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non-destructive testing applications
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CEA, LIST, Gif-sur-Yvette, France, christophe.reboud @cea.fr

Abstract—This paper presents a global strategy aiming at solv-
ing efficiently inverse problems classically faced in the community
of non-destructive testing, like flaw characterization and sensors
optimization, for instance. The approach is based on intensive
use of simulation tools that are obtained from complex physical
models developed at CEA LIST and dedicated to ultrasonic
and electromagnetic testing applications. Results presented in
different physical contexts show not only its efficiency to solve
parametric estimation problems, but also its capability to account
for variability due to uncertainty in some model parameters
and to evaluate the so-called well-posedness of inverse problems
considered.

Index Terms—non-destructive testing, low frequency Electro-
magnetics, ultrasounds, flaw characterization, probe design.

I. INTRODUCTION

The field of non-destructive testing (NDT) gathers a very
large family of techniques used to inspect materials without
affecting them in terms of usability [1], [2]. Most popular
techniques are, in a similar way as in medical imaging, either
based on Ultrasonics, Electromagnetics or X-ray. This paper
focuses on two particular techniques, which are bulk waves
Ultrasonic Testing (UT) and Eddy Current Testing (ECT),
applied to inspection of metallic parts. These techniques are not
limited to traditional detection and characterization of flaws in
material, as they can also prove useful in a material characteri-
zation context, where they provide a macroscopic information,
which is strongly correlated to the microscopic material state
[3]. One of the main objective in NDT applications is, of
course, to access to the largest amount of information about
the material and possible unwanted inhomogeneities that affect
it. This means that such methods are often required not only
to detect inhomogeneities but also to characterize them in
terms of geometry and/or physical properties [4]. A common
way to regularize these ill-posed problems is to use physical
models able to account for complex phenomena, and thus
to transform them into a parametric estimation problem, the
target being a subset of the models inputs. Numerous works
have already been proposed to exploit, to this end, simulation
tools in various ways [5]. The approach used in this paper
uses mixed semi-analytical and numerical models developed by
CEA LIST in the multi-physics platform CIVA [6]. In order to
provide almost real time estimations, which are more and more
required in the context of in-line diagnostic or even in-process
diagnostic for additive manufacturing applications, accurate
surrogate models [7] are built on top of the models, from
adaptively designed databases of simulation results. Finally,

sensitivity of the estimation process is evaluated through un-
certainty propagation, in view of providing measures of results
dispersion, like error bars, and give an indication about the
well-posedness of the problem. After a succinct presentation
of two particular applications cases in propagative and diffu-
sive regime with corresponding physical models, the surrogate
modelling approach used in this work will be introduced and
estimation results will be discussed.

II. PHYSICAL APPLICATION CASES OF INTEREST

The two configurations of study are quite typical ones for
ECT and UT. Signals to be dealt with are very different in
nature and behaviour in each case: they are harmonic and
diffusive in space for ET, which relies on the quasi-static
phenomenon of induction, whereas they are oscillating in time
and propagating in space for UT. Therefore, a particular care
must be put in the comparison between signals, which is
underlying the parameter estimation.

A. Eddy current testing of stratified plates

Eddy current testing is very popular for inspection of con-
ductive materials as it is highly sensitive, contactless and very
reproducible technique. It is, however, able to inspect the upper
surface of materials only, due to the so-called skin effect.
A classical use in Aeronautics consists in inspecting large
areas, looking for small cracks that can be either breaking the
surface or slightly buried below the surface. In the configuration
considered (see Fig. 1), a signal coil is inspecting at a frequency
of 1 kHz a stack of two plates separated by a thin insulating
layer [8]. Each layer contains a through-wall crack and both
cracks are tilted with respect to each other with an arbitrary
angle. The characterisation of flaw parameters is made difficult
in this case by the interaction between flaws and the buried
location of one of them. From the modelling point of view,
the forward problem is solved by means of a specific integral
formulation [8] derived from the Volume Integral Method
and adapted to narrow cracks. After the calculation with a
modal approach [9] of the electric field induced in the flaw-
free material, the two equivalent sources accounting for the
flaws are calculated by solving an integral equation involving
the Green dyadic function of the stratified material. Then, a
reciprocity argument is exploited in order to directly derive,
from these incident field and equivalent sources, the impedance
variation of the coil as it scans the piece. As shown is Tab. I,
parameters of interest are in this case geometrical parameters
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Fig. 1. ECT inspection configuration, as it can be described with the CIVA
software. A stack of two aluminium sheets, affected by two narrow cracks, are
inspected by a single coil.

Id. Parameter Range of variation

1 Coil lift-off [mm] [0.025; 0.25]

2 Crack 1 length [mm] [25; 33]

3 Crack 1 opening [mm] [0.05; 0.5]

4 Crack 2 opening [mm] [0.05; 0.5]

5 Crack 2 length [mm] [25; 33]

6 Crack 2 angle [deg] [—15;105]

7 Coil Tilt [deg] [—5; 5]

8 | Dielectric Thickness  [mm] [0.05; 0.5]
TABLE I

PARAMETERS STUDIED IN THE ECT CONFIGURATION.

characterizing both flaws, namely their length and opening, as
well as the angle between them. In addition, some parameters
that are typical source of variability are also considered: the coil
lift-off, which is certainly the main source of perturbation for
such inspection configurations, its tilt angle and the thickness
of the insulating layer separating the two Aluminium sheets. An
interval of variation is set for each variable parameter studied.

B. Ultrasonic testing of welded parts

The second application case is related to welds inspection,
which is a topic of great interest in several sectors of industry
like the ones of Energy and Oil and Gas. In the configuration
considered, described by Fig. 2 and Tab. II, a single probe
with center frequency of 2 MHz scans a set of two welded
plates made of stainless steel. The inspection angle is 45°, using
shear waves. The so-called B-scan representation, consisting in
a 2D map of the signal amplitude with respect to time and
probe position, is used as input data, as shown in Fig. 3. The
forward modelling of this problem is carried out using a ray-
tracing formalism for the fast calculation of the ultrasonic field
generated by the transducer, a Kirchhoff approximation for its
interaction with the flaw, located in the immediate vicinity
of the weld and, again, a reciprocity argument for the direct
derivation of the signal of interest. Parameters to be estimated
in this case are the crack height, length and position with
respect to the weld, provided that it stays parallel to the weld
bevel.

Crack

l\’ Weld

\nspected zone

Fig. 2. UT inspection configuration, as it can be described with the CIVA
software. the weld area joining two stainless steel plates is inspected using
shear waves.
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Fig. 3. Bscan representation of the UT signal, which has been used .

III. FAST MODEL APPROXIMATION BY MEANS OF ADAPTIVE
DATABASES

In order to explore the space defined in both cases by the
product of intervals of variation assigned to each parameter in
Tab. I and II, corresponding forward models forward models
need to be evaluated many times. Even with the fast formula-
tions cite above, such an intensive use makes the estimation
process so cumbersome that it prevents its deployment in
contexts, where quick diagnostics are required.

Hence, these models have been approximated by surrogate
models, based on databases of simulation results. A database
D = [(z1,y1), (x2,y2), ..., (xn,yn)] is defined as a collection
of input/output couples. The outputs y; = F(x;) usually consist
in a functional output, which can be real or complex-valued
regardless of the considered NdT method and the associated
inspection technique. In this work, the database is built based
on functional complex valued signals in the case of ECT and
functional real signals in the case of UT problems. Based on

1d. Parameter Range of variation

1 Crack height [mm] (2; 6]

2 Crack length [mm] [8; 26]

3 Crack position [mm] [11;25]

4 Probe yaw [deg] [0;15]

5 | Shear waves velocity [m.s~!] [3180; 3280]
TABLE II

PARAMETERS STUDIED IN THE UT CONFIGURATION.



the database training set, the surrogate model (M) is fitted
by employing suitable kernel-based methods (e.g., kriging,
radial basis function (RBF)) or sparse grid methods [10]. Thus
predictions y are obtained by evaluating the surrogate model
on a unseen test set such that y = M(x). In the ECT case,
a database of 3544 simulated signals has been built adaptively
using the output space filling method [11], then it was fitted
by a RBF interpolator. The accuracy of th surrogate model
obtained was checked with a 10-K fold Cross Validation (CV)
with respect to the Mean Normalized L-2 Error (MNL2E)
defined in eq. (1). The overall accuracy of the surrogate model
according to this error is about 7%. In the UT case, the signals
database contains 3500 samples and the surrogate model was
built in a similar way.

1o [1F {30} = M{xa} 3
MNLQE:NZ 2 (1)

IF {xa 5

n=1

IV. ESTIMATION RESULTS AND UNCERTAINTY
PROPAGATION

Estimation of flaw parameters was carried out in this work
using both local and global classical optimization algorithms,
namely Sequential Quadratic Programming (QP) and Differ-
ential Evolution (DE), applied to the M N L2E error function
defined above. The investigation of other strategies based on
learning methods are also investigated with great success in
another context [12].

A. Robustness of estimation algorithms

A first comparison of results obtained with these algorithms
has been performed in conditions, where the observations —
which are synthetic in this work— are perturbed by additive
white noise in such a way that the level of signal to noise ratio
is decrease down to 20 dB. As expected, the local optimizer
performance is affected by noise in a stronger way than that
of the global one, as illustrated in Fig. 4 for the ’difficult’
parameter to estimate: the opening of the buried flaw, as a single
coil will have a lesser sensitivity to it than more complex probe
arrangements and this flaw is shadowed by the upper crack. the
DE algorithm is thus preferred, its high cost in terms of number
of forward problems evaluation being overcome by the use of a
surrogate model. It is worth noticing that learning by example
techniques [12] show a very good robustness to noise, as they
can integrate it in the learning phase.

B. Well-posedness of the inverse problem

It reduces, indeed, the unitary evaluation of the model (to
a few milliseconds) drastically, which allows, in addition to
carry almost real-time parameters estimations, to study the
problem more in depth. For instance, it becomes possible to
image the cost function, accounting for the distance between
the observation and simulated signals, as shown in Fig. 5 for
the ECT and UT case, respectively.

This function is represented in the input space, here three
flaw parameters were chosen in each case. As one can see,
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Fig. 4. Effect of additive white noise on the estimation of crack 2 opening
(fourth parameter) in the ECT case. The signal to noise ratio is 20 dB.
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Fig. 5. Cost functions corresponding to the ECT (top) and UT (bottom) case,
respectively. Each of them is depending on three flaw parameters: lengths of
cracks 1 and 2 and angle separating them in the ECT case; height, length and
vertial position in the UT case.

the cost function (its restriction to three parameters actually,
as 5 parameters are estimated in this case) in the ECT case
shows a clear minimum, whereas the one of the UT case is
not clearly noticeable, which indicates that the ECT estimation
problem is somewhat ’better posed’ than the UT one. In
order to quantify this, a strategy of uncertainty propagation
was applied to the estimation process. Flaw parameters have
been estimated assuming nominal values of probe or medium



True vs. Predicted Input Parameters Id. 4
I s ° 3
4 °

@
°
So.
s
>
o
2
o
k-
o
o

01 045 02 025 03 035 04 045
True Values

DIFF. EVOL.

True Values

QUAD. PROG.

Fig. 6. Estimation of crack 2 opening (fourth parameter) in the ECT case
when applying uncertainty propagation.
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Fig. 7. Estimation results obtained in the UT case when applying uncertainty
propagation.

parameters, but observations were generated with randomly
taken values of these parameters. the dispersion of the obtained
estimates gives, thus, a measure of the process robustness to
this particular variability, which is commonly observed in the
field of NDT. In the UT case, uncertain parameters, namely
the probe yaw and the shear wave velocity, were sampled
according to a normal distribution A (u, o) = [7.5° 0.5] and
a uniform one in the range [3219 3241] m.s™!. In the ECT
case, the coil lift-off and tilt angle are described by normal
laws N (p,0) = [0.1125 0.1] mm and N (p,0) = [0 0.1]°,
respectively. The thickness of the insulating layer is described
by an uniform law in the range [0.185 0.265] mm. Considering
the same parameter as in Fig. 4, Fig. 6 illustrates the different
behaviours of both QP and DE algorithms. The QP algorithm
shows poor efficiency but the DE one still manages to estimate
with good accuracy the crack opening. Similar results are
observed with the two other flaw parameters. Hence we can
conclude that the ECT case is quite well posed, in terms
of flaw characterization. Now, if we look at the estimation
results obtained in the UT case, represented as a box-plot
in Fig. 7, then we can see that even with the DE algorithm,
the first two parameters, corresponding to the flaw length and
height, respectively, are determined with poor reliability. This
indicates clearly that the inverse problem is very sensitive in
this particular case.

V. CONCLUSIONS

A general strategy dedicated to parametric inversion in the
field of NDT has been described and illustrated in two classical
cases involving ultrasonic testing and eddy current testing.
Limitations in terms of computation time are faced out by
the use of surrogate models, built from adaptive database of
results in order to ensure their accuracy with respect to physical
models. This enables firstly to use more expensive optimization
algorithms like genetic ones in order to improve robustness of
estimation to measurement noise. Secondly, statistical studies
based on uncertainty propagation through the modelling and
estimation process can be carried out within minutes in order
to check the estimation robustness to more realistic conditions,
where some input parameters of the physical model are no
known precisely. These tools can prove very useful in the
context of online diagnostic, as they are able to provide almost
real time estimation and associate a level of confidence to it.
Perspectives of this work include comparing classical optimiza-
tion techniques to other methods, which can also assimilate
prior knowledge and enable the estimator to improve itself with
time.
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