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Abstract 7 

Non-intrusive loading monitoring (NILM) provides a smart solution to the problem of electrical energy 8 
monitoring of households at appliance level. In blind disaggregation, the power level of each appliance is 9 
not known a priori. In this paper we propose an event based blind online disaggregation algorithm which 10 
uses Gaussian mixture models (GMM) for clustering to automatically detect two state appliances from the 11 
aggregate data. The benefit of using a Gaussian mixture models over other clustering methods is that they 12 
are able to learn automatically the statistical distributions present in the data. This is beneficial, especially 13 
when we have appliances that have similar power consumption. Since Gaussian mixture models do not 14 
determine the number of clusters automatically, we use Bayesian information criteria (BIC) to determine 15 
the number of clusters. The blind disaggregation method is tested with data from a real house collected by 16 
a smart meter which samples the aggregate consumption at 3.4 kHz and also from Reference Energy 17 
Disaggregation Dataset (REDD) public data, sampled at frequency of 1 Hz. We saw improved performance 18 
by using Gaussian mixture models instead of mean shift clustering in various accuracy measures. We were 19 
able to track the total power consumed 12 % better then by mean shift clustering; root mean square error is 20 
also considerably lower on our measured data. The performance of the algorithm on the public data is 21 
comparable to other methods. 22 

Keywords: Non-intrusive load monitoring, real-time disaggregation, unsupervised, online disaggregation, 23 
Gaussian mixture models 24 

1 Introduction 25 

Load monitoring provides real time feedback by analyzing the aggregate power data captured by the smart 26 
meter and extracting the information about the load devices present at the consumer. The goal of load 27 
monitoring is to provide a real time feedback about the consumption of the energy in order to detect 28 
problems and to encourage energy saving behaviors. Annual saving of up to twelve percent is reported by 29 
providing a direct feedback to the consumer about the consumption of energy [1]. 30 

Load monitoring can be divided into intrusive and non-intrusive. In intrusive load monitoring, smart meters 31 
or plugs are attached to each appliance to monitor the individual consumption. In non-intrusive load 32 
monitoring (NILM) a single smart meter, which measures the aggregated consumption of the whole house, 33 
is used to extract information about the consumption of individual appliances present in a household. NILM 34 
does not require installing and maintaining additional equipment, such as sensors that monitor the individual 35 
consumption of the appliances. The earliest research on non-intrusive energy monitoring was done by G. 36 
W. Hart in late 1980 [2]. Non-intrusive load monitoring (NILM) can also enable the energy supplier to 37 
anticipate the demand and schedule the resources appropriately. Over the years, there has been an increasing 38 
interest in appliance load monitoring, especially on non-intrusive load monitoring. 39 
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2 State of the art 40 

The main steps for non-intrusive load monitoring include data acquisition, event identification, feature 41 
extraction and load identification [3, 4]. Data acquisition determines the rate at which the aggregate power 42 
is measured, which can be low frequency (1 Hz or less) or high frequency (kHz). Most of the non-intrusive 43 
load monitoring algorithms require a sampling frequency of 1 Hz [5]. Although higher frequency sampling 44 
can improve the recognition capabilities of the disaggregation algorithm (as more detailed features can be 45 
extracted from the data), high overhead cost is incurred [6].  46 

Data acquisition is followed by event identification. An event is a change in the operational state of an 47 
appliance. An appliance functions in a number of states depending on which category the appliance belongs 48 
to. There are four categories of appliances present in a household [2]: 49 

- Type 1: two state appliances that have an ON and an OFF state such a lamp. 50 
- Type 2: multi state appliances that have a finite number of operating states like a washing 51 

machine. 52 
- Type 3: variable power appliances such as a light dimmer. 53 
- Type 4: constant consumption appliances like an internet box [3, 5]. 54 

Event-based approaches use the recognition of the change of state of an appliance which results in state 55 
transition edge. A pair of these transitions — positive and negative — makes an event [7, 8]. Each category 56 
of appliance has a consumption pattern that is unique, called appliance electrical signature. Appliance 57 
signatures have been studied widely for identification of individual appliance from aggregate load 58 
measurement [5]. Non-intrusive load monitoring algorithms use two main categories of features: transient 59 
and steady state features.  Transient features are observed in the duration when the appliance is changing 60 
state and exist for a short time, such as the duration of the change, harmonics, shape and amplitude of the 61 
transient [5]. Steady state signatures are extracted when the appliance has made the transition and it is in a 62 
specific state of operation. Steady state features include active and reactive power, current and voltage 63 
waveform. The resulting extracted features are analyzed for making inference about the electrical 64 
consumption of the individual appliances. 65 

The final phase of non-intrusive load monitoring is learning. It falls into three categories: supervised, 66 
unsupervised or semi-supervised. Supervised algorithms are built on learning the individual behavior of an 67 
appliance by using training data which is acquired intrusively with the help of sub-metering. Un-supervised 68 
algorithms, on the other hand, require no individual training for determining the behavior of an appliance 69 
from the aggregate data.  70 

Recently, efforts in the community concentrate on the development of a real time disaggregation algorithm 71 
that can infer the state of the individual appliances and indicate the total energy consumed by the appliance 72 
from the aggregate measurements in an unsupervised manner [5]. Previously the aim was to improve the 73 
accuracy which requires a long computation time which is inappropriate for real time applications [6, 4].  74 

A real time implementation of a disaggregation algorithm is tied to certain constrains [9]. Firstly, an 75 
unsupervised approach should be completely data driven as the collection of data for individual appliances 76 
and user feedback is intrusive and unfeasible. Secondly, it is more desirable to design a low frequency 77 
disaggregation algorithm with a sampling period of 1 Hz as smart meters are able to log and process this 78 
sampling period effectively. Most of the commercial installations of smart meters transmission of data 79 
greater than 1 Hz create an overhead in terms of both processing power and storage, requiring additional 80 
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infrastructure. Also, data collected at higher frequency adds to the processing time for the disaggregation 81 
algorithm.  82 

In an effort to solve the disaggregation problem in unsupervised fashion, various approaches using hidden 83 
Markov models (HMMs) [10, 11, 12, 13], online learning-based approaches [14, 15, 16, 17] and deep 84 
learning based techniques [18, 19, 20] have been developed. These unsupervised techniques fall into two 85 
main categories: transfer learning and online learning. In transfer learning, generic appliance models are 86 
built and then mapped to the collected data [11, 21]. Both hidden Markov and deep learning-based 87 
approaches have been explored in literature and they have been found to be comparable [22]. Although 88 
results of these approaches are good, they show low success when applied to other countries or geographical 89 
regions [21]. The model of an appliance may be different from country to country or even for the same 90 
country, if the appliance has various operating modes. This could also change the performance of the 91 
algorithm [23]. A lot of data is required for training in deep learning methods. Therefore, transferring 92 
learning-based methods is possible, but performance estimation in the presence of unknown appliances 93 
could be detrimental to the performance [13]. In online learning based techniques, the appliance models are 94 
created from data, without any prior information about the type of appliances. The benefit of using an online 95 
learning solution is that it can adapt and learn the operating state and the behavior of the appliance. This 96 
approach has not received much attention but can provide a reasonable solution [17]. Some of these 97 
techniques are discussed hereafter. A blind online disaggregation algorithm was proposed that used graph 98 
signal processing techniques, such as adaptive thresholding, for selecting a candidate event. Clustering and 99 
feature extraction were developed by down-sampling public datasets at 1 min and another at 8 sec resolution 100 
[14]. A blind disaggregation technique proposed for Type 1 appliances by using subtractive clustering, 101 
which is a density-based clustering technique, was demonstrated to be more robust in the presence of noise 102 
then k-means or hierarchical clustering [15]. An online learning method based on hidden Markov model 103 
(HMM) using Daubechies 9 (db9) discrete wavelet filter was used to filter the low frequency noise and the 104 
apparent power in the transient state was employed for distinguishing between different appliance models 105 
[16]. An event based strategy using mean shift clustering identified the power profiles in the data; then, 106 
from the obtained power profiles, appliance models where learnt using additive factorial hidden Markov 107 
models [24]. A filter pipeline was developed to clean the signal and to minimize the variation for event 108 
detection by building appliance models using Gaussian probability distribution and a knapsack algorithm 109 
for disaggregation [17]. 110 

Density-based clustering methods, such as mean-shift clustering and subtractive clustering techniques, are 111 
robust in the presence of noise in the data [25, 15]. These clustering techniques have been adopted in 112 
literature because they automatically determine the number of clusters.  113 

Gaussian mixture models support mixed membership, i.e. data can belong to one or more clusters. 114 
Therefore, using Gaussian mixture models could be an attractive technique when there are overlapping 115 
cluster points. We propose an approach similar to Henao et al. (2017), but choosing Gaussian mixture model 116 
as our clustering technique. Usually mean shift clustering is selected as the choice of clustering technique 117 
in unsupervised algorithms because it automatically determines the number of clusters in the data. We 118 
compare the results of Gaussian mixture models with mean shift clustering and found improved 119 
performance using Gaussian mixture model.  120 

In this paper, we develop a framework for real time online disaggregation that can monitor appliance 121 
consumption in real time and for which the learning process is completely data driven. The experimental 122 
setup for the data collected is discussed in section 3. The methodology is discussed in section 4. The results 123 
of the validation, by using experimental data collected in a real situation as well as the public data, are 124 
presented in section 5. 125 
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3 Experimental setup 126 

The aggregate data is measured by Eco-Touch® smart meter [26]. The meter samples the input current 127 
through a current transformer at the frequency of 3.4 kHz. The meter measures only the positive cycles of 128 
the current. There are around 3400 samples per second out of which half of the values for the current signal 129 
are zero (Figure 1).  130 

Due to electromagnetic interference (EMI), sometimes the number of samples is fewer than 3400 samples 131 
per second. Usually, the number of samples per 20 milliseconds vary, being 67 or 68 samples. Therefore, a 132 
synchronization mechanism is required to track the signal. Synchronization is achieved by using an Infra-133 
Red Emitting Diode (IRED) coupled with a phototransistor to track the phase of the voltage.  The current  134 

 135 

Figure 1. Current and voltage synchronization signal values. 136 

 137 

 
Figure 2. Data acquisition setup using ECO Touch. 138 



5 
 

 139 

Figure 3. Framework of the disaggregation algorithm: a) offline appliance modeling; b) online disaggregation. 140 

and the voltage values are shown in Figure 1. The current values are displayed in ampere while the voltage 141 
varies with the phase of the current between 332 to -332 volts.   142 

The collected data is transmitted to a server on the internet which stores the aggregate consumption of the 143 
house. In addition, the smart meter is capable of collecting individual appliance consumption. It uses 144 
NodOn® smart plugs that communicate with Eco-Touch® by EnOcean protocol [27]. The data for the 145 
disaggregation algorithm is collected using the experimental setup shown in Figure 2. Eco-Touch is 146 
connected to the power mains of the house, where the meter samples the aggregate consumption of the 147 
house. NodOn® smart plugs are used to measure the individual consumption of the device [27]. Although 148 
the majority of the appliances are connected with smart plugs, there are some appliances present in the 149 
house whose consumption is not monitored. The information from the smart plugs is used as ground truth 150 
to validate the disaggregation algorithm. The meter is further connected to energy monitoring devices where 151 
the aggregate consumption and individual consumption can be viewed on a web portal or a mobile 152 
application. 153 

4 Methodology 154 

The aim of the disaggregation algorithm is to identify the group to which appliances belong as a function 155 
of the power changes. We will assume that: 156 

1. Only two state appliances are present in the aggregate power data, with states {ON, OFF}. 157 
2. At a given moment, only one appliance changes the state from ON to OFF or from OFF to ON. 158 
3. Appliance that have the same power consumption are categorized as the same group (they are 159 

considered to be identical). 160 
4. If there are multi-state appliances, then each state is considered as a different appliance. 161 
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5. The states of the devices change in first in – first out (FIFO) sequence: if an ON change is detected 162 
for a device from a group, the first OFF change for that group is considered to be of the same 163 
device. 164 

We define the state of the system as the combination of states of individual appliances. For example, if we 165 
consider three appliances in the aggregate data, then all possible states of the system are shown in Table 1. 166 
We define an event as the change of the state of a device from OFF to ON or from ON to OFF. An event 167 
changes the state of the system. The assumption 2° implies that only states in which one bit is changed are 168 
possible. For example, if the system is in state 0, then transitions to states 1, 2 and 4 are possible; if the 169 
system is in state 3, then transitions to state 1, 2 and 7 are possible. 170 

Table 1. State combinations for three two-state appliances. 171 

State Appliance 1 Appliance 2 Appliance 3 
0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 
6 1 1 0 
7 1 1 1 

The disaggregation algorithm is divided into two parts (a) to identify group of events in the aggregated data, 172 
which we call offline appliance modeling  (b) to track the power consumption by pairing the events and 173 
calculated the total consumption of the appliances which are in the cluster of that pair of events, which we 174 
call online disaggregation as shown in Figure 3.  175 

We are using a low frequency event-based approach, but the data sampled at high frequency by the meter; 176 
therefore, in data processing we down sample the data measured at 3.4 kHz to 1 Hz. The processing of the 177 
data acquired by the meter is discussed in section 4.1.1. After processing, the input is passed to an event 178 
identification module.  179 

An event detector identifies significant changes in power level during a training window. A training window 180 
corresponds to a duration of time in which we want to extract information from the data. This duration can 181 
be any length of data ranging from a few hours to a few minutes. To validate the algorithm, we have selected 182 
three windows, one for the public dataset REDD and two for our private dataset. 183 

For the REDD dataset we have selected a training window of 24 hours. For our private data, we have tested 184 
the algorithm on two training time windows 1) a window of a few minutes to validate the algorithm for 185 
Type 1 appliances 2) a window of four hours consisting of aggregate data collected from a real house in 186 
which all four categories of appliances are present.  187 

After all events are identified in the training window, the next step is to determine the number of clusters 188 
of events by unsupervised clustering using Gaussian mixture models (section 4.1.3). Both positive power 189 
changes (positive event) and negative power changes (negative events) are observed during event 190 
identification and it is assumed that all appliances are of Type 1. Instead of clustering positive and negative 191 
events separately, the clustering algorithm is trained using the absolute value of the event. This assumption 192 
eliminates the requirement of matching positive and negative event pairs. 193 

After clustering the events, a Gaussian Bayes classifier is trained with the cluster labels to create an 194 
appliance database (section 4.1.4). The identified clusters are then used during online disaggregation to 195 
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determine which appliance is working. Once the data has been trained and the appliance database has been 196 
created, the online disaggregation module can be used to match the identified event with the appliance 197 
database. A classifier is used to determine the association of the events. Disaggregation is done once both 198 
ON and OFF events for an appliance are found, as explained in section 4.2.  199 

4.1 Offline appliance modeling 200 

4.1.1 Data processing 201 

The data is collected in a residential building in France. The input signal to the smart meter is single phase 202 
power at frequency of 50 Hz. Eco-Touch® samples current at 3.4 kHz. As a low frequency event-based 203 
approach is used, the data is processed in order to calculate the power at 1 Hz sampling frequency. For 204 
voltage, the instantaneous value is,   205 

𝑣(𝑡) = 𝑉! cos(𝜔𝑡).	 (1) 

and the instantaneous value of the current is 206 

𝑖(𝑡) = 𝐼!cos	(𝜔𝑡 + 𝜑). (2) 

where 207 

 𝑡  - time instant, 208 
𝜔 - angular frequency, 209 
𝜑  - phase angle; 210 
𝐼!  - amplitude of the current, 211 
𝑉!  - maximum power of the voltage. 212 
 213 
The energy in one cycle [0, 0.02	s] is calculated as using equation (2) and (1), 214 

𝐸 = 27 𝑣(𝑡)𝑖(𝑡)𝑑𝑡
"#

"$
. 

(3) 

The factor of 2 in equation (3) is to accommodate the fact that we have only positive cycles for the current 215 
signal. The average power is calculated as: 216 

𝑃: =  
$
% ∫ 𝑃	𝑑𝑡%

&  (4) 

𝑃: represents the total energy consumed in the duration	𝑇, which equals one second. 217 
4.1.2 Event identification 218 

An event is specified as a change of state of the power signal greater than a specified threshold. The change 219 
of state is characterized by the difference of the power signal,   220 

∆𝑃 = 𝑃:[𝑡] −	𝑃:[𝑡 − 1] (5) 

where ∆𝑃 is the difference between two successive values of the power signal at time 𝑡 and 𝑡 − 1, separated 221 
by a time step of 1 second.  222 

∆𝑃 represents an event when the difference between two successive samples is greater than a threshold 223 
value 𝛾. If  ∆𝑃 > 𝛾, then an “ON” event is observed. If ∆𝑃 is less then −𝛾, then an off event is observed. 224 
Type 1 appliances have only two states, ON and OFF. An ON state corresponds to a positive event and an 225 
OFF state corresponds to a negative event. A positive event is defined as [28], 226 
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∆𝑃' = A1, if	∆𝑃 ≥ 𝛾
0, 	otherwise 

(6) 

and a negative event is defined as 227 

∆𝑃( = A1, if	∆𝑃 ≤ −𝛾
0, otherwise  

(7) 

The observed events ∆𝑃'and ∆𝑃(are related to the selected value of 𝛾. Therefore, only changes greater 228 
than the specified 𝛾 are categorized as an event. It is assumed that a specific moment of time, only one 229 
appliance changes its state [28, 29]. 230 

For demonstration, we use a small dataset which consists of aggregate signal collected by EcoTouch® meter 231 
when three appliances: an iron, a heater and a hairdryer, were turned ON and OFF. The data was collected 232 
for a duration of around 8 minutes and the ground truth about the appliances operation during the time were 233 
manually collected. Since for this data set, the power of the devices is on the order of hundreds of watts and 234 
the average signal variance (noise) is 19 W, the threshold of  𝛾	= 50 W is selected to avoid the interference 235 
of noise. Figure 4 shows a plot of the aggregate power, as it is visible from the snapshots of the signal that 236 
selecting a value of threshold fewer then the noise of the aggregate power data will impact the results of 237 
the event detection.   238 

, 239 

Figure 4. (a)  Plot of aggregate power data from the toy dataset (b) snapshot of the aggregate power data in a time interval (c) 240 
another snapshot of the aggregate power data in a interval. 241 
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 242 
Figure 5. Event identification on the toy dataset. The solid lines show the positive and negative events, while the color distinguishes 243 
the cluster they belong to.  244 

 245 

The aggregate power collected by the meter and the results of the event identification are shown in Figure 246 
5. First, the iron, the heater and the hairdryer are turned ON, which is seen as a positive power transition. 247 
Next, the hairdryer is turned off, which results in negative power transitions and so on. 248 

4.1.3 Unsupervised learning of event clustering 249 

In blind disaggregation, the number of appliances and their states are not known in advance. We make 250 
assumptions on how many appliances are present in the aggregate data. Some assumption made are that in 251 
the aggregate power data only two state appliances are present. Each appliance exists in only one state at a 252 
given time. Appliances that have similar ∆𝑃' or ∆𝑃( are assumed to be the same appliance, meaning 253 
appliances that have similar power consumption are considered as the same appliance, according to 254 
assumption 2 in section 4. After event identification, we then proceed to categorize the events into clusters 255 
i.e., each two-state appliance has equal ∆𝑃'and ∆𝑃(value so for clustering we use the absolute value of 256 
∆𝑃, 257 

𝑥 = |∆𝑃| (8) 

If ∆𝑃 is used as such to identify the clusters, then we get two clusters, one for positive events ∆𝑃', for 258 
appliances turning ON, and one for negative events ∆𝑃(, for appliances turning OFF. By using equation 259 
(8), we can avoid an additional matching to group together ON events and OFF events.  260 

4.1.3.1 Gaussian mixture model 261 

K-mean algorithm is not flexible as it relies on the distance between the cluster centers making hard cluster 262 
boundaries as each value belongs to one of the distinct clusters [30]. Gaussian mixture models (GMM) is a 263 
probabilistic machine learning techniques that can provide better approximation when the clusters are 264 
overlapping as compared to k-mean clustering. In Gaussian mixture models, each cluster is modeled as a 265 
Gaussian distribution with the probability density function with a mean	𝜇 and variance 𝜎 defined as  266 
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𝑁(𝑥|	𝜇, 𝜎) = 	
1

𝜎√2𝜋	
𝑒(

(*(+)!
#-!  

(9) 

If there are 𝐾 appliances in the data and each cluster represents one of the 𝐾 appliances, then for a mixture 267 
of Gaussians we have 𝑘 Gaussian distributions 268 

𝑝(𝑥) = 	V𝜋.

/

.0$

	𝑁(𝑥|	𝜇. , 𝜎.), 
(10) 

where 𝐾 presents the number of Gaussian mixtures and 𝜋. is the probability of the 𝑘"1 Gaussian in the 269 
mixture with the constraint that their sum equal to one 270 

V𝜋.

/

.0$

= 1,						0 ≤ 	𝜋. ≤ 1. 
(11) 

Since we have a mixture of Gaussians, the parameters {𝜇., 𝜎. 	and 𝜋.} have to be determined. These 271 
parameters are estimated by using Expectation Maximization (EM) method [31]. EM is used to calculate 272 
the maximum likelihood estimate for the parameters. EM consists of an expectation step and a 273 
maximization step. In the expectation step the initial estimates for the parameters are calculated using k-274 
means algorithm and the likelihood of the data is calculated.  In the maximization step the parameters are 275 
modified to maximize the likelihood of the data with the initial assignments. These steps are repeated till a 276 
local optimum is achieved [32].  277 

4.1.3.2 Identifying the total number of clusters. 278 

Supposing that there are 𝑛 observed events, we have to determine how many clusters 𝑘 are present in our 279 
data. The number of clusters 𝑘 are identified using Bayesian information criterion (BIC): 280 

𝐵𝐼𝐶 = log(𝑛)𝐾 – 2 log(L) (12) 

where  281 
𝑛 - number of events; 282 
𝐾 - number of parameters required for building the Gaussian mixture model; 283 
𝐿 - maximum of the likelihood function of the Gaussian mixture model.  284 
 285 
“log(𝑛)𝐾" is a penelty term added to overcome the effects of over-fitting as more variable are added to a 286 
model for maximmizing likelihood. The minimum value of BIC is desirable for model selection.  For a 287 
small dataset, BIC is not a good model selection technique [33]. Therefore, for our small experimental 288 
dataset, we do not use BIC to find the number of clusters; instead, we specifid them manually. Plot of BIC 289 
versus varying number of cluster 𝑘 is shown for the REDD public dataset Figure 6. 290 

 291 

Once the total number of clusters are identified and the parameters for the Gaussian mixture model are 292 
determined, each event is assigned to a cluster using Bayes theorem which determines the membership of 293 
event 𝑥 to a cluster 𝐺i 294 

𝑝(𝐺2|	𝑥) = 	
𝑝(𝐺2)𝑝(𝑥	|𝐺2 	)

∑ 𝑝a𝐺3b/
30$ 𝑝(𝑥|𝐺3)

. 
(13) 

Alternatively, since each event belongs to one of the clusters, as described in equation (9) to (11), the 295 
membership of an event 𝑥	to a cluster could be written as,  296 
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𝑝(𝐺2|	𝑥) = 	
𝜋2𝑁(𝑥|𝜇2 , 	𝜎2)

∑ 𝜋3𝑁(𝑥|𝜇3 , 	𝜎3)/
30$

. 
(14) 

 297 

The details of the event clustering is identified in Algorithm 1. 298 

 299 
Figure 6. Plot of BIC versus the number of clusters k 300 

Algorithm 1: Clustering the events using Gaussian mixture model 
Input: Events and Num_events_max 
Output: Cluster Labels 

1 Data ← abs(Events) 
2 Init_params	← “kmeans” 
3 Covariance ← “full” 
 Num_clusters	←	0 
4 Labels ← [ ] 
5 for event ← 1 to Num_event_max? 
6  Cluster_model←GassianMixtureModel( number_components ←event, Init_params, Covariance)  
7  Cluster_model ← Cluster_model.fit(Data) 
8  Model_bic ← Cluster_model.bic(Data) 
9  if Model_bic < Min_bic:  
10  Min_bic ← Model_bic 
11  Num_clusters ← event 
12  end if 
13 end for  
14 cluster_model← GassianMixtureModel(Num_clusters, init_params, covariance)  
15 Labels ← Cluster_model.fit_Predict(Data) 
16 return Labels 

 301 

4.1.4 Generation of appliance database 302 

Each event Δ𝑃' and Δ𝑃(	in the training window is assigned to a cluster group, by assigning a cluster label 303 
to each event. A cluster represents a grouping of appliances with the same power. For our toy dataset, there 304 
are three clusters. The events belonging to the same cluster are highlighted using the same color as shown 305 
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on Figure 5. As the absolute values of the events are considered in determining the clusters, all appliances 306 
that have similar power consumption are considered to belong to the same cluster.  307 

The labels identified in 4.1.3 are assigned to the original identified events. The appliance database is created 308 
by training a classifier with the events and their labels. During online disaggregation, events are assigned a 309 
label by classification. For this implementation, a simple Gaussian Bayes classifier is used for classification 310 
as described in equation (13).  311 

Algorithm 2: Creating appliance database 
1 Event[Labels] ← Labels 

 Classifier_positive = GaussianNB( ) 

 Classifier_negative = GaussianNB( ) 

2 if Event > 0: 

3  Classifier_positive.fit(Event) 

2 if Event < 0: 

3  Classifier_negative.fit(Event) 

 312 

We train two classifiers: one for positive events and one for negative events. The steps of the training and 313 
generation of appliance database are described in Algorithm 2. The appliance database is stored and used 314 
during online disaggregation. The appliance database saves the time required to learn the appliance models 315 
in the data.   316 

4.2 Online disaggregation 317 

The appliance database created during offline appliance modeling is used during online disaggregation for 318 
tracking the consumption of the appliances in a disaggregation window. A disaggregation window is the 319 
length of time for which we want to find the individual consumption. The online disaggregation follows 320 
the method as shown in Figure 7. The identified events are matched with the appliances database created 321 
in the training phase of the algorithm as described in section 4.1.4. Using the labels from the appliance 322 
database, each event is matched with a label.  323 
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Figure 7. Detailed breakdown of online disaggregation. 324 

Each positive and negative event is matched separately. If ∆𝑃' is observed, then the event is matched with 325 
a classifier trained with positive events. And if ∆𝑃(is observed, then the event is matched with a classifier 326 
trained with the negative events. If a matching is found in the appliance database, then the event tracking 327 
list is updated. The event tracking list is then checked for an event pair. Each ON and OFF	event constitutes 328 
a pair. If ∆𝑃' and ∆𝑃( belong to the same cluster 𝐺i and the time of transition of ∆𝑃' is earlier than that of 329 
∆𝑃(, then a pair is generated [2]. In short, if multiple matches are available for	∆𝑃', then ∆𝑃( closest in 330 
time is selected. The tracking list keeps an inventory on the identified events. The tracking lists contains a 331 
list of event pairs  Δ𝑃' and Δ𝑃(	 along with the label and the time stamp. Once the grouping has been done, 332 
these pairs are stored in the tracking list as shown in Table 2. 333 

Table 2: Tracking list 334 

Time on 
(epoch) 

Δ𝑃' Time off 
(epoch) 

Δ𝑃( Label 

1593554137 1300 1593554223 -1289 1 
 335 
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Matching is continued till the end of the disaggregation window. For calculating the individual contribution 336 
of appliances with the same label, the power consumed in each pair and duration gives the individual 337 
consumption of the appliance.  338 

Table 3. Results of disaggregation using data from the small dataset 339 

Appliance Mean 
power 
(W) 

Duration 
(s) 

Total 
energy 

consumed 
(kWh) 

Heater 1958.18 273 0.148 
Hair dryer 1059.84 99 0.029 

Iron 1309.94 243 0.088 
 340 

The results of the disaggregation for the small dataset are shown in Table 3. The mean power consumed by 341 
each of the appliance along with the estimated duration and the amount of energy consumed is shown. Each 342 
appliance corresponds to a cluster identified by the disaggregation algorithm. For the data in Table 3 the 343 
cluster label is replaced with the appliance name.  344 

5 Experimental validation of the proposed method  345 

In this section, the results are validated in two different scenarios. In the first scenario, the algorithm is 346 
validated on Reference Energy Disaggregation Dataset (REDD) for testing the performance of two state 347 
appliances [34] In the second scenario, we report the disaggregation results of data collected by EcoTouch® 348 
smart meter in a real house containing aggregate power data from various appliances in normal use. 349 
Although we begin with the assumption that only two state appliances are present in the data, we further 350 
inspect how well we can track the power levels in the aggregate data in the presence of multi-state 351 
appliances.  352 

5.1 Disaggregation results on REDD dataset 353 

The Reference Energy Disaggregation Dataset (REDD) contains the aggregate power and individual plug 354 
level power data for five houses in the US [34]. We use the low frequency power data to test the results of 355 
the algorithm. The low frequency data consists of the average consumption recorded by the two power 356 
mains and the individual plug data consumptions at 1 Hz. For the experiment, we selected plug level data 357 
for four common appliances present in the dataset for a 24-hour window. The selected appliances are dryer, 358 
refrigerator, microwave and oven. The consumption of these four appliances were extracted for a 24-hour 359 
duration, as shown in Figure 8 (a). The power profiles of the individual appliance were then grouped 360 
together to form the aggregate consumption as shown in Figure 8 (b). 361 
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(a) 

 
(b) 

Figure 8. REDD dataset (a) Ground truth power consumption of individual appliances (b) Aggregate consumption for a 24-hour 362 
window 363 

For event identification, threshold of 𝛾 = 50	𝑊 is selected. The clusters identified by using unsupervised 364 
learning with Gaussian mixture models for clustering are shown in Figure 9 (a). Although there are four 365 
appliances, the unsupervised learning identifies seven cluster. There were only a few samples corresponding 366 
to three clusters, so they were pruned during pairing, so effectively we had only four clusters to work with. 367 
The identified clusters in relation to the observed events are shown in Figure 9 (c). The identified clusters 368 
are then saved as an appliance model during offline appliance modeling as discussed in section 4.1. Figure 369 
9(b) shows the identified clusters using mean shift clustering, using absolute value for the identified events. 370 
Mean shift clustering is a non-parametric based algorithm that automatically determines the number clusters 371 
based on the mean values of the data. Even if events were clustered without using the absolute value, we 372 
still had two clusters, one containing positive values and one containing negative values.  373 

 374 

 375 

 376 

 377 
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(a) (b) 

 
(c) 

Figure 9 Results of the disaggregation (a) Identified clusters using unsupervised clustering with Gaussian mixture models. 378 
(b) clusters with mean shift clustering. (c) Identified clusters on the aggregate consumption using Gaussian mixture model. 379 

We demonstrate the results of the online disaggregation using the REDD dataset. The ground truth signal 380 
and the reconstructed signal for the appliances is obtained by the online disaggregation is shown in Figure 381 
10. The reconstructed signals are obtained from the aggregate signal using the online disaggregation 382 
method, as described in section 4.2. For the refrigerator, it is visble that the majority of the ON and OFF 383 
power cycles are identified by the disaggregation algorithm from the aggregate signal. The results show 384 
that the disaggregation procedure is effective for the refrigerator, with the exception of the power 385 
consumption between 14:00 and 15:00. This is because multiple loads were active at the specific time in 386 
the aggregate data and some of the the power transitions were inaccurately identified. 387 

Comparing the reconstructed signal in Figure 10 for microwave and oven, the results are quite good, 388 
although the power consumption of both appliances is similar. The algorithm was able to identify individual 389 
power consumption quite accurately. For the washer and dryer, the reconstruction consumption shows that 390 
some of the events where not identified, which propogated the error in power consumption. 391 



17 
 

 

 

 

Figure 10. Ground truth for refrigerator vs. the reconstructed power signal from REDD dataset. 392 

We report the performance of the disaggregation in terms of estimated consumption accuracy, total energy 393 
disaggregated, and root means square error. The estimated consumption accuracy measure is a means of 394 
tracking the consumption of the appliances as [35, 10],  395 
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 396 

𝐸𝐶 = 1 −		
∑ |𝑦2 − 𝑔2|4
20$

2∑ 𝑔24
20$

. 
(15) 

where 𝑦2 is the predicted power and 𝑔2 is the ground truth for the respective appliance. 𝑁 represents the 397 
length of the data. The factor of two in the denominator is to accommodate the double counting of errors 398 
due to absolute value in the numerator. 	 399 

The total energy disaggregated is calculated as:  400 

	𝐸𝐷	 = 1 −		
|𝑦" − 𝑔"|

𝑔"
 

(16) 

where 𝑦" is the total predicted consumption and 𝑔" is the ground truth consumption of the respective 401 
appliance.  402 

Root mean square is calculated as:  403 

𝑅𝑀𝑆𝐸	 = 		m
∑ (𝑦2 − 𝑔2)#4
20$

𝑁
	 

(17) 

The results of the metrices described for each of the identified clusters and the appliance they refer are 404 
shown Table 4. The disaggregation results are comparable to the disaggregation results reported in literature 405 
[14, 15].  406 

Table 4. Appliance disaggregation results with REDD dataset 407 

Appliance EC ED RMSE 
Washer dryer 0.51 0.84 708.60 
Refrigerator 0.84 0.96 39.89 

Oven 0.72 0.95 112.87 
Microwave 0.49 0.97 128.71 

5.2 Disaggregation results on data using Eco-Touch® 408 

For validating the results of the disaggregation on the data collected by Eco-Touch®, we have selected a 409 
window of four hour from a 24 hour window as shown in Figure 11(a). Although the intended use of the 410 
algorithm is for two state appliances, it is interesting to see how many power states could be tracked using 411 
data from a real house. In a typical household, usually there is a duration of time when people are active 412 
and power consumption is high. We have selected a window corresponding to high activity and power 413 
consumption. This is to inquire how successful we are in identifying the major power consuming appliances 414 
in the aggregate data. 415 

Data acquired at the consumer site is processed using the method described in section 4.1.1. The aggregate 416 
data collected by the smart meter for the selected duration is shown in Figure 11(a). The results of section 417 
0-4.1.4 are shown in Figure 11(b). The threshold value 𝛾 is selected at 50 W for the experiment. We have 418 
a variety of appliances contributing to the aggregate consumption. The goal being the identification of the 419 
major power consuming appliances in the aggregate data. There is a direct relationship between the number 420 
of events identified and the time to process the data. If a smaller threshold is selected, then the processing 421 
time is increased. 422 
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The results of the identified clusters on the aggregate data are shown in Figure 11(b). Each identified event 423 
is assigned to a cluster using the unsupervised method explained in 4.1.3. There are five clusters identified 424 
in the data, each cluster marked by a different color.  425 

 

                                                                                          (a) 

(b) 

 

(c) 

Figure 11. Data collected by the smart meter (a) Aggregate data over a 4-hour window, recorded by the smart meter. (b) Clusters 426 
identified with Gaussian mixture models (c) Clusters identified by mean shift clustering 427 

We also compared the results of disaggregation by using mean shift clustering in unsupervised learning 428 
instead of Gaussian mixture model. There were six clusters identified by mean shift clustering shown in 429 
Figure 11(c). 430 

The reconstructed power profiles by the online disaggregation and the aggregate consumption is shown in 431 
Figure 12. For calculating the accuracy for the disaggregation in this scenario, we use the equations (15), 432 
(16) and (17). We use the aggregate reconstructed power profile to compare with the aggregate power 433 
data instead of the ground truth from individual appliances. 434 
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 435 
Figure 12. Reconstructed power profile of individual states learnt from the data and the aggregate consumption. 436 

The results of the disaggregation are presented in Table 5. The results show that the overall the performance 437 
of GMM is better than mean shift clustering.  438 

Table 5. Comparison of GMM vs mean shift clustering 439 

Clustering algorithm  
EC 

 
ED 

 
RMSE 

GMM 0.67 0.93 219 
Mean shift clustering 0.43 0.81 477 

6 Conclusion 440 

A blind unsupervised approach for non-intrusive load monitoring is presented using Gaussian mixture 441 
model for two-state appliances. The benefits of using Gaussian mixture model are especially evident in the 442 
situation where the data has mixed membership. There are many techniques that can be applied for 443 
determining the number of clusters. We found that Bayesian information criteria provides a good reliable 444 
measure to determine the number of clusters. It is further demonstrated that the algorithm can learn the 445 
number of clusters effectively, thus enabling an unsupervised approach to the identification of appliance in 446 
the aggregate data. 447 

The blind online disaggregation algorithm is able to identify two-state appliance quite efficiently. 448 
Experimental results show improvement in performance as compared to using other unsupervised methods. 449 
On REDD public dataset, we showed successful identification of different power consuming appliances 450 
operating during a day. The algorithm was even able to distinguish between appliances with almost similar 451 
power consumption level. 452 

We found that the approach also works in the situation where we have multi-state appliances in addition to 453 
two-state appliances. We were able to track 93 % of the total energy consumed as compared to 81 %, which 454 
was achieved using mean-shift clustering on the data from a real house where multiple appliances, including 455 
multi state appliances, were working. 456 
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There are a few things that could be done to improve the disaggregation algorithm. Some of the 457 
recommendation presented in the literature are the use of high frequency data and use of more features can 458 
improve the performance of the disaggregation algorithm, a change point detection algorithm to 459 
automatically categorize the data in real time, leveraging the power of deep learning algorithm [23, 22, 36]. 460 

The limitation of the work is that we are able to identify the grouping of power levels. No discrimination is 461 
done between the appliances that have the same power. The disaggregation algorithm uses a threshold based 462 
event detector. In the future, we would like to improve the event detection as well as incorporate prediction 463 
of appliances of various categories. 464 
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