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Abstract We consider the constrained tensorial total variation minimization

problem for regularizing ill-posed multidimensional problems arising in many

fields, such as image and video processing, multidimensional data completion,

etc. The non-linearity and the non-differentiability of the total variation min-

imization problem make the resolution directly more complex. The aim of the
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present paper is to bring together the resolution of this problem using an it-

erative tensorial double proximal gradient algorithm and the acceleration of

the convergence rate by updating some efficient extrapolation techniques in

the tensor form. The general structure of the proposed method expands its

fields of application. We will restrict our numerical application to the multidi-

mensional data completion which illustrates the effectiveness of the proposed

algorithm.

Keywords Tensorial total variation regularization, proximal gradient

method, polynomial extrapolation, t-product, video completion and inpaint-

ing.

1 Introduction

We consider solving a class of tensor convex optimization problem of the form:

min
X∈Ω

(
1

2
‖H (X )− B‖2F + µ‖|∇X‖|1

)
, (1)

where the solution X and the observation B are Nth-order tensors, H is a

given linear tensor operator and the set Ω is assumed to be a convex constraint

over X . The regularization term consists of the tensorial total variation regu-

larization operator ‖|∇X‖|1 and the positive regularization parameter µ. The

norms ‖ . ‖F and ‖| . ‖|1 will be defined in the next section.

The convex optimization problem (1) has the form of the well-known to-

tal variation regularization method. This regularization technique was first

introduced in [42] with the explicit goal of preserving sharp discontinuities
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(edges) in a two-dimensional image while removing noise and other unwanted

fine-scale detail. Over the years, this model has been extended to many other

applications as image processing tasks [14,18] including inpainting [31], blind-

deconvolution and data completion [46]. It has also been modified in a variety

of ways to improve its performance [35,39,30,4].

The proposed problem (1) represents a constrained multidimensional total

variation regularization problem that will cover a wide range of application

fields, such as color image and video processing. Our contribution to this work

is threefold. Firstly, a gradient descent-like algorithm is developed to minimize

the non-differentiable and non-linear total variation problem over a convex

set by computing first the proximal mapping of the total variation term and

projecting after the problem using Tseng’s Splitting Algorithm [2]. Secondly,

since the gradient algorithms have a slow convergence rate, we will accelerate

our proposed algorithm using some extrapolation techniques. Finally, such

methods are represented in the tensorial representation which may extend the

range of application of our model and developed algorithm. To the best of our

knowledge the proposed techniques are new.

The paper is organized as follows. In Section 2, we review some standard

definitions. In Section 3, we establish a multidimensional double proximal gra-

dient algorithm applied with the tensorial form of the objective function in

the minimization problem (1). We propose, in Section 4, to accelerate the

algorithm by updating some efficient extrapolation techniques. Section 5 is

devoted to apply the proposed algorithm to the low-rank tensor completion.
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The performance of the proposed algorithm is tested on color images, video

completion, and inpainting in Section 6. Finally, we state the conclusions in

Section 7.

2 Notation and Background

Tensor algebra is developed in direct response to higher dimensional repre-

sentation and analysis. Keeping the data or the operation in its natural mul-

tidimensional form increases the ability of systems to collect and store vast

volumes of multifaceted data and also preserve the modeling accuracy.

First, let us recall some preliminaries and notation on tensor algebra (more

details about tensor algebra can be found in [11,26,28]). In the remainder of

our paper, we adopt the notation used in [26]. We use low-case letters for

vectors, e.g. a, upper-case letters for matrices, e.g. A, and calligraphic letters

for tensors, e.g. A. Let us denote by X the space IRI1×I2×···×IN and by Y the

space XN := X × X × · · · × X. Let X ∈ X be an Nth-order tensor of size

I1 × · · · × IN . Its entries are denoted by Xi1,i2,...,iN or X (i1, i2, . . . , iN ). Let

us denote by O the tensor having all its entries equal to zero. The mode-n

matricization (also known as mode-n unfolding) of a tensor X is denoted by

the matrix X(n), and the frontal slices are denoted by the matrices Xn. Let

k ≥ 1 be an integer. The norm of the tensor X is defined by

‖|X‖|k =

(
I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

|X (i1, i2, . . . , iN )|k
)1/k

.
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We also will need to introduce the norm ‖| . ‖|∞ given by

‖|X‖|∞ = max
16ij6Ij
16j6N

|X (i1, i2, . . . , iN )|.

The inner product of two same sized tensors X ,Y ∈ IRI1×I2×···×IN is defined

by

〈X |Y〉 =

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

X (i1, i2, . . . , iN )Y(i1, i2, . . . , iN ).

It follows immediately that ‖|X‖|2 =
√
〈X |X 〉. For the case k = 2, we use the

standard notation of the Frobenius norm ‖ . ‖F to denote the tensor norm

‖| . ‖|2.

Let f : X −→ IR ∪ {∞} be a closed proper convex function [40]. We recall

the proximal operator of f in the following definition.

Definition 2.1 [40] The proximal operator (also called the proximal mapping)

of f is the operator given by

proxf (U) = argmin
X

(
f(X ) +

1

2
‖X − U‖2

)
for any U in X. (2)

Since the cost function of the minimization problem defined above is strongly

convex and not everywhere infinite, then, there exist a unique minimizer for

every U ∈ X, see [2,40] for more details. We will often encounter the proximal

operator of the scaled function λf with λ > 0, which can be expressed as

proxλf (U) = argmin
X

(
f(X ) +

1

2λ
‖X − U‖2

)
. (3)

The operator proxλf is also called the proximal operator of f with the param-

eter λ.
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Definition 2.2 The convex conjugate of f , denoted f∗, is given by

f∗(Y) = sup
X

(〈X |Y〉 − f(X )) , ∀Y ∈ X, (4)

3 Tensorial Double Proximal Gradient Method for Total Variation

Problem

The main goal of this work is the resolution of the constrained tensorial total

variation minimization problem (1). It will be useful to consider the following

closed proper convex functions

F : X −→ IR+

X −→ F (X ) =
1

2
‖H (X )− B‖2F ,

G : X −→ IR+

X −→ G (X ) = µ‖|∇X‖|1.

Note that the gradient operator of an Nth-order tensor X ∈ X is defined as a

column block tensor ∇X in Y consisting of the partial derivatives (∇(n)X )n,

i.e. ∇X =

(
∇(1)X , . . . ,∇(N)X

)
. For n = 1, . . . , N , the block tensor ∇(n)X is

given by

(∇(n)X )i1,...,iN =


Xi1,...,in+1,...,iN −Xi1,...,in,...,iN if in < In

0 if in = In.

The convex constrained minimization problem (1) can be written as:

min
X∈Ω

(F (X ) + G (X )) , (5)

where Ω is a convex nonempty bounded set. As F and G are proper lower

semicontinuous convex functions, F is Gateau differentiable and uniformly
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convex on X and if it is further assumed that Ω is closed, then, there exists

a unique solution of the minimization problem (5), see [2,41,13,21,15] for a

deeper discussion.

As in the classical vectorial case, the function F is differentiable, and its

gradient on X is given by

∇F (X ) = H ∗(H (X )− B), (6)

and the function G is not differentiable due to the non differentiability of the l1

norm, which make the resolution of this minimization problem more complex.

3.1 Tensorial Double Proximal Gradient Algorithm

In this section, we will introduce an interesting extension of gradient descent

method to handle this tensorial convex minimization problem. In the litera-

ture, the gradient descent technique is developed in a variety of ways to handle

different minimization problems, such as nonlinear minimization problems [13],

fractional optimization problems [5] and others. The proximal gradient method

represents a generalized form of the gradient descent method in the presence

of non differentiability in the cost function [1,2,40,41]. First, we consider the

unconstrained minimization problem

min
X∈X

(F (X ) + G (X )) . (7)

Suppose that, at the step k, we have constructed an iterate tensor Xk that

approximate the solution of the constrained minimization problem (5). The
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quadratic approximation of F based at the iterate tensor Xk, for λk > 0, is

given by

Φk(X ) = F (Xk) + 〈X − Xk|∇F (Xk)〉+
1

2λk
‖X − Xk‖2F . (8)

Then, it is immediate to see that the problem (7) is approached, at each step

k, by the following minimization problem

min
X

(
G (X ) +

1

2λk
‖X − Xk + λk∇F (Xk)‖2F

)
, (9)

which admits a unique minimizer Zk given by

Zk = proxλkG (Xk − λk∇F (Xk)) , ∀k ∈ IN, (10)

where the operator proxλkG denotes the proximal mapping of G with the

parameter λk.

In general, the algorithm proposed for computing Zk by (10) required two

essential elements. The first one is an optimal selection of the step size sequence

(λk)k that depend on the Lipschitz constant of ∇F (to be discussed later),

and the second one is the computation of the proximal operator of λkG which

is given in the following proposition.

Proposition 3.1 For all Y ∈ X and λ > 0, the proximal operator of λG is

given by

Z = proxλG (Y) = Y + λ∇T (P∗), (11)

where P∗ is an optimal solution of

min
P

(
G ∗1 (−P) + 〈λ

2
∇(∇TP) +∇Y|P〉

)
, (12)

with the function G ∗1 is the conjugate function of G1 := µ‖| . ‖|1.
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Proof By Definition 2.1, for all Y and λ > 0, proxλG (Y) is the the unique

optimal solution of following unconstrained minimization problem

min
U

(
G (U) +

1

2λ
‖U − Y‖2F

)
. (13)

If we assume that G (U) = G1(∇U), with G1(Y) = µ‖|Y‖|1, the minimization

problem can be transformed to a constrained minimization problem as follow
min
U,V

(
G1(V) +

1

2λ
‖U − Y‖2F

)
s.t V = ∇U .

(14)

The Lagrangian function associated with this problem is defined as

L (U ,V,P) = G1(V) +
1

2λ
‖U − Y‖2F + 〈P|V − ∇U〉. (15)

As a consequence, the solution of (14) is exactly the saddle point of L (see

[20]), which is the solution of the Lagrangian primal problem

min
U,V

max
P

L (U ,V,P). (16)

Since the Lagrangian is separable with respect to U and V, then we may switch

the min-max order based on the min-max theorem [15,41]. As a consequence,

the Lagrangian dual problem can be written as

max
P

[
min
U

(
1

2λ
‖U − Y‖2F − 〈P|∇U〉

)
+ min
V

(G1(V) + 〈P|V〉)
]
. (17)

On the one hand, it is clear that the minimizer of the problem in U is given

by U∗ = Y + λ∇TP with a corresponding optimal value equal to:

min
U

(
1

2λ
‖U − Y‖2F − 〈P|∇U〉

)
=

1

2λ
‖U∗ − Y‖2F − 〈P|∇U∗〉

= −〈λ
2
∇(∇TP) +∇Y|P〉. (18)
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On the other hand, the second minimization problem verifies

min
V

(G1(V) + 〈P|V〉) = −max
V

(〈−P|V〉 − G1(V)) = −G ∗1 (−P), (19)

where we recall that G ∗1 is the convex conjugate function of G1. As a result,

we obtain the following dual problem

max
P

[
−G ∗1 (−P)− 〈λ

2
∇(∇TP) +∇Y|P〉

]
, (20)

that can be rewritten as the minimization problem (12). ut

So far, we have shown that proxλG (Y) = Y+λ∇TP∗, where P∗ is an opti-

mal solution of the minimization problem (12). In other words, the calculation

of the proximal mapping of the function G required, at each iteration k, the

resolution of the minimization problem (12). For Y = Yk := Xk −λk∇F (Xk),

and λ = λk, at the step k, we have to solve the problem

min
P

(
G ∗1 (−P) + 〈λk

2
∇(∇TP) +∇Yk|P〉

)
. (21)

For all k ∈ IN, let us consider the operators K and (Dk)k defined as

K : Y −→ IR+

P −→ K (P) = G ∗1 (−P),

Dk : Y −→ IR

P −→ Dk(P) = 〈λk
2
∇(∇TP) +∇Yk|P〉.

Since the objective functional of the minimization problem (21) is a sum of

closed proper convex function K , and closed proper convex differentiable func-

tion Dk, then, we can use again the proximal gradient approaches to solve (21).
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Hence, the solution can be approximated by the sequence (Pl)l defined as

∀l ∈ IN, Pl+1 = proxαlK (Pl − αl∇Dk(Pl)), (22)

with αl > 0 is a step size parameter. Notice that the expression of the proximal

gradient method (22) required two important ingredients; the gradient of the

differentiable function Dk and the proximal mapping of the non differentiable

function K . It is immediate to see that the gradient of Dk is given by:

∀k, ∇Dk(P) = λk∇(∇TP) +∇Yk. (23)

In the other hand, the proximal mapping of proxαlK is discussed in the fol-

lowing proposition.

Proposition 3.2 For all P ∈ Y, the proximal mapping of αlK is given by

proxαlK (P) = P + proxαlG1(−P), ∀l ∈ IN, (24)

where G1 := µ‖| . ‖|1.

Proof For any P ∈ Y, we have

proxαlK (P) = argmin
W

(
K (W) +

1

2αl
‖W − P‖2F

)
,

= argmin
W

(
G ∗1 (−W) +

1

2αl
‖W − P‖2F

)
,

= − argmin
V

(
G ∗1 (V) +

1

2αl
‖V + P‖2F

)
,

= −proxαlG ∗
1

(−P).

According to Moreau decomposition [37], we have the following property that

relate the prox operator of any proper closed convex function f by their con-

jugates

proxf (x) + proxf∗(x) = x, ∀x. (25)



12 O. Benchettou et al.

Using the relation (25), we obtain the desired conclusion

proxαlK (P) = P + proxαlG1
(−P). (26)

Furthermore, the tensorial proximal mapping proxαlG1
:= proxαlµ‖| . ‖|1 of the

function G1 is a direct result of the proximal operator of the ‖| . ‖|1 norm, also

known as the soft thresholding operator in the vector case [40]. Then, by using

the Moreau’s formula (25) and the fact that the ‖| . ‖|∞ norm is the dual norm

of the ‖| . ‖|1 norm, thus, the proximal operator proxη‖| . ‖|1 , with any η > 0,

can be computed based on the orthogonal projection on the ‖| . ‖|∞-unit ball

[40], which is the unit box. This leads to

(
proxη‖| . ‖|1(P)

)
i1,...,iN

=


Pi1,...,iN − η, Pi1,...,iN > η,

0, |Pi1,...,iN | < η,

Pi1,...,iN + η, Pi1,...,iN 6 −η,

(27)

which establishes the formula and ends the proof. ut

As a result, the algorithm (10) computing the sequence (Xk)k can be sum-

marized as the following double iterative algorithm

∀k ∈ IN,



∀l = 1, · · · , lk,


Ql = Pl − αl∇Dk(Pl),

Pl+1 = Ql + proxαlG1(−Ql),

Yk = Xk − λk∇F (Xk),

Zk = Yk + λk∇T (Plk+1),

(28)

where the step size scalar sequences (λk)k and (αl)l depend on the Lipschitz

constants L(∇F ) and L(∇Dk), respectively, if they are exist.
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In the following subsection, we will compute the approximated solution

Xk+1 of the constrained minimization problem (5) at the step k + 1 by pro-

jecting the iterate Zk in the convex set Ω using the Tseng’s splitting approach.

3.2 Tseng’s Splitting Algorithm

Tseng’s splitting algorithm proposed in [2] considers as a modified version

of the proximal gradient algorithm (10) used to handle the constrained con-

vex nonsmooth optimization problem. Under a nonempty closed and convex

constraint Ω, the algorithm may given as follows:

∀k ∈ IN,



Yk = Xk − λk∇F (Xk),

Zk = proxλkG (Yk),

Rk = Zk − λk∇F (Zk),

Xk+1 = ΠΩ(Xk − Yk +Rk).

(29)

where ΠΩ denotes the orthogonal projection on the convex set Ω.

Theorem 3.1 Let X ∗ denotes the unique solution of the problem (5). Suppose

that Ω is furthermore a closed set in X. Then, the sequence (Xk)k generated

by Algorithm 29 satisfies ‖Xk −X ∗‖F −→ 0 as k −→∞.

Proof As the functional F and G are proper lower semicontinuous convex

functions, F is Gateau differentiable and uniformly convex on X and the set

Ω is a closed convex nonempty subset of X, then, the strong convergence of

the sequence (Xk)k is an immediate consequence of the general result in [2]

(see Pr.27.13 pg. 407). ut
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3.3 The step size parameters selection

The choice of the step size parameters is considered as a typical condition

that ensures the convergence of the sequence (Xk)k to the minimizer of the

problem (5). It is required that the values of the step size parameters λk and

αl be in the intervals (0, 1
L(∇F) ) and (0, 1

L(∇Dk)
), respectively, where L(∇F )

and L(∇Dk) denote the Lipschitz constants of the operators ∇F and ∇Dk,

respectively (see [2,13] for further details).

For all couple (X ,Y) in X× X, we have

‖∇F (X )−∇F (Y)‖F = 2‖H T (H (X ))−H T (H (Y))‖F ,

= 2‖H T (H (X − Y))‖F ,

6 2‖|H T ◦H ‖|.‖X − Y‖F ,

where ◦ stands for the composition operation. Then, we may choose as a

Lipschitz constant of the operator ∇F the constant

L(∇F ) = 2‖|H T ◦H ‖|. (30)

As consequence, the step size (λk)k can be chosen as a fixed step size value

λk := λ ∈ (0, 1
L(∇F) ).

In the case of the operator ∇Dk, for a fixed step k, a Lipschitz constant

L(∇Dk) is not known, then, the step sizes (αl) can be found by a line search

method [40], which mean that we apply the proximal gradient method with

an easy backtracking stepsize rule as fallows

∀l ∈ IN, αl = ταl−1, (31)
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where the scalar τ > 0 is a line search parameter.

4 Accelerated Tensorial Double Proximal Gradient Algorithms for

Total Variation Problem

It is well known that the proximal gradient algorithm suffers from a slow

convergence rate. We will present in this section an accelerated version of

the proximal gradient algorithm consists in adding an extrapolation step in

the algorithm, in order to compute the solution in less steps than the basic

proximal gradient. A large amount of research has been conducted to different

extrapolation algorithms applied to a variety of general problems [7,24,43,9,

33], and others developed of the proximal gradient method [3,38].

Definition 4.1 Let (Xk)k and (Tk)k two convergent sequences to the same

limit X ∗, we say that (Tk) converges faster than the sequence (Xk) if

lim
k−→∞

‖Tk −X ∗‖
‖Xk −X ∗‖

= 0. (32)

The goal of the extrapolation is to find a sequence (Tk)k from the sequence

(Xk)k so that (Tk)k converges faster to the same limit as (Xk)k. There are

many extrapolation methods in the literature, but we will only be interested

to apply the Nesterov’s algorithm approach and the polynomial extrapolation

methods to our tensorial nonlinear minimization problem.
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4.1 The tensorial Nesterov acceleration techniques

One simple and widely studied strategy is to perform extrapolation in the

spirit of Nesterov’s extrapolation techniques [29,38]. The basic idea of this

technique is to make use of historical information at each iteration in order to

reduce the convergence rate from O(1/k) to O(1/k2). Thus, using the position

of the current iteration tensor and the previous iteration tensor, the tensorial

double proximal gradient method is accelerated by adding an extrapolation

step given by

Tk+1 = Xk +

(
tk − 1

tk+1

)
(Xk −Xk−1), (33)

where the scalars (tk) is given, at each step k, by tk+1 =

√
4t2k + 1 + 1

2
.

The convergence of the sequence (Tk)k∈IN may be investigated by following

the approaches given in several papers, e.g [13,12]. The complete algorithm

summarizes the accelerated tensorial double proximal gradient with Nesterov’s

extrapolation is given in Algorithm 1.

4.2 The global tensorial polynomial extrapolation methods

The polynomial extrapolation methods are among the best known extrapo-

lation methods thanks to their theoretical clarity and numerical efficiency,

especially when applied to solving nonlinear problems such as the case of our

main problem (1). The polynomial extrapolation methods was introduced in

[43] for the vectorial extrapolation case that developed after in [6,23,24] us-

ing efficient implementation techniques. Those methods was also developed



An Accelerated Tensorial Double Proximal Gradient Method 17

Algorithm 1: TDPG-Nesterov algorithm
1: Inputs: Initial guess X1 = O, P1 = O, T1 = X0, ∇F , t1 = 1, τ , µ, λ, α0, tol.

2: for k = 1, . . . until convegence, do

3: Yk = Tk − λ∇F (Tk),

4: Compute the operator ∇Dk using the formula (23),

5: for l = 1, . . . , lk do

6: Update the line search parameter αl using (31).

7: Ql = Pl − αl∇Dk(Pl),

8: Pl+1 = Ql + proxαlµ‖|.‖|1 (−Ql), with proxαlµ‖|.‖|1 is given in (27).

9: end for

10: Zk = Yk + λ∇T (Plk+1),

11: Rk = Zk − λ∇F (Zk),

12: Xk = ΠΩ(Tk − Yk +Rk).

13: tk+1 =

√
4t2k + 1 + 1

2
,

14: Compute Tk+1 = Xk +

(
tk − 1

tk+1

)
(Xk −Xk−1).

15: End the iteration if ‖Tk+1 − Tk‖F /‖Tk‖F < tol.

16: end for

17: return Tk+1.

in a matrix global form in [22], and recently was generalized for the tensor

sequences in [16] using tensor product. In the spirit of [24], we define the

transformation in the following form

Tk,q =

q∑
j=0

γjXk+j , (34)

where k defines the first term of the sequence, the integer q stands for the

number of terms of the sequence, and the scalars (γj) verify the following two

conditions
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q∑
j=0

γj = 1 ,

q∑
j=0

γj〈Vi|∆Xk+j〉 = 0, i = 0, 1, . . . , q − 1,

(35)

where ∆Xj = Xj+1 −Xj and Vi are given tensors.

As a consequence, the conditions (35) lead to the following linear system

γ0 + γ1 + · · · + γq = 1

γ0〈V0|∆Xk〉 + γ1〈V0|∆Xk+1〉 + · · · + γq〈V0|∆Xk+q〉 = 0

γ0〈V1|∆Xk〉 + γ1〈V1|∆Xk+1〉 + · · · + γq〈V1|∆Xk+q〉 = 0

...
...

...
...

γ0〈Vq−1|∆Xk〉 + γ1〈Vq−1, ∆Xk+1〉 + · · · + γq〈Vq−1|∆Xk+q〉 = 0

(36)

where the vector γ = [γ0, γ1, . . . , γq]
T is the solution of the matrix equation:

1 1 · · · 1

〈V0|∆Xk〉 〈V0|∆Xk+1〉 · · · 〈V0|∆Xk+q〉

〈V1|∆Xk〉 〈V1|∆Xk+1〉 · · · 〈V1|∆Xk+q〉
...

...
...

...

〈Vq−1|∆Xk〉 〈Vq−1|∆Xk+1〉 · · · 〈Vq−1|∆Xk+q〉


︸ ︷︷ ︸

M



γ0

γ1

γ2

...

γq


=



1

0

0

...

0


. (37)

It is clear that Tk,q exists and is unique if and only if the square matrix M is

nonsingular. In this work, we consider two polynomial extrapolation methods,

the global tensor minimal polynomial extrapolation (GT-MPE), where the

sequence Vi is defined as

Vi = ∆Xi+k, (38)
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and the global tensor reduced rank extrapolation method (GT-RRE) with

Vi = ∆2Xi+k = ∆Xi+k+1 −∆Xi+k. (39)

Note that, there is an integer q0, such that {∆X0, ∆X1, · · · , ∆Xq0−1} is a

linearly independent set, but {∆X0, ∆X1, . . . ,∆Xq0−1, ∆Xq0} is not. As a con-

sequence, under the condition q < q0, both GT-MPE and GT-RRE produce

approximations Tk,q of the solution X ∗ in the form (34). For more details, we

refer the reader to [43,24].

The process of polynomial extrapolation using GT-MPE or GT-RRE is

summarized in Algorithm 2.

Algorithm 2: The GT-MPE/GT-RRE algorithm

1: Inputs: The sequence
{
Xk, · · · ,Xk+q+1

}
.

2: Compute M :

3: For GT-MPE : Vi = ∆Xi+k.

4: For GT-RRE : Vi = ∆2Xi+k.

5: Solve the matrix equation Mγ = e1.

6: Compute the approximation Tk,q using the expression (34).

7: Output: Tk,q .

For the GT-MPE and GT-RRE methods, the number of calculations re-

quired increases quadratically with the number of iterations q and the storage

cost increases linearly. A good method to keep the cost of storage and the

cost of the lowest possible calculations is to restart these algorithms periodi-

cally. The following algorithm describes the restarted version of those methods

called also a cycling mode.
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Algorithm 3: Cycling mode.
1: Fix the integer q.

2: Form the sequence {X1, · · · ,Xq+1}.

3: Calculate the approximation Tk,q using the algorithm 2.

4: If Tk,q is satisfactory, stop. Otherwise, set Xk = Tk,q as a new initialization and

k = k + 1, and go to the second step.

Remark 4.1 In the polynomial vector extrapolation case, the author in [43,

24] proposed a numerically stable and computationally economical algorithm

for computing the (γi)i via the QR factorization. The same concept was devel-

oped for the tensor case in [16] by defining a new QR factorization of the tensor

Uk contents the sequence (∆Xi) as frontal slices. However, in our situation,

we have only used a direct method for solving the matrix equation (37).

The accelerated version of the tensorial double proximal gradient algorithm

using the polynomial method is summarized in Algorithm 4.

5 Application in Low Rank Tensor Completion

In this section, we will apply the proposed algorithm to the tensor completion

problems. Completion is a technique of filling missing elements of incomplete

data using the values of available elements and the structural assumptions of

data. Let us consider the Nth-order tensor G with observed entries indexed

by the set C i.e. C = {(i1, i2, . . . , iN ) : Xi1,i2,...,iN is observed }. Following the

same definition of Candes and Tao in [8], we define, in the tensor form, the

projection PC(X ) to be the Nth-order tensor with the observed elements of
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Algorithm 4: TDPG-Polynomial extrapolation algorithm
1: Initial guess X0 = O, P0 = O T1 = X0, ∇F , µ, λ, τ , α0, q, tol.

2: for k = 1, . . . until convegence, do

3: Yk = Tk − λk∇F (Tk),

4: Compute the operator ∇Dk using the formula (23),

5: for l = 1, . . . , lk do

6: Update the line search parameter αl using (31).

7: Ql = Pl − αl∇Dk(Pl),

8: Pl+1 = Ql + proxαlµ‖|.‖|1 (−Ql), with proxαlµ‖|.‖|1 is given in (27).

9: end for

10: Zk = Yk + λ∇T (Plk+1),

11: Rk = Zk − λ∇F (Zk),

12: Xk = ΠΩ(Tk − Yk +Rk).

13: Compute the iterate Tk+1 using Algorithm 3.

14: End the iteration if ‖Tk+1 − Tk‖F /‖Tk‖F < tol

15: end for

16: return Tk+1.

X preserved and the missing entries replaced with 0, namely,

PC(X ) =


Xi1,i2,...,iN if (i1, i2, . . . , iN ) ∈ C,

0 otherwise.

(40)

One of the variants of the data completion problem is to find the lowest rank

which matches the observed data. This leads to an NP-hard rank minimization

problem due to the non-convexity of the rank function [45]. For that purpose,

we need to replace the rank function with something similar that provides

the same results. Therefore, the nuclear norm minimization method [32,17,

47] is widely used in this case to replace the rank minimization problem by
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the following one 
min
X
‖X‖∗

subject to PC(X ) = PC(G).

(41)

where ‖ . ‖∗ stands for the tensor nuclear norm defined as sum of the sin-

gular values of the n-mode matricization X(n) of the tensor X , i.e. ‖X‖∗ =∑
n

‖X(n)‖∗. Tensor completion via total variation minimization was proposed

in [46,31] as an efficient technique to regularize the minimization problem (41).

The tensor total variation completion problem is given in the following form:

min
X
‖PC(X )− PC(G)‖2F + ‖X‖∗ + µ‖|∇X‖|1. (42)

The problem (42) can be formulated to a constrained minimization problem

as

min
X∈Ω

‖PC(X )− PC(G)‖2F + µ‖|∇X‖|1, (43)

where Ω = {X , ‖X‖∗ 6 ε}.

By setting H = PC and B = PC(G), the problem (43) leads to the main

problem (1). Then, to solve the minimization problem (43), we can use our

proposed accelerated tensorial double proximal gradient algorithm. To apply

the algorithm, we need to introduce some notation, definitions and properties.

The first notion we have to introduce is the t-product. We give the definitions

only for the third-order tensor, the other cases are defined recursively [25].

Definition 5.1 [25] The t-product of two tensors A ∈ IRI1×I2×I3 and B ∈

IRI2×J×I3 , is a tensor A ∗t B ∈ IRI1×J×I3 defined as

A ∗t B = ibvec (bcirc(A) · bvec(B)) (44)
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where the dot · stands for the usual matrix product, the matrix bcirc(A) is a

block circulant matrix defined by using the frontal slices of A, bvec(B) defined

as a block vector contain the frontal slices of B and ibvec stands for the inverse

operation of bvec.

bcirc(A) =



A1 AI3 · · · A2

A2 A1 · · · A3

:
. . . :

AI3 AI3−1 · · · A1


and bvec(B) =



B1

B2

:

BI3


.

Definition 5.2 [25] The conjugate transpose of a tensor A ∈ IRI1×I2×I3 is

the A∗ ∈ IRI2×I1×I3 obtained by conjugate transposing each of the frontal slice

and then reversing the order of transposed frontal slices 2 through I3.

Definition 5.3 (Tensor Singular Value Decomposition: t-SVD) [26] For

A ∈ IRI1×I2×I3 , the t-SVD of the third tensor A is given by

A = U ∗t S ∗t V∗, (45)

where U and V are orthogonal tensors of size I1 × I1 × I3 and I2 × I2 × I3

respectively. The tensor S is a rectangular f-diagonal tensor of size I1×I2×I3,

and the entries in S are called the singular values of A.

Definition 5.4 [26] The nuclear norm of X is defined using t-SVD decompo-

sition X = U ∗t S ∗t V∗ as follow:

‖X‖∗ =

r∑
i=1

S(i, i, 1), (46)

where r denotes the tubal rank of X .
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Let ΠΩ denotes the projection on the convex set Ω. It is immediate to

proof that the expression of the projection ΠΩ on Ω reduces to the proximal

mapping of the nuclear norm. Namely, for all Z in the tensor space X

ΠΩ(Z) = proxσ‖ . ‖∗(Z), (47)

where the proximal mapping of the nuclear norm is given in Proposition 5.1.

Proposition 5.1 [34] Let U ∗t S ∗t V∗ be the t-SVD decomposition of the

tensor X . The proximal mapping of the nuclear norm is given by

proxσ‖ . ‖∗(X ) = U ∗t Sσ ∗t V∗, for any σ > 0, (48)

where Sσ is the result of the inverse discrete Fourier transform (IDFT) on

max(S̄ − σ, 0) along the third dimension, which means performing the IDFT

on all the tubes. S̄ is the result of DFT on S along the third dimension.

6 Numerical Results

This section presents some results illustrate the performance of the developed

algorithm. The described model is successfully applied on multidimensional

data. Let Xtrue denotes the original image or video, and the tensor B represents

the incomplete data. To evaluate the effectiveness of our algorithm, we use the

Peak Signal to Noise Ratio (PSNR) and the relative error (RE ) defined as

PSNR = 10 log10

(
d2I1 · · · IN
‖Xtrue − X̃‖2F

)
and RE =

‖Xtrue − X̃‖F
‖Xtrue‖F

, (49)

where I1 × · · · × IN is the size of the approximate solution X̃ and d is the

maximal variation in the input data. On the other hand, we adopt the stopping
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criterion of the algorithm as follows

ek =
‖Xk+1 −Xk‖F
‖Xk‖F

6 tol,

where the tolerance tol is chosen in the interval [10−4, 10−1]. All computa-

tions were carried out using the MATLAB R2018a environment on an Intel(R)

Core(TM) i7-8550 CPU @ 1,80 GHz 1,99 GHz computer with 16 GB of RAM.

In the following subsections, we will be interested in two essential parts

of tensor completion: Color image and video inpainting (text removal) and

grayscale video completion. We first illustrate the performance of the proposed

algorithms 1 and 4 by comparing three acceleration methods in inpainting dif-

ferent color images and grayscale videos. The completion of the grayscale video

is reported after to show the efficiency of our algorithm in case of uniformly

random missing pixels. Finally, we end with some comparisons with state-of-

art algorithms.

6.1 Text removal

As an interesting application of completion problems, the text removal is a

process of data inpainting that based on the completion techniques to recover

the missing region in the tensor data or removing some objects added to it.

The operation of inpainting depends on the type damaging in the image, and

the application that caused this distortion. For example, in the text removal

process, we talk about removing the text that can be found in an image or a

video [44]. In the literature, many techniques have been developed to solve this
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problem [27,19,36]. The total variation was among the most efficient method

to solve such a problem.

In this example, we took the original Barbara color image of size 256 ×

256× 3 and we added a text to this image like shown in Figure 1. The crite-

Fig. 1 Original image (left), the observed image (PSNR = 15.5) (right).

rion for stopping the proposed algorithms consists of the tolerance tol = 10−2,

the maximum number of iterations kmax = 200. We hand turned all the pa-

rameters λ, µ, α and σ by choosing each one in its appropriate interval. We

hand turned the value of λ in the interval (0, 1/L(∇PΩ)) = (0, 1/2) by choos-

ing λ = 2.5 × 10−1. On the other hand the step size sequence(αk) computed

using the line search iterative method starting by α0 = 1.1 with a line search

parameter τ = 0.5. We set σ = 6.5 × 10−2 and finally the regularization pa-

rameter was chosen to be µ = 1.2e−2. The corresponding results are shown

in Figure 2. Clearly, the accelerated version of the tensorial double proximal

gradient method provide clearer images by removing all the added text, either

using Algorithm 1 based on Nesterov acceleration approach or Algorithm 4 us-

ing the polynomial extrapolation techniques. Moreover, the relative error and
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Fig. 2 Inpainted image without acceleration (PSNR = 21.71), inpainted image with

TDPG-Nesterov (PSNR = 32.45), inpainted image with TDPG-MPE (PSNR = 32.5),

inpainted image with TDPG-RRE (PSNR = 32.47).

the PSNR curves represented in Figure 3 show that the results produced by

the TDPG algorithm accelerated by the polynomial extrapolation techniques

RRE or MPE converge faster than those produced by the TDPG accelerated

by Nesterov’s technique. The speed of the convergence of the polynomial ex-

trapolation method in comparison with the Nesterov’s approach are clearly

illustrated in the report of acceleration in Figure 4, that show the fast conver-

gence of TDPG-MPE and TDPG-RRE in less iterations than TDPG-Nesterov.
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Fig. 3 The PSNR and relative error curves.
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Fig. 4 The report of acceleration
‖Tk −X∗‖
‖Xk −X∗‖

.

Table 1 Comparison between the proposed acceleration techniques for tensorial total vari-

ation proximal gradient method.

Data size Algorithm PSNR(X ∗) RE Step time (s)

TDPG 21.71 1.72e−1 200 27.41

barbara.bmp TDPG-Nesterov 32.45 5e−2 97 13.37

256× 256× 3 TDPG-MPE (q = 5) 32.50 5e−2 20 19.72

TDPG-RRE (q = 5) 32.47 5e−2 21 19.88

TDPG 28.62 4.80e−2 18 6.71

xylophone.mpg TDPG-Nesterov 29.65 3.98e−2 12 4.10

120× 160× 30 TDPG-MPE (q = 5) 32.27 2.99e−2 3 5.38

TDPG-RRE (q = 5) 29.53 4.03e−2 3 5.66

In Table 1, we have reported the PSNR of the completed tensor, the rel-

ative error, as well as the number of iterations and the CPU-time results

for “barbara.bmp ”color image and “xylophone.mpg ”grayscale video of size



An Accelerated Tensorial Double Proximal Gradient Method 29

120 × 160 × 30. Based on the tests reported in Table 1 and many more un-

reported tests, we remark that our proposed algorithm works very effectively

for image and video inpainting problems, in terms of the PSNR as well as in

terms of the relative error.

6.2 Grayscale video completion

In order to have more quantitative evaluations on the proposed approach, we

used the “news.mpg ”grayscale video of size 144×176×10 as original data and

we randomly mask off about 80% of entries that we regard them as missing

values, as shown in the second line of Figure 5. The completed frames in Figure

5 with PSNR = 33.21 are obtained by using Algorithm 4 with the GT-RRE

polynomial extrapolation technique. The criterion for stopping the algorithm

consists of the tolerance tol = 10−2 and the maximum number of iterations

kmax = 200. We set the step size parameters λ = 2 × 10−1, α0 = 1.1, σ =

6 × 10−1 and the regularization parameter µ = 2 × 10−2. We can see that

the results are visually pleasant using the accelerated version of the tensorial

double proximal gradient method that achieves a PSNR value equal to 33.21.

6.3 Comparison with state-of-the-art algorithms

In this subsection, we compare the performance of our proposed method

with the following state-of-the-art tensor completion algorithms: LRTC, TNN,

FBCP and RTC. The LRTC algorithms are based on minimizing the sum of

nuclear norms of the unfolded matrices of a given tensor. The LRTC has two



30 O. Benchettou et al.

Fig. 5 Original frames (top), incompleted frames with PSNR = 7.94 (center), recovered

frames with PSNR = 33.21 (bottom).

versions, HaLRTC and FaLRTC [32]. The first one stands for a fast low-

rank tensor completion algorithm and the second stands for a high accuracy

low-rank tensor completion algorithm. We also found the TNN method [48]

which is a tensor nuclear norm-based method developed using the tensor-

Singular Value Decomposition (t-SVD) [25]. The concept of automatic tensor

rank determination was introduced in [49] which is based on a Bayesian CP

Factorization (FBCP) in order to recover incomplete tensor. For the same goal

of completing tensors, recently, the RTC algorithm [10] was developed as an

auto-weighted approach using this time the well-known tensor trains decom-

position [26]. Four benchmark color images, of size 256× 256× 3, are used in
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the comparisons, Baboon, Lena, Flower, and Airplane (see Figure 6). To show

Fig. 6 Four benchmark color images: Baboon, Lena, Flower and Airplane, respectively.

the efficiency of the proposed algorithm for different types of tensor comple-

tion, we generate different incomplete images either using uniformly random

missing pixels or non-random missing pixels. In the first case, 80% and 60% of

missing pixels are uniformly distributed in Flower and Airplane color images,

respectively. Non-random missing pixels, such as text and scrabble, are used to

corrupt the color images of Lena and Baboon. The corrupted images are shown

in the first column of Figure 7. In order to provide a fair and unified framework

for comparison, all six algorithms are endowed with the same convergence cri-

terion, i.e. the iterations for all algorithms were terminated when the relative

error between two successive iterates of approximated primal variable is less

than the tolerance tol = 10−4 or when a maximum of 200 iterations has been

performed. In addition, the parameters of the six algorithms are refined in

relation to the best PSNR, RE, and CPU times scores on the images. Table 2

reports the PSNR, the relative error RE, as well as the CPU time in seconds

for all the six algorithms. While the recovered images are shown in Figure 7.

For the uniformly random missing pixels examples, the proposed TGPG algo-

rithm is comparable with the TNN algorithm. Both approaches reach the best



32 O. Benchettou et al.

(a) (b) (c) (d) (e) (f) (g)

Fig. 7 Image completion comparisons of Airplane, Flower, Lena and Baboon by six algo-

rithms. (a) the column of the observed (incomplete) images, (b) the completed images with

FaLRTV algorithm, (c) the completed images with HaLRTV algorithm, (d) the completed

images with TNN algorithm, (e) the completed images with FBCP algorithm, (f) the com-

pleted images with RTC algorithm and (g) the completed images with the proposed TDPG

algorithm.

results in terms of PSNR and RE. However, by increasing the missing pixels

in the Flower color image, the proposed algorithm converges faster than TNN.

On the other hand, in the non-random missing pixels example, the proposed

algorithm achieves the best PSNR and RE among all other methods. Mean-

while, in terms of computation time, algorithms RTC and FBCP are faster

than ours.



An Accelerated Tensorial Double Proximal Gradient Method 33

Table 2 Comparison of the results of six methods applied to four different images.

Data Methods FaLRTV HaLRTV TNN FBCP RTC TDPG

PSNR 25.39 26.14 29.37 26.70 26.83 29.03

Airplane RE 6.69e−2 6.13e−2 4.23e−2 5.75e−2 5.66e−2 4.40e−2

Time (s) 89.44 58.76 26.30 38.43 15.64 36.44

PSNR 22.04 22.40 24.94 24.29 23.84 24.97

Flower RE 1.64e−1 1.58e−1 1.18e−1 1.27e−1 1.34e−1 1.17e−1

Time (s) 214.71 117.12 43.81 83.66 43.70 28.05

PSNR 28.13 28.94 28.91 26.39 28.57 30.29

Lena RE 7.07e−2 6.44e−2 6.46e−2 8.64e−2 6.73e−2 5.51e−2

Time (s) 226.40 148.06 42.67 27.19 8.81 44.91

PSNR 25.69 25.45 25.41 21.13 25.10 26.84

Baboon RE 9.63e−2 9.89e−2 9.94e−2 1.63e−1 1.03e−1 8.44e−2

Time (s) 133.15 72.92 28.91 23.38 8.30 25.54

7 Conclusion

The accelerated tensorial double proximal gradient algorithms described in

this paper can be applied to other fields like image and video restoration.

The applications illustrated in this paper are only a small portion of what

these algorithms can tackle. The tensorial structure of the main problem of-

fers the possibility of treating multidimensional data, in addition, the use of

extrapolation techniques has improved significantly the convergence speed of

the proposed algorithm.
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33. W. López and M. Raydan. An acceleration scheme for Dykstra’s algorithm. Computa-

tional Optimization and Applications, 63(1):29–44, 2016.

34. C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan. Tensor robust principal component

analysis with a new tensor nuclear norm. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 42(4):925–938, 2019.

35. M. Lysaker, A. Lundervold, and X.-C. Tai. Noise removal using fourth-order partial

differential equation with applications to medical magnetic resonance images in space

and time. IEEE Transactions on Image Processing, 12(12):1579–1590, 2003.



An Accelerated Tensorial Double Proximal Gradient Method 37

36. U. Modha and P. Dave. Image inpainting-automatic detection and removal of text from

images. International Journal of Engineering Research and Applications (IJERA),

ISSN, pages 2248–9622, 2014.
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