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performance et du potentiel d’optimisation des refroidisseurs dans des

installations réelles
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Abstract

To investigate and optimize a refrigeration system, the behavior at various operating conditions must be known

or determined. The performance and improvement possibilities may then be inferred from measurement data

and compared with corresponding performance key figures. These values are typically referred to normal

conditions and it is usually unknown which ones represent an adequate operation. However, it is relevant for

refrigeration plant operators to have reference values for a large range of operation conditions as a baseline for

determining the obtainable improvements. The present work proposes the application of refrigeration machine

models for increasing the range of applicability of the exergy-based optimization potential index method. Four

different modeling approaches are evaluated and discussed: equation-fit, physical lumped parameter, refriger-

ation cycle and artificial neural network based models. By using experimental data of a real field plant, the

artificial neural network approach revealed the best performance for the present application. The practical

usage of the improved evaluation method is shown for the subsystem refrigeration machine on a real field in-

stallation as a case study. With the introduced additional limits, the interpretability of the results is increased.

The distinction between adequate (technical requirements exceeded), acceptable (technical requirements ful-

filled) and inadequate (potential for improvement) operation according to the state of the art in technology is

straightforward, which is important in practice.
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Highlights

� Four different refrigeration machine models are evaluated.

� The model implementation in the optimization potential index (OPI) is shown.

� Additional technical limiting values for the OPI are proposed.

� The performance and optimization potential of refrigeration machines is revealed.

� The application of the method is shown on a real field plant as a case study.

Nomenclature

Abbreviations

AHU air handling unit

ANN artificial neural network

CL subsystem cooling location

COP coefficient of performance

CST subsystem cold storage & transport

CV coefficient of variation

DC subsystem dry cooler

EF equation fit

FC subsystem free cooling

HVAC heating, ventilation and air-conditioning

MAE mean-absolute error

MSE mean-squared error

HVAC heating, ventilation and air-conditioning

NTU number of transfer units

OPI optimization potential index

PLP physical lumped parameter

RC refrigeration cycle

RM subsystem refrigeration machine

RMSE root-mean-squared error

R2 coefficient of determination

VDMA Verband Deutscher Maschinen und Anlagenbau
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Variables

a fitting parameter T temperature [K]

A heat exchanger surface area [m2] U overall heat transfer coefficient [W m-2 K-1]

B exergy [J] W work [J]

c specific heat capacity [J kg-1 K-1] Ẇ power [W]

h specific enthalpy [J kg-1] y measured variable

ṁ mass flow rate [kg s-1] y averaged measured variable

n number of data points ŷ modeled / predicted variable

p pressure [Pa] ∆T temperature difference [K]

Q thermal energy [J] ε heat exchanger effectiveness [–]

Q̇ heat flow rate (thermal power) [W] η efficiency [–]

s specific entropy [J kg-1 K-1]

Subscripts

act actual in input

amb ambient isen isentropic

c condensation meas measured

C condensator mech mechanical

CPR compressor out output

e evaporation r refrigerant

el electrical RM refrigeration machine

E evaporator sc subcooling

HE heat exchanger sh superheating

Superscripts

∗ reference adq adequate

acc acceptable
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1. Introduction

A significant amount of the energy consumption in buildings is due to the heating, ventilation and air-

conditioning (HVAC) systems. Depending on the climatic region, about 30 – 70% of the total energy con-

sumption in air-conditioned buildings is due to systems for thermal comfort applications [1]. Thereby, more

than 50% of this energy is consumed by refrigeration machines and plants [2]. Consequently, the optimization

of such systems may significantly reduce the power consumption in air-conditioned buildings.

In order to investigate and optimize a refrigeration system, the behavior at various operating conditions

must be known or determined. Exergy analysis is seen as an appropriate approach, as the electrical energy

consumption of the refrigeration machines and auxiliary devices is the main expense in refrigeration plant

operation. This represents high quality energy which is degraded along the processes in the whole system.

In refrigeration plants the interest extends from the refrigeration machine itself to the neighboring hydraulic

circuits, since a well-suited hydraulic integration of the chiller and an adequate operation of auxiliary devices

is crucial in order to achieve a high efficiency of the plant. Furthermore, it is relevant for refrigeration plant

operators to have reference values for determining the obtainable improvements. Interpretation of the results

of the procedure should not require specialists to evaluate if there is a need to take action or not. For this

reason, a practice-oriented evaluation method for refrigeration plants in air-conditioning applications based

on exergy analysis and technical standards as baseline was introduced [3, 4]. The method allows assessing

the performance and the optimization potential with respect to the state of the art in technology and can

be widely applicable in practice with most common measuring equipment of real field plants. With regard

to this, the refrigeration plant is split into reasonable subsystems. This allows an individual assessment and

leads to a reduction of the required measurement variables but still ensuring a sufficient level of detail. The

optimization potential index (OPI) [3] reveals the potential for improvement with respect to the technological

baseline at a glance regardless the complexity of the system (see section 2 for details).

While for most subsystems enough data is available to derive the technological baseline from standards,

it is difficult for the situation of refrigeration machines in real field plants. No specific baseline values for the

electrical power consumption of the compressor are available in technical standards because it depends on a

variety of variables. Consequently, further research is required to specify additional reference values for the

baseline in order to apply the OPI method in a wider range of operation conditions. Ideally, these values are

determined with comprehensive and representative measurements. However, installing measurement equip-

ment is always bound to investment costs, and therefore, most of the refrigeration machines are instrumented

with the indispensable sensors necessary for the operation. These variables are rarely logged for monitoring

purposes, as the secondary side temperatures and cooling load is of main interest to the plant operators, e.g.

for cost allocation of the connected consumers. The latter is one reason why much attention was paid to

refrigeration machine models, as it is a suitable method to determine missing quantities or to predict the

system behavior with obtainable data.

4



su
bm
iss
io
n
pr
ep
rin
t

Consequently, various studies handle the topic of refrigeration system analysis and optimization with the

aid of numerical models of refrigeration machines or other field plant devices. Among others, Shan et al.

proposed an improved chiller sequence control strategy for refrigeration plants with centrifugal chillers applying

a multi-linear regression model [5]. Typically, an optimal sequencing of the refrigeration machine operation

can improve the plant efficiency and, therefore, reduce the electrical energy consumption. The authors showed

an energy saving potential of 3% in comparison to the original control strategy. Wei et al. investigated a

chiller plant with four refrigeration machines, four cooling towers and two cold water storages [6]. A data-

driven approach was chosen to model the plant and subsequently, to ameliorate the operating conditions. The

model was applied with measurement data of two days, where the authors demonstrate an energy consumption

reduction of approximately 14%. Wang et al. handled the topic of chiller plant optimization to reduce the

power consumption of the plant, while applying artificial neural network models to simulate the refrigeration

machines and the cooling towers [2]. Another study focused on the energy optimization of a multi-chiller

plant with cooling towers in a multistory office building [7]. Energy models for the chillers, cooling towers and

auxiliary devices were developed, in order to improve the energy utilization. For the optimization routine,

the building load and ambient air conditions were used as inputs. The optimization delivered ideal on / off

strategies of the equipment as well as chilled and cooling water conditions. By carrying out three case studies,

the authors identified an average energy saving of 20% for small chiller plants and up to 40% for moderate

sized refrigeration systems.

With the stated need for research, the present work proposes the application of refrigeration machine

models to introduce additional technical baseline values for the optimization potential index in the subsystem

refrigeration machine. Four different modeling approaches are investigated and discussed: equation-fit, physical

lumped parameter, refrigeration cycle and artificial neural network based models. All models are generally

applicable with commonly measured quantities in field plants as input variables in order to ensure the practical

application of the evaluation method. Their usage and performance is evaluated with measurements from a

real field installation, where the best suiting model is then applied to calculate the optimization potential

index. As a cases study, the application of the assessment method for the subsystem refrigeration machine is

exemplified with experimental data gained from a real field plant.

2. Assessment method

2.1. General optimization potential index definition

The optimization potential index is given by [3]:

OPI = 1−

24h∑
t=0h

B∗
in

24h∑
t=0h

Bin

(1)

with Bin and B∗
in the actual and reference exergy input. The optimization potential index relates the actual

input of each subsystem with a reference one according to the state of the art in technology, while the same
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the technical baseline with (a) a basic and (b) an advanced assessment.

output is achieved. Therefore, the key figure indicates how the real system would behave in comparison to

a reference system in exactly the same situation. As an approach, these reference values are derived from

technical standards, as they are usually specified in tenders or contracts and should be fulfilled at the stage

of commissioning. Also, these values represent an achievable technological baseline, which can depend on the

requirements in different countries or regions. As the cooling load typically follows a daily rhythm, the key

figure is evaluated on a daily basis, e.g. for a daily check.

The interpretation of the results is straight-forward also for non-specialists, which is important in practice:

If the actual effort is larger than the reference, an optimization potential is present which is indicated with an

OPI greater than zero. Conversely, an OPI lower than zero indicates an adequate operation of the system where

the technical requirements are exceeded. However, it is unknown which values close to OPI = 0 (technical

requirements fulfilled) still represent a permissible operation, since the boundary between the two operating

states is sharp (see Fig. 1a). By introducing an additional acceptable limit OPIacc, it can then be distinguished

between adequate, acceptable and inadequate operation (see Fig. 1b), which yields a better interpretability

of the results. This advanced assessment is introduced in the present study for the subsystem refrigeration

machine.

2.2. Subsystem refrigeration machine

The optimization potential index for refrigeration machines is [3]:

OPIRM = 1−

24h∑
t=0h

B∗
el,CPR

24h∑
t=0h

Bel,CPR

= 1−

24h∑
t=0h

W ∗
el,CPR

24h∑
t=0h

Wel,CPR

(2)

where Bel,CPR and B∗
el,CPR is the actual and reference (adequate) electrical exergy input of the compressor,

respectively. Since electrical energy is per definition pure exergy, the key figure may be expressed in terms of
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the actual Wel,CPR and reference electrical energy consumption of the compressor W ∗
el,CPR. A quasi-stationary

approach is applied for the OPI, where steady-state is assumed over the measurement interval. Consequently,

the electrical power consumption is integrated over each measurement interval and then summed up for the

daily assessment. For the advanced evaluation, it is proposed to define an additional acceptable boundary

given by:

OPIaccRM = 1−

24h∑
t=0h

W ∗
el,CPR

24h∑
t=0h

W acc
el,CPR

(3)

with W acc
el,CPR the acceptable electrical energy consumption of the compressor. As an approach, it is proposed

to compute the reference (adequate) and acceptable compressor power consumption with a model of the

refrigeration machine (see section 4). Since the present method should be widely applicable in practice,

the model should be as general as possible and require few as well as easily obtainable data with state-of-

the-art measuring concepts. Consequently, secondary side temperatures and the evaporator cooling capacity

are specified as model input variables, which are commonly measured in field plants (see section 3). The

reference compressor electrical power consumption Ẇ ∗
el,CPR is calculated by applying reference secondary

side temperatures of the condenser (T ∗
C,in and T ∗

C,out) together with the cooling load Q̇E and cold water

temperatures (TE,in and TE,out) of the actual situation as model input parameters. In this paper it is proposed

to define the reference condenser inlet temperature T ∗
C,in according to:

T ∗
C,in = TC,in −

TC,out − TC,in

ln
(

TC,out

TC,in

) −
(
Tamb + ∆THE +

TC,out − TC,in

2

) (4)

with TC,in and TC,out the secondary side condenser inlet and outlet temperature, respectively. Tamb denotes

the ambient air temperature and ∆THE the temperature difference in the cooler heat exchanger, i.e. cooling

water outlet to ambient air inlet, according to technical standards. For the latter, a stricter value of 6 K

is applied as reported in the technical standard VDMA 24247-8 [8] (see Table 1). Similarly, the reference

condenser outlet temperature T ∗
C,out is proposed in the present work by:

T ∗
C,out = TC,out −

TC,out − TC,in

ln
(

TC,out

TC,in

) −
(
Tamb + ∆THE +

TC,out − TC,in

2

) (5)

Therefore, these reference temperatures represent adequate values which should be achieved if the hot side

hydraulic circuit including the cooler is correctly operated and maintained according to the technical standards.

The acceptable electrical power consumption of the compressor Ẇ acc
el,CPR is determined analogously with the

refrigeration machine model by applying acceptable secondary side temperatures of the condenser (T acc
C,in and

T acc
C,out). These temperatures are calculated similarly to Eq. 4 and 5 by applying the less stricter value for

∆THE according to Table 1.
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Table 1: Temperature differences in dry cooler heat exchangers according to VDMA 24247-8 [8].

Adequate Acceptable

∆THE ≤ 6 K ≤ 8 K

3. Refrigeration plant structure

Fig. 2 shows schematically the typical refrigeration plant structure with cold water distribution and free

cooling together with measured and monitored thermodynamic quantities of refrigeration machines in field

plants. As a case study, an existing refrigeration plant installed in the city of Winterthur, Switzerland is

investigated in the present work. The field plant includes five refrigeration machines (see Fig. 2, subsystem

RM) with 950 kW cooling power each and ammonia (R717) as refrigerant. The subsystem refrigeration machine

is of particular interest in the present work, where measurement data was collected during the year 2018 with

a measuring interval of 5 minutes. Additionally, one free cooling heat exchanger (see Fig. 2, subsystem FC)

is integrated to the system and the refrigeration machines as well as the distribution networks (see Fig. 2,

subsystem CST) are located underground. The hydraulic circuit supplies seven different buildings with cold

water, where the cooling locations (see Fig. 2, subsystem CL) represent air-handling units of ventilation systems

in the different buildings with office space cooling as main application. Additionally, three rooftop coolers (see

Fig. 2, subsystem DC), 12 circulating pumps and two cold water storages are present in the system.

4. Investigated modeling approaches

Figure 2: Simplified piping & instrumentation diagram of a typical refrigeration plant with cold water distribution and a free

cooling module, i.e. heat exchanger. Commonly measured and monitored variables of refrigeration machines in field plants are

shown in italic.
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4.1. Equation-fit based model

The Comstock model has been chosen as equation-fit based model, as it uses commonly measured quantities

in field plants as input variables to determine the compressor electrical power consumption. It is a second-

order polynomial fitting model with 7 fitting parameters ai to determine the compressor electrical power

consumption ẆCPR, which has the following form [9]:

Ẇel,CPR = a1 + a2TE,in + a3TC,in + a4Q̇E + a5TE,inQ̇E + a6TC,inQ̇E + a7Q̇
2
E (6)

with TE,in the evaporator secondary side inlet temperature, TC,in the condenser secondary side inlet tem-

perature and Q̇E the evaporator heat flow rate as input parameters. The coefficients ai reveal no physical

characteristic and are determined from measurement data with the lsqcurvefit curve-fitting algorithm pre-

implemented in MATLAB [10].

4.2. Pyhsical lumped parameter model

In the present work, the modified Gordon-Ng model by Folicao et al. [11] is applied as physical lumped

parameter model, which uses commonly measured quantities in field plants as input variables like the Comstock

model. It is a three-parameter model which has the following form [11]:

Ẇel,CPR −
(
TC,in − TE,out

TE,out

)
Q̇E = a1TC,in + a2

(
TC,in − TE,out

TE,out

)
+ a3

(
Q̇2

E + Q̇EẆel,CPR

TE,out

)
(7)

with TE,out the evaporator secondary side outlet temperature, TC,in the condenser secondary side inlet tem-

perature and Q̇E the evaporator heat flow rate as input parameters. The fitting parameters are determined

with the regression routine regress pre-implemented in MATLAB [10], where a1 denotes the entropy genera-

tion in the refrigeration cycle, a2 the heat losses or gains from the refrigeration machine and a3 the total heat

exchanger thermal resistance.

4.3. Refrigeration cycle based model

A simplified refrigeration cycle based model is applied in the present work, which considers the four

main refrigeration machine components (evaporator, compressor, condenser and expansion valve) in terms of

thermodynamic and heat transfer relations. Fig. 3 shows a schematic of the considered refrigeration cycle as

well as the corresponding log(p)-h-diagram with the different refrigerant states. The thermo-physical properties

of the refrigerant are computed with the tool REFPROP (Reference Fluid Thermodynamic and Transport

Properties Database) [12]. The model uses secondary side temperatures as well as the evaporator cooling load

as input variables and incorporates 6 physical parameters (see Table 2 for details), which are identified from

measurement data. To reduce the number of unknown parameters, the following assumptions apply for the

model:

9
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� steady-state operation,

� negligible heat exchange with the environment,

� negligible pressure losses,

� isenthalpic expansion.

The evaporator and condenser are modeled with the NTU-ε effectiveness method and are considered as heat

exchangers with phase change on the primary side. This represents a special case, where the heat capacity

rates of the condensing vapor or evaporating liquid tends towards infinity (nearly isothermal processes). The

evaporator effectiveness εE is then given by [13, 14]:

ε
E

= 1− e−NTUE (8)

where NTUE denotes the dimensionless parameter number of transfer units of the evaporator, which is defined

as [13]:

NTUE =
(UA)E
cp,EṁE

(9)

with (UA)E the overall heat transfer coefficient times the heat transfer area of the evaporator as well as cp,E

and ṁE the specific heat capacity and the mass flow rate of the secondary side chilled water, respectively.

Figure 3: Simplified schematic of (a) the considered refrigeration cycle and (b) the corresponding log(p)-h-diagram with the

different refrigerant states 1 to 4 and 2s.
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Table 2: Inputs, outputs and parameters of the RC based model.

Type Variables

input TE,in evaporator secondary side inlet temperature

TE,out evaporator secondary side outlet temperature

TC,in condenser secondary side inlet temperature

TC,out condenser secondary side outlet temperature

Q̇E evaporator heat flow rate

output Ẇel,CPR compressor electrical power

parameter ηisen compressor isentropic efficiency

ηel,mech compressor electro-mechanical efficiency

∆Tsh superheating temperature difference

∆Tsc subcooling temperature difference

(UA)E evaporator surface dependent overall heat transfer coefficient

(UA)C condenser surface dependent overall heat transfer coefficient

As the heat capacity and mass flow rate of the secondary side are unknown, their product can be determined

with an energy balance over the evaporator. The evaporation temperature of the refrigerant is then given with

[13, 14]:

Te = TE,in −
∆TE
εE

(10)

where TE,in denotes the evaporator secondary side inlet temperature and ∆TE the secondary side inlet to outlet

temperature difference. Analogously, Eq. 8 to 10 apply also for the condenser by utilizing the corresponding

quantities. With the chosen NTU-ε effectiveness approach, the superheating and subcooling effects in the

heat exchangers are not explicitely treated. However, the error is assumed negligible, as it is presumably

compensated with the UA parameter when calibrating the model. With the evaporation and condensation

temperature, the low and high pressure level, pe and pc (see Fig. 3b), can be determined together with the

refrigerant temperature T1 and T3 after the evaporator and condenser, respectively. Subsequently, the specific

enthalpies and entropies (h1, h3, s1, s3) of the refrigerant can be identified at state 1 and 3. By assuming

an isenthalpic expansion process, the specific enthalpy h4 at state 4 after the expansion valve (see Fig. 3) is

equivalent to the specific enthalpy h3 at state 3. With an energy balance, the evaporator heat flow rate Q̇E is

given by [15, 16]:

Q̇E = ṁr(h1 − h4) (11)

from which the refrigerant mass flow rate ṁr can be determined. The actual compressor input ẆCPR,act is

defined according to [15, 16]:

ẆCPR,act = ṁr(h2 − h1) (12)

11
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where the enthalpy h2 at state 2 after the compressor must be known (see Fig. 3). The compressor isentropic

efficiency ηisen is given by [15, 16]:

ηisen =
ẆCPR,isen

ẆCPR,act

=
ṁr(h2s − h1)

ṁr(h2 − h1)
=
h2s − h1
h2 − h1

(13)

which relates the isentropic compressor input ẆCPR,isen with the actual compressor power ẆCPR,act, where

h2s represents the specific enthalpy at state 2s resulting from an isentropic (i.e. reversibel) compression (see

Fig. 3). By rearranging Eq. 13, h2 can be identified, and finally, the compressor electrical power Ẇel,CPR

determined with [17]:

Ẇel,CPR =
ẆCPR,act

ηel,mech
(14)

where ηel,mech represents the compressor electro-mechanical efficiency to account for mechanical as well as

electrical losses. The condenser heat flow rate Q̇C is given with an overall energy balance over the refrigeration

cycle [15]:

Q̇C = Q̇E + ẆCPR,act (15)

The condenser heat flow rate is unknown in the beginning, guessed for the initial iteration and then

iteratively computed with the described procedure, until the relative error is lower than 0.1%. A cost function,

chosen to be the root-mean-squared error (RMSE, see subsection 4.5) between the modeled and measured

compressor electrical power, is minimized to identify the models parameters (see Table 2). These are initially

determined with a batch gradient-descent routine [18] and then iteratively optimized with the pre-implemented

minimization algorithm fmincon in MATLAB [10]. All parameters reveal a physical characteristic and defining

them as constants is physically not correct (except in steady-state). However, to the best of the authors

knowledge, this simplification is reasonable with the goal of having a widely applicable model which can

be employed independently of the compressor and heat exchanger design, even if no technical details of the

refrigeration machine are available.

4.4. Artifical neural network model

In the present work, a feed-forward ANN model is applied with one input layer, one ouput layer and one

hidden layer (see Fig. 4), which has been determined by trial and error. Like the refrigeration cycle based

model, the ANN has 5 input parameters (secondary side temperatures as well as evaporator cooling load) and

one output parameter, the compressor electrical power Ẇel,CPR. A tan-sigmoid and a linear activation function

is used for the hidden and output layer, respectively. The hidden layer consists of 25 neurons (with bias). The

amount of neurons was identified by iteratively increasing the number until the performance function, chosen

to be the mean-squared error (MSE), converged. The latter is defined as [19]:

MSE =
1

n

n∑
i=1

(ŷi − yi)2 (16)

where yi represents the measured value, ŷi the predicted value and n the number of data points. The number

of neurons is substantially lower than the number of training data points, which reduces the risk of overfitting.

12
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The ANN is designed, set-up and trained with the Deep Learning Toolbox (functions feedforwardnet and train)

pre-implemented in MATLAB [10]. One of the most popular learning method is the back-propagation, which

is a gradient-descent based procedure [20]. In the present work, the Levenberg-Marquardt back-propagation

algorithm is applied for training [21], which is particularly useful for moderate-sized ANNs with the MSE as

performance function [22].

4.5. Model performance metrics

Many different performance indicators exist, which can be applied to evaluate the model accuracy. In the

present work, the following indicators are applied, where yi represents the measured value, ŷi the predicted

value and n the number of data points. One of the most applied index is the root-mean-squared error (RMSE)

defined as [23]:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (17)

The second index is the mean-absolute error (MAE) which has an increased interpretability compared to the

RMSE, which is given by [9]:

MAE =
1

n

n∑
i=1

|ŷi − yi| (18)

The coefficient of variation of the root-mean-squared error (CV or CV-RMSE), also denoted relative root-

mean-squared error (R-RMSE), indicates if the model has a satisfactory prediction ability, where a small value

indicates a high predictive accuracy. The indicator is defined with [9]:

CV =
RMSE

yi
· 100% (19)
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where yi is the average of the measured values. Additionally, the coefficient of determination (R2) is applied,

which is given by [23]:

R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − yi)
2

(20)

This indicator relates the sum of the squared residuals (deviation from the predicted and measured value)

with the total sum of squares. The closer the value of R2 is to 1, the more accurate are the modeled values.

5. Results and discussion

5.1. Refrigeration machine model comparison

Fig. 5 depicts the modeled compressor electrical power consumption of each modeling approach (y-axis) in

function of the measured compressor electrical power consumption (x-axis) with a ±10% error band. Table 3

lists the values of the different performance indicators for each model with respect to the training / validation

and testing data. For the former, measurement data of refrigeration machine 1 (RM1, 12430 data points)

installed in the investigated field plant are applied, where a share of 60 and 40% is used for training and

validation, respectively. Measurement data of refrigeration machine 2 (RM2, 12250 data points) is applied

as testing data set. The measured compressor electrical power ranges from 1 to 195 kW and from 1 to 184

kW in the training / validation and testing data set, respectively, where a large range of different operating

conditions are present (part load as well as full load).

Table 3: List of the RMSE, MAE, R2 and CV values for each modeling approach with respect to the training / validation (RM1)

and testing (RM2) data of the refrigeration machines in the field plant.

Performance indicator
Equation-fit

based model

Phyiscal lumped

parameter model

RM1 RM2 RM1 RM2

root-mean-squared error (RMSE) [kW] 3.23 3.26 3.15 3.20

mean-absolute error (MAE) [kW] 2.36 2.34 2.44 2.55

coefficient of determination (R2) [–] 0.995 0.994 0.995 0.995

coefficient of variation (CV) [%] 6.36 6.34 6.20 6.22

Refrigeration cycle

based model

Artificial neural

network model

RM1 RM2 RM1 RM2

root-mean-squared error (RMSE) [kW] 4.02 4.24 1.12 1.45

mean-absolute error (MAE) [kW] 3.16 3.40 0.80 1.07

coefficient of determination (R2) [–] 0.992 0.991 0.999 0.999

coefficient of variation (CV) [%] 7.91 8.25 2.21 2.82
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Figure 5: Comparison of the measured and modeled compressor electrical power consumption of the refrigeration machines in

the field plant: (a) equation-fit based model, (b) physical lumped parameter model, (c) refrigeration cycle based model and (d)

artifical neural network model.

To start with, the equation-fit based (EF) model reveals with the training / validation data a root-mean-

squared (RMSE) and mean-absolute error (MAE) value of 3.23 and 2.36 kW (see Table 3), respectively, where

the values are reasonable with the given range of the compressor electrical power. Similar values are achieved

with the testing data set, which has not been used for training. The physical lumped parameter (PLP) model

reveals a similar performance as the EF model, where the RMSE and MAE values range depending on the data

set from 3.15 to 3.2 kW and 2.44 to 2.55 kW, respectively (see Table 3). Furthermore, the refrigeration cycle

(RC) based model performs worst among the investigated modeling approaches. This outcome is most likely

due to the constant model parameters, which would vary in reality. A large range of different operating states
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is present in the experimental data of the field plant, which complicates the identification of valid parameters

for all load conditions. The predicted power consumption by the artificial neural network (ANN) model shows

qualitatively a good agreement with measurements when using both data sets (see Fig. 5d). The adequate

performance is also demonstrated with R2 values close to 1 and CV values below 3%, where only approximately

10% of the simulated values are outside of the ±10% error band.

When comparing the different models, all approaches perform only slightly worse with the testing data

set, where the EF and PLP model reveal a similar performance. This outcome is probably due the large

training domain, where all kind of operation conditions are covered. Also, all refrigeration machines are of

the same type and size, whereby most likely all of them reveal a similar operating behavior. The RC model

underpredicts the compressor power significantly in part load conditions (see Fig. 5c), which contributes to

the highest key figure values compared to the other investigated models. All performance indicators reveal

acceptable values except the coefficient of variation, where only the ANN model reaches values lower than 5%,

which is adequate for a practical application of the model [9, 24]. Consequently, the ANN model is applied for

the optimization potential index. By using reference and acceptable temperatures on the condenser secondary

side according to technical standards, the reference and acceptable compressor power consumption can be

simulated (see subsection 2.2).

5.2. Refrigeration machine performance analysis

By applying the method described in subsection 2.2, together with the acquired measurement data from

the field plant and the ANN model, the corresponding OPI of each refrigeration machine is determined. The

analysis should further demonstrate the usage of the evaluation approach and reveal the performance as well

as eventual optimization potentials of the refrigeration machines. According to the available experimental

data, refrigeration machine operation occurred mainly from begin of April to end of October. Fig. 6 shows the

daily optimization potential index (OPI, y-axis) of the subsystem RM in the field plant under investigation in

function of the date (x-axis). The daily OPI is indicated with data points, where the 14-days moving average

is represented by a solid line to evaluate the tendency over time. The green, yellow and red zone depicts the

adequate, acceptable and inadequate operation condition, respectively. The adequate boundary is always at

OPI = 0 according to the key figure definition (comparison of the reference with the actual effort), while the

acceptable limit may fluctuate due to dependencies of various parameters at the different operating points

(comparison of the reference with the acceptable effort). Additionally, missing data points for the acceptable

limit were determined by interpolation, since not all refrigeration machines were running every day.

The optimization potential index of the five different refrigeration machines lies in the range of –0.47 to 0.44

(see Fig. 6a to 6e), whereas the maximum difference in OPI of 0.43 between two chillers (RM4 and RM5) is

reached on June 15th. Refrigeration machine 2 yields the lowest average optimization potential index OPIRM2

of –0.03 (see Fig. 6b), while the key figure scatters the least among all refrigeration machines. The system

operates approximately 80% of the time below the acceptable boundary OPIaccRM2, where 60 and 20% of the

time an adequate and acceptable operation of the subsystem is achieved, respectively. Conversely, refrigeration
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Figure 6: Optimization potential index OPIRM of (a) refrigeration machine 1 to (e) refrigeration machine 5 with adequate

(green), acceptable (yellow) and inadequate (red) operation range. The data points (black crosses) represent the daily OPI values

and the black solid line indicates the 14-days moving average of the OPI.
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machine 5 yields the highest average key figure among all refrigeration machines of 0.02 (see Fig. 6e). In 44 and

29% of the time in the investigated period the technical requirements are exceeded and fulfilled, respectively.

The refrigeration machine was commissioned on April 13th, and therefore, no key figures are present before that

day. The late commissioning of the machine may also be the reason for the differentiated behavior compared

to the other devices. Overall, OPIRM1 to OPIRM5 are at least 73% of the time in adequate and acceptable

operation range. This indicates a reasonable performance of all refrigeration machines and their hydraulic

integration, where mostly little to no optimization potential compared to the state of the art in technology is

present.

Interestingly, by examining the moving average OPIavgRM of all refrigeration machines, they reveal a similar

operation. Analogue tendencies of an increasing and decreasing OPI are observed. Presumably, this is due to

the same type and size of all installed refrigeration machines, e.g. redundancy purposes, where each of them

are operated comparably. Moreover, it is revealed that during the warmer months over the year, i.e. June

to end of August, all refrigeration machines exceed and fulfill the technical requirements. This leads to the

assumption that the chillers are working near to or at the design point and that the hot side hydraulic circuit

is properly operating. The refrigeration machines reveal an increase of the OPI in the transition period, i.e.

April, May and September, where mostly an acceptable operation is present. A further noticeable increase

in OPI is observed in the colder months October to December, where generally an inadequate operation is

present. However, the systems are operating infrequent in this time period and single outliers should not

be overly considered. Most likely, the refrigeration machines are not operating at the design point in the

mentioned time period or the temperature level on the hot side hydraulic circuit is not ideal, where the latter

can result in an increased electrical power consumption of the compressors. According to literature, lowering

the condensing temperature (which is highly influenced by the hot side hydraulic circuit) by 1 K, can reduce

the energy consumption of the refrigeration plant by up to 2.5% as a rule of thumb [25]. The increased OPI

values in the colder months can also be an indicator to make use of free cooling, which is typically active

in this period. Furthermore, errors resulting from the ANN model are possible, since errors in part load

conditions may have an increased effect. However, to the best of the authors knowledge, these errors are

assumed negligible according to the model performance (see subsection 5.1). To finally determine the issues in

the subsystem RM in the mentioned time period a detailed analysis would be necessary, assuming the needed

experimental data is available.

6. Conclusions and outlook

The present work demonstrates successfully the use of refrigeration machine models for the integration in

the optimization potential index. The practical application is shown by applying the method to a real field

installation as a case study. With the introduced additional limits, a more detailed assessment with the evalu-

ation method is achieved and the interpretability of the results is increased. The distinction between adequate

(technical requirements exceeded), acceptable (technical requirements fulfilled) and inadequate (potential for
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improvement) operation according to the state of the art in technology is straightforward and the results are

simple to interpret, which is important in practice. In that way, refrigeration plant operators can track the

refrigeration machine performance on a daily basis and a simple colored indicator could be realized for the

implementation in monitoring systems. To the best of the authors knowledge, an analysis with the described

method (revealing possible optimization potentials in a first step), together with a detailed analysis (identify

the malfunction in detail in a second step and evaluate if adjustments are worthwhile also from an economic

point of view), delivers a target-oriented procedure to analyze the refrigeration plant behavior and to optimize

the system efficiency.

Moreover, all examined models reveal an acceptable performance, where the mean-absolute error ranges

from 0.8 to 3.4 kW. This values are considered reasonable, with the given range of the measured compressor

electrical power consumption. However, only the ANN model reaches coefficient of variation values lower than

5%, which represents an adequate value for a practical application. Consequently, this modeling approach is

applied for the determination of the optimization potential index. The investigated refrigeration machines of

the field plant generally fulfill or exceed the technical requirements. Refrigeration machine 2 performs best

with an average optimization potential index of –0.03. Refrigeration machine 5 performs worst, while being

73% of the time in adequate or acceptable operation. Moreover, all refrigeration machines show potential for

improvement in the colder months. This can be an indicator to make use of free cooling, which is typically

active in this time period.

As an outlook, future work could cover the investigation of models for the other subsystems in the refrig-

eration plant. This can increase the level of detail of the analysis and may helps to assess refrigeration plants

with a reduced amount of installed measuring equipment. In this context, further measurement data should

be collected from other real refrigeration plants, preferably with different cooling capacities and sizes. The

practical application of the evaluation method could then be further elaborated in detail and interrelationships

between various field plants might be identified.
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