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Introduction

X-ray absorption spectroscopy (XAS) is an important experimental tool to study the electronic structure of numerous materials and of molecular systems based on transition metals. 1,2 XAS is an element specific technique that could map their corresponding contributions into low-lying empty molecular orbitals. In particular, metal L-edge XAS involves the transition of a core electron from a 2p orbital in a transition metal to molecular orbitals that are rich in metal-3d character. 1 As it it is subject to multiplet effects, the detailed interpretation depends largely on our ability to calculate multiple electronic states. Multiplet simulations are a relatively inexpensive method to analyze x-ray data which have evolve over time to incorporate different electronic structure effects relevant to many body systems such as electron-electron interactions, spin-orbit coupling, crystal-field interactions and charge transfer multiplet effects to account for bonding interactions. 1 In this work we discuss the development of a methodology for the automatic fitting of crystal field multiplet simulations to experimental L-edge XAS of Calcium compounds and manganese oxides, and its implementation in BlueprintXAS, a software originally developed to fit empirical models to x-ray data, with the purpose of reducing user bias on the starting point and of evaluating uncertainties in fitting parameters. The parameters optimized using this methodology are either the radial parameters F k , G k , 10Dq, Ds and Dt or alternatively, the radial R 3d (r) functions from which these parameters depend. We explore the first approach to test the adaptive grid algorithm and the second approach with the idea of reducing the empirical nature of using multiplet simulations as it makes all empirical parameters codependant of the same radial function.

Theoretical Background

Originally, multiplet simulations were formulated to reproduce the x-ray spectra of metal and transition metal oxides. 1,[START_REF] De Groot | Core Level Spectroscopy of Solids[END_REF] It was based on the treatment of local metallic sites within the structure of solids, ignoring intermetallic interactions, and involving only atomic interactions, namely electron-electron interactions and spin-orbit coupling. Then later, also introducing crystal-field interactions based on the point-charge model orginally proposed by Bethe and van Vleck. [START_REF] Vleck | [END_REF][START_REF] Gerloch | Ligand Field Parameters[END_REF] This simple formulation was able to capture the structure of x-ray absoprtion spectra of oxides at the L-edge (involving electric dipole transitions from core electros in 2p shells to valence 3d shells of transition metals). Despite being a calculation involving multiple electronic states (multiconfigurational in nature), multiplet simulations are inexpensive computationally as they rely on the use of empirical parameters, even though the physics describing the interactions at the metallic sites is fairly complete. In this sense, the electron-electron interaction between electrons i and j separated by distance r ij ; and the crystal-field interaction of d electrons in the metal and N point charges at distances of a i from the metal, are modelled using a multipole expansion in terms of spherical harmonics, 5-7

e 2 r ij =e 2 ∞ k=0 +k m=-k r k < r k+1 > (-1) m C -m k C m k ( 1 
)
V CF =e 2 N i ∞ k=0 z i r k a k+1 i +k m=-k A km C m k (2) 
Where C m k represent normalized spherical harmonics with,

C m k = 4π 2k + 1 Y m k (3) 
And the expansion coefficients A km in the crystal field are obtained by adding together the value of the normalized spherical harmonic, (-1) m C -m k evaluated at every location of the N point charges. The infite expansio gets quickly truncated by the symmetry properties of spherical harmonics which restricts the values of k to be 0,2, or 4 for non-vanishing terms in the case of d electrons. Further symmetry restrictions under the symmetry of the metal complex, which vanishes all terms containing spherical harmonics not transformed as the totally symmetric irreducible representation, significantly reduce the number of terms in the crystal field potential V CF . In the case of a perfect octahedral field with 6 point charges located at a distance a from the metal center, expresion (2) reduce to,

V CF O h = ze 2 r 4 a 5 × 7 2 C 0 4 + 5 14 C -4 4 + 5 14 C 4 4 (4) 
whereas the crystal-field of an octahedral complex under a tetragonal distortion, which elongates or compress two of the charges located in the z axis to distance b from the metal center, thus allowing additional terms by breaking the O h symmetry to D 4h ,

V CF D 4h = z a e 2 r 4 a 5 × 7 2 C 0 4 + 5 14 C -4 4 + 5 14 C 4 4 -e 2 z a r 2 a 3 - z b r 2 b 3 × 2 C 0 2 -e 2 z a r 4 a 5 - z b r 2 b 5 × 2 C 0
Moreover, considering XAS L-edge spectroscopy, the other important atomic interaction at play is the spinorbit coupling for the 2p electrons (relevant to the final state in XAS), which is calculated from the following hamiltonian,

ĤSOC =ξ 2p • s = ξ 2p 2 ĵ2 -ˆ 2 -ŝ2 =ξ 2p ˆ z ŝz + ˆ + ŝ-+ ˆ -ŝ+ 2 (6) 
Thus, the total Hamiltonian in the initial state |3d N is,

ĤINITIAL = N i - h2 2m e ∇ 2 - Ze 2 r + N i N j>i e 2 r ij + N i V CF (7) 
whereas the Hamiltonian in the final state |2p 5 3d N +1 is,

ĤFINAL = N +6 i - h2 2m e ∇ 2 - Ze 2 r + N +6 i N +6 j>i e 2 r ij + N +1 i V CF + 5 i ξ 2p • s (8) 
In both of these states, the 3d spin-orbit coupling is neglected and assumed to be quenched by the crystalfield. The task at play then is to obtain matrix elements from Hamiltonians (7) and ( 8) applied over all microstates in the initial, |3d N and final |2p 5 3d N +1 | states, recognizing that the obtained matrices H IN IT IAL and H F IN AL can be formulated as a sum of angular matrices comprising each type of interaction multiplied by the corresponding radial parameter, as follows,

H IN IT IAL = F 0 3d,3d + F 2 3d,3d + F 4 3d,3d + 10Dq + Ds + Dt (9) 
H F IN AL = F 0 3d,3d + F 2 3d,3d + F 4 3d,3d + F 0 2p,3d + F 2 2p,3d + G 1 2p,3d + G 3 2p,3d + 10Dq + Ds + Dt + ξ 2p (10) 
where, F 0 3d,3d and F 0 2p,3d are chosen to center the multiplets around the average energy of the initial or final states with,

F 0 3d,3d =E ave + 2 63 F 2 3d,3d + F 4 3d,3d (11) 
F 0 2p,3d =E ave + 1 15 G 1 2p,3d + 3 70 G 3 2p,3d (12) 
The size of the matrices depends on the number of microstates (Ω) in the initial 3d N and final |2p 5 3d N +1

states. In our code, the angular matrices are initially calculated once and used for crystal-field multiplet simulations by simply varying the radial parameters amplifying each matrix containing the angular part. The diagonalization of matices in ( 9) and ( 10) then provides the electronic states in each configuration as linear combinations of microstates and corresponding energies as their eigenvalues.

Calculation of L-edge XAS Spectra

The L-edge XAS spectra is calculated according to the Fermi Golden Rule,

I ∝ f | Ψ f | T |Ψ i | 2 δ(E f -E i -hν) (13) 
where, hν is the energy of the absorbed photons, Ψ i is the wavefunction of the ground state in the initial configuration 3d N , and E i is the corresponding eigenvalue. Moreover, Ψ f represent each of the states in the final configuration, 2p 5 3d N +1 , and E f represent the corresponding eigenvalues. Accounting for natural broadening effects, the dirac δ function adopts the Lorentzian profile with a full width at half the maximum (FWHM) parameter Γ f obtaining,

I(hν) ∝ f | Ψ f | T |Ψ i | 2 1 π 1 2 Γ f (E f -E i -hν) 2 + 1 2 Γ f 2 (14) 
Additional experimental broadening is accounted for with the convolution of a Gaussian profile over the Lorentzian-broadened spectrum. Alternatively, a pseudo-Voigt profile can be used with a single broadening parameter (equivalent to the Lorentzian profile) the lineshape is defined as a sum of Gaussian and Lorentzian profiles. In the case of the Calcium data, a Fano resonance is used to define the lineshape. In this profile, the parameter q accounts for the interference of the absorption process with the relaxation processes, obtaining then the following expression,

I(hν) ∝ f | Ψ f | T |Ψ i | 2 q( 1 2 Γ f ) + (E f -E i -hν) 2 (E f -E i -hν) 2 + 1 2 Γ f 2 (15) 
In the dipole approximation, the transition operator T is expanded in terms of normalized spherical harmonics

C -1 1 ,C 0 1 , and C +1 1 with, T = 1 + i √ 2 C -1 1 + i -1 √ 2 C 1 1 + C 0 1 (16)
Here, we also calculate a density matrix T, which relates each microstate in the initial configuration 3d N with each microstate in the final configuration 2p 5 3d N +1 through the electric dipole transition operator . This matrix is unique and unchanged for a given 3d N configuration and thus calculated once and also stored. Then, the strength of the transition lines are calculated from it using the following expression:

S 1/2 =Ψ † i • T • Ψ f = • • (17) 
where vector Ψ i represents the ground state expressed as a linear combination of microstates in the initial configuration 3d N , and Ψ f is a matrix whose columns represent the states in the final configuration 2p 5 3d N +1

each expressed as a linear combination of microstates in the final configuration. Thus, vector S contains the line strengths which the code broadens using a convolution of the Lorentzian/Gaussian profile, or in the case of CaO data according to the Fano resonance. Effects of temperature are considered by calculating line strengths from additional states Ψ i in the initial configuration, 3d N using a Boltzmann factor (f B i ) given by,

f B i = exp - (E i -E 0 ) k B T (18) 
where E 0 represents the energy of the ground state multiplet in the initial configuration.

Optimization of radial functions

Even with well-localized parameters, there is an interdependence of crystal-field multiplet simulation parameters that we explore by optimizing the radial functions feeding the calculation of radial integrals given by expressions 23-28 (vide infra.) This, as oppose to individually optimizing radial parameters. This could potentially make multiplet simulations less empirical and more robust and cohesive. Early on, van Vleck 4 computed crystal-field radial integrals using a hydrogen-like wavefunction for transition metals simply replacing Z by the effective nuclear charge, Z ef f ,

R 3d = √ 8 27 √ 5 
Z ef f 3a 0 3/2 Z ef f r a 0 2 e -Z ef f r/3a 0 (19)
For this, van Vleck used the Slater rules to estimate the corresponding effective nuclear charge Z ef f as a first approximation to evaluate the crystal field parameters 10Dq, Ds and Dt on complexes subject to Jahn-Teller distortion. [START_REF] Vleck | [END_REF] Herein, we treat Z ef f as a parameter to optimize. Thus, rather than using Slater rules (or a SCF procedure) to find optimized effective nuclear charges, we use experimental x-ray data to drive this optimization. As a result, crystal field parameters and Slater integrals that are consistent to the same radial functions, R 3d , and R 2p are calculated. This later function gets also modified by Z ef f , according to the expression,

R 2p = 1 √ 3 Z ef f 2a 0 3/2 Z ef f r a 0 e -Z ef f r/2a 0 (20)
The Z ef f of 2p electrons in 3d-transition metals, however, is not treated as a parameter, but rather calculated from the following expression in Rydberg units, [where 1 Ry=

1 4πε 0 e 2 a 0 = 13.606 eV], ξ n = h2 a 0 2 m 2 e c 2 × Z 4 ef f n 3 ( + 1)(2 + 1) =α 2 Z 4 ef f n 3 ( + 1)(2 + 1) (21) 
where α is the fine structure constant equal to 1/137.036. To arrive to this expression, it is assumed that electrons in the n shell experience an effective potential given by

V ef f (r) = -Z ef f e 2
r . For example, considering that the value of ξ 2p for Mn is practically invariant with respect to oxidation state and equal to 6.845 eV, the Z ef f of 2p electrons in Mn is of 21.82, which compares well with the predicted value from Slater rules of 21.20 (25 -6(0.35)-2(0.85)) in the 2p 5 3d N configuration. Additional simulation parameters in this optimization is a, which is the distances of the oxide ligands from Mn sites, assuming O h symmetry in the reference compound M nO.

Further, recognizing that hydrogen-like radial functions specially for the 3d shell may not fully capture the shape of radial functions in transition metals, we also optimized radial functions using a def2-TZVP basis set, 8 as used often in DFT calculations, which in the case of the 3d orbitals, it adopts the following form:

R 3d = r 2 c 1 e -ζ 1 r 2 + r 2 c 2 e -ζ 2 r 2 + r 2 c 3 e -ζ 3 r 2 + r 2 c 4 e -ζ 4 r 2 (22)
Here, the coefficients c 1 , c 2 , and c 3 are the parameters to optimize with respect to the experimental spectra of M nO. We exclude here the coefficient c 4 since the normalization condition ( ∞ 0 R 3d 2 r 2 dr = 1) makes one of the expansion coefficients, redundant. Thus, the coefficients are optimized with respect to a value of

c 4 = 1.
Regardless of the expression used (19 or 22), the radial parameters, known as Slater integrals, are computed. These include, F 2 3d,3d , and F 4 3d,3d , accounting for coulomb interactions between 3d electrons at the metal); F 2 2p,3d (accounting for direct coulomb interactions between 2p and 3d electrons at the metal); and

G 1 2p,3d , G 3 
2p,3d (accounting for exchange interactions between 2p and 3d electrons at the metal). In addition, F 0 3d,3d and F 2 2p,3d can also be obtained, but we opted to consider the multiplet structure with a baricenter corresponding to E ave of the initial and the final state. Under this consideration, these two parameters relate to F 2 3d,3d , F 4 3d,3d , G 1 2p,3d , and G 3 2p,3d , according to expressions in 11 and 12. The Slater integrals are defined (in Hartrees) as follows:. 1,6

F k 3d,3d = R 3d (r 1 )R 3d (r 2 ) r k < r k+1 > R 3d (r 1 )R 3d (r 2 ) (k = 0, 2, 4) (23) 
F k 2p,3d = R 2p (r 1 )R 3d (r 2 ) r k < r k+1 > R 2p (r 1 )R 3d (r 2 ) (k = 0, 2) (24) G k 2p,3d = R 2p (r 1 )R 3d (r 2 ) r k < r k+1 > R 3d (r 1 )R 2p (r 2 ) (k = 1, 3) (25) 
Where, r < and r > represent, respectively, the minimum and the maximum, of the radial coordinates (r 1 and r 2 ) for two of the electrons involved.

Moreover, for the crystal-field interaction, using a simple point-charge model, the following radial integrals are relevant for octahedral, tetragonally distorted and/or square planar metallic sites (expressed in Hartrees):

10Dq = 10 6 z i R 3d (r) r 4 a 5 R 3d (r) (26) 
Ds = 2 7 z ia R 3d (r) r 2 a 3 R 3d (r) -z ib R 3d (r) r 2 b 3 R 3d (r) (27) 
Dt = 2 21 z ia R 3d (r) r 4 a 5 R 3d (r) -z ib R 3d (r) r 4 b 5 R 3d (r) (28) 
Where r represents the position of a metal 3d electron at the metal with respect to its nucleus; a represents the position of the point charges (representing the ligands) with respect to the position of the metal nucleus, (within an octahedral site); and also represents the positions of the ligands in the xy plane (with respect to the metal nucleus) in a tetragonally distorted octahedral, or else in a square planar complex. Finally, b represents the position of the ligands in the z-axis of a tetragonally-distorted octahedral complex. Figures 1a and1b show the radial probability distribution functions R 2 2p r 2 and R 2 3d r 2 (in the initial and final configurations of the M n 2+ L-edge XAS spectrum), reproduced from Z ef f (2p) = 21.82, and from the values of Z ef f (3d) and the corresponding radial parameters calculated from equations 23-26. We assumed for this calculation the calculation of 10Dq a fixed position of the oxide ligands with respect to the nucleus of M n 2+ of a = 2.0 Å (3.78 a 0 ) and a formal charge z i of 1.5. The first value of Z ef f (3d) listed correspond to the effective nuclear charge from Slater rules for the initial and final configurations. The corresponding calculated Mn L-edge XAS spectra for M n 2+ are shown in Figure 1c for each pair of values of Z ef (3d) of the initial and final configurations, of M n 2+ . From this, one can see how the values of Slater integrals accounting for the interaction between 3d electrons get increased for more compact R 3d functions. Moreover, the more the overlap area between the radial probability functions for R 2p (dotted line in Figure 1 b) and R 3d , the more values of Slater integrals involving the interaction of 2p and 3d electrons. Finally, the more the area of the radial probability R 3d (r) 2 r 2 functions is located at distances further than the fixed distance of 2.0 Å, the more the value of 10Dq. Similar trends are observed for radial functions constructed with the combinations listed for the coefficients c 1 , c 2 and c 3 when using the expression 22, as summarized in Figure 2. In section 3.2 we discuss the methodology utilized for the optimization of radial functions relevant to simulations in Figures 1 and2, using the experimental data of M nO as reference data. We present the corresponding results in section 4.2. 

Methodology

We have recently implemented in Matlab a crystal-field multiplet model to simulate X-ray absorption spectra at the L-edge of transition metal complexes (that is, for the excitation of a 2p electron in the metal to empty molecular orbitals with metal-3d character.) All operators for electron-electron, spin-orbit coupling and crystal field are represented with a matrix spanning through a base of microstates whose size depends on the 3d n configuration. Then, the magnitude of each interaction is amplified by radial integrals that can be adjusted to fit experimental data, where radial integrals are treated as empirical parameters, as given by equations 23 -28. Traditionally, these are manually adjusted until the simulation fits the experimental data. In the case of electron-electron parameters (Slater integrals), the values obtained from Hartree-Fock calculations (performed with the code developed by Cowan [START_REF] Cowan | The Theory of Atomic Structure and Spectra[END_REF] ), are scaled down to about 80 % to properly represent atomic values. 1 Then, they are scaled down further because of covalency. In the case of parameters 10Dq, Ds and Dt (defined in equations 26-28), they are directly adjusted until the simulation fits the experiment. This process could be very cumbersome and some have even suggested that finding a solution does not necessarily guaranties a single solution. In this regard, we have made significant advances towards a methodology that explores a large solution space for these parameters and automatically finds good fits. For metal L-edge XAS, our code has been wrapped up as a function of BlueprintXAS so that we can optimize simulation parameters in addition to free floating parameters such as the scaling factor, a global energy shift, and the Lorentzian (natural) and Gaussian (experimental) broadenings. Every transition is modeled as a convolution of both profiles; or else as a pseudo-Voigt with a common FWHM parameter and a shape-related parameter which weights in the Gaussian profile. BlueprintXAS is a Matlab-based optimizer originally developed to analyze x-ray spectra using empirical peaks, but with the advantage of obtaining multiple solutions in non-linear optimizations in order to explore large solution space regions, to reduce user bias and to estimate uncertainties for each parameter. 9,10

The adaptive grid algorithm

Radial integrals feeding the multiplet simulations are not free floating parameters (not optimizable directly by a non linear least square algorithm), and thus we have developed an algorithm which consists on creating a grid from these parameters, defining lower and upper bounds, and a given step size (precision) to generate a number of points for each parameter. A mesh from the combination of all points for every parameter is obtained then. If the step size is too small, the number of points in the final grid is extremely large, so much that trying simulations of every point in the grid will require months, in some cases. Thus, we developed an adaptive grid algorithm, which always starts with wider ranges for every parameter and relatively large step sizes so that the final number of points in the grid is reasonable (below 50,000 points takes only a few days to solve). Thus, after a first cycle, the program selects the best fits and based on this solution it recalculates the lower and upper limits of the simulation parameters, which increases the precision of the step-size while maintaining the same number of points in the final grid. This procedure continues for a number of cycles (as decided by the user.) In this study we use 5 cycles. Figure 3 shows the adaptive grid algorithm with two In section 4.1 we present results for the fitting of experimental XAS data on the L-edge of Ca and Mn for CaO, CaF 2 , M nO and LiM nO 2 using the adaptive grid algorithm.

Results

Fitting Radial parameters

We have successfully tested the adaptive grid algorithm by fitting the experimental data of Ca L-edge XAS of CaO, CaF 2 and of Mn L-edge XAS for M nO and of LiM nO 2 . CaO and M nO are ionic materials with crystal lattice structures consisting of octahedral sites only. In the case of M nO the simulation parameters used were: 1) the reduction of integrals F k dd ; 2) the reduction of integrals F k pd , and G k pd ; and 3) the magnitude of the octahedral crystal field, given by 10Dq. We note here, that a different reduction (with respect to Hartree-Fock values) is used for interactions involving only 3d electrons and those involving interactions between 2p and 3d electrons. This is because the interactions between valence electrons should get reduced more by covalency (nephelauxcetic effect.) Furthermore, in the case of CaO there is no electron-electron interaction of 3d electrons and only the reduction of the 2p -3d interactions is required. One can in addition distinguish the reduction in the interaction of 2p and 3d electrons. That is, to use a reduction parameter for the direct Coulomb interaction parameter F 2 2p,3d and a different parameter to reduce the exchange parameters G 1 2p,3d , and G 3 2p,3d . Again both reductions are reported here with respect to the Hartree-Fock values. We have explored both scenarios (using a single parameters or using two parameters) obtaining better results in the second scenario (vide infra.) Thus, in both cases, M nO and CaO the grid used in this case was created with less than 1000 points. The entire calculation (after 5 cycles of refinement) took less than two hours, obtaining very localized solutions for each parameter, with very low uncertainties.

Figure 4a shows the average of the good fits with the following simulation parameters, 10Dq = 1.48 ± 0.01 eV; β(F 2 2p,3d ) = 67.2 ± 4.0 %; and β(G 1 2p,3d , G 3 2p,3d ) = 57 ± 2 %. and with broadening parameters found to be Γ = 0.672 ± 0.001 eV (FWHM) and q = 11.2 ± 0.3 using the Fano resonance profile. Further, Figure 5 shows (in blue) the average of good fits for the crystal-field simulations to experimental Mn L-edge XAS of M nO with the following parameters, 10Dq = 0.91 ± 0.01, α(F k 3d,3d ) = 78 ± 1 %, β(F k pd , G k pd ) = 89 ± 1%.

We emphasize here the reduction on Slater integrals from Hartree-Fock values found here. In the case of the integrals F k dd the reduction is about the same than the value estimated from experience (about 80%) to reach atomic values; but this is definitively not the case for the reduction of integrals F k pd and G k pd , and the fit reductions are close to 90 % from Hartree-Fock values. Moreover, the thrust-worthy reproduction of all spectral features, including those at the L 2 edge (the cluster of states at higher energies separated by the In the case CaF 2 , the Ca sites have a coordination number of 4 in tetrahedral environment. The average of good fits for the crystal-field simulation to experimental Ca L-edge XAS data is shown in figure 4b consistent to the following set of parameters, 10Dq = -0.810 ± 0.002 eV; β(F 2 2p,3d ) = 95 ± 1 %; and β(G 1 2p,3d , G 3 2p,3d ) = 83 ± 2 %. The fact that both of these reduction parameters are above the typical 80 % used to reduce the Slater integrals in the free ions, confirms the ionic nature of this compound. The transitions lines are fit with a Lorentzian profile with a FWHM of Γ = 0.404 ± 0.001 eV. Finally, in the case of LiM nO 2 (see figure 5) the L 2 edge does not get reproduced on its entirety, but the reproduction of all features at the L 3 -edge is also quite remarkable. In this case, there were 5 simulation parameters (including the crystal field parameters Ds and Dt) and hence the use of a grid of 4000 points was necessary. The total calculation time is of less than two days and again, the obtained results indicate well-localized parameters as oppose to several families of possible solutions, obtaining 10Dq = 2.43 ± 0.07, Ds = 0.36 ± 0.02 eV, and Dt = 0.13 ± 0.01 eV, with α(F k dd ) = 81 ± 2 %, and β(F k pd , G k pd ) = 86 ± 2 %.

Optimizing Radial Functions

The M nO data has been also fit using the Z ef of the 3d electrons as grid parameter to optimize. A separate value was used for in the initial configuration 3d 5 and for the final configuration 2p 5 3d 6 . The value of Z ef f for the 2p electrons in the final configuration is set to a constant value of 21.82, as calculated directly from the atomic value of ξ 2p using 21. Within the function simulating the spectra the Slater integrals F k 3d,3d and the value of 10Dq are calculated from the optimized value of Z ef of the 3d electrons in the initial configuration. Whereas the value used to calculate the Slater integrals F k 3d,3d and F k 2p,3d ,G j 2p,3d are calculated from the optimized value of Z ef of the 3d electrons in the final configuration. Figure 6a shows the radial probability density functions that are reproduced from Z e f (2p) = 21.82 and from the optimized values for Z e f (3d) in the initial and final configurations with respective values of 7.97 and 11.96. An additional parameter included in the grid is the covalency, α 2 , defined from the expression

Ψ 3d = α|M 3d - √ 1 -α 2 |L SALCs (29)
as the metal 3d character in the probed molecular orbitals of M nO (Ψ 3d ) to which the 2p core electrons transition to. The way this parameter impacts the results is through the normalization condition of the metal radial functions, for which

∞ 0 R 2 3d r 2 dr = α 2 (30) 
In this case, the valor of α is found to be 0.956. From this, the reductions of F k 3d,3d are 83 % with respect to their value whenever α = 1; whereas the reduction of Slater integrals F k 2p,3d and G k 2p,3d are of 92 % with respect to the values with no covalency. Figure 6b shows the best fit reproduced from the results for Z ef shown in Figure 6a and the computed values of Slater Integrals and 10Dq. The reduction of Slater Integrals are with respect to their Hartree-Fock values. In addition, 

Conclusion

Limitations: Spectra with not so many features (e.g. M n 2 O3, to be included in the SI). Another interesting aspect of the data analysis performed this ways is the possibility to analyze angular dependant metal L-edge XAS data has been collected in the presence of a magnetic field, from which the linear and circular dichroism has been obtained and can be included. Fitting manually all the data available could be a very combersome task and thus, the opportunity to automatically fit all the data for the same material is a good test to explore how robust and efficient this methodology is. At the same time, it is a good opportunity to test if multiple solutions are possible for some of the parameters (especially considering the large number of parameters involved). This methodology is ideal also to analyze mixtures or materials which are composed of several types of metallic sites. For example, in perovskite-type materials such as LaM n x O 3 , which contains a variable number of Mn sites as a mixture of oxidation states (M n 2+ , M n 3+ , M n 4+ ). In examples like this, finding the composition and the simulation parameters at the same time, by hand, could be extremely challenging.

Figure 1 :

 1 Figure 1: a) Radial probability functions for the 3d electrons of M n 2+ computed at several values of Z ef (from the value predicted by Slater Rules of 5.60 to 6.50) in the ground state configuration 2p 6 3d 5 ; b)Radial probability functions for the 3d electrons of M n 2+ computed at several values of Z ef (from the value predicted by Slater rules of 6.25 to 8.50) in the excited state configuration, 2p 5 3d 6 , representing different degrees of increased values of Z ef with respect to the ground state; c) Simulated XAS spectra at the Mn L-edge from the Slater integrals and 10Dq parameters evaluated from the radial 3d and radial 2p functions with the effective nuclear charge as in (b) for the 3d electrons and of 21.82 for the 2p electrons in the excited state. A Fixed position of 2.0 Å (3.78 a 0 ) and a formal charge of 1.5 for the ligands are used. Lorentzian broadenings of 0.2 eV and 0.4 are used for the L 3 and L 2 edges, respectively.

Figure 2 :

 2 Figure 2: a) Normalized Radial probability functions for the 3d electrons of M n 2+ computed from several combination of coefficients c 1 ,c 2 , c 3 and c 4 using 22; b) Basis functions in the def2-TZVP basis used in (a); c) Simulated XAS spectra at the Mn L-edge from the Slater integrals and 10Dq parameters evaluated from the radial 3d in (a) and from the radial 2p function computed from 19 using Z ef (2p) = 21.82. A Fixed position of 2.0 Å (3.78 a 0 ) and a formal charge of 1.5 for the ligands are used. Lorentzian broadenings of 0.2 eV and 0.4 are used for the L 3 and L 2 edges, respectively.

Figure 3 :

 3 Figure 3: Adaptive grid algorithm showing 5 cycles of refinement, as implemented in BlueprintXAS. The step size between the values of hypothetical parameters a and b get refined after every cycle, according to the regions with the smallest value of SSE between simulation and experimental data.

Figure 4 :

 4 Figure 4: a) Experimental Ca L-edge XAS data and average of fit crystal-field multiplet simulations in CaO; and b) Experimental Ca L-edge XAS data and average of fit crystal-field multiplet simulations in CaF 2 .

Figure 5 :

 5 Figure 5: a) Experimental Mn L-edge XAS data; and b) average of fits for Crystal-field multiplet simulation for complexes M nO, and LiM nO 2

Figure 6 :

 6 Figure 6: a) Probability distribution radial functions for the 2p and 3d orbitals in Mn reproduced from a constant value of Z e f (2p) = 21.82 and from optimized values of Z ef (3d) in the initial and final configurations. b) Corresponding values of Slater integrals and 10Dq; and corresponding crystal-field simulation for the XAS L-edge spectrum of MnO.

Figure 7 :

 7 Figure 7: Similar to Fig. 6, except the radial function is reproduced by optimizing the coefficients in equation 22 with a def2_TZVP basis set

[START_REF] Gerloch | Ligand Field Parameters[END_REF]