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Non-intrusive loading monitoring (NILM) provides a smart solution to the problem of electrical energy monitoring of households at appliance level. In blind disaggregation, the power level of each appliance is not known a priori. In this paper we propose an event based blind online disaggregation algorithm which uses Gaussian mixture models (GMM) for clustering to automatically detect two state appliances from the aggregate data. The benefit of using a Gaussian mixture models over other clustering methods is that they are able to learn automatically the statistical distributions present in the data. This is beneficial, especially when we have appliances that have similar power consumption. Since Gaussian mixture models do not determine the number of clusters automatically, we use Bayesian information criteria (BIC) to determine the number of clusters. The blind disaggregation method is tested with data from a real house collected by a smart meter which samples the aggregate consumption at 3.4 kHz and also from Reference Energy Disaggregation Dataset (REDD) public data, sampled at frequency of 1 Hz. We saw improved performance by using Gaussian mixture models instead of mean shift clustering in various accuracy measures. We were able to track the total power consumed 12 % better then by mean shift clustering; root mean square error is also considerably lower on our measured data. The performance of the algorithm on the public data is comparable to other methods.

Introduction

Load monitoring provides real time feedback by analyzing the aggregate power data captured by the smart meter and extracting the information about the load devices present at the consumer. The goal of load monitoring is to provide a real time feedback about the consumption of the energy in order to detect problems and to encourage energy saving behaviors. Annual saving of up to twelve percent is reported by providing a direct feedback to the consumer about the consumption of energy [START_REF] Ehrhardt-Martinez | Advanced metering initiatives and residential feedback programs: a meta-review for household elecricity saving opportunities[END_REF].

Load monitoring can be divided into intrusive and non-intrusive. In intrusive load monitoring, smart meters or plugs are attached to each appliance to monitor the individual consumption. In non-intrusive load monitoring (NILM) a single smart meter, which measures the aggregated consumption of the whole house, is used to extract information about the consumption of individual appliances present in a household. NILM does not require installing and maintaining additional equipment, such as sensors that monitor the individual consumption of the appliances. The earliest research on non-intrusive energy monitoring was done by G. W. Hart in late 1980 [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF]. Non-intrusive load monitoring (NILM) can also enable the energy supplier to anticipate the demand and schedule the resources appropriately. Over the years, there has been an increasing interest in appliance load monitoring, especially on non-intrusive load monitoring.

State of the art

The main steps for non-intrusive load monitoring include data acquisition, event identification, feature extraction and load identification [START_REF] Abubakar | Application of load monitoring in appliances' energy management-A review[END_REF][START_REF] Ruano | NILM techniques for intelligent home energy management and ambient assisted living: A review[END_REF]. Data acquisition determines the rate at which the aggregate power is measured, which can be low frequency (1 Hz or less) or high frequency (kHz). Most of the non-intrusive load monitoring algorithms require a sampling frequency of 1 Hz [START_REF] Zoha | Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey[END_REF]. Although higher frequency sampling can improve the recognition capabilities of the disaggregation algorithm (as more detailed features can be extracted from the data), high overhead cost is incurred [START_REF] Barker | NILM redux: The case for emphasizing application over accuracy[END_REF].

Data acquisition is followed by event identification. An event is a change in the operational state of an appliance. An appliance functions in a number of states depending on which category the appliance belongs to. There are four categories of appliances present in a household [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF]:

-Type 1: two state appliances that have an ON and an OFF state such a lamp.

-Type 2: multi state appliances that have a finite number of operating states like a washing machine. -Type 3: variable power appliances such as a light dimmer.

-Type 4: constant consumption appliances like an internet box [START_REF] Abubakar | Application of load monitoring in appliances' energy management-A review[END_REF][START_REF] Zoha | Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey[END_REF].

Event-based approaches use the recognition of the change of state of an appliance which results in state transition edge. A pair of these transitions -positive and negative -makes an event [START_REF] Barsim | An approach for unsupervised non-intrusive load monitoring of residential appliances[END_REF][START_REF] Anderson | Non-intrusive load monitoring: Disaggregation of energy by unsupervised power consumption clustering[END_REF]. Each category of appliance has a consumption pattern that is unique, called appliance electrical signature. Appliance signatures have been studied widely for identification of individual appliance from aggregate load measurement [START_REF] Zoha | Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey[END_REF]. Non-intrusive load monitoring algorithms use two main categories of features: transient and steady state features. Transient features are observed in the duration when the appliance is changing state and exist for a short time, such as the duration of the change, harmonics, shape and amplitude of the transient [START_REF] Zoha | Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey[END_REF]. Steady state signatures are extracted when the appliance has made the transition and it is in a specific state of operation. Steady state features include active and reactive power, current and voltage waveform. The resulting extracted features are analyzed for making inference about the electrical consumption of the individual appliances.

The final phase of non-intrusive load monitoring is learning. It falls into three categories: supervised, unsupervised or semi-supervised. Supervised algorithms are built on learning the individual behavior of an appliance by using training data which is acquired intrusively with the help of sub-metering. Un-supervised algorithms, on the other hand, require no individual training for determining the behavior of an appliance from the aggregate data.

Recently, efforts in the community concentrate on the development of a real time disaggregation algorithm that can infer the state of the individual appliances and indicate the total energy consumed by the appliance from the aggregate measurements in an unsupervised manner [START_REF] Zoha | Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey[END_REF]. Previously the aim was to improve the accuracy which requires a long computation time which is inappropriate for real time applications [START_REF] Barker | NILM redux: The case for emphasizing application over accuracy[END_REF][START_REF] Ruano | NILM techniques for intelligent home energy management and ambient assisted living: A review[END_REF].

A real time implementation of a disaggregation algorithm is tied to certain constrains [START_REF] Laughman | Power signature analysis[END_REF]. Firstly, an unsupervised approach should be completely data driven as the collection of data for individual appliances and user feedback is intrusive and unfeasible. Secondly, it is more desirable to design a low frequency disaggregation algorithm with a sampling period of 1 Hz as smart meters are able to log and process this sampling period effectively. Most of the commercial installations of smart meters transmission of data greater than 1 Hz create an overhead in terms of both processing power and storage, requiring additional infrastructure. Also, data collected at higher frequency adds to the processing time for the disaggregation algorithm.

In an effort to solve the disaggregation problem in unsupervised fashion, various approaches using hidden Markov models (HMMs) [START_REF] Kolter | Approximate inference in additive factorial hmms with application to energy disaggregation[END_REF][START_REF] Parson | An unsupervised training method for non-intrusive appliance load monitoring[END_REF][START_REF] Jia | A fully unsupervised nonintrusive load monitoring framework[END_REF][START_REF] Makonin | Exploiting hmm sparsity to perform online real-time nonintrusive load monitoring[END_REF], online learning-based approaches [START_REF] Zhao | On a Training-Less Solution for Non-Intrusive Appliance Load Monitoring Using Graph Signal Processing[END_REF][START_REF] Henao | Approach in Nonintrusive Type I Load Monitoring Using Subtractive Clustering[END_REF][START_REF] Huang | An online non-intrusive load monitoring method based on Hidden Markov model[END_REF][START_REF] Rodriguez-Silva | Universal Non-Intrusive Load Monitoring (UNILM) Using Filter Pipelines, Probabilistic Knapsack, and Labelled Partition Maps[END_REF] and deep learning based techniques [START_REF] Kelly | Neural nilm: deep neural networks applied[END_REF][START_REF] Zhang | Sequenceto-point learning with neural networks for nonintrusive load monitoring[END_REF][START_REF] Mauch | A novel dnn-hmm-based approach for extracting single loads from aggregate power signals[END_REF] have been developed. These unsupervised techniques fall into two main categories: transfer learning and online learning. In transfer learning, generic appliance models are built and then mapped to the collected data [START_REF] Parson | An unsupervised training method for non-intrusive appliance load monitoring[END_REF][START_REF] Murray | Transferability of neural network approaches for low-rate energy disaggregation[END_REF]. Both hidden Markov and deep learning-based approaches have been explored in literature and they have been found to be comparable [START_REF] Klemenjak | Towards Comparability in Non-Intrusive Load Monitoring: On Data and Performance Evaluation[END_REF]. Although results of these approaches are good, they show low success when applied to other countries or geographical regions [START_REF] Murray | Transferability of neural network approaches for low-rate energy disaggregation[END_REF]. The model of an appliance may be different from country to country or even for the same country, if the appliance has various operating modes. This could also change the performance of the algorithm [START_REF] Nalmpantis | Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparation[END_REF]. A lot of data is required for training in deep learning methods. Therefore, transferring learning-based methods is possible, but performance estimation in the presence of unknown appliances could be detrimental to the performance [START_REF] Makonin | Exploiting hmm sparsity to perform online real-time nonintrusive load monitoring[END_REF]. In online learning based techniques, the appliance models are created from data, without any prior information about the type of appliances. The benefit of using an online learning solution is that it can adapt and learn the operating state and the behavior of the appliance. This approach has not received much attention but can provide a reasonable solution [START_REF] Rodriguez-Silva | Universal Non-Intrusive Load Monitoring (UNILM) Using Filter Pipelines, Probabilistic Knapsack, and Labelled Partition Maps[END_REF]. Some of these techniques are discussed hereafter. A blind online disaggregation algorithm was proposed that used graph signal processing techniques, such as adaptive thresholding, for selecting a candidate event. Clustering and feature extraction were developed by down-sampling public datasets at 1 min and another at 8 sec resolution [START_REF] Zhao | On a Training-Less Solution for Non-Intrusive Appliance Load Monitoring Using Graph Signal Processing[END_REF]. A blind disaggregation technique proposed for Type 1 appliances by using subtractive clustering, which is a density-based clustering technique, was demonstrated to be more robust in the presence of noise then k-means or hierarchical clustering [START_REF] Henao | Approach in Nonintrusive Type I Load Monitoring Using Subtractive Clustering[END_REF]. An online learning method based on hidden Markov model (HMM) using Daubechies 9 (db9) discrete wavelet filter was used to filter the low frequency noise and the apparent power in the transient state was employed for distinguishing between different appliance models [START_REF] Huang | An online non-intrusive load monitoring method based on Hidden Markov model[END_REF]. An event based strategy using mean shift clustering identified the power profiles in the data; then, from the obtained power profiles, appliance models where learnt using additive factorial hidden Markov models [START_REF] Mengistu | Cloud-Based On-Line Disaggregation Algorithm for Home Appliance Loads[END_REF]. A filter pipeline was developed to clean the signal and to minimize the variation for event detection by building appliance models using Gaussian probability distribution and a knapsack algorithm for disaggregation [START_REF] Rodriguez-Silva | Universal Non-Intrusive Load Monitoring (UNILM) Using Filter Pipelines, Probabilistic Knapsack, and Labelled Partition Maps[END_REF].

Density-based clustering methods, such as mean-shift clustering and subtractive clustering techniques, are robust in the presence of noise in the data [START_REF] Denton | Kernel-density-based clustering of time series subsequences using a continuous random-walk noise model[END_REF][START_REF] Henao | Approach in Nonintrusive Type I Load Monitoring Using Subtractive Clustering[END_REF]. These clustering techniques have been adopted in literature because they automatically determine the number of clusters.

Gaussian mixture models support mixed membership, i.e. data can belong to one or more clusters. Therefore, using Gaussian mixture models could be an attractive technique when there are overlapping cluster points. We propose an approach similar to Henao et al. (2017), but choosing Gaussian mixture model as our clustering technique. Usually mean shift clustering is selected as the choice of clustering technique in unsupervised algorithms because it automatically determines the number of clusters in the data. We compare the results of Gaussian mixture models with mean shift clustering and found improved performance using Gaussian mixture model.

In this paper, we develop a framework for real time online disaggregation that can monitor appliance consumption in real time and for which the learning process is completely data driven. The experimental setup for the data collected is discussed in section 3. The methodology is discussed in section 4. The results of the validation, by using experimental data collected in a real situation as well as the public data, are presented in section 5.

Experimental setup

The aggregate data is measured by Eco-Touch ® smart meter [START_REF] Ogga | ECO Touch[END_REF]. The meter samples the input current through a current transformer at the frequency of 3.4 kHz. The meter measures only the positive cycles of the current. There are around 3400 samples per second out of which half of the values for the current signal are zero (Figure 1).

Due to electromagnetic interference (EMI), sometimes the number of samples is fewer than 3400 samples per second. Usually, the number of samples per 20 milliseconds vary, being 67 or 68 samples. Therefore, a synchronization mechanism is required to track the signal. Synchronization is achieved by using an Infra-Red Emitting Diode (IRED) coupled with a phototransistor to track the phase of the voltage. The current The collected data is transmitted to a server on the internet which stores the aggregate consumption of the house. In addition, the smart meter is capable of collecting individual appliance consumption. It uses NodOn ® smart plugs that communicate with Eco-Touch ® by EnOcean protocol [START_REF] Nodon | The EnOcean Metering Smart Plug[END_REF]. The data for the disaggregation algorithm is collected using the experimental setup shown in Figure 2. Eco-Touch is connected to the power mains of the house, where the meter samples the aggregate consumption of the house. NodOn® smart plugs are used to measure the individual consumption of the device [START_REF] Nodon | The EnOcean Metering Smart Plug[END_REF]. Although the majority of the appliances are connected with smart plugs, there are some appliances present in the house whose consumption is not monitored. The information from the smart plugs is used as ground truth to validate the disaggregation algorithm. The meter is further connected to energy monitoring devices where the aggregate consumption and individual consumption can be viewed on a web portal or a mobile application.

Methodology

The aim of the disaggregation algorithm is to identify the group to which appliances belong as a function of the power changes. We will assume that:

1. Only two state appliances are present in the aggregate power data, with states {ON, OFF}. 2. At a given moment, only one appliance changes the state from ON to OFF or from OFF to ON. 3. Appliance that have the same power consumption are categorized as the same group (they are considered to be identical). 4. If there are multi-state appliances, then each state is considered as a different appliance.

The states of the devices change in first in -first out (FIFO) sequence: if an ON change is detected

for a device from a group, the first OFF change for that group is considered to be of the same device.

We define the state of the system as the combination of states of individual appliances. For example, if we consider three appliances in the aggregate data, then all possible states of the system are shown in Table 1.

We define an event as the change of the state of a device from OFF to ON or from ON to OFF. An event changes the state of the system. The assumption 2° implies that only states in which one bit is changed are possible. For example, if the system is in state 0, then transitions to states 1, 2 and 4 are possible; if the system is in state 3, then transitions to state 1, 2 and 7 are possible. 
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The disaggregation algorithm is divided into two parts (a) to identify group of events in the aggregated data, which we call offline appliance modeling (b) to track the power consumption by pairing the events and calculated the total consumption of the appliances which are in the cluster of that pair of events, which we call online disaggregation as shown in Figure 3.

We are using a low frequency event-based approach, but the data sampled at high frequency by the meter; therefore, in data processing we down sample the data measured at 3.4 kHz to 1 Hz. The processing of the data acquired by the meter is discussed in section 4.1.1. After processing, the input is passed to an event identification module.

An event detector identifies significant changes in power level during a training window. A training window corresponds to a duration of time in which we want to extract information from the data. This duration can be any length of data ranging from a few hours to a few minutes. To validate the algorithm, we have selected three windows, one for the public dataset REDD and two for our private dataset.

For the REDD dataset we have selected a training window of 24 hours. For our private data, we have tested the algorithm on two training time windows 1) a window of a few minutes to validate the algorithm for Type 1 appliances 2) a window of four hours consisting of aggregate data collected from a real house in which all four categories of appliances are present. After all events are identified in the training window, the next step is to determine the number of clusters of events by unsupervised clustering using Gaussian mixture models (section 4.1.3). Both positive power changes (positive event) and negative power changes (negative events) are observed during event identification and it is assumed that all appliances are of Type 1. Instead of clustering positive and negative events separately, the clustering algorithm is trained using the absolute value of the event. This assumption eliminates the requirement of matching positive and negative event pairs. After clustering the events, a Gaussian Bayes classifier is trained with the cluster labels to create an appliance database (section 4.1.4). The identified clusters are then used during online disaggregation to determine which appliance is working. Once the data has been trained and the appliance database has been created, the online disaggregation module can be used to match the identified event with the appliance database. A classifier is used to determine the association of the events. Disaggregation is done once both ON and OFF events for an appliance are found, as explained in section 4.2.

Offline appliance modeling

Data processing

The data is collected in a residential building in France. The input signal to the smart meter is single phase power at frequency of 50 Hz. Eco-Touch ® samples current at 3.4 kHz. As a low frequency event-based approach is used, the data is processed in order to calculate the power at 1 Hz sampling frequency. For voltage, the instantaneous value is,

𝑣(𝑡) = 𝑉 ! cos(𝜔𝑡). (1)
and the instantaneous value of the current is

𝑖(𝑡) = 𝐼 ! cos (𝜔𝑡 + 𝜑). ( 2 
)
where

𝑡

-time instant, 𝜔 -angular frequency, 𝜑 -phase angle; 𝐼 ! -amplitude of the current, 𝑉 ! -maximum power of the voltage. The energy in one cycle [0, 0.02 s] is calculated as using equation ( 2) and (1),

𝐸 = 2 7 𝑣(𝑡)𝑖(𝑡)𝑑𝑡 "# "$ . ( 3 
)
The factor of 2 in equation ( 3) is to accommodate the fact that we have only positive cycles for the current signal. The average power is calculated as:

𝑃 : = $ % ∫ 𝑃 𝑑𝑡 % & (4) 
𝑃 : represents the total energy consumed in the duration 𝑇, which equals one second.

Event identification

An event is specified as a change of state of the power signal greater than a specified threshold. The change of state is characterized by the difference of the power signal,

∆𝑃 = 𝑃 : [𝑡] -𝑃 : [𝑡 -1] ( 5 
)
where ∆𝑃 is the difference between two successive values of the power signal at time 𝑡 and 𝑡 -1, separated by a time step of 1 second.

∆𝑃 represents an event when the difference between two successive samples is greater than a threshold value 𝛾. If ∆𝑃 > 𝛾, then an "ON" event is observed. If ∆𝑃 is less then -𝛾, then an off event is observed. Type 1 appliances have only two states, ON and OFF. An ON state corresponds to a positive event and an OFF state corresponds to a negative event. A positive event is defined as [START_REF] Hart | Prototype Nonintrusive Appliance Load Monitor[END_REF],

∆𝑃 ' = A 1, if ∆𝑃 ≥ 𝛾 0, otherwise (6) 
and a negative event is defined as

∆𝑃 ( = A 1, if ∆𝑃 ≤ -𝛾 0, otherwise (7) 
The observed events ∆𝑃 ' and ∆𝑃 ( are related to the selected value of 𝛾. Therefore, only changes greater than the specified 𝛾 are categorized as an event. It is assumed that a specific moment of time, only one appliance changes its state [START_REF] Hart | Prototype Nonintrusive Appliance Load Monitor[END_REF][START_REF] Batra | Nilmtk: an open source toolkit for non-intrusive load monitoring[END_REF].

For demonstration, we use a small dataset which consists of aggregate signal collected by EcoTouch ® meter when three appliances: an iron, a heater and a hairdryer, were turned ON and OFF. The data was collected for a duration of around 8 minutes and the ground truth about the appliances operation during the time were manually collected. Since for this data set, the power of the devices is on the order of hundreds of watts and the average signal variance (noise) is 19 W, the threshold of 𝛾 = 50 W is selected to avoid the interference of noise. Figure 4 shows a plot of the aggregate power, as it is visible from the snapshots of the signal that selecting a value of threshold fewer then the noise of the aggregate power data will impact the results of the event detection. The aggregate power collected by the meter and the results of the event identification are shown in Figure 5. First, the iron, the heater and the hairdryer are turned ON, which is seen as a positive power transition.

Next, the hairdryer is turned off, which results in negative power transitions and so on.

Unsupervised learning of event clustering

In blind disaggregation, the number of appliances and their states are not known in advance. We make assumptions on how many appliances are present in the aggregate data. Some assumption made are that in the aggregate power data only two state appliances are present. Each appliance exists in only one state at a given time. Appliances that have similar ∆𝑃 ' or ∆𝑃 ( are assumed to be the same appliance, meaning appliances that have similar power consumption are considered as the same appliance, according to assumption 2 in section 4. After event identification, we then proceed to categorize the events into clusters i.e., each two-state appliance has equal ∆𝑃 ' and ∆𝑃 ( value so for clustering we use the absolute value of ∆𝑃,

𝑥 = |∆𝑃| ( 8 
)
If ∆𝑃 is used as such to identify the clusters, then we get two clusters, one for positive events ∆𝑃 ' , for appliances turning ON, and one for negative events ∆𝑃 ( , for appliances turning OFF. By using equation ( 8), we can avoid an additional matching to group together ON events and OFF events.

Gaussian mixture model

K-mean algorithm is not flexible as it relies on the distance between the cluster centers making hard cluster boundaries as each value belongs to one of the distinct clusters [START_REF] Bora | A comparative study between fuzzy clustering algorithm and hard clustering algorithm[END_REF]. Gaussian mixture models (GMM) is a probabilistic machine learning techniques that can provide better approximation when the clusters are overlapping as compared to k-mean clustering. In Gaussian mixture models, each cluster is modeled as a Gaussian distribution with the probability density function with a mean 𝜇 and variance 𝜎 defined as

𝑁(𝑥| 𝜇, 𝜎) = 1 𝜎√2𝜋 𝑒 ( (*(+) ! #-! (9) 
If there are 𝐾 appliances in the data and each cluster represents one of the 𝐾 appliances, then for a mixture of Gaussians we have 𝑘 Gaussian distributions

𝑝(𝑥) = V 𝜋 . / .0$
𝑁(𝑥| 𝜇 . , 𝜎 . ), [START_REF] Kolter | Approximate inference in additive factorial hmms with application to energy disaggregation[END_REF] where 𝐾 presents the number of Gaussian mixtures and 𝜋 . is the probability of the 𝑘 "1 Gaussian in the mixture with the constraint that their sum equal to one

V 𝜋 . / .0$ = 1, 0 ≤ 𝜋 . ≤ 1. (11) 
Since we have a mixture of Gaussians, the parameters {𝜇 . , 𝜎 . and 𝜋 . } have to be determined. These parameters are estimated by using Expectation Maximization (EM) method [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. EM is used to calculate the maximum likelihood estimate for the parameters. EM consists of an expectation step and a maximization step. In the expectation step the initial estimates for the parameters are calculated using kmeans algorithm and the likelihood of the data is calculated. In the maximization step the parameters are modified to maximize the likelihood of the data with the initial assignments. These steps are repeated till a local optimum is achieved [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF].

Identifying the total number of clusters.

Supposing that there are 𝑛 observed events, we have to determine how many clusters 𝑘 are present in our data. The number of clusters 𝑘 are identified using Bayesian information criterion (BIC):

𝐵𝐼𝐶 = log(𝑛) 𝐾 -2 log(L) ( 12 
)
where 𝑛 -number of events; 𝐾 -number of parameters required for building the Gaussian mixture model; 𝐿 -maximum of the likelihood function of the Gaussian mixture model. "log(𝑛) 𝐾" is a penelty term added to overcome the effects of over-fitting as more variable are added to a model for maximmizing likelihood. The minimum value of BIC is desirable for model selection. For a small dataset, BIC is not a good model selection technique [START_REF] Burnham | Multimodel inference: understanding AIC and BIC in model selection[END_REF]. Therefore, for our small experimental dataset, we do not use BIC to find the number of clusters; instead, we specifid them manually. Plot of BIC versus varying number of cluster 𝑘 is shown for the REDD public dataset Figure 6.

Once the total number of clusters are identified and the parameters for the Gaussian mixture model are determined, each event is assigned to a cluster using Bayes theorem which determines the membership of event 𝑥 to a cluster 𝐺i

𝑝(𝐺 2 | 𝑥) = 𝑝(𝐺 2 )𝑝(𝑥 |𝐺 2 ) ∑ 𝑝a𝐺 3 b / 30$ 𝑝(𝑥|𝐺 3 ) . ( 13 
)
Alternatively, since each event belongs to one of the clusters, as described in equation ( 9) to [START_REF] Parson | An unsupervised training method for non-intrusive appliance load monitoring[END_REF], the membership of an event 𝑥 to a cluster could be written as,

𝑝(𝐺 2 | 𝑥) = 𝜋 2 𝑁(𝑥|𝜇 2 , 𝜎 2 ) ∑ 𝜋 3 𝑁(𝑥|𝜇 3 , 𝜎 3 ) / 30$ . ( 14 
)
The details of the event clustering is identified in Algorithm 1. 

Generation of appliance database

Each event Δ𝑃 ' and Δ𝑃 ( in the training window is assigned to a cluster group, by assigning a cluster label to each event. A cluster represents a grouping of appliances with the same power. For our toy dataset, there are three clusters. The events belonging to the same cluster are highlighted using the same color as shown on Figure 5. As the absolute values of the events are considered in determining the clusters, all appliances that have similar power consumption are considered to belong to the same cluster.

The labels identified in 4.1.3 are assigned to the original identified events. The appliance database is created by training a classifier with the events and their labels. During online disaggregation, events are assigned a label by classification. For this implementation, a simple Gaussian Bayes classifier is used for classification as described in equation ( 13).

Algorithm 2: Creating appliance database 1 Event[Labels] ← Labels Classifier_positive = GaussianNB( ) Classifier_negative = GaussianNB( )

2 if Event > 0: 3 Classifier_positive.fit(Event) 2 if Event < 0: 3 Classifier_negative.fit(Event)
We train two classifiers: one for positive events and one for negative events. The steps of the training and generation of appliance database are described in Algorithm 2. The appliance database is stored and used during online disaggregation. The appliance database saves the time required to learn the appliance models in the data.

Online disaggregation

The appliance database created during offline appliance modeling is used during online disaggregation for tracking the consumption of the appliances in a disaggregation window. A disaggregation window is the length of time for which we want to find the individual consumption. The online disaggregation follows the method as shown in Figure 7. The identified events are matched with the appliances database created in the training phase of the algorithm as described in section 4.1.4. Using the labels from the appliance database, each event is matched with a label. Each positive and negative event is matched separately. If ∆𝑃 ' is observed, then the event is matched with a classifier trained with positive events. And if ∆𝑃 ( is observed, then the event is matched with a classifier trained with the negative events. If a matching is found in the appliance database, then the event tracking list is updated. The event tracking list is then checked for an event pair. Each ON and OFF event constitutes a pair. If ∆𝑃 ' and ∆𝑃 ( belong to the same cluster 𝐺i and the time of transition of ∆𝑃 ' is earlier than that of ∆𝑃 ( , then a pair is generated [START_REF] Hart | Nonintrusive appliance load monitoring[END_REF]. In short, if multiple matches are available for ∆𝑃 ' , then ∆𝑃 ( closest in time is selected. The tracking list keeps an inventory on the identified events. The tracking lists contains a list of event pairs Δ𝑃 ' and Δ𝑃 ( along with the label and the time stamp. Once the grouping has been done, these pairs are stored in the tracking list as shown in Table 2. Matching is continued till the end of the disaggregation window. For calculating the individual contribution of appliances with the same label, the power consumed in each pair and duration gives the individual consumption of the appliance. The results of the disaggregation for the small dataset are shown in Table 3. The mean power consumed by each of the appliance along with the estimated duration and the amount of energy consumed is shown. Each appliance corresponds to a cluster identified by the disaggregation algorithm. For the data in Table 3 the cluster label is replaced with the appliance name.

Experimental validation of the proposed method

In this section, the results are validated in two different scenarios. In the first scenario, the algorithm is validated on Reference Energy Disaggregation Dataset (REDD) for testing the performance of two state appliances [START_REF] Kolter | REDD: A public data set for energy disaggregation research[END_REF] In the second scenario, we report the disaggregation results of data collected by EcoTouch ® smart meter in a real house containing aggregate power data from various appliances in normal use.

Although we begin with the assumption that only two state appliances are present in the data, we further inspect how well we can track the power levels in the aggregate data in the presence of multi-state appliances.

Disaggregation results on REDD dataset

The Reference Energy Disaggregation Dataset (REDD) contains the aggregate power and individual plug level power data for five houses in the US [START_REF] Kolter | REDD: A public data set for energy disaggregation research[END_REF]. We use the low frequency power data to test the results of the algorithm. The low frequency data consists of the average consumption recorded by the two power mains and the individual plug data consumptions at 1 Hz. For the experiment, we selected plug level data for four common appliances present in the dataset for a 24-hour window. The selected appliances are dryer, refrigerator, microwave and oven. The consumption of these four appliances were extracted for a 24-hour duration, as shown in Figure 8 (a). The power profiles of the individual appliance were then grouped together to form the aggregate consumption as shown in Figure 8 We demonstrate the results of the online disaggregation using the REDD dataset. The ground truth signal and the reconstructed signal for the appliances is obtained by the online disaggregation is shown in Figure 10. The reconstructed signals are obtained from the aggregate signal using the online disaggregation method, as described in section 4.2. For the refrigerator, it is visble that the majority of the ON and OFF power cycles are identified by the disaggregation algorithm from the aggregate signal. The results show that the disaggregation procedure is effective for the refrigerator, with the exception of the power consumption between 14:00 and 15:00. This is because multiple loads were active at the specific time in the aggregate data and some of the the power transitions were inaccurately identified.

Comparing the reconstructed signal in Figure 10 for microwave and oven, the results are quite good, although the power consumption of both appliances is similar. The algorithm was able to identify individual power consumption quite accurately. For the washer and dryer, the reconstruction consumption shows that some of the events where not identified, which propogated the error in power consumption. We report the performance of the disaggregation in terms of estimated consumption accuracy, total energy disaggregated, and root means square error. The estimated consumption accuracy measure is a means of tracking the consumption of the appliances as [START_REF] Makonin | Nonintrusive load monitoring (NILM) performance evaluation[END_REF][START_REF] Kolter | Approximate inference in additive factorial hmms with application to energy disaggregation[END_REF],

𝐸𝐶 = 1 - ∑ |𝑦 2 -𝑔 2 | 4 20$ 2 ∑ 𝑔 2 4 20$ . ( 15 
)
where 𝑦 2 is the predicted power and 𝑔 2 is the ground truth for the respective appliance. 𝑁 represents the length of the data. The factor of two in the denominator is to accommodate the double counting of errors due to absolute value in the numerator.

The total energy disaggregated is calculated as:

𝐸𝐷 = 1 - |𝑦 " -𝑔 " | 𝑔 " (16) 
where 𝑦 " is the total predicted consumption and 𝑔 " is the ground truth consumption of the respective appliance.

Root mean square is calculated as:

𝑅𝑀𝑆𝐸 = m ∑ (𝑦 2 -𝑔 2 ) # 4 20$ 𝑁 (17) 
The results of the metrices described for each of the identified clusters and the appliance they refer are shown Table 4. The disaggregation results are comparable to the disaggregation results reported in literature [START_REF] Zhao | On a Training-Less Solution for Non-Intrusive Appliance Load Monitoring Using Graph Signal Processing[END_REF][START_REF] Henao | Approach in Nonintrusive Type I Load Monitoring Using Subtractive Clustering[END_REF]. For validating the results of the disaggregation on the data collected by Eco-Touch ® , we have selected a window of four hour from a 24 hour window as shown in Figure 11(a). Although the intended use of the algorithm is for two state appliances, it is interesting to see how many power states could be tracked using data from a real house. In a typical household, usually there is a duration of time when people are active and power consumption is high. We have selected a window corresponding to high activity and power consumption. This is to inquire how successful we are in identifying the major power consuming appliances in the aggregate data.

Data acquired at the consumer site is processed using the method described in section 4.1.1. The aggregate data collected by the smart meter for the selected duration is shown in Figure 11(a). The results of section 0-4.1.4 are shown in Figure 11(b). The threshold value 𝛾 is selected at 50 W for the experiment. We have a variety of appliances contributing to the aggregate consumption. The goal being the identification of the major power consuming appliances in the aggregate data. There is a direct relationship between the number of events identified and the time to process the data. If a smaller threshold is selected, then the processing time is increased.

The results of the identified clusters on the aggregate data are shown in Figure 11(b). Each identified event is assigned to a cluster using the unsupervised method explained in 4.1.3. There are five clusters identified in the data, each cluster marked by a different color. The reconstructed power profiles by the online disaggregation and the aggregate consumption is shown in Figure 12. For calculating the accuracy for the disaggregation in this scenario, we use the equations ( 15), ( 16) and [START_REF] Rodriguez-Silva | Universal Non-Intrusive Load Monitoring (UNILM) Using Filter Pipelines, Probabilistic Knapsack, and Labelled Partition Maps[END_REF]. We use the aggregate reconstructed power profile to compare with the aggregate power data instead of the ground truth from individual appliances. The results of the disaggregation are presented in Table 5. The results show that the overall the performance of GMM is better than mean shift clustering. 

Conclusion

A blind unsupervised approach for non-intrusive load monitoring is presented using Gaussian mixture model for two-state appliances. The benefits of using Gaussian mixture model are especially evident in the situation where the data has mixed membership. There are many techniques that can be applied for determining the number of clusters. We found that Bayesian information criteria provides a good reliable measure to determine the number of clusters. It is further demonstrated that the algorithm can learn the number of clusters effectively, thus enabling an unsupervised approach to the identification of appliance in the aggregate data.

The blind online disaggregation algorithm is able to identify two-state appliance quite efficiently. Experimental results show improvement in performance as compared to using other unsupervised methods.

On REDD public dataset, we showed successful identification of different power consuming appliances operating during a day. The algorithm was even able to distinguish between appliances with almost similar power consumption level.

We found that the approach also works in the situation where we have multi-state appliances in addition to two-state appliances. We were able to track 93 % of the total energy consumed as compared to 81 %, which was achieved using mean-shift clustering on the data from a real house where multiple appliances, including multi state appliances, were working.

There are a few things that could be done to improve the disaggregation algorithm. Some of the recommendation presented in the literature are the use of high frequency data and use of more features can improve the performance of the disaggregation algorithm, a change point detection algorithm to automatically categorize the data in real time, leveraging the power of deep learning algorithm [START_REF] Nalmpantis | Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparation[END_REF][START_REF] Klemenjak | Towards Comparability in Non-Intrusive Load Monitoring: On Data and Performance Evaluation[END_REF][START_REF] Nguyen | Development of a real-time non-intrusive appliance load monitoring system: An application level model[END_REF].

The limitation of the work is that we are able to identify the grouping of power levels. No discrimination is done between the appliances that have the same power. The disaggregation algorithm uses a threshold based event detector. In the future, we would like to improve the event detection as well as incorporate prediction of appliances of various categories.
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 1 Figure 1. Current and voltage synchronization signal values.
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 2 Figure 2. Data acquisition setup using ECO Touch.
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 3 Figure 3. Framework of the disaggregation algorithm: a) offline appliance modeling; b) online disaggregation.and the voltage values are shown in Figure1. The current values are displayed in ampere while the voltage varies with the phase of the current between 332 to -332 volts.
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 4 Figure 4. (a) Plot of aggregate power data from the toy dataset (b) snapshot of the aggregate power data in a time interval (c) another snapshot of the aggregate power data in a interval.
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 5 Figure 5. Event identification on the toy dataset. The solid lines show the positive and negative events, while the color distinguishes the cluster they belong to.
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 89 Figure 8. REDD dataset (a) Ground truth power consumption of individual appliances (b) Aggregate consumption for a 24-hour windowFor event identification, threshold of 𝛾 = 50 𝑊 is selected. The clusters identified by using unsupervised learning with Gaussian mixture models for clustering are shown in Figure9(a). Although there are four appliances, the unsupervised learning identifies seven cluster. There were only a few samples corresponding to three clusters, so they were pruned during pairing, so effectively we had only four clusters to work with. The identified clusters in relation to the observed events are shown in Figure9 (c). The identified clusters are then saved as an appliance model during offline appliance modeling as discussed in section 4.1. Figure9(b)shows the identified clusters using mean shift clustering, using absolute value for the identified events. Mean shift clustering is a non-parametric based algorithm that automatically determines the number clusters based on the mean values of the data. Even if events were clustered without using the absolute value, we still had two clusters, one containing positive values and one containing negative values.
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 10 Figure 10. Ground truth for refrigerator vs. the reconstructed power signal from REDD dataset.
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 11 Figure 11. Data collected by the smart meter (a) Aggregate data over a 4-hour window, recorded by the smart meter. (b) Clusters identified with Gaussian mixture models (c) Clusters identified by mean shift clustering We also compared the results of disaggregation by using mean shift clustering in unsupervised learning instead of Gaussian mixture model. There were six clusters identified by mean shift clustering shown in Figure 11(c).
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 12 Figure 12. Reconstructed power profile of individual states learnt from the data and the aggregate consumption.

Table 1 .

 1 State combinations for three two-state appliances.

	State	Appliance 1	Appliance 2	Appliance 3
	0			

Table 2 :

 2 Tracking list

	Time on	Δ𝑃 '	Time off	Δ𝑃 ( Label
	(epoch)		(epoch)	
	1593554137 1300 1593554223 -1289	1

Table 3 .

 3 Results of disaggregation using data from the small dataset

	Appliance	Mean	Duration	Total
		power	(s)	energy
		(W)		consumed
				(kWh)
	Heater	1958.18	273	0.148
	Hair dryer	1059.84	99	0.029
	Iron	1309.94	243	0.088

Table 4 .

 4 Appliance disaggregation results with REDD dataset

	Appliance	EC	ED	RMSE
	Washer dryer	0.51	0.84	708.60
	Refrigerator	0.84	0.96	39.89
	Oven	0.72	0.95	112.87
	Microwave	0.49	0.97	128.71
	5.2 Disaggregation results on data using Eco-Touch ®	

Table 5 .

 5 Comparison of GMM vs mean shift clustering

	Clustering algorithm			
		EC	ED	RMSE
	GMM	0.67	0.93	219
	Mean shift clustering	0.43	0.81	477
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