactivity (inverse of unit time)

γA (resp.

γB)

Payoff of behavior A (resp. B) (dimensionless) γB = 1

δA (resp.

δB)

Social pressure of behavior A (resp. B) (dimensionless) δB = 0.5

lA (resp. lB) Individual environmental impact of behavior A (resp. B) (dimensionless) lB = 1

β = γA − γB Payoff differential (dimensionless)

dB
dAþdB

Social norm threshold (SNT) (dimensionless)

lB − lA Environmental impact differential (dimensionless)

https://doi.org/10.1371/journal.pcbi.1011429.t001
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environmental impact of their current behavior as relatively large compared to the alternate

behavior. We use parameter τ to set the timescale of behavioral switch based on individual

assessment.

The dynamics of the coupled behavior-environment process are stochastic, driven by the

probabilistic events of behavior switch between A and B, under the joint effects of encounters

among agents and individual assessment, and the deterministic response of the perceived envi-

ronmental state. The mathematical model we obtain is a Piecewise Deterministic Markov Pro-

cess where the population state (frequencies of behaviors) probabilistically jumps at each

change in individual behavior while the environmental state deterministically and continu-

ously changes between jumps. Note that the model assumes that the perceived environmental

state and social context are the same for all individuals, and individuals do not differ in person-

ality, in the sense that all individuals have the same intrinsic propensity to change their behav-

ior (or not) across time.

Deterministic approximation of the dynamics and stochastic fluctuations

When the population size N is very large and under assumptions on the rates stated below, the

behavior-environment dynamics can be approximated (in a sense made rigorous in the Meth-

ods and S1 Appendix) by the unique solution of the following system of ordinary differential

equations for the active behavior frequency, x, and perceived environmental state, e,

dxt
dt

¼ pðxt; etÞ ¼ kxtð1 � xtÞðlAðxtÞ � lBðxtÞÞ þ tAðetÞð1 � xtÞ � tBðetÞxt

det
dt

¼ hðxt; etÞ ¼ ‘etðlAxt þ lBð1 � xtÞ � etÞ

ð1Þ

with initial conditions (x0, e0) in [0, 1] × [lA, lB]. The first equation governs the frequency x of

the active behavior, A. In the right hand side of p(x, e), the first term measures behavior switch-

ing due to encounters (social interactions), with B switching to A at rate λA(x) and A switching

to B at rate λB(x), given by

lAðxÞ ¼ gA þ dAx

lBðxÞ ¼ gB þ dBð1 � xÞ
ð2Þ

(following from Eqs (10), (11) and (8), see Methods). The second term measures behavior

switching due to individual assessement of the environmental state. The corresponding rates

of switching from B to A and from A to B respectively are

tAðeÞ ¼ tðe � lAÞ

tBðeÞ ¼ tðlB � eÞ
ð3Þ

(following from Eq (13) in the Methods). The second equation in System (1) drives the dynam-

ics of the perceived environmental state, e. An equilibrium point (x*, e*) is a (x, e) pair that

nullifies both functions p(x, e) and h(x, e).
Even though the rates of behavior switching are deterministic functions, the individual

switching events occur probabilistically. As a consequence, given that the population size is

finite, the actual frequency of the behaviors fluctuates randomly, even asymptotically around

the equilibrium values predicted by the deterministic model. In the Methods and S1 Appendix,

we show that the variance of the random fluctuations in frequency is equal to the total rate of

behavior switching between A and B, elicited by social interactions and individual assessment
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of the environmental state. This total rate, denoted byO, is equal to

Oðx; eÞ ¼ kxð1 � xÞðlAðxÞ þ lBðxÞÞ þ tAðeÞð1 � xÞ þ tBðeÞx ð4Þ

given the values of the A frequency, x, and perceived environmental state, e. The total rate O

measures the intensity of switching between behaviors across the population. Thus, the higher

O, the larger the probability that some agent switches behavior. We characterize A as being

consistently adopted when the A equilibrium frequency, x*, is high (close to one) and the cor-

responding total rate of behavior switching, O(x*, e*), is low (close to zero).

In the following subsections we first describe the deterministic dynamics of the large-popu-

lation model in the absence of environmental feedback (τ = 0 in Eq (1)). When the environ-

mental feedback is included, we investigate the effect of all parameters to identify those that

control the value and stability of equilibria: payoff differential, β, social norm threshold,

n ¼
dB

dAþdB
, individual environmental impacts and environmental impact differential, lB − lA,

individual sensitivity to the environmental state, τ, and reactivity of the environment, ℓ. We

then identify conditions for the spread and consistent adoption of the A behavior. Finally, we

qualitatively discuss how incremental variation in the proenvironmental behavior could affect

the behavior-environment system dynamics and lead to a robust reduction of the individuals’

perceived environmental impact.

Behavior dynamics without environmental feedback

In the absence of environmental feedback (i.e. no individual assessment, τ = 0), agents may

switch behavior only upon encountering other agents, i.e. through social interactions. Eq (1)

then reduces to the standard imitation dynamics (or replicator) equation

dxt
dt

¼ kxtð1 � xtÞ½bþ dAxt � dBð1 � xtÞ� ¼ p0ðxtÞ;

det
dt

¼ hðxt; etÞ ¼ ‘etðlAxt þ lBð1 � xtÞ � etÞ

ð5Þ

Assuming lA> 0 and e0 between lA and lB, the only possible equilibrium value for the envi-

ronmental state is e* = lAx* + lB(1 − x*). The model admits three equilibria, x∗
0
¼ 0, x∗

1
¼ 1 and

x∗ ¼ dB � b

dAþdB
. If x*< 0 (resp. x*> 1), then x∗

1
¼ 1 (resp. x∗

0
¼ 0) is globally stable. If 0< x*< 1,

then the system is bistable; convergence to x∗
1
¼ 1 occurs if the initial frequency of the active

behavior is higher than x* (Fig 1). Note that when the payoff differential β is null, the outcome

is entirely determined by social pressures and in this case, the frequency threshold x* is equal

to the social norm threshold, n ¼
dB

dAþdB
.

At stable equilibrium (x∗
0
¼ 0 or x∗

1
¼ 1) the total rate of behavior switching, O (Eq (4)), is

always equal to zero, which means that the prevailing behavior, A or B, is adopted consistently.

Thus, if the active behavior A spreads, it will necessarily be adopted consistently; but the spread

of A from low frequency requires A to be perceived as sufficiently rewarding compared to B
(i.e.γA> γB + δB).

Effect of environmental feedback on active behavior frequency

As expected, the environmental feedback alone can prevent the active behavior from spreading

to high frequency. By taking τ> 0 and κ = 0 in Eq (1), individual behavior is influenced by the

perceived environmental state and not by social interactions. In this case, Eq (1) possesses only

one stable equilibrium, ðx∗; e∗Þ ¼ 1

2
;
lBþlA

2

� �
. With no social interactions (κ = 0) the payoffs γA
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and γB have no influence on the equilibrium frequency of the active behavior, since the payoffs

only play a role in the behavior dynamics when agents can compare them, which requires

contact.

By setting both τ> 0 and κ > 0 in Eq (1), the effect of environmental feedback combines

with the effect of social interactions. As in the case without environmental feedback (cf.

previous subsection), the model predicts up to three internal equilibria (i.e. 0 < x*< 1, see

Methods). The stability analysis shows that the product of individual sensitivity to the envi-

ronment, τ, and environmental impact differential, lB − lA, is a key determinant of the sys-

tem dynamics. When τ(lB − lA) is small enough, there is one (globally stable) or three (two

stable, one unstable) equilibria, depending on the payoff differential, β, and social norm

threshold, ν (Fig 2A–2C). The stable equilibrium is always close to x* = 0 or x* = 1 while

the two stable equilibria are close to x* = 0 and x* = 1, respectively. When the product τ(lB
− lA) is large enough, there is only one equilibrium. For a given payoff differential, β, and

social norm threshold, ν, this equilibrium can be stable or unstable (here necessarily a limit

cycle) depending on environmental reactivity, ℓ (Fig 2D–2F). Thus, parameter ℓ, the envi-

ronmental reactivity, does not affect the number of equilibria but it affects their stability

(Fig 2D–2F).

The environmental feedback thus has two main consequences for the spread of the

active behavior A from low frequency. On the one hand, under the condition that the

product τ(lB − lA) is small enough (Fig 2A–2C), the increase of A frequency from very low

to an equilibrium close to 1 becomes possible even if A is costly (β < 0) or at least low-

incentivized (small β > 0), provided that the environmental feedback be combined with

strong social pressure for the active behavior (low ν due to large δA, Fig 2A–2C to be com-

pared with Fig 1). On the other hand, for large values of the product τ(lB − lA), the environ-

mental feedback dominates the effect of social conformism for the active behavior. As a

consequence, most active behaviors can reach a frequency close to 0.5 irrespective of their

cost and the intensity of social pressure (Fig 2G–2I). High frequency (close to one) can be

reached but only under very strong social pressure, even for active behavior that are

strongly beneficial (large β > 0).

Fig 1. Frequency of active behavior at equilibrium in the absence of environmental feedback (Eq (5)), with respect to the payoff differential (β)

and social norm threshold (n ¼
dB

dAþdB
). (a) Bistability occurs in the black filled area (depending on the initial conditions, the equilibrium is either x* = 0

or x* = 1). (b) The upper equilibrium value (x* = 1) is plotted across the bistability area (reachable for initial frequency x0 > ν). (c) The lower

equilibrium value (x* = 0) is plotted across the bistability area (reachable for initial frequency x0 < ν). Environmental sensitivity is ℓ = 0.1 and other

parameters are set to their default values (Table 1).

https://doi.org/10.1371/journal.pcbi.1011429.g001
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The spread from low to high frequency of a costly active behavior (β< 0) cannot occur in

the absence of environmental feedback. The effect of the environmental feedback can be

explained as follows. In a population where the active behavior is rarely expressed (x close to

zero initially), the perceived environmental state is essentially set by the baseline behavior B.

Thus, the environment is perceived as strongly degraded, the environmental feedback pro-

motes the behavioral switch from B to A, hence the frequency of A rises. If the social pressure

of individuals expressing behavior A is strong enough (i.e., if δA is sufficiently larger than δB)

the initial pull of the A frequency by the environmental feedback will be sufficient to drive it

Fig 2. Frequency of active behavior at equilibrium in the presence of environmental feedback (Eq (16)), with respect to the

payoff differential (β) and social norm threshold (n ¼
dB

dAþdB
), for low to high individual sentivity to the environment (τ) (for

(a), (d) and (g) ℓ = 0.1) and environmental reactivity (ℓ). The place of each panel (a)-(i) gives the values taken for τ and ℓ =

0.25. For example, for (e), ℓ = 0.25 and τ = 1. Bistability occurs in the black filled areas. Stable limit cycles occur in the red filled

areas. The environmental impact differential is fixed (lB = 1, lA = 0.7). Other parameters (κ, δB) are set to their default values

(Table 1).

https://doi.org/10.1371/journal.pcbi.1011429.g002
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above the social norm threshold, ν. Once the A frequency exceeds the ν tipping point, social

interactions pick up and drive A toward its equilibrium frequency, close to 1.

Simulations of trajectories in the case of the active behavior rising from low to high fre-

quency allow us to constrain the model unit time (Fig E in S1 Appendix). Our approach

assumes a timeline over which the global environmental state or trend of global environmental

degradation (e.g. climate warming) is essentially unaltered by individual behaviors. The time-

scale over which individuals interact, perceive the environmental state, and change their

behavior is set by parameters κ, τ, and l. With κ = 1 (i.e. one social interaction about the envi-

ronmental concern expected on average per unit time), the characteristic time for the fre-

quency of proenvironmental behavior to rise from near zero to near one is of the order of 1–50

unit time (Fig E in S1 Appendix). Thus, environment-related social encounters that happen on

average once a week or once a month would be consistent with the typical dynamics of the

model. With a one-week time unit, the individual assessment of the environment would occur

on average every three months with τ = 0.1, or roughly every day with τ = 10. With a one-

month time unit, individual assessment of the environment would occur, on average, roughly

every year with τ = 0.1, and every three days with τ = 10. Over such timescales, convergence to

the stationary state occurs well before the actual physical environment or environmental trend

(e.g. speed of warming) might change as a consequence of the population consistently adopt-

ing proenvironmental behaviors.

Spread and consistent adoption of a costly active behavior

The consistent adoption of a costly active behavior requires the equilibrium frequency, x*, to

be close to one and the total switching rate,O (Eq (4)), to be close to zero. Figs 2 and 3 illustrate

conditions under which this is the case. According to the previous subsection, a general condi-

tion for a costly (or low-incentivized) active behavior to spread from low to high frequency (x*
close to 1) is that the social pressure for A be strong enough (large δA hence small ν, Fig 2).

When that is the case, the product τ(lB − lA) fully determines consistency, since for x* close to

1, the total rate of behavior switching is approximated by

Oð1; lAÞ ¼ tðlB � lAÞ: ð6Þ

Thus, with a relatively weak sensitivity to the environment (i.e. τ low) and a small environ-

mental impact differential (i.e. lA close to lB), costly active behaviors can spread from low to

high frequency provided the social pressure for active behavior is strong enough (Fig 2A–2C),

and consistent adoption is expected (Fig 3A). In contrast, if the individual sensitivity to the

environment is strong (large τ) and/or the environmental impact differential is large (large lB
− lA), behavioral inconsistency is expected, with agents frequently switching between active

and baseline behaviors (Fig 3B and 3C), even if the predicted equilibrium frequency of the

active behavior is high (see lower (yellow) regions in Fig 2D–2I, where the social pressure for

A, δA, is high hence the social normal threshold, ν, is low).

For intermediate values of τ(lB − lA), low environmental reactivity, ℓ, may be an additional

cause of behavior inconsistency. In this case, decreasing environmental reactivity can destabi-

lize the unique positive equilibrium and turn it into a limit cycle (Fig 2D–2F). Individuals will

thus switch behavior at a total rate that is itself changing over a slower timescale set by the envi-

ronmental reactivity. The slow timescale of environmental reactivity creates a time lag between

the perceived environmental state and individuals’ behavior, generating periodic oscillations

in the switching rates.
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Robust environmental impact reduction through incremental behavior

change

Starting from an environment perceived as strongly degraded, can an active behavior with

much smaller environmental impact than the baseline behavior (i.e. large lB − lA) drive a robust

improvement of the environmental state (from high to low e at stationary state)? Such an active

behavior could rise to high frequency provided the social pressure for proenvironmentalism is

very strong (Fig 4A), with a concommitent drop in environmental impact (Fig 4D). But sto-

chastic fluctuations in this case are large (Fig 4G), indicating that the active behavior may not

be adopted consistently.

In contrast, environmental impacts and feedback such that τ(lB − lA) is small allow for the

unconditional spread and consistent adoption of low-incentivized or even costly active behav-

ior (i.e., β close to 0 or even negative) (Fig 4B and 4H). Even though the effect of such behav-

ioral change on the environmental state is small (Fig 4E), this sets the stage for a scenario of

incremental behavioral change towards robust environmental impact reduction (Fig 4B and

4H) whereby increasingly more active behaviors would spread and be adopted consistently,

each behavioral change imparting a small reduction of environmental impact. Once behavior

A is established, it becomes the common baseline behavior where individuals may start

expressing a new active behavior A0, with lower environmental impact, and potentially a larger

cost. In the latter case, a stronger social pressure (higher δA hence lower ν) may compensate

for the larger cost and ensure that the active behavior A0 spreads and becomes adopted consis-

tently, in lieu of A. Thus, in a system where social conformism for active behavior can increase

(increasing δA hence decreasing ν) in relation with more effective active behavior (lower lA)

and/or the perception of reduced environmental impact (lower e*), a substitution sequence of

gradually more active (lower lA) and more costly (more negative β) behaviors can take place,

driving a potentially substantial decrease in the perceived environmental impact (e* decreasing

to arbitrarily low levels).

We hypothesize that such an incremental scenario might be triggered even for active behav-

iors that are initially costly, and with weak social pressure for them (small δA hence high ν)—as

long as their cost is not too large so that bistability remains possible (upper areas of black

regions in Fig 4B). In this case, random fluctuations in behavior frequency may cause the

Fig 3. Total switching rate at stationary state. The total switching rate is equalt to the variance of the asymptotic

fluctuations around the equilibrium x* as given by Eq 18. (a) Variance for τ = 0.1. (b) Variance for τ = 1. (c) Variance for

τ = 10. The environmental impact differential is fixed (lB = 1, lA = 0.7), environmental sensitivity is ℓ = 0.1 and other

parameters are set to their default values (Table 1).

https://doi.org/10.1371/journal.pcbi.1011429.g003
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system to switch from the low-frequency to the high-frequency A equilibrium (Fig 5), where it

may reside long enough for some new behavior A0 more active than A to spread and take over.

The study of such dynamics, involving the effect of individual stochasticity on alternate equi-

libria, is beyond the scope of this model and warrants further mathematical investigation.

Discussion

We developed a simple mathematical model to study how social and environmental feedbacks

jointly influence the consistent adoption of proenvironmental behavior. The treatment of indi-

vidual assessment of the perceived environment and social interactions as two separate factors

Fig 4. Influence of the environmental impact differential, lB − lA, on the frequency of active behavior (a, b, c),

perceived environmental state (d, e, f), and total switching rate (g, h, i) at equilibrium. For (a), (d) and (g), the

parameters are lB = 1 and lA = 0.1. For (b), (e) and (h), lB = 1 and lA = 0.95. For (c), (f) and (i), lB = 0.15 and lA = 0.1.

Individual sensitivity to the environment and environmental reactivity are set to τ = 1 and ℓ = 0.1. Other parameters are

set to their default values (Table 1).

https://doi.org/10.1371/journal.pcbi.1011429.g004
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of individual decisions differentiate our model from evolutionary games with environmental

feedbacks, in which the influence of the environment is mediated by the payoffs of the strategic

interactions [10–14] and even possibly by the game type varying in response to the agents’

actions [22, 23]. Here we assume that the payoffs are constant and that the perception of envi-

ronmental degradation can influence an individual’s behavioral choice independently of their

interactions with others—a similar assumption is made in models of environmental behavioral

choice based on experiential learning [24]. This structure allows us to separate the behavioral

effect of individual assessment of the perceived environmental state from the effect of social

interactions. Our model thus aligns with the conceptual framework of Schill et al. (2019) [21]

for connecting environmental behavior with both social and perceived biophysical contexts.

The importance of timescales for behavioral consistency

The assumed invariance of the payoff difference (unaffected by variation in the environmental

state variable) is rooted in the short timescale involved in the behavior-environment dynamics.

Because the environmental state variable captures perceived information, shaped by behavioral

intentions or actions, it is plausible that the timescale of environment-behavior change be

short relative to the timescale over which the true state of the physical environment changes.

Under this timescale separation, the payoff difference remains constant as the perceived envi-

ronmental information changes, without precluding change in payoffs that could occur over

the slower timescale of a changing physical environment.

When the timescale of individual assessment is fast relative to social interactions, the envi-

ronmental feedback dominates the system dynamics, leading to inconsistent behavior. The rel-

atively fast individual assessment timescale may originate from individuals having more

confidence in their own evaluation of costs and benefits than in others’ influence. This is

known to occur, for instance, when the decision to be made carries a lot of personal weight

Fig 5. Effect of stochastic fluctuations on behavior-environment dynamics in the bistable case. (a) Convergence of two trajectories issued from the

same initial condition to alternate equilibria. (b) A single trajectory, with color coding for passing time, visits alternate equilibria, from the higher x*
(blue tones) to the lower x* (green) to the higher x* (orange) to the lower x* (red). The stochastic simulation algorithm is described in the Methods.

Environmental sensitivity ℓ = 0.1 (as in Fig 2A), payoff difference β = −0.25 and social norm threshold ν = 0.3. Other parameters are set to their default

values (Table 1).

https://doi.org/10.1371/journal.pcbi.1011429.g005
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[25, 26] or when individuals have grown up in a very favorable environment [27]. When indi-

vidual assessment is slow compared to social interactions, the social feedback dominates. This

raises the question, whether, in practice, social influence could be stronger among individuals

who engage in proenvironmental behavior than among individuals who do not. One can spec-

ulate that this could be the case if the active behavior is individually costly and perceived as a

moral duty. In this case, the active individuals behave as cooperators whose efforts (measured

in terms of opportunity cost) are influenced the most by the observation of the others’ efforts

[28, 29].

Overall, the timescale of perceived environmental change has little effect on the behav-

ior-environment dynamics. Thus, whether individuals assume that their actions are

environmentally meaningful in the short term (high environmental reactivity, ℓ) or the long

term (low environmental reactivity, ℓ) generally has no significant effect on behavior consis-

tency. The case of social interactions and individual assessment occurring on similar time-

scales is special, however. In this case, low environmental reactivity, ℓ, creates a time lag

between behavioral and perceived environmental changes, causing behavior-environment

cycles when the proenvironmental behavior is costly and levels of conformism are not too

different between behaviors. A similar effect of slow environmental reactivity relative to

social interactions promoting oscillations was also detected by [30] in their model of forest

growth and conservation opinion dynamics. Contrasted environmental impacts of behav-

iors A and B (i.e. large lB − lA) favor the limit cycle regime over bistability which is reminis-

cent of previous findings of behavior-environment cycles replacing bistability when the

human influence on the environment is strong [31].

Consistent adoption of incrementally more active behavior

A question of interest is how the consistent adoption of an active behavior depends on the

magnitude of environmental impact reduction associated with that behavior. The model

shows that for active behaviors causing only a small environmental impact reduction, the bis-

table regime is favored, which leads to consistent behavior adoption (of A or B). In fact, a small

environmental impact reduction by the active behavior has the same effect on the system

dynamics as a slow timescale of individual assessment. Once a ‘small-step’ active behavior is

adopted consistently, the perceived level of environmental degradation is only decreased by a

small amount; but if more behavioral options were available, the socio-environmental context

would be set to promote individuals engaging consistently in ‘the next small step’. If the pro-

cess were repeated, leading to the consistent adoption of active behaviors of gradually smaller

environmental impact, we would expect the perceived level of environmental degradation to

decrease. Interestingly, this might happen even if the relative cost of active behavior was

increasing, provided the social pressure for active behavior increased concommitently.

Our consideration of gradual behavioral change through a sequence of ‘small steps’ raises

the empirical question of whether the perceived change in environmental state could in turn

affect the repertoire of individual behaviors, and in particular motivate behaviors more active

than A. In practice, the existence and direction of such an additional feedback may depend on

whether each small step is individually beneficial and thus considered by people as a self-serv-

ing decision, or individually costly and considered as a form of cooperation. In the first case,

there is no obvious reason for the perceived change in environmental state to affect individual

decisions, so it is unlikely that such feedback would exist. In the second case, however, the

question relates to the rich empirical literature on the influence of the perceived environmental

state on cooperation. The majority of studies in this field, and in particular the highest pow-

ered studies, report a positive relationship between the quality of the environment experienced
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by individuals and their level of investment in cooperation [32–39]; although some studies

report opposite effects [40–42] or no effect at all [43, 44]. We may thus hypothesize the exis-

tence of the additional positive feedback whereby the perception of an improved environmen-

tal state would enlarge the behavioral repertoire and motivate more active behaviors. The

improvement or, on the contrary, the deterioration of the perceived environment could lead

individuals to invest more, or, on the contrary, less in proenvironmental behavior, thus gener-

ating the kind of behavioral sequence that we envisioned in this analysis.

Limits and perspectives

Our work builds on the fundamental distinction between the individual’s stable characteristics

and the subset of situational characteristics which capture the social and environmental situat-

edness of behavior [45]. In the model, all parameters, except the rate of environmental reactiv-

ity, ℓ, are set as individual characteristics. A key assumption is that all individuals are identical

in their stable characteristics. Our framework could be extended to relax this assumption and

investigate the consequences of heterogeneity in individual social status or personalities [46,

47]. For example, the same objective cost of the active behavior (e.g. buying or maintaing an

electric car) may be perceived very differently depending on the individual’s wealth [48, 49].

Likewise, individuals of different social status may vary in their experience of social pressure

from individuals expressing the active vs. baseline behavior; this in the model would manifest

through inter-individual variation of δA and δB [27].

Given the predicted importance of the individual sensitivity to the environment, τ, and

environmental impact differential, lB − lA, the outcome (consistent adoption of the active

behavior) is likely to be influenced by inter-individual heterogeneity in these two parame-

ters. It is known that individuals can differ greatly in their perception and assessment of

the state of degradation of their environment, due to differences in social origin, educa-

tion, or information [49, 50]; and in their potential proenvironmental response to per-

ceived environmental degradation [50]. This heterogeneity could result in wide variation

of both τ and lB − lA among individuals, with contrasted personalities such as being little

responsive and acting weakly (small τ and lB − lA), or responding fast and strongly (large τ
and lB − lA).

In previous models of coupled human behavior and natural environment dynamics, the

environment typically is measured by a variable such as the abundance of a renewable resource

(e.g. forests [17], fisheries [51]), or a physical variable such as atmospheric greenhouse gases

concentration or temperature [52]. In these models, the environmental dynamics are driven

by their own endogenous processes and impacted by human activities (gas emissions, harvest-

ing. . .). These models ask how human behavioral feedbacks alter the stability properties of the

perturbed (polluted, exploited. . .) ecosystem. An important difference between our approach

and previous human-environment system models lies in our definition of the environmental

state in terms of perceived degradation or vulnerability, rather than actual physical compo-

nents (atmospheric CO2 level, abundance of a natural resource. . .) of the environment. This

information changes under the influence of individuals’ intentions or behaviors; the physical

environment (or physical environmental trend, as with global climate warming or biodiversity

loss) may also change as a consequence, but we assume that the change would occur on a

much slower timescale and therefore has no influence on the individual decisions that the

model describes. For example, in the case of global climate change, our approach assumes that

our world is already locked into warming: even if we stopped emitting greenhouse gases today,

it would take several decades before we observe curbing in the rise of global temperature.

None-the-less, rapid change in individual behavior may occur, including the spread of pro-
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climate action or intention, concomitantly with the perception that the level of environmental

degradation or vulnerability decreases.

This representation of the environment allowed us to make the assumption that the payoff

difference is insensitive to the environmental state variable. Note, however, that a feedback of

the environment to the payoff difference can be seen as implicit in our scenario for the consis-

tent adoption of incrementally more active behavior. This could be due to institutional inter-

vention responding—on a slow timescale—to change in the environmental stationary state, as

defined here, and altering the payoff difference through incentives (reducing the payoff differ-

ence) or by promoting more effective behaviors that would also be more costly (increasing the

payoff difference). Another significant difference with most previous human-environment

models is that here the environment, being purely informational, does not have its own intrin-

sic dynamics. A similar assumption was made by Weitz et al. (2016) [12] in a game-theoretic

model where the environmental feedback was positive and governed by a tipping point. Future

work could address the effect of a positive feedback in our model, to capture positive reinforce-

ment (improved environmental state encourages to do more [49, 53]) and “giving up” (an

environment assessed as degraded leads to less effort, rather than more [49, 53]).

Concluding remarks

In this minimal model of behavior-environment feedback, individuals intend proenvironmen-

tal action when they perceive their environment as strongly degraded or vulnerable, and relax

their effort as they perceive amelioration of the environmental state. This negative environ-

mental feedback, by itself, opposes the consistent adoption of costly proenvironmental behav-

ior, but opens the possibility for such behavior to rise from very low frequency and reach a

tipping point at which social interactions and conformism will pick up and drive its consistent

adoption. This suggests a scenario to achieve large reductions in environmental impact, which

involves the consistent adoption of incrementally more active and potentially more costly

behavior. The theoretical conditions for this to occur (social interactions timescale faster than

individual assessment timescale, strong social pressure for proenvironmental action) raise

empirical questions regarding why individuals’ environmental intentions would rely more on

others’ influence than on their own assessment of the environmental state, and what factors

(individual or collective) can make the social pressure of conformism stronger for

proenvironmentalism.

Methods

In a population of finite size N, at any time t, the perceived environmental state and the num-

bers of individuals who are performing A or B are denoted by EN
t , NA;N

t and NB;N
t , respectively.

Since the population size is constant we have NB;N
t ¼ N � NA;N

t . Hereafter we derive a stochas-

tic model for the joint dynamics of the frequency of behavior A in the population, XN
t ¼

NA;N
t
N ,

and the perceived environmental state, EN
t . The list of parameters and their default values is

given in Table 1.

Environment dynamics

We assume that the dynamics of the perceived environnemental state EN
t follows a determin-

istic continuous process. Each individual in the population has the same perception of the

environment. The dynamics of EN
t is driven by the ordinary differential equation

_EN
t ¼ hðXN

t ;E
N
t Þ;
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where h captures the environmental impact of the two behaviors given their frequency, accord-

ing to

hðx; eÞ ¼ ‘eðlAxþ lBð1 � xÞ � eÞ ð7Þ

for any (x, e) in [0, 1] × [lA, lB].

The function h is chosen such that in a population where all individuals express behavior A
(B, respectively), the rate of change of the environment perceived as minimally (maximally)

degraded is proportional to lA (lB) and the stationary value of the perceived environmental

state is lA (lB).

Behavior dynamics

Two factors influence the decision process of modeled agents: frequency of encounters with

other modeled agents, and the value of the state variable representing some environmental

factor.

Social interactions. We further assume

gAðXNÞ ¼ XN

gBðXNÞ ¼ 1 � XN :
ð8Þ

An agent with behavior i switches to behavior j via social interactions at rate

l
N
i!jðX

NÞ ¼ N2kgiðXNÞgjðXNÞl
N
j ðX

NÞ; ð9Þ

where l
N
i ðxÞ is the individual attractiveness of behavior i, N2κgi(XN)gj(XN) is the number of

potential encounters. Note that the number of potential encounters is symmetrical, gi(XN)

gj(XN) = XN(1 − XN). The difference between behavior i’s and j’s rate rely on the individual

attractiveness of behavior. The individual attractiveness of behavior i is taken of the form

l
N
i ðX

NÞ ¼
1

N
gi þ di giðX

NÞð Þ: ð10Þ

As a result, the individual rate of behavioral switch from i to j is

l
N
i!jðX

NÞ ¼ NkXNð1 � XNÞðgj þ dj gjðXNÞÞ: ð11Þ

The term δj gj(XN) reflects that social influence is a coercive mechanism which encourages

conformism.

Individual assessment. Behavior switching based on the assessment of the state of the

environment occurs at the individual rate

tNi!jðX
N ;ENÞ ¼ NgiðXNÞtjðENÞ; ð12Þ

where gA(XN) = XN and gB(XN) = 1 − XN (as above) and the environmental perception of indi-

vidual i is measured by τj(EN), which captures the difference between the environmental state,

e, and the contribution of behavior j to the degradation of the environmental state.

The simplest form then is

tAðENÞ ¼ tðEN � lAÞ

tBðENÞ ¼ tðlB � ENÞ:
ð13Þ
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Thus, the larger the difference between the perceived environmental state, EN, and the indi-

vidual environmental impact of behavior i, li, the faster an agent expressing j behavior switches

to i behavior.

Dynamics of the behavior-environment stochastic process

The dynamics of the coupled behavior-environment process ðXN
t ; E

N
t Þ are stochastic, driven by

the probabilistic events of agents switching between the baseline (B) and active (A) behaviors,

under the joint effects of encounters and individual assessment, and the deterministic response

of the perceived environmental state. Mathematically, the effects of all possible events (agents’

behavior switches, change in perceived environment) on the state of the Markovian system

ðXN
t ; E

N
t Þt�0

are captured by the infinitesimal generator LN of the stochastic process ðXN
t ; E

N
t Þ.

For ðx; eÞ 2 ⟦0; 1

N ; � � � ; 1⟧� R
þ

∗ and a test function f 2 C1

b ⟦0; 1

N ; � � � ; 1⟧� R
þ

∗ ;R
� �

, we have

LNf ðx; eÞ ¼ N2kxð1 � xÞlN
AðxÞ f xþ

1

N
; e

� �

� f x; eð Þ

� �

þN2kxð1 � xÞlN
B ðxÞ f x �

1

N
; e

� �

� f x; eð Þ

� �

þNð1 � xÞtB!Aðx; eÞ f xþ
1

N
; e

� �

� f x; eð Þ

� �

þNxtA!Bðx; eÞ f x �
1

N
; e

� �

� f x; eð Þ

� �

þhðx; eÞ
@f ðx; eÞ
@e

:

ð14Þ

Agents switch behavior at a given time t for a given state of the system (Xt, Et) with a proba-

bility given by Eq (14). In this expression, the first and second rows account for individual

behavior switches due to encounters (from B to A or A to B, respectively). For instance, the

rate at which a B! A switch occurs because of encounters (first row) is proportional to N(1 −
x), the number of agents adopting behavior B; κNx, the encounter rate between a single agent

adopting B and agents adopting A; and λA(x), the social attractiveness of a single agent adopt-

ing A. The third and fourth rows account for switches because of individual assessment of the

perceived environment state. For instance, the rate at which a B! A switch occurs because of

the environmental state variable (third row) is proportional to N(1 − x), the number of agents

adopting B; and τB! A(x, e), the rate at which an agent in state B adopts the alternate behavior

A after assessing the impact of its behavior on the perceived state of the environment. Finally,

the last row accounts for changes in the perceived environmental state depending on the fre-

quency. By taking f(x, e) = x and f(x, e) = e, we obtain the deterministic part in Eq. (S1.2) in S1

Appendix [54] while f(x, e) = x2 gives the quadratic variation in Eq. (S1.4) in S1 Appendix. The

process whose law is characterized by Eq (14) is a Piecewise Deterministic Markov Process

where the population state (frequencies of behaviors) probabilistically jumps at each change in

agent behavior while the environmental state deterministically and continuously changes

between jumps.

Dynamical system approximation for large populations

In Section 2 in S1 Appendix [54], we explain that, assuming the population size N very large

and under Assumptions (10–15), the sequence of stochastic processes ðXN ;ENÞN2N∗ converges
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in distribution to the unique solution of the system Eq (1). By plugging Eqs (2) and (3) into Eq

(1), we obtain Eq (15)

dxt
dt

¼ pðxt; etÞ ¼ kxtð1 � xtÞ½bþ dAxt � dBð1 � xtÞ� þ t½et � lAð1 � xtÞ � lBxt�

det
dt
¼ hðxt; etÞ ¼ ‘etðlAxt þ lBð1 � xtÞ � etÞ

ð15Þ

with initial conditions x0 between 0 and 1 and e0 between lA and lB. The first equation governs

the frequency x of the active behavior, A. The second equation drives the dynamics of the per-

ceived environmental state variable, e.
The model predicts up to three equilibria given by the zeros of

pðx; lAxþ lBð1 � xÞÞ ¼ p0ðxÞ þ tðlB � lAÞð1 � 2xÞ; ð16Þ

(p0 defined in Eq (6)), that are nonegative and less than (or equal to) one. By setting both τ> 0

and κ> 0 in Eq (15), the effect of the environmental feedback on its own can be highlighted

by comparing Eq (15) at its stable equilibria with the value of Eq (16) at the same state (i.e. x* =

0 or x* = 1). Since p(0, lB) = τ(lB − lA)> 0 and p(1, lA) = −p(0, lB)< 0, the environmental feed-

back moves the equilibria of the system away from 0 and 1 (Fig 2). The roots of Eq (16) also

show that the number of equilibria is likely influenced by the encounter rate, κ, the payoff dif-

ferential, β, the social norm threshold, n ¼
dB

dAþdB
, and the combination (product) of the individ-

ual sensitivity to the environment, τ, and the differential environmental impact, lB − lA.

Quantifying the effect of individual stochasticity

To analyse the fluctuations of the stochastic model around the deterministic limit, we general-

ize the central limit theorem to the convergence of the stochastic process ðXN
t ;E

N
t Þt2½0;T� to the

deterministic solution of Eq (1). We therefore introduce

ðZNt Þt2½0;T� ¼ ðZ
A;N
t ; ZE;Nt Þt2½0;T� ¼ ð

ffiffiffiffi
N
p
ðXN

t � xt; EN
t � etÞÞt2½0;T�, where ((xt, et), t� T) is the deter-

ministic solution of Eq (1) and (XN, EN) is the stochastic process. Assuming that ZN
0

converges

in law to η0, when N!1, the process ðZNt Þt2½0;T� converges in law to a Ornstein-Uhlenbeck

type process ðZtÞt2½0;T� ¼ ðZ
A
t ; Z

E
t Þt2½0;T� and we have

ðXN
t ;E

N
t Þ ¼ ðxt; etÞ þ

1
ffiffiffiffi
N
p ðZAt ; Z

E
t Þ þ o

1
ffiffiffiffi
N
p

� �

:

For all t in [0, T], the process ðZtÞt2½0;T� ¼ ðZ
A
t ; Z

E
t Þt2½0;T� satisfies

ZAt ¼ ZA
0
þ

Z t

0

½ðkð1 � 2xsÞðgA � gB � dB þ ðdA þ dBÞxsÞ � tðlB � lAÞÞZ
A
s þ tZ

E
s �ds

þ

Z t

0

sðxs; esÞdWs;

ZEt ¼ ZE
0
þ

Z t

0

‘½ðlA � lBÞesZ
A
s þ ðlAxs þ lBð1 � xsÞ � 2esÞZ

E
s �ds:

ð17Þ

where

sðx; eÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxð1 � xÞðlAðxÞ þ lBðxÞÞ þ tAðeÞð1 � xÞ þ tBðeÞx

p
; ð18Þ
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and W is a standard Brownian motion (see Section 4 in S1 Appendix [54] for mathematical

detail).

Note that the drift and variance are functions of the solution of the deterministic system

(1). The stochastic part of the fluctuation process given by Eq (18) is the square root of the

total rate O (see Eq (4)) of behavior switching in the population. According to Eq (17), it only

affects the fluctuations in behavior frequency (not in the perceived environmental state).

Simulations and numerical analysis

For the stochastic process, the dynamics of agent behaviors’ frequency (by stochastic jumps) is

jointly simulated with the dynamics of the perceived environment (by deterministic changes,

continuously in time between the stochastic population jumps). Random times are for any N
drawn according to an exponential distribution of parameters ξN, where

x
N
> N sup

ðx;eÞ2½0;1��½lA ;lB �
ðkðlAðxÞ þ lBðxÞÞ þ tAðeÞ þ tBðeÞÞ: ð19Þ

At each of these times, we update our variables of interest. There are three possible cases:

either no agent changes their behavior in the population, or one agent switches from B to A, or

one agent switches from A to B. The perceived environment is changed using a Euler scheme

between two events in the population.

Without loss of generality, parameters κ and lB are fixed to 1 (default values for parameters

used in numerical analyses are reviewed in Table 1). We analyse the properties of the stochastic

and deterministic models for values of δA and γA spanning the whole range of possible values

while keeping δB and γB constant. Parameters are varied across a discrete grid. We search for

fixed points by computing the zeros of the polynomial given by Eq (16). Local stability is tested

by computing the Jacobian matrix of the system. We use the Poincaré-Bendixson theorem to

check the absence of limit cycle (Th.1.8.1 in [55], see also Section 3.2 in S1 Appendix [54]).

When the existence of a stable limit cycle in addition to an attractive fixed point cannot be

excluded, we simulate the dynamical system for different initial conditions. Would there be a

limit cycle crossing the trajectory of the simulations, the trajectory would be trapped around

the limit cycle and not converge to its stable fixed point. Otherwise, all trajectories converge to

the equilibrium, thus excluding the existence of a limit cycle.
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Writing – review & editing: Claire Ecotière, Sylvain Billiard, Jean-Baptiste André, Pierre Col-
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