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RESEARCH QUESTION CONTEXT

Here are the 3 chaire’s research axes :

AI and risk dynamic:
How to include time considerations when modeling risk factors ?

AI and interpretability:
Risk factor analysis and interpretability: how to use it from the insurer’s PoV ?

AI and specific data structures:
How to handle outliers, missing or incomplete values, longitudinal data...
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SUMMARY

RESEARCH QUESTION, DATA AND FRAMEWORK

MODELISATION
Survival part
LMS part

RESULTS AND DISCUSSION

PERSPECTIVES AND CONCLUSIONS
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RESEARCH QUESTION, DATA AND FRAMEWORK
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RESEARCH PROBLEM

Lapse management

We want to be able:

• to define what a lapse management strategy is

• to target policyholders who should be targetted by a given LMS

• to measure the gain generated by a given LMS

• to optimize a given LMS

• to bring complex tree based models to the actuarial literature
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LMS

Definition:

A T-years lapse management strategy is modeled by the offer of an incentive δi to subject i
if he/she is targetted. The incentive is expressed as a percentage of its face amount and is
accepted with probability γi. Contacting the targeted policyholder has a fixed cost c. A targeted
subject who accepts the incentive will be considered as an "acceptant" who will never lapse and
its probability of being active at year t ∈ [0, T ] is denoted racceptant

i,t . Conversely, a subject who
refuse the incentive and prefers to lapse will be considered as a "lapser" and its probability of
being active at year t is denoted rlapser

i,t . A lapse management strategy is uniquely defined by the
parameters (p, δ,γ, c, T )
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DISCLAIMER

Disclaimer: For privacy reasons:

• all the data, statistics, product names and perimeters presented in this paper have been either
anonymised or modified.

• All analysis, disussions and conclusions remain unchanged.
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DATA DESCRIPTION

• Real-world french life insurance portfolio

• From 1998 to today (almost!)

• 249k unique policies

• 235k unique policyholders

• 43 covariates

8 / 49



DATA DESCRIPTION

• Originaly we have one row for every policyholder’s movement: (payments, lapses, fees, profit
sharing, claims...)

• Here we decided to keep only the most recent information for every policyholder

• 1 row for every (policyholder/policy) pair
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DATA DESCRIPTION

FIGURE: Seniorities and face
amounts distributions
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FRAMEWORK

FCLVi (pi,F i, ri,d) =
T∑

t=0

pi,tFi,tri,t

(1 + dt)
t .

From which we derive:

• the control portfolio future value (FCPV (T ))
⇒ The hypothetical value of the portfolio, considering that:

• every subject that did not lapse up to time t = 0 has a vector of retention probabilities of racceptant
i ;

• every subject that lapsed before time t = 0 has a vector of retention probabilities of rlapser
i

• the lapse-managed portfolio future value (FLMPV(δ, γ, c, T ))
⇒ The hypothetical value of the portfolio after a given LMS is applied, considering that:

• every targeted subject has a γ probability of accepting the incentive and behave with a vector of
retention probabilities of racceptant

i ;
• every targeted subject has a (1− γ) probability of refusing the incentive and behave with a vector of

retention probabilities of rlapser
i ;

• every non-targetted subject that did not lapse has a vector of retention probabilities of racceptant
i ;

• every non-targetted subject that lapsed has a vector of retention probabilities of rlapser
i
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BONUS: CPV

FCPV =
n∑

i=1

FCLV
(
pi, Fi, r

acceptant
i , d, T

)
· 1 (yi = 0)

+
n∑

i=1

FCLV
(
pi, Fi, r

lapser
i , d, T

)
· 1 (yi = 1)
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BONUS: MODELISATION HYPOTHESIS

In the following section, we consider a simplified version of this framework by assuming that:

• pi,t, Fi,t, and dt remain constant across time, and denoted pi, Fi and d hereafter,

• with Fi being the most recent face amount observed for subject i,

• we set γi and δi to be the same for all subjects and denoted as γ and δ hereafter.
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BONUS: LMPV

FLMPV (δ, γ, c, T ) =
n∑

i=1

FCLV
(
p, Fi, r

acceptant
i ,d, T

)
· 1 (yi = 0, ŷi = 0)

+
n∑

i=1

FCLV
(
p, Fi, r

lapser
i ,d, T

)
· 1 (yi = 1, ŷi = 0)

+
n∑

i=1

FCLV
(
p− δ, Fi, r

acceptant
i ,d, T

)
· 1 (yi = 0, ŷi = 1)

+ γ ·
n∑

i=1

FCLV
(
p− δ, Fi, r

acceptant
i ,d, T

)
· 1 (yi = 1, ŷi = 1)

+ (1− γ) ·
n∑

i=1

FCLV
(
p, Fi, r

lapser
i ,d, T

)
· 1 (yi = 1, ŷi = 1)

− c(N(−, 1))
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BONUS: REMARK

Remark: It is important to note that this does not reflect the actual future value of the portfolio - as
the future CLV of lapsers should be 0 - but rather its hypothetical expected future value given the
nature (lapser or not) of every subject but not their real states (actually lapsed or not).

15 / 49



FRAMEWORK

We can now derive:

RG(δ, γ, c, T ) = FLMPV(δ, γ, c, T )− FCPV (T ),

that can be simplified as follows:

RG(δ, γ, c, T ) =

n∑
i=1

[
γ
[
FCLV

(
p− δ, Fi, r

acceptant
i ,d, T

)
− FCLV

(
p, Fi, r

lapser
i ,d, T

) ]
· 1 (yi = 1, ŷi = 1)

− FCLV (δ, Fi, rstay ,d, T ) · 1 (yi = 0, ŷi = 1)

]
− c(N(−, 1))
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FRAMEWORK

That allows ud to define:

zi =



− FCLVi

(
δj , Fi, r

acceptant
i , d, T

)
− c if yi = 0

γ ·
[
FCLVi

(
p− δ, Fi, r

acceptant
i , d, T

)
if yi = 1

− FCLVi

(
p, Fi, r

lapser
i , d, T

) ]
− c

⇒ That represents the expected profit or loss that would results from targetting policyholder i with a
given lapse management strategy.
And:

ỹi =

{
1 if ẑ > 0
0 if ẑ ≤ 0

,

⇒ indicating wheter or not targetting policyholder i is expected to generate a profit for the insurer.
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FRAMEWORK

We define the lapse management strategy modelisation as a 2-steps framework:

• racceptant and rlapser modelisation: ⇒ aka the survival part

• Computation of ỹi and classification, with RG as the evaluation metric: ⇒ aka the LMS part

In parallel, we run a classification on yi with accuracy as the evaluation metric, for comparison sake
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CONTRIBUTIONS

What’s new ?

• individualized racceptant and rlapser modelisation

• racceptant and rlapser modelisation that take the risk of death into consideration throught a
competing risk survival models

• usage of survival tree-based models for actuarial purpose

• keeping the problem as a classification one
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MODELISATION
Survival part
LMS part
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SURVIVAL PART: A WORD ON COMPETING RISKS

We are aware that the context of our modelization requires competing risk setting.

Several regression models exist to estimate the global hazard and the hazard of one risk in such
settings: cause-specific and subdistribution modelizations.

They account for competing risks differently, obtaining different hazard functions and thus have
distinct advantages, drawbacks and interpretations.

After discussions, the simplicity of a cause-specific approach and the fact that it can be adapted to
any survival method including tree-based ones, oriented our choice towards it.
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BONUS: CAUSE SPECIFIC APPROACH

In Cause-specific regression, each cause-specific hazard is estimated separately, in our case, the
cause-specific hazards of lapse and death, by considering all subjects that experienced the
competing event as censored.
The cause-specific hazard rates regarding the j-th risk (j ∈ [1, . . . J ]) are defined as:

λT,j(t) = lim
dt→0

P (t ≤ T < t+ dt, JT = j | T ≥ t)

dt

We can recover the global hazard rate as λT,1(t) + · · ·+ λT,J(t) = λT (t), and derive the global
survival distribution of T as

P (T > t) = 1− FT (t) = ST (t)

= exp

(
−
∫ t

0

(λT,1(s) + · · ·+ λT,J(s)) ds

)
This approach aims at analysing the cause-specific "distribution" function:
FT,j(t) = P (T ≤ t, JT = j). In practice, it is called the Cumulative Incidence Function (CIF ) for
cause j and not a distribution function since FT,j(t) → P (JT = j) ̸= 1 as t → +∞.
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BONUS: SUBDISTRIBUTION APPROACH

Subdistribution hazard function/Fine and Gray regression, works by considering a new competing
risk process τ . Without loss of generality, let’s consider death as our cause of interest:

τ = T × ⊮JT=2 +∞× ⊮JT ̸=2.

It has the same as T regarding the risk of death, P (τ ≤ t) = FT,2(t) and a mass point at infinity
1− FT,2(∞), probability to observe other causes (JT ̸= 2) or not to observe any failure.
In other words, if the previous approach considered every subject that experienced competing
events as censored, this approach considers a new and artificial at-risk population. This last
consideration is made clear when deriving the hazard rate of τ :

λτ (t) = lim
dt→0

P (t ≤ T < t+ dt, JT = 2 | {T ≥ t} ∪ {T ≤ t, JT ̸= 2})
dt

.

Finally, we obtain the CIF for the risk of death as:

FT,2(t) = 1− exp

(
−
∫ t

0

λτ (s)ds

)
.

⇒ resolves the most important drawback of cause-specific regression, as the coefficients resulting
from it do have a direct relationship with the cumulative incidence: estimating the CIF for a specific
cause does not depend on the other causes, which makes the interpretation of CIF easier.
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SURVIVAL PART: MODELS CONSIDERED

We considered:

• Cause-specific Cox proportional hazard model,

• Random survival forest

• Gradient boosting survival model
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SURVIVAL PART: A WORD ON SURVIVAL TREES

Survival trees work similarly as regular decision trees, except for the splitting criterion.

In regular decision trees: we choose the split
that maximize the within node homogeneity.

In survival trees : we choose the split that
maximize the between nodes heterogeneity.
The heterogenerity between the two child
nodes can be measured with a log rank statis-
tic.

• A random survival forest is a random forest of survival trees.

• A gradient boosting survival model is the equivalent of xgboost with survival trees.
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SURVIVAL PART: racceptant , rlapser MODELISATION - CPH

FIGURE: racceptant and rlapser survival curves at
different policyholder ages

Covariate importance:

• Age and gender are common important covariates for the 3 models for racceptant.

• Age and face amount are common important covariates for the 2 tree-based models for rlapser.

26 / 49



SURVIVAL PART: racceptant , rlapser MODELISATION - RSF

FIGURE: racceptant and rlapser survival curves for
different policyholders

Covariate importance:
• Age and gender are common important covariates for the 3 models for racceptant.
• Age and face amount are common important covariates for the 2 tree-based models for rlapser.
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SURVIVAL PART: racceptant , rlapser MODELISATION - GBSM

FIGURE: racceptant and rlapser survival curves for
different policyholders

Covariate importance:
• Age and gender are common important covariates for the 3 models for racceptant.
• Age and face amount are common important covariates for the 2 tree-based models for rlapser.
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RESULTS FOR THE SURVIVAL PART

We use the concordance index to compare the results of our considered models:

Concordance Index

rlapser racceptant

Cox model 69,5% 80,7%
RSF 71,6% 83,7%

GBSM 73,0% 84,1%

• Non-parametric approaches perform better;

• GBSM in particular yields the best results
⇒ we choose GBSM to model our retention probabilities

• Computation times: tens of seconds for CPH, tens of hours for the tree-based models
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LMS PART: y, ỹ AND RG

We now have all the elements to run LMS models:

• We compute racceptant and rlapser with GBSM;

• We compute the zi’s and ỹi’s for every policyholder;

• We can run classification models on yi and ỹi

• We can compare the RG’s estimated with different models
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LMS PART: COMPARISON OF TWO MODELS

In order to measure the performance of our framework, from the insurer’s PoV, we will compare two
frameworks:

Classical framework: Classification on y, with
accuracy as evaluation metric

CLV-augmented framework : Classification
on ỹ, with RG as evaluation metric
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LMS PART: MODELS CONSIDERED

Tree based models:

• CART

• RF

• XGBoost
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LMS PART: CONSIDERED LMS

5 scenarios:

Scenarios p δ γ c d T

1 2,50% 0,04% 25% 10 1,50% 5
4 2,50% 0,04% 5% 10 1,50% 5
13 1,50% 0,20% 20% 10 1,50% 5
21 2,50% 0,08% 10% 10 1,50% 20
30 1,50% 0,20% 20% 100 1,50% 5
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RESULTS AND DISCUSSION
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STRATEGY 1

Positive result on yi and an improved result on ỹi.
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STRATEGY 4

Very negative result on yi and a loss-limiting result on ỹi.
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STRATEGY 30

Negative result on yi and positive one on ỹi
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STRATEGY 21

High positive result on yi slightly improved with ỹi.
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STRATEGY 13

Results on yi better than results on ỹi.
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GENERAL CONCLUSIONS

We can note that:

• RF and Xgboost perform globally better than CART

• XGB is more consistent and is the best model in most scenarios both with and without the
CLV-based measure

• All the realistic ones shows that a classification on ỹi produces a targetting that yields better RG
than a classification on yi

• A classification on yi produces a targetting that yields better accuracies regarding whether a
policyholder will churn than a classification on ỹi

• The model shows to yield very high improvement when classification on yi gives negative RG.

• The model can turn a negative RG into a positive one
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IMPROVEMENT AND PROPERTIES

The average observed improvement of a CLV-augmented framework over the classical lapse
one is 57,9%a. If we weight these results by the expected RGs, the average improvement is still
31,7%.

aUsing XGBoost

The modelization:

• showed to be loss-limiting (Strategy n◦4)

• showed that the improvement of a lapse management strategy including CLV grows with the
proportion of lapsers with a negative CLV
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IMPROVEMENT AND PROPERTIES

• showed to be loss-limiting (Strategy n◦4)

• showed that the improvement of a lapse management strategy including CLV grows with
the proportion of lapsers with a negative CLV
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A TOOL FOR INSURERS

This framework can be used in several ways by the insurer. It can help:

• understand what differentiate a subject for which yi = 1 and ỹi = 0 from the others

• interpret the results at an individualized level

• compares future hypothetical lapse management strategies in order to chose the best one
• answer questions like:

• For which incentive δ the retention strategy becomes profitable ?
• For which acceptance probability γ the retention strategy becomes profitable ?
• at which horizon T , the retention strategy become profitable ? In other words, when can the insurer

expect a return on investement ?

• Measure the expected gain of a real retention campaign from the past, at various time horizons
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A TOOL FOR INSURERS

This framework can be used in several ways by the insurer.

FIGURE: 3d plot (δ, γ, RG) FIGURE: 3d plot (d, T, RG)
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PERSPECTIVES AND CONCLUSIONS

45 / 49



LIMITATION AND FUTURE WORK

This framework has some obvious limitations:

• following one single fixed strategy for every policyholder is not realistic

• policyholder’s behavior is dynamical, racceptant could include some lapse risk

• gamma and delta interdependency could be taken into account

• subdistribution competing risk modeling - using Fine and Gray - was not carried out and could
benefit our framework

• could be improved by the use of longitudinal data that would yield time-dynamic results
⇒ future work

46 / 49



CONCLUSIONS

• trying to predict whether targetting a policyholder would
benefit the insurer or trying to predict whether he/she will
lapse are two very different things !

• including CLV in lapse management strategy can largely benefit an insurer’s decision making
ability regarding lapse management strategy

• survival tree-based models can outperform parametric approaches in such actuarial contexts

• our CLV-based framework lead to increased predicted gains for any realistic scenario and acted
as a loss limiting targetting approach regardless of the retention strategy

• our modelisation can give insights to the life insurer regarding commercial and strategical
decision making
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THE END

Thanks for your attention

Any questions ?
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