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. More specifically, the inspection of the unknown state must be conducted under the same EOCs as the ones of the pristine state. Besides measuring baselines on the structure under all the EOCs of interest, which is prohibitively expensive, a potential solution is to compensate the EOC effects on the measured signals.

Several solutions in the literature, such as Baseline Signal Stretch [2] and Dynamic Time Warping [3], have been proposed to solve this problem, but are somewhat limited in terms of amplitude of compensation or range of application. In this paper, a model-based machine learning procedure to compensate the measured signals in an unknown state and known EOCs is presented. The compensation model is trained on experimental data acquired at various temperatures on a structure representative of the one of interest. In other words, an experiment under various EOCs must be conducted on a simplified version of the structure with at least two transducers. Material and transducers of the simplified experiment must be identical to the ones of the real structure, but the actual geometry might differ. The compensated signals are then used to conduct guided wave imaging, allowing immediate defect detection and localization. Results are shown for both aluminum and composite panels.

Introduction

In current applications, Guided Wave (GW) based Structural Health Monitoring (SHM) measurements are usually obtained from a set of piezoelectric transducers mounted on the structure to monitor [START_REF] Giurgiutiu | Structural health monitoring: with piezoelectric wafer active sensors[END_REF]. Since the structure under scrutiny is exposed to an uncontrolled environment, the Environmental and Operational Conditions (OECs) can significantly affect the measurement. In the particular case of GWs, modifications of the EOCs usually influence both the amplitude and the times of the wave packets travelling through the structure. This makes it difficult to separate wave packets linked to structural defects from others. For this reason, a baseline, i.e. a set of measurements on the inspected structure in a pristine state, is usually recorded. This later serves to quantify the deviation from the undamaged state by highlighting the response of the flaw. More specifically, the inspection of the unknown state must be compared to the baseline obtained under the same EOCs. Besides measuring baselines on the structure under all the EOCs of interest, which is prohibitively expensive, a potential solution is to compensate the EOC effects on the measured signals. Several solutions in the literature, such as Baseline Signal Stretch (BSS) [START_REF] Croxford | Efficient temperature compensation strategies for guided wave structural health monitoring[END_REF] and Dynamic Time Warping [START_REF] Douglass | Dynamic Time Warping Temperature Compensation for Guided Wave Structural Health Monitoring[END_REF], have been proposed to solve this problem, but are somewhat limited in terms of amplitude of compensation or range of application. Baseline signal stretch can suffer from a frequency distortion due to resampling [START_REF] Douglass | Dynamic Time Warping Temperature Compensation for Guided Wave Structural Health Monitoring[END_REF]. Dynamic Time Warping on the other hand, while better suited for large amplitude temperature variation, may remove the signature of the defect while compensating for the temperature [START_REF] Kulakovskyi | Development of a SHM system by elastic guided waves applied to aeronautic structures[END_REF]. In this paper, we present a temperature compensation model relying on a training phase based on experimental measurements at various temperatures and present results obtained on aluminum and composite plates in a varying temperature environment.

Temperature compensation model

This section introduces the temperature dependency model of the guided wave signals.

Model

The model used to compensate guided wave signals for the temperature variation is described by the following equation:

𝑠(𝑡, 𝑇) = 𝛼 𝑠(𝛽𝑡, 𝑇 𝑟𝑒𝑓 ) (1)
In the above equation, 𝑠 is the guided wave signal, 𝑇 is the temperature, 𝑇 𝑟𝑒𝑓 is the reference temperature, 𝛼 the coefficient describing guided wave amplitude change as a function of temperature, 𝛽 the coefficient describing phase velocity change as a function of temperature. 𝑠̂ is the signal measured at temperature 𝑇 but transformed back as if it had been obtained at temperature 𝑇 𝑟𝑒𝑓 . In the present work, it is assumed that the parameters alpha and beta are dependent on the inspected structure and the corresponding SHM system. In other word, these parameters must be uniquely defined for each use-case of interest. The sources of variations of alpha and beta include the following: change of elastic properties of the propagation media and the coupling medium (epoxy), change of piezoelectric properties. Due to the potentially large number of influencing variables on these parameters, the choice is made to measure them experimentally. This leads to the following cost between a signal measured at a temperature 𝑇 and a signal measured at temperature 𝑇 𝑟𝑒𝑓 , with a number of samples defined by 𝑁:

𝑐𝑜𝑠𝑡 (𝑠 𝑇 ̂, 𝑠 𝑇 𝑟𝑒𝑓 ) = ∑ (𝑠 𝑇 ̂[𝑡 𝑖 ] -𝑠 𝑇 𝑟𝑒𝑓 [𝑡 𝑖 ]) 𝑁-1 𝑖=0 2 𝑐𝑜𝑠𝑡 (𝑠 𝑇 ̂, 𝑠 𝑇 𝑟𝑒𝑓 ) = ∑ (𝛼𝑠 𝑇 [𝑡 𝑖′ = 𝛽𝑡 𝑖 ] -𝑠 𝑇 𝑟𝑒𝑓 [𝑡 𝑖 ]) 𝑁-1 𝑖=0 2 (2)
This naturally leads to a cost minimization procedure that allows, for each temperature, to search the 𝛼 and 𝛽 coefficients that minimize the cost with respect to a reference temperature.

An interpolation scheme is used to compute the transformed signals. It uses time domain linear interpolation to project from one set of time coordinates to another.

Training phase

To train the model, experimentally measured guided wave signals are pre-processed before the minimization algorithm is applied. First a narrow bandpass filter is applied to limit the training to a limited frequency band and the reflected wave packets are removed. The unconstrained BFGS (Broyden-Fletcher-Goldfarb-Shanno) minimization algorithm is applied for each emit-receive pair to estimate the optimum 𝛼 and 𝛽 that best describe the data transformation from the current temperature to the reference temperature.

Model learning on experimental data

Dataset

An experimental dataset consisting of guided wave measurements was obtained for an aluminum plate and a composite plate for various temperatures using a climatic chamber. With the objective to conduct guided wave imaging, the plates are instrumented with a sparse array of piezoelectric transducers, each acting sequentially as emitter and receiver of the guided waves. The data acquisition process is conducted at temperatures between -40 and +87 °C. The center frequency of the emitted signal is 40 kHz. Signal were acquired both in a pristine state and in a damaged state. The damage created in both cases is a 10 mm diameter circular through hole. The plate configurations are shown below: 

Model training

The measurements acquired in the pristine configuration at various temperatures are used to train the temperature transformation previously described. The model coefficients obtained for the aluminum plate as a function of temperature are as follows: A linear evolution of β is observed while the linear domain of α is limited to temperatures below 60°C. Overall, for this panel, the spread of the data is limited and the two parameters are relatively constant for all the emittedreceiver paths. It should be noted that the slope of the above stretch parameter is consistent with known experimental data. Indeed, a negative slope of the stretch coefficient implies that waves travel more slowly at higher temperatures, which is intuitively consistent with the aluminum getting less stiff. The results for the composite plate are shown in Figure 4. As can be seen, the evolution of the β factor is linear and negative, on average, which is coherent with the decrease of group velocity with the temperature. However, the α behavior is not nearly as clear. Moreover in both cases, large data variability is shown for each emitter-receiver paths, which means that the guided wave paths are not influenced in the same way by the temperature. This may be explained by several factors. First, the temperature may not be as homogeneous in the composite panel than in the aluminum panel, due to lower thermal conductivity. Second, the composite panel is anisotropic. Hence, a directivity dependency of the guided wave path is expected. Third, the bounding operation of the sensors on the structure is not as repeatable on the composite due to the rougher surface, inducing additional variability. Finally, the measured signals are of lower signal to noise ratio in the composite panel due to attenuation, leading to potentially poor fits.

Model exploitation for temperature compensation

After learning the right temperature transformation on the data, it is used to compensate the guided wave signals in the damaged configuration. An example of this is shown in the next figure. Judging from several time traces like the one above, the output of the model is able to compensate over a wide range of temperatures. To evaluate whether this leads to better performance on SHM applications, the obtained signals were used to perform Delay And Sum (DAS) imaging on the two plates, using the obtained image as the evaluation metric.

Application to guided wave imaging 4.1. DAS imaging

In order to highlight the response of the defect, the difference between the pristine and damaged signals is computed. This residual signal is then used to image the whole plate domain, using the Delay And Sum (DAS) algorithm with constant group velocity [START_REF] Michaels | Detection, localization and characterization of damage in plates with an in-situ array of spatially distributed ultrasonic sensors[END_REF]. The DAS algorithm relies on a backprojection method that sums the signals originating from a certain plate location, given a path to compute the time of flight needed to reach that location.

Results

The obtained images were compared with and without temperature compensation. An example is shown below for the aluminum plate: As can be seen, the image obtained without temperature compensation is highly affected by the temperature variation and fails to detect the defect for a temperature difference of 15°C, while the compensated image is very close to the reference image with no temperature difference. In this case, the improvement in detection capability is therefore important. In the composite case, the results are less favorable than in the aluminum case, since the signal to noise ratio is lower and the reconstruction model does not take into account the variability observed in Figure 4. Still, the image obtained with a 15 degree Celsius difference is sufficient to detect and locate the defect. the output of the images obtained at various temperatures shows that the transformation learned from the data is robust in an interval of environmental temperature changing between -20 and + 30 °C (relative to the reference temperature) for the aluminum plate and -15 + 25°C (relative to the reference temperature) for the composite plate.

Conclusions

This paper outlines a machine-learning based temperature compensation scheme that can be used for guided-wave based SHM. The model was trained using both an aluminum and a composite sample. The compensation model operates on the signals received by piezoelectric transducers positioned on the plates. Based on reference temperature signals, the model was trained to transform signals acquired at any temperature back to the time-scale of the reference temperature. The compensated signals were validated by producing DAS images that showed enhanced coherence of the DAS images over a large temperature range. Another aspect of this work was to investigate whether an average transformation instead of each emit-receive pair would give similar results. Results showed that the average model coefficients, not accounting for probe locations, was also useful for reconstructing images. This opens up interesting possibilities for laboratory or small-scale temperature calibration of SHM systems before transferring them to production. Perspectives of this work include statistical assessment of the temperature transform (for example using ROC curves) as well as further work on automatic detection and image quality criteria.
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 1 Figure 1. Aluminum plate (left) and composite plate (right) with dimensions indicated in millimeters. The aluminum plate is instrumented with 6 piezoelectric transducers, while the composite plate is instrumented with 10 piezoelectric transducers. Dimensions are expressed in mm.

Figure 2

 2 Figure 2 shows an excerpt of the guided wave signals from the dataset for both plate types.

Figure 2 :

 2 Figure 2: guided wave signals for aluminum plate (top) a composite plate (bottom). Each plot shows two panels: an individual A-scan signal (overlaid with reference temperature signal), and a time-frequency representation of that A-scan.

Figure 3 .

 3 Figure 3. Model coefficients for the aluminum plate, as a function of temperature. Each dot represents an emitter/receiver pair. The red line represents the average coefficient as a function of the temperature.

Figure 4 .

 4 Figure 4. Model coefficients for the composite plate, as a function of temperature. Each dot represents an emitter/receiver pair. The red line represents the average coefficient as a function of the temperature.

Figure 5 .

 5 Figure 5. Comparison of signals before (left column) and after applying learned temperature correction (right column). The top row shows signals from the aluminum plate while the bottom row shows signals from the composite plate.

Figure 6 .

 6 Figure 6. Delay and sum images obtained on the aluminum plate. The reference images are in the top row while the images obtained with a temperature difference of 15 degrees are shown in the bottom row. The pink circles represents the transducers while the red circle represents the defect.

Figure 7 .

 7 Figure 7. Delay and sum images obtained on the composite plate. The reference images are in the top row while the images obtained with a temperature difference of 15 degrees are shown in the bottom row.
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