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To investigate and optimize a refrigeration system, the behavior at various operating conditions must be known or determined. The performance and improvement possibilities may then be inferred from measurement data and compared with corresponding performance key figures. These values are typically referred to normal conditions and it is usually unknown which ones represent an adequate operation. However, it is relevant for refrigeration plant operators to have reference values for a large range of operation conditions as a baseline for determining the obtainable improvements. The present work proposes the application of refrigeration machine models for increasing the range of applicability of the exergy-based optimization potential index method. Four different modeling approaches are evaluated and discussed: equation-fit, physical lumped parameter, refrigeration cycle and artificial neural network based models. By using experimental data of a real field plant, the artificial neural network approach revealed the best performance for the present application. The practical usage of the improved evaluation method is shown for the subsystem refrigeration machine on a real field installation as a case study. With the introduced additional limits, the interpretability of the results is increased.

The distinction between adequate (technical requirements exceeded), acceptable (technical requirements fulfilled) and inadequate (potential for improvement) operation according to the state of the art in technology is straightforward, which is important in practice.

The model implementation in the optimization potential index (OPI) is shown.

Additional technical limiting values for the OPI are proposed.

The performance and optimization potential of refrigeration machines is revealed.

The application of the method is shown on a real field plant as a case study. 

Nomenclature

Introduction

A significant amount of the energy consumption in buildings is due to the heating, ventilation and airconditioning (HVAC) systems. Depending on the climatic region, about 30 -70% of the total energy consumption in air-conditioned buildings is due to systems for thermal comfort applications [START_REF] Vakiloroaya | A review of different strategies for HVAC energy saving[END_REF]. Thereby, more than 50% of this energy is consumed by refrigeration machines and plants [START_REF] Wang | A practical approach to chiller plants' optimisation[END_REF]. Consequently, the optimization of such systems may significantly reduce the power consumption in air-conditioned buildings.

In order to investigate and optimize a refrigeration system, the behavior at various operating conditions must be known or determined. Exergy analysis is seen as an appropriate approach, as the electrical energy consumption of the refrigeration machines and auxiliary devices is the main expense in refrigeration plant operation. This represents high quality energy which is degraded along the processes in the whole system.

In refrigeration plants the interest extends from the refrigeration machine itself to the neighboring hydraulic circuits, since a well-suited hydraulic integration of the chiller and an adequate operation of auxiliary devices is crucial in order to achieve a high efficiency of the plant. Furthermore, it is relevant for refrigeration plant operators to have reference values for determining the obtainable improvements. Interpretation of the results of the procedure should not require specialists to evaluate if there is a need to take action or not. For this reason, a practice-oriented evaluation method for refrigeration plants in air-conditioning applications based on exergy analysis and technical standards as baseline was introduced [START_REF] Brenner | Optimization potential index (OPI): An evaluation method for performance assessment and optimization potential of chillers in HVAC plants[END_REF][START_REF] Brenner | Exergy performance and optimization potential of refrigeration plants in free cooling operation[END_REF]. The method allows assessing the performance and the optimization potential with respect to the state of the art in technology and can be widely applicable in practice with most common measuring equipment of real field plants. With regard to this, the refrigeration plant is split into reasonable subsystems. This allows an individual assessment and leads to a reduction of the required measurement variables but still ensuring a sufficient level of detail. The optimization potential index (OPI) [START_REF] Brenner | Optimization potential index (OPI): An evaluation method for performance assessment and optimization potential of chillers in HVAC plants[END_REF] reveals the potential for improvement with respect to the technological baseline at a glance regardless the complexity of the system (see section 2 for details).

While for most subsystems enough data is available to derive the technological baseline from standards, it is difficult for the situation of refrigeration machines in real field plants. No specific baseline values for the electrical power consumption of the compressor are available in technical standards because it depends on a variety of variables. Consequently, further research is required to specify additional reference values for the baseline in order to apply the OPI method in a wider range of operation conditions. Ideally, these values are determined with comprehensive and representative measurements. However, installing measurement equipment is always bound to investment costs, and therefore, most of the refrigeration machines are instrumented with the indispensable sensors necessary for the operation. These variables are rarely logged for monitoring purposes, as the secondary side temperatures and cooling load is of main interest to the plant operators, e.g.

for cost allocation of the connected consumers. The latter is one reason why much attention was paid to refrigeration machine models, as it is a suitable method to determine missing quantities or to predict the system behavior with obtainable data.

s u b m i s s i o n p r e p r i n t

Consequently, various studies handle the topic of refrigeration system analysis and optimization with the aid of numerical models of refrigeration machines or other field plant devices. Among others, Shan et al.

proposed an improved chiller sequence control strategy for refrigeration plants with centrifugal chillers applying a multi-linear regression model [START_REF] Shan | Development and validation of an effective and robust chiller sequence control strategy using data-driven models[END_REF]. Typically, an optimal sequencing of the refrigeration machine operation can improve the plant efficiency and, therefore, reduce the electrical energy consumption. The authors showed an energy saving potential of 3% in comparison to the original control strategy. Wei et al. investigated a chiller plant with four refrigeration machines, four cooling towers and two cold water storages [START_REF] Wei | Modeling and optimization of a chiller plant[END_REF]. A datadriven approach was chosen to model the plant and subsequently, to ameliorate the operating conditions. The model was applied with measurement data of two days, where the authors demonstrate an energy consumption reduction of approximately 14%. Wang et al. handled the topic of chiller plant optimization to reduce the power consumption of the plant, while applying artificial neural network models to simulate the refrigeration machines and the cooling towers [START_REF] Wang | A practical approach to chiller plants' optimisation[END_REF]. Another study focused on the energy optimization of a multi-chiller plant with cooling towers in a multistory office building [START_REF] Thangavelu | Energy optimization methodology of multi-chiller plant in commercial buildings[END_REF]. Energy models for the chillers, cooling towers and auxiliary devices were developed, in order to improve the energy utilization. For the optimization routine, the building load and ambient air conditions were used as inputs. The optimization delivered ideal on / off strategies of the equipment as well as chilled and cooling water conditions. By carrying out three case studies, the authors identified an average energy saving of 20% for small chiller plants and up to 40% for moderate sized refrigeration systems.

With the stated need for research, the present work proposes the application of refrigeration machine models to introduce additional technical baseline values for the optimization potential index in the subsystem refrigeration machine. Four different modeling approaches are investigated and discussed: equation-fit, physical lumped parameter, refrigeration cycle and artificial neural network based models. All models are generally applicable with commonly measured quantities in field plants as input variables in order to ensure the practical application of the evaluation method. Their usage and performance is evaluated with measurements from a real field installation, where the best suiting model is then applied to calculate the optimization potential index. As a cases study, the application of the assessment method for the subsystem refrigeration machine is exemplified with experimental data gained from a real field plant.

Assessment method

General optimization potential index definition

The optimization potential index is given by [START_REF] Brenner | Optimization potential index (OPI): An evaluation method for performance assessment and optimization potential of chillers in HVAC plants[END_REF]:

OP I = 1 - 24 h t=0 h B * in 24 h t=0 h B in (1) 
with B in and B * in the actual and reference exergy input. The optimization potential index relates the actual input of each subsystem with a reference one according to the state of the art in technology, while the same s u b m i s s i o n p r e p r i n t output is achieved. Therefore, the key figure indicates how the real system would behave in comparison to a reference system in exactly the same situation. As an approach, these reference values are derived from technical standards, as they are usually specified in tenders or contracts and should be fulfilled at the stage of commissioning. Also, these values represent an achievable technological baseline, which can depend on the requirements in different countries or regions. As the cooling load typically follows a daily rhythm, the key figure is evaluated on a daily basis, e.g. for a daily check.

The interpretation of the results is straight-forward also for non-specialists, which is important in practice:

If the actual effort is larger than the reference, an optimization potential is present which is indicated with an OPI greater than zero. Conversely, an OPI lower than zero indicates an adequate operation of the system where the technical requirements are exceeded. However, it is unknown which values close to OPI = 0 (technical requirements fulfilled) still represent a permissible operation, since the boundary between the two operating states is sharp (see Fig. 1a). By introducing an additional acceptable limit OP I acc , it can then be distinguished between adequate, acceptable and inadequate operation (see Fig. 1b), which yields a better interpretability of the results. This advanced assessment is introduced in the present study for the subsystem refrigeration machine.

Subsystem refrigeration machine

The optimization potential index for refrigeration machines is [START_REF] Brenner | Optimization potential index (OPI): An evaluation method for performance assessment and optimization potential of chillers in HVAC plants[END_REF]:

OP I RM = 1 - 24 h t=0 h B * el,CP R 24 h t=0 h B el,CP R = 1 - 24 h t=0 h W * el,CP R 24 h t=0 h W el,CP R (2) 
where B el,CP R and B * el,CP R is the actual and reference (adequate) electrical exergy input of the compressor, respectively. Since electrical energy is per definition pure exergy, the key figure may be expressed in terms of s u b m i s s i o n p r e p r i n t the actual W el,CP R and reference electrical energy consumption of the compressor W * el,CP R . A quasi-stationary approach is applied for the OPI, where steady-state is assumed over the measurement interval. Consequently, the electrical power consumption is integrated over each measurement interval and then summed up for the daily assessment. For the advanced evaluation, it is proposed to define an additional acceptable boundary given by:

OP I acc RM = 1 - 24 h t=0 h W * el,CP R 24 h t=0 h W acc el,CP R (3) 
with W acc el,CP R the acceptable electrical energy consumption of the compressor. As an approach, it is proposed to compute the reference (adequate) and acceptable compressor power consumption with a model of the refrigeration machine (see section 4). Since the present method should be widely applicable in practice, the model should be as general as possible and require few as well as easily obtainable data with state-ofthe-art measuring concepts. Consequently, secondary side temperatures and the evaporator cooling capacity are specified as model input variables, which are commonly measured in field plants (see section 3). The reference compressor electrical power consumption Ẇ * el,CP R is calculated by applying reference secondary side temperatures of the condenser (T * C,in and T * C,out ) together with the cooling load QE and cold water temperatures (T E,in and T E,out ) of the actual situation as model input parameters. In this paper it is proposed to define the reference condenser inlet temperature T * C,in according to:

T * C,in = T C,in -   T C,out -T C,in ln T C,out T C,in -T amb + ∆T HE + T C,out -T C,in 2   (4) 
with T C,in and T C,out the secondary side condenser inlet and outlet temperature, respectively. T amb denotes the ambient air temperature and ∆T HE the temperature difference in the cooler heat exchanger, i.e. cooling water outlet to ambient air inlet, according to technical standards. For the latter, a stricter value of 6 K is applied as reported in the technical standard VDMA 24247-8 [START_REF]Energieeffizienz von Klimakälteanlagen. Teil 8: Komponenten -Wärmeübertrager[END_REF] (see Table 1). Similarly, the reference condenser outlet temperature T * C,out is proposed in the present work by:

T * C,out = T C,out -   T C,out -T C,in ln T C,out T C,in -T amb + ∆T HE + T C,out -T C,in 2   (5) 
Therefore, these reference temperatures represent adequate values which should be achieved if the hot side hydraulic circuit including the cooler is correctly operated and maintained according to the technical standards.

The acceptable electrical power consumption of the compressor Ẇ acc el,CP R is determined analogously with the refrigeration machine model by applying acceptable secondary side temperatures of the condenser (T acc C,in and T acc C,out ). These temperatures are calculated similarly to Eq. 4 and 5 by applying the less stricter value for ∆T HE according to Table 1.

s u b m i s s i o n p r e p r i n t is integrated to the system and the refrigeration machines as well as the distribution networks (see Fig. 2, subsystem CST) are located underground. The hydraulic circuit supplies seven different buildings with cold water, where the cooling locations (see Fig. 2, subsystem CL) represent air-handling units of ventilation systems in the different buildings with office space cooling as main application. Additionally, three rooftop coolers (see Fig. 2, subsystem DC), 12 circulating pumps and two cold water storages are present in the system. s u b m i s s i o n p r e p r i n t

Investigated modeling approaches

Equation-fit based model

The Comstock model has been chosen as equation-fit based model, as it uses commonly measured quantities in field plants as input variables to determine the compressor electrical power consumption. It is a secondorder polynomial fitting model with 7 fitting parameters a i to determine the compressor electrical power consumption ẆCP R , which has the following form [START_REF] Wang | Empirical model for evaluating power consumption of centrifugal chillers[END_REF]:

Ẇel,CP R = a 1 + a 2 T E,in + a 3 T C,in + a 4 QE + a 5 T E,in QE + a 6 T C,in QE + a 7 Q2 E ( 6 
)
with T E,in the evaporator secondary side inlet temperature, T C,in the condenser secondary side inlet temperature and QE the evaporator heat flow rate as input parameters. The coefficients a i reveal no physical characteristic and are determined from measurement data with the lsqcurvefit curve-fitting algorithm preimplemented in MATLAB [10].

Pyhsical lumped parameter model

In the present work, the modified Gordon-Ng model by Folicao et al. [START_REF] Foliaco | Improving the Gordon-Ng Model and Analyzing Thermodynamic Parameters to Evaluate Performance in a Water-Cooled Centrifugal Chiller[END_REF] is applied as physical lumped parameter model, which uses commonly measured quantities in field plants as input variables like the Comstock model. It is a three-parameter model which has the following form [START_REF] Foliaco | Improving the Gordon-Ng Model and Analyzing Thermodynamic Parameters to Evaluate Performance in a Water-Cooled Centrifugal Chiller[END_REF]:

Ẇel,CP R - T C,in -T E,out T E,out QE = a 1 T C,in + a 2 T C,in -T E,out T E,out + a 3 Q2 E + QE Ẇel,CP R T E,out (7) 
with T E,out the evaporator secondary side outlet temperature, T C,in the condenser secondary side inlet temperature and QE the evaporator heat flow rate as input parameters. The fitting parameters are determined with the regression routine regress pre-implemented in MATLAB [10], where a 1 denotes the entropy generation in the refrigeration cycle, a 2 the heat losses or gains from the refrigeration machine and a 3 the total heat exchanger thermal resistance.

Refrigeration cycle based model

A simplified refrigeration cycle based model is applied in the present work, which considers the four main refrigeration machine components (evaporator, compressor, condenser and expansion valve) in terms of thermodynamic and heat transfer relations. Fig. 3 shows a schematic of the considered refrigeration cycle as well as the corresponding log(p)-h-diagram with the different refrigerant states. The thermo-physical properties of the refrigerant are computed with the tool REFPROP (Reference Fluid Thermodynamic and Transport Properties Database) [START_REF] Bell | NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) Version 9 -SRD 23[END_REF]. The model uses secondary side temperatures as well as the evaporator cooling load as input variables and incorporates 6 physical parameters (see The evaporator and condenser are modeled with the NTU-ε effectiveness method and are considered as heat exchangers with phase change on the primary side. This represents a special case, where the heat capacity rates of the condensing vapor or evaporating liquid tends towards infinity (nearly isothermal processes). The evaporator effectiveness ε E is then given by [START_REF] Incropera | Principles of heat and mass transfer[END_REF][START_REF] Jin | A parameter estimation based model of water-to-water heat pumps for use in energy calculations programs[END_REF]:

ε E = 1 -e -N T U E ( 8 
)
where N T U E denotes the dimensionless parameter number of transfer units of the evaporator, which is defined as [START_REF] Incropera | Principles of heat and mass transfer[END_REF]:

N T U E = (U A) E c p,E ṁE (9) 
with (U A) E the overall heat transfer coefficient times the heat transfer area of the evaporator as well as c p,E and ṁE the specific heat capacity and the mass flow rate of the secondary side chilled water, respectively. s u b m i s s i o n p r e p r i n t As the heat capacity and mass flow rate of the secondary side are unknown, their product can be determined with an energy balance over the evaporator. The evaporation temperature of the refrigerant is then given with [START_REF] Incropera | Principles of heat and mass transfer[END_REF][START_REF] Jin | A parameter estimation based model of water-to-water heat pumps for use in energy calculations programs[END_REF]:

T e = T E,in - ∆T E ε E ( 10 
)
where T E,in denotes the evaporator secondary side inlet temperature and ∆T E the secondary side inlet to outlet temperature difference. Analogously, Eq. 8 to 10 apply also for the condenser by utilizing the corresponding quantities. With the chosen NTU-ε effectiveness approach, the superheating and subcooling effects in the heat exchangers are not explicitely treated. However, the error is assumed negligible, as it is presumably compensated with the U A parameter when calibrating the model. With the evaporation and condensation temperature, the low and high pressure level, p e and p c (see Fig. 3b), can be determined together with the refrigerant temperature T 1 and T 3 after the evaporator and condenser, respectively. Subsequently, the specific enthalpies and entropies (h 1 , h 3 , s 1 , s 3 ) of the refrigerant can be identified at state 1 and 3. By assuming an isenthalpic expansion process, the specific enthalpy h 4 at state 4 after the expansion valve (see Fig. 3) is equivalent to the specific enthalpy h 3 at state 3. With an energy balance, the evaporator heat flow rate QE is

given by [START_REF] Dinçer | Refrigeration Systems and Applications[END_REF][START_REF] Moran | Fundamentals of engineering thermodynamics: SI version[END_REF]:

QE = ṁr (h 1 -h 4 ) (11) 
from which the refrigerant mass flow rate ṁr can be determined. The actual compressor input ẆCP R,act is defined according to [START_REF] Dinçer | Refrigeration Systems and Applications[END_REF][START_REF] Moran | Fundamentals of engineering thermodynamics: SI version[END_REF]:

ẆCP R,act = ṁr (h 2 -h 1 ) (12) 
s u b m i s s i o n p r e p r i n t

where the enthalpy h 2 at state 2 after the compressor must be known (see Fig. 3). The compressor isentropic efficiency η isen is given by [START_REF] Dinçer | Refrigeration Systems and Applications[END_REF][START_REF] Moran | Fundamentals of engineering thermodynamics: SI version[END_REF]:

η isen = ẆCP R,isen ẆCP R,act = ṁr (h 2s -h 1 ) ṁr (h 2 -h 1 ) = h 2s -h 1 h 2 -h 1 (13) 
which relates the isentropic compressor input ẆCP R,isen with the actual compressor power ẆCP R,act , where h 2s represents the specific enthalpy at state 2s resulting from an isentropic (i.e. reversibel) compression (see Fig. 3). By rearranging Eq. 13, h 2 can be identified, and finally, the compressor electrical power Ẇel,CP R determined with [START_REF] Ozgur | Exergy analysis of refrigeration systems using an alternative refrigerant (hfo-1234yf) to R-134a[END_REF]:

Ẇel,CP R = ẆCP R,act η el,mech (14) 
where η el,mech represents the compressor electro-mechanical efficiency to account for mechanical as well as electrical losses. The condenser heat flow rate QC is given with an overall energy balance over the refrigeration cycle [START_REF] Dinçer | Refrigeration Systems and Applications[END_REF]:

QC = QE + ẆCP R,act (15) 
The condenser heat flow rate is unknown in the beginning, guessed for the initial iteration and then iteratively computed with the described procedure, until the relative error is lower than 0.1%. A cost function, chosen to be the root-mean-squared error (RMSE, see subsection 4.5) between the modeled and measured compressor electrical power, is minimized to identify the models parameters (see Table 2). These are initially determined with a batch gradient-descent routine [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] and then iteratively optimized with the pre-implemented minimization algorithm fmincon in MATLAB [10]. All parameters reveal a physical characteristic and defining them as constants is physically not correct (except in steady-state). However, to the best of the authors knowledge, this simplification is reasonable with the goal of having a widely applicable model which can be employed independently of the compressor and heat exchanger design, even if no technical details of the refrigeration machine are available.

Artifical neural network model

In the present work, a feed-forward ANN model is applied with one input layer, one ouput layer and one hidden layer (see Fig. 4), which has been determined by trial and error. Like the refrigeration cycle based model, the ANN has 5 input parameters (secondary side temperatures as well as evaporator cooling load) and one output parameter, the compressor electrical power Ẇel,CP R . A tan-sigmoid and a linear activation function is used for the hidden and output layer, respectively. The hidden layer consists of 25 neurons (with bias). The amount of neurons was identified by iteratively increasing the number until the performance function, chosen to be the mean-squared error (MSE), converged. The latter is defined as [START_REF] Datta | An optimized ANN for the performance prediction of an automotive air conditioning system[END_REF]:

M SE = 1 n n i=1 ( y i -y i ) 2 ( 16 
)
where y i represents the measured value, y i the predicted value and n the number of data points. The number of neurons is substantially lower than the number of training data points, which reduces the risk of overfitting.

s u b m i s s i o n p r e p r i n t The ANN is designed, set-up and trained with the Deep Learning Toolbox (functions feedforwardnet and train)

pre-implemented in MATLAB [10]. One of the most popular learning method is the back-propagation, which is a gradient-descent based procedure [START_REF] Kalogirou | Applications of artificial neural-networks for energy systems[END_REF]. In the present work, the Levenberg-Marquardt back-propagation algorithm is applied for training [START_REF] Hagan | Training Feedforward Networks with the Marquardt Algorithm[END_REF], which is particularly useful for moderate-sized ANNs with the MSE as performance function [START_REF] Hagan | Neural Network Design[END_REF].

Model performance metrics

Many different performance indicators exist, which can be applied to evaluate the model accuracy. In the present work, the following indicators are applied, where y i represents the measured value, y i the predicted value and n the number of data points. One of the most applied index is the root-mean-squared error (RMSE) defined as [START_REF] ¸ahin | Performance analysis of single-stage refrigeration system with internal heat exchanger using neural network and neuro-fuzzy[END_REF]:

RM SE = 1 n n i=1 ( y i -y i ) 2 (17) 
The second index is the mean-absolute error (MAE) which has an increased interpretability compared to the RMSE, which is given by [START_REF] Wang | Empirical model for evaluating power consumption of centrifugal chillers[END_REF]:

M AE = 1 n n i=1 | y i -y i | (18) 
The coefficient of variation of the root-mean-squared error (CV or CV-RMSE), also denoted relative rootmean-squared error (R-RMSE), indicates if the model has a satisfactory prediction ability, where a small value indicates a high predictive accuracy. The indicator is defined with [START_REF] Wang | Empirical model for evaluating power consumption of centrifugal chillers[END_REF]:

CV = RM SE y i • 100% (19)
s u b m i s s i o n p r e p r i n t where y i is the average of the measured values. Additionally, the coefficient of determination (R 2 ) is applied, which is given by [START_REF] ¸ahin | Performance analysis of single-stage refrigeration system with internal heat exchanger using neural network and neuro-fuzzy[END_REF]:

R 2 = 1 - n i=1 (y i -y i ) 2 n i=1 (y i -y i ) 2 (20) 
This indicator relates the sum of the squared residuals (deviation from the predicted and measured value)

with the total sum of squares. The closer the value of R 2 is to 1, the more accurate are the modeled values.

Results and discussion

Refrigeration machine model comparison

Fig. 5 depicts the modeled compressor electrical power consumption of each modeling approach (y-axis) in function of the measured compressor electrical power consumption (x-axis) with a ±10% error band. Table 3 lists s u b m i s s i o n p r e p r i n t which is adequate for a practical application of the model [START_REF] Wang | Empirical model for evaluating power consumption of centrifugal chillers[END_REF][START_REF] Hydeman | Development and Testing of a Reformulated Regression-Based Electric Chiller Model[END_REF]. Consequently, the ANN model is applied for the optimization potential index. By using reference and acceptable temperatures on the condenser secondary side according to technical standards, the reference and acceptable compressor power consumption can be simulated (see subsection 2.2).

Refrigeration machine performance analysis

By applying the method described in subsection 2.2, together with the acquired measurement data from the field plant and the ANN model, the corresponding OPI of each refrigeration machine is determined. The analysis should further demonstrate the usage of the evaluation approach and reveal the performance as well as eventual optimization potentials of the refrigeration machines. According to the available experimental data, refrigeration machine operation occurred mainly from begin of April to end of October. Fig. 6 shows the daily optimization potential index (OPI, y-axis) of the subsystem RM in the field plant under investigation in function of the date (x-axis). The daily OPI is indicated with data points, where the 14-days moving average is represented by a solid line to evaluate the tendency over time. The green, yellow and red zone depicts the adequate, acceptable and inadequate operation condition, respectively. The adequate boundary is always at OPI = 0 according to the key figure definition (comparison of the reference with the actual effort), while the acceptable limit may fluctuate due to dependencies of various parameters at the different operating points (comparison of the reference with the acceptable effort). Additionally, missing data points for the acceptable limit were determined by interpolation, since not all refrigeration machines were running every day.

The optimization potential index of the five different refrigeration machines lies in the range of -0.47 to 0.44 s u b m i s s i o n p r e p r i n t machine 5 yields the highest average key figure among all refrigeration machines of 0.02 (see Fig. 6e). In 44 and 29% of the time in the investigated period the technical requirements are exceeded and fulfilled, respectively.

The refrigeration machine was commissioned on April 13 th , and therefore, no key figures are present before that day. The late commissioning of the machine may also be the reason for the differentiated behavior compared to the other devices. Overall, OP I RM 1 to OP I RM 5 are at least 73% of the time in adequate and acceptable operation range. This indicates a reasonable performance of all refrigeration machines and their hydraulic integration, where mostly little to no optimization potential compared to the state of the art in technology is present.

Interestingly, by examining the moving average OP I avg RM of all refrigeration machines, they reveal a similar operation. Analogue tendencies of an increasing and decreasing OPI are observed. Presumably, this is due to the same type and size of all installed refrigeration machines, e.g. redundancy purposes, where each of them are operated comparably. Moreover, it is revealed that during the warmer months over the year, i.e. June to end of August, all refrigeration machines exceed and fulfill the technical requirements. This leads to the assumption that the chillers are working near to or at the design point and that the hot side hydraulic circuit is properly operating. The refrigeration machines reveal an increase of the OPI in the transition period, i.e.

April, May and September, where mostly an acceptable operation is present. A further noticeable increase in OPI is observed in the colder months October to December, where generally an inadequate operation is present. However, the systems are operating infrequent in this time period and single outliers should not be overly considered. Most likely, the refrigeration machines are not operating at the design point in the mentioned time period or the temperature level on the hot side hydraulic circuit is not ideal, where the latter can result in an increased electrical power consumption of the compressors. According to literature, lowering the condensing temperature (which is highly influenced by the hot side hydraulic circuit) by 1 K, can reduce the energy consumption of the refrigeration plant by up to 2.5% as a rule of thumb [START_REF] Brunner | Klimakälte heute -Kluge Lösungen für ein angenehmes Raumklima[END_REF]. The increased OPI values in the colder months can also be an indicator to make use of free cooling, which is typically active in this period. Furthermore, errors resulting from the ANN model are possible, since errors in part load conditions may have an increased effect. However, to the best of the authors knowledge, these errors are assumed negligible according to the model performance (see subsection 5.1). To finally determine the issues in the subsystem RM in the mentioned time period a detailed analysis would be necessary, assuming the needed experimental data is available.

Conclusions and outlook

The present work demonstrates successfully the use of refrigeration machine models for the integration in the optimization potential index. The practical application is shown by applying the method to a real field installation as a case study. With the introduced additional limits, a more detailed assessment with the evaluation method is achieved and the interpretability of the results is increased. The distinction between adequate (technical requirements exceeded), acceptable (technical requirements fulfilled) and inadequate (potential for s u b m i s s i o n p r e p r i n t improvement) operation according to the state of the art in technology is straightforward and the results are simple to interpret, which is important in practice. In that way, refrigeration plant operators can track the refrigeration machine performance on a daily basis and a simple colored indicator could be realized for the implementation in monitoring systems. To the best of the authors knowledge, an analysis with the described method (revealing possible optimization potentials in a first step), together with a detailed analysis (identify the malfunction in detail in a second step and evaluate if adjustments are worthwhile also from an economic point of view), delivers a target-oriented procedure to analyze the refrigeration plant behavior and to optimize the system efficiency.

Moreover, all examined models reveal an acceptable performance, where the mean-absolute error ranges from 0.8 to 3.4 kW. This values are considered reasonable, with the given range of the measured compressor electrical power consumption. However, only the ANN model reaches coefficient of variation values lower than 5%, which represents an adequate value for a practical application. Consequently, this modeling approach is applied for the determination of the optimization potential index. The investigated refrigeration machines of the field plant generally fulfill or exceed the technical requirements. Refrigeration machine 2 performs best with an average optimization potential index of -0.03. Refrigeration machine 5 performs worst, while being 73% of the time in adequate or acceptable operation. Moreover, all refrigeration machines show potential for improvement in the colder months. This can be an indicator to make use of free cooling, which is typically active in this time period.

As an outlook, future work could cover the investigation of models for the other subsystems in the refrigeration plant. This can increase the level of detail of the analysis and may helps to assess refrigeration plants with a reduced amount of installed measuring equipment. In this context, further measurement data should be collected from other real refrigeration plants, preferably with different cooling capacities and sizes. The practical application of the evaluation method could then be further elaborated in detail and interrelationships between various field plants might be identified.

Acknowledgements

This study was partially funded by the Swiss Federal Office of Energy (SFOE).

s u b m i s s i o n p r e p r i n t
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Figure 1 :

 1 Figure 1: Optimization potential index scale to determine the operation condition and improvement possibilities with respect to the technical baseline with (a) a basic and (b) an advanced assessment.

Figure 2 :

 2 Figure 2: Simplified piping & instrumentation diagram of a typical refrigeration plant with cold water distribution and a free cooling module, i.e. heat exchanger. Commonly measured and monitored variables of refrigeration machines in field plants are shown in italic.

Figure 3 :

 3 Figure 3: Simplified schematic of (a) the considered refrigeration cycle and (b) the corresponding log(p)-h-diagram with the different refrigerant states 1 to 4 and 2s.

Figure 4 :

 4 Figure 4: Topology of the applied feed-forward neural network with the corresponding input and output variables.

  the values of the different performance indicators for each model with respect to the training / validation and testing data. For the former, measurement data of refrigeration machine 1 (RM1, 12430 data points) installed in the investigated field plant are applied, where a share of 60 and 40% is used for training and validation, respectively. Measurement data of refrigeration machine 2 (RM2, 12250 data points) is applied as testing data set. The measured compressor electrical power ranges from 1 to 195 kW and from 1 to 184 kW in the training / validation and testing data set, respectively, where a large range of different operating conditions are present (part load as well as full load).

Figure 5 :

 5 Figure 5: Comparison of the measured and modeled compressor electrical power consumption of the refrigeration machines in the field plant: (a) equation-fit based model, (b) physical lumped parameter model, (c) refrigeration cycle based model and (d) artifical neural network model.

(

  see Fig.6ato 6e), whereas the maximum difference in OPI of 0.43 between two chillers (RM4 and RM5) is reached on June 15 th . Refrigeration machine 2 yields the lowest average optimization potential index OP I RM 2 of -0.03 (see Fig.6b), while the key figure scatters the least among all refrigeration machines. The system operates approximately 80% of the time below the acceptable boundary OP I acc RM 2 , where 60 and 20% of the time an adequate and acceptable operation of the subsystem is achieved, respectively. Conversely, refrigeration s u b m i s s i o n p r e p r i n t

Figure 6 :

 6 Figure 6: Optimization potential index OP I RM of (a) refrigeration machine 1 to (e) refrigeration machine 5 with adequate (green), acceptable (yellow) and inadequate (red) operation range. The data points (black crosses) represent the daily OPI values and the black solid line indicates the 14-days moving average of the OPI.

Table 1 :

 1 Temperature differences in dry cooler heat exchangers according to VDMA 24247-8[START_REF]Energieeffizienz von Klimakälteanlagen. Teil 8: Komponenten -Wärmeübertrager[END_REF].Fig.2shows schematically the typical refrigeration plant structure with cold water distribution and free cooling together with measured and monitored thermodynamic quantities of refrigeration machines in field plants. As a case study, an existing refrigeration plant installed in the city of Winterthur, Switzerland is investigated in the present work. The field plant includes five refrigeration machines (see Fig.2, subsystem RM) with 950 kW cooling power each and ammonia (R717) as refrigerant. The subsystem refrigeration machine is of particular interest in the present work, where measurement data was collected during the year 2018 with a measuring interval of 5 minutes. Additionally, one free cooling heat exchanger (see Fig.2, subsystem FC)

		Adequate Acceptable
	∆T HE	≤ 6 K	≤ 8 K
	3. Refrigeration plant structure		

Table 2

 2 

	for details), which are identified from

Table 2 :

 2 Inputs, outputs and parameters of the RC based model.

	Type	Variables	
	input	T E,in	evaporator secondary side inlet temperature
		T E,out	evaporator secondary side outlet temperature
		T C,in	condenser secondary side inlet temperature
		T C,out	condenser secondary side outlet temperature
		QE	evaporator heat flow rate
	output	Ẇel,CP R compressor electrical power
	parameter η isen	compressor isentropic efficiency
		η el,mech	compressor electro-mechanical efficiency
		∆T sh	superheating temperature difference
		∆T sc	subcooling temperature difference
		(U A) E	evaporator surface dependent overall heat transfer coefficient
		(U A) C	condenser surface dependent overall heat transfer coefficient

Table 3 :

 3 List of the RMSE, MAE, R 2 and CV values for each modeling approach with respect to the training / validation (RM1) and testing (RM2) data of the refrigeration machines in the field plant.

	Performance indicator	Equation-fit based model	Phyiscal lumped parameter model
		RM1	RM2	RM1	RM2
	root-mean-squared error (RMSE) [kW] 3.23	3.26	3.15	3.20
	mean-absolute error (MAE) [kW]	2.36	2.34	2.44	2.55
	coefficient of determination (R 2 ) [-]	0.995	0.994	0.995	0.995
	coefficient of variation (CV) [%]	6.36	6.34	6.20	6.22
		Refrigeration cycle	Artificial neural
		based model	network model
		RM1	RM2	RM1	RM2
	root-mean-squared error (RMSE) [kW] 4.02	4.24	1.12	1.45
	mean-absolute error (MAE) [kW]	3.16	3.40	0.80	1.07
	coefficient of determination (R 2 ) [-]	0.992	0.991	0.999	0.999
	coefficient of variation (CV) [%]	7.91	8.25	2.21	2.82

Table 3 )

 3 , respectively, where the values are reasonable with the given range of the compressor electrical power. Similar values are achieved with the testing data set, which has not been used for training. The physical lumped parameter (PLP) model reveals a similar performance as the EF model, where the RMSE and MAE values range depending on the data is present in the experimental data of the field plant, which complicates the identification of valid parameters for all load conditions. The predicted power consumption by the artificial neural network (ANN) model shows qualitatively a good agreement with measurements when using both data sets (see Fig.5d). The adequate performance is also demonstrated with R 2 values close to 1 and CV values below 3%, where only approximately 10% of the simulated values are outside of the ±10% error band.When comparing the different models, all approaches perform only slightly worse with the testing data set, where the EF and PLP model reveal a similar performance. This outcome is probably due the large training domain, where all kind of operation conditions are covered. Also, all refrigeration machines are of the same type and size, whereby most likely all of them reveal a similar operating behavior. The RC model underpredicts the compressor power significantly in part load conditions (see Fig.5c), which contributes to the highest key figure values compared to the other investigated models. All performance indicators reveal acceptable values except the coefficient of variation, where only the ANN model reaches values lower than 5%,
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set from 3.15 to 3.2 kW and 2.44 to 2.55 kW, respectively (see Table

3

). Furthermore, the refrigeration cycle (RC) based model performs worst among the investigated modeling approaches. This outcome is most likely due to the constant model parameters, which would vary in reality. A large range of different operating states