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Abstract

Auctions of transmission rights between neighbouring countries are becoming increasingly ac-
tive. In a parallel development, the introduction of market coupling frequently leads to smaller price
differences between such countries. Indeed, if two countries are completely coupled, the price of a
given hour of electricity will be identical in each country, resulting in a price spread of zero. Clearly,
it is important to take this market coupling into account when evaluating transmission rights, as
neglecting it would lead to a significant overvaluation of these rights. In order to address this issue,
we introduce a general regime-switching mechanism that can be applied to many models in the lit-
erature. In particular, we focus on extending the model proposed by Cartea and González-Pedraz
(2012). We describe the model estimation procedure in detail, and compare model and market prices
of European spread options. We observe a dramatic paradigm shift in our data set at the end of the
summer of 2021, and show that this shift has a strong effect on the model parameters. We also see
that the reliable pricing and trading of spread options becomes problematic in such a volatile and
uncertain market environment.
Keywords: Electricity Markets, Interconnectors, Market Coupling, Spread Options, Regime Switch-
ing
JEL: C51, C63, D44, G13, Q41

1 Introduction

European interconnected electricity markets

From the very beginning of its efforts to liberalise the European electricity markets in 1996, the
European Commission has focused on ensuring the development of a secure and integrated market. In
line with this objective, it set up an Expert Group to provide specific technical advice. The European
Commission Expert Group (2017) states in its first report that “Electricity interconnectors are the phys-
ical component of making this market truly European by connecting Member States’ networks offering
capacity for electricity trade, improved security of supply and allowing integration of the rapidly-growing
share of renewable electricity production.” The European Commission set the objective of increasing
the electricity interconnection target to 15% by 2030, this ratio being defined as import capacity over
installed generation capacity in a given Member State.

Since then, the European Commission Expert Group (2018) has made significant changes to this
ratio to take into account the increasing share of renewables in the European energy mix. And in its
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helpful comments and discussions.
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oflatest report, the European Commission Expert Group (2020) gave two main recommendations: “First,

interconnection targets must have a triple dimension, measuring: a) the degree of market integration, b)
the capacity of interconnectors and related internal grid reinforcement for importing electricity, and c)
the capacity of interconnectors and related internal grid reinforcement for exporting renewable electricity.
Second, priority should be given to the more efficient functioning of the European electricity market.”
These broad guidelines for expanding the European grid are all the more important today, when tension
in the grid is exacerbated by a geopolitical situation that is causing Member States to question sources
of energy supply. Furthermore, since volatility and prices have increased substantially in recent months,
the economic value of interconnections is all the greater, justifying significant investments.

The interconnection market is managed by the European Network of Transmission System Operators
for Electricity (ENTSO-E), an association that, together with all European Transmission System Oper-
ators (TSOs), aims to fulfill the mission of: “Ensuring the security of the interconnected power system
in all time frames at pan-European level and the optimal functioning and development of the European
interconnected electricity markets”. More concretely, this means that all market participants have access
to an auction market to buy or sell transmission capacity rights in order to mitigate their risks. For
each border and each horizon, an auction is held a few days before the timeframe delivery. From both a
practical and a theoretical standpoint, this means that we need to consider the topic of option pricing.

Literature review

We now turn to a review of the literature on electricity markets, risk-neutral and real option pricing,
interconnectors, and market-coupling. General introductions and overviews of real options are presented
by Trigeorgis (1996) and Schwartz and Trigeorgis (2001). Clark (2014), Roncoroni et al. (2015) and
Fanelli (2019) give general introductions to financial modelling in commodity markets. Burger et al.
(2014) provide a comprehensive guide for risk management in energy markets.

Many authors model electricity prices using a fundamental, structural approach based on production
inputs. Barlow (2002) develops a supply and demand model to obtain a diffusion model for electricity spot
prices that can account for price spikes, which are an important empirical feature of electricity markets.
Karakatsani and Bunn (2008) study regime-switching dynamics in intra-day electricity markets, and find
that aggregate fundamental price models can help uncover important aspects of market performance,
evolution and agent behaviour. Coulon and Howison (2009) model electricity prices within a fundamental
bid stack framework that takes multiple fuel prices as input factors and addresses capacity or margin
issues such as outages. A well-known drawback of the structural approach is that derivatives pricing
can be slow and cumbersome. Füss et al. (2015) employ a fundamental approach, which nevertheless
allows them to obtain tractable pricing methods, and then examine whether the inclusion of demand
and capacity forecasts affects their model’s pricing performance. Over the years, trading activity has
increased in electricity markets, and this has led to a greater offer of tradeable products, such as new 15-
and 30-minute contracts in addition to the traditional hourly ones. Following this development, Kiesel
and Paraschiv (2017) perform an econometric analysis on a data set of 15-minute intra-day prices from
the German market, and describe how these higher-frequency prices adjust to forecast errors.

Regarding option pricing, Carmona and Durrleman (2003) survey problems associated with the pric-
ing and hedging of spread options. They focus on energy markets in particular, and on the numerical
challenges encountered when working with various popular models. Kiesel et al. (2009) propose a two-
factor model for electricity futures and calibrate it to option prices from the EEX. This model serves as a
good example of the extent to which models can be simplified, compared to structural models, when the
main goal is to perform forward and option pricing. This approach can still be significantly generalised,
as shown by Hinderks et al. (2020), who propose a structural HJM-framework that is consistent with
the initial forward price curve, and in which options on futures can be efficiently priced in the various
model specifications.
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ofMarket coupling and the role played by interconnectors have also been the subject of several studies

in recent years. Parisio and Bosco (2008) introduce a setup with equilibrium bid functions in individual
domestic markets. They study the way these functions are affected when cross-border trading is managed
using the implicit auction method, and analyse the effect of this mechanism on price convergence. With a
particular focus on Italy, Pellini (2012) evaluates the impact on the Italian electricity market of replacing
an explicit auction mechanism with an implicit one, i.e., with market coupling, and shows that the effects
on welfare and social surplus are likely to be positive. Cartea and González-Pedraz (2012) take a real
options approach to determine the value of an interconnector. They study five pairs of neighbouring
European markets, determine the values of the interconnectors for each pair over a one-year period in
their setup, and find that jumps in price spreads can have a significant impact on these values. Füss
et al. (2017) employ a fundamental multi-market model to study electricity spot and derivatives pricing
under market coupling, and analyse how the behaviour of these prices depends on different cross-border
allocation schemes. Kiesel and Kustermann (2016) calibrate their structural model to the French-German
market area and study the effect of market coupling on electricity prices and the value of power plants.
They find that market coupling can lead to lower futures prices in all affected markets, even the cheapest
one, and can also result in volatility spillover effects. Pircalabu and Benth (2017) combine regime-
switching with a copula model for a pair of electricity prices. Each hour is considered independently of
the others, and pricing is performed using a Monte Carlo simulation. Their empirical study is based on
four pairs of market areas, for which they find significant evidence of tail dependence in the interconnected
areas considered. Parisio and Pelagatti (2019) focus on the market coupling between Italy and Slovenia,
and assess the degree of integration between these markets arising because of this policy. They find that
despite this existing link, the two markets are still far from being strongly integrated. Cartea et al. (2019)
analyse an investor’s optimal strategy when trading electricity contracts in two interconnected locations.
They show that as his aversion to ambiguity increases, his trading activity, and consequently his inventory
exposure, decreases in both locations. Christensen and Benth (2020) introduce regime-switching in their
model for potentially coupled electricity prices using a latent uni-variate process that allows for seasonal
behaviour. The parameters of this process are estimated from given market data via particle filtering.
They show that their model can be used for the analytical pricing of forwards and spread options, and
illustrate its performance in a case study of the French and German markets. Schrader and Benth (2022)
consider the new NordLink cable between Germany and Norway, and analyse the effect that the exchange
of power production between two countries can have on carbon emissions. They conclude that the cable
can be used as an effective way to reduce carbon emissions by exporting surplus German renewable
production to Norway on windy days, and importing surplus Norwegian energy production to Germany
on non-windy days.

In this article, we take the Cartea and González-Pedraz (2012) modelling framework as our point
of departure, and set out from there to take the aforementioned developments in market coupling and
interconnectors into account. One such development is the finer granularity in electricity markets. Cartea
and González-Pedraz (2012) consider the means of day-ahead prices (also called spot prices) over peak
and off-peak hours when pricing interconnector options. In practice, however, these options are strips of
individual options for each hour of the day. This distinction is important, because the dynamics of the
hourly spreads are quite different from the dynamics of the spreads of mean spot prices. In fact, due to
the physical constraints of the connection, the hourly spread is either equal to zero if there is enough
capacity to allow the same price in the two locations, or different from zero if the lines are overloaded. To
account for these network constraints, we propose a formulation of the problem with regime-switching
for the underlying hourly spreads. We note that our reduced-form model is highly tractable and allows
for robust parameter estimation. As we will show, prices of interconnector options can be computed
in closed-form. Another even more recent development is the dramatic paradigm shift in European
electricity markets that began in the summer of 2021. Drawing on our data set, which starts in 2017,
we illustrate the strong effect of this shift on the model parameters. Finally, we consider the issues of
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ofreliably pricing and trading spread options in such a volatile and uncertain market environment.

Main contributions

Our main contributions are:

• We increase the resolution from daily (peak, off-peak) electricity prices to hourly prices, and add
regime-switching to reflect coupled and decoupled hours.

• We perform a simulation exercise to demonstrate that our regime-switching model successfully
captures the important stylised features of intermittently connected markets.

• We show that our model can adapt to the new market paradigm of high prices, uncertainty and
volatility.

• We find that the pricing of spread options works well in a “normal” market environment. However,
in a highly volatile environment, both auction and model ex ante spread option prices may turn
out to lie far from ex post realised payoffs.

Structure of the article

The remainder of the article is organised as follows. In Section 2, we describe the current European
interconnector market. In Section 3, we present our model, which is based on the Cartea and González-
Pedraz (2012) model and a 2-state Markov process that describes regime-switching between coupled and
decoupled periods in the market. Section 4 explains how to estimate the model parameters for given
hourly power prices from various European electricity markets. In Section 5, we show that our model can
adapt to the new market paradigm that began in early autumn, 2021. Section 6 concludes the article.
In Appendix A, we review Fourier transform methods for the pricing of European spread options.

2 The European Interconnector Market

2.1 An Interconnected European Electricity Market

The interconnection market in Europe allows market participants to buy or sell flows of energy between
two locations in order to exploit price differentials between locations. These locations are delimited in
Europe by the different Transmission System Operators (TSOs) and can be a country or a larger bidding
area. For example, France (FR) has interconnections with Belgium (BE), Switzerland (CH), Germany
(DE), Spain (ES) and Italy (IT).

Before the introduction of this market, a trading member had to first reserve cross-border capacity,
before transporting the purchased electricity in a second step. The interconnection market simplifies the
process via implicit auctions in which market participants simply bid for electricity on the exchange.

This auction market comprises both intra-day products and long-term options. When a participant
buys an option in the DE→FR interconnection, for example, he buys the right to transit energy for each
hour of the period considered from Germany to France. When the flux is financial, the payoff of such an
option is:

Payoff =
∑

h∈H
max

(
SA(h)− SB(h)−K, 0

)
, (1)

where K is the strike price, Sc(h) is the spot price for each country c = A,B at a given hour h, and
H is the set of all hours in the period. The price of such an option is a function of the dynamics of
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Figure 1: Price differences between France and Germany since 1 January 2017.

the underlying spread. Figure 1 displays the hourly spread SFR,DE = SFR − SDE used to value the
DE→FR interconnection. We observe that during many hours in this period, electricity prices were
higher in France than in Germany, leading to positive price spreads.

When electricity is sent from one country to another, the ensuing spread can be denoted in two
ways that must not be confused: DE → FR means that electricity is sent from Germany (DE) to
France (FR), which means that electricity is bought in DE and sold in FR, which leads to a spread of
SFR,DE = SFR − SDE . In the other direction, FR → DE means that electricity is sent from France to
Germany, which means that electricity is bought in FR and sold in DE, leading to the opposite spread
of SDE,FR = SDE − SFR.

2.2 Market Coupling and Decoupling

In Europe, the day-ahead price is fixed by an algorithm called Euphemia and powered by European
electric power exchange EPEX Spot. The algorithm allows us to take into account the Price Coupling
Regions (PCR) by optimising the maximal welfare with the interconnection constraints. The efficiency of
market coupling is proven by an increasing price convergence between market areas. As a consequence,
when the interconnection lines between two countries for a given hour are not saturated, the price is the
same for both, which means that the spread is zero. In this case we say that the market is coupled. In
contrast, when there is insufficient capacity and prices differ, we say that the market is decoupled.

If we take Figure 1 and zoom in over a shorter period, for example May 2018, as shown in Figure 2,
we observe that there are many occasions when the hourly spread is zero. In this example, 20% of the
DE and FR hours are coupled, with an ensuing price spread of zero.

This situation is similar for other European interconnections. Table 1 shows German (DE) hourly
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Figure 2: Hourly price differences between France and Germany in May 2018.

market price spreads with neighbouring countries for 24 May 2022 from EPEX Spot. We can see that
at the beginning of the day, in hours 1 to 3, all German spreads are different from zero, meaning that
Germany is completely decoupled from its neighbours. Then, for most of the day, some countries are
coupled with Germany, while others are not. Finally, in hours 21 to 23, all German spreads are equal to
zero, meaning that Germany is completely coupled with its neighbours.

The situation can change if we consider daily rather than hourly price spreads. To illustrate the
different behaviour of hourly and daily spreads in the market, Figure 3 shows the daily spread in the
first half of 2018. Due to the averaging of the hourly prices over the day, and since there are virtually no
days on which all 24 hours are coupled, the coupled regime disappears, and only the decoupled regime
is observed. The periods over which price spreads are calculated when determining the payoff of an
interconnection option are therefore an important contractual specification.

To understand the importance of these periods, let us take a closer look at the price spreads observed
in the market between Germany and Poland shown in Table 1. The sum of the spreads over the eight
peak hours from 9 to 20 in column DE→PL is −121.56 (in EUR/MWh), or −10.13 per hour, on average.
For the remaining off-peak hours from 1 to 8 and 21 to 24, the sum of the spreads is −155.74, or −12.98
per hour. Finally, over the whole day, the total base spread is −277.30, or −11.55 per hour. In all three
cases, i.e., peak, off-peak and base load, the payoff of an interconnection option with strike K = 0 is equal
to zero, since the three spreads are negative. This changes, however, if we look at an interconnection
option whose payoff is based on each hour individually. The spreads for the hours 1 to 3 and then again
14 to 20 are positive, and when we calculate the payoff of this hourly option using equation (1), we
obtain a positive payoff of EUR 186.02. Table 2 compares these different option payoffs for the couple
DE→PL just discussed, as well as the other country couples of Table 1. The couple DE→PL stands out,
of course, because of its pronounced alternation between positive and negative price spreads.

6
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HOUR DE → AT DE → BE DE → FR DE → NL DE → PL DE → CZ

1 20.97 69.21 80.93 137.93 16.34 16.34
2 21.25 48.02 82.91 93.75 21.25 21.25
3 23.61 42.88 72.68 75.93 15.55 15.55
4 17.46 33.28 48.64 41.76 0 0
5 8.35 20.2 29.64 25.43 0 0
6 0 0 0 0 -37.58 0
7 0 0 0 0 -60.36 0
8 0 0 0 0 -95.82 0
9 0.66 -2.04 2.86 -1.88 -89.47 0.66
10 0 0 0 0 -70.51 0
11 4.6 -3.11 0.13 -3.7 -60.27 4.6
12 16.64 0 6.11 0 -32.75 16.64
13 19.54 0 50.83 0 -1.44 19.54
14 32.45 0 50.69 0 11.92 32.45
15 35.5 0 50.9 0 32.7 35.5
16 15.86 0 10.95 0 15.86 15.86
17 7.6 -4.28 0 -4.28 7.6 7.6
18 13.57 -7.65 -1.71 -6.19 23.52 23.52
19 0 0 0 0 10.83 0
20 0 0 0 0 30.45 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 -15.12 0

Table 2: Interconnection option payoffs for 24 May 2022

Method DE → AT DE → BE DE → FR DE → NL DE → PL DE → CZ

Peak 146.42 0 82.91 0 0 156.37
Off-Peak 91.64 213.41 314.80 374.80 0 53.14

Base 238.06 196.33 485.56 358.75 0 209.51
Hourly 238.06 213.41 487.27 374.80 186.02 209.51
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Figure 3: Daily price differences between France and Germany in the first half of 2018. The daily spread
was only equal to zero on 16 April 2018.

2.3 Electricity Spreads and Spread Options

Let SA(t) and SB(t) at time t be electricity spot prices in locations A and B, respectively, and define
their spread as:

SA,B(t) = SA(t)− SB(t)

namely, the difference between these two prices. Let r be the continuously-compounded risk-free interest
rate. The model price of a single call option with strike KA,B at an hour T is given by the discounted
expected payoff:

CA,B(t, T,KA,B) = e−r(T−t)Et

[
max(SA,B(T )−KA,B , 0)

]
,

and the value of the monthly option is then given by:

CA,B
M (t,KA,B) =

TN∑

T=T1

CA,B(t, T,KA,B),

where T1,..., TN are the hours of delivery in month M . In practice, the strike KA,B is usually set to
zero. However, we consider the more general case of any strike value here. Non-zero values of the strike
could be taken to account for possible interconnection costs, for example.

As usual in electricity markets, option prices are quoted per MWh. To obtain the actual price of the
option, this price needs to be multiplied by the number of hours in the month.

If the characteristic function of the spread SA,B(T ) is available, but the probability density is not, op-
tion valuation theory allows us to use the Fourier-transform (see Carr and Madan (1999)) to numerically
compute the price of such a spread option.
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3.1 The Cartea-González-Pedraz Model

We begin the description of the interconnector model by recalling the main features of the Cartea and
González-Pedraz (2012) model. They propose the following model for electricity spreads under the
physical probability measure P. Let (Ω,A,P,F) be a filtered probability space. Let SA(t) and SB(t) be
electricity spot prices at time t in locations A and B, respectively, and define their spread as:

SA,B(t) = SA(t)− SB(t), (2)

i.e., the difference between these two prices. Cartea and González-Pedraz (2012) assume that this spread
follows an arithmetic model given by:

SA,B(T ) = f(T ) +X(T ) + Y (T ). (3)

The seasonality function f describes a deterministic seasonal pattern. The process X is an Ornstein-
Uhlenbeck process given by:

X(T ) = X(t)e−α(T−t) +

∫ T

t

e−α(T−s)σ(s)dB(s) (4)

with mean-reversion speed α > 0 and volatility σ > 0, and where B = (Bt)t≥0 is a standard F-adapted
Brownian motion under P. The process Y is a zero-mean-reverting pure jump process given by:

Y (T ) = Y (t)e−β(T−t) +

∫ T

t

e−β(T−s)dJ+(s) +

∫ T

t

e−β(T−s)dJ−(s). (5)

with mean-reversion speed β > 0 and jump-intensities λ+, λ− ≥ 0. In the general formulation of the
model, these jump-intensities can be time-dependent. Here, for simplicity and better tractability, we
assume that these parameters are constant.

The compound Poisson processes J+, J− are given by:

J+(t) =

N+(t)∑

n=1

j+n , (6)

J−(t) =
N−(t)∑

n=1

j−n , (7)

where N+(t), N−(t) are Poisson processes with intensities λ+andλ−, respectively. The variables j+ and
j− denote positive and negative jumps, which are exponentially i.i.d. with parameters η+, η− > 0. The
expected jump sizes are therefore 1/η+ and 1/η−.

As is shown in Cartea and González-Pedraz (2012), the characteristic function ϕT = ϕSA,B(T ) of

SA,B(T ) is given for u ∈ R by:

ϕT (u) = exp

(
iuh(T )− 1

4α
u2σ2(1− e−2αT )

)
·
(
η+ − iue−βT

η+ − iu

)λ+/β

·
(
η− + iue−βT

η− + iu

)λ−/β

, (8)

with
h(T ) = f(T ) + e−α(T−t)X(t) + e−β(T−t)Y (t).

Note that ϕT has singularities at u = −iη+ and u = iη−.

9
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Let S = {0, ...,m− 1} be a finite state space for a Markov process M = (Mt)t≥0 in continuous time on
a probability space (Ω,A,P). Let the m ×m-matrix Q = (qij) , qij ∈ R ∀i, j ∈ S, satisfy the following
conditions:

1) qij ≥ 0 ∀i, j ∈ S with i ̸= j; qii ≤ 0 ∀i ∈ S,

2)
∑

j∈S qij = 0 ∀i ∈ S, (rows sum to zero)

3) 0 < maxi∈S |qii| < ∞.

The matrix Q is called the infinitesimal generator of the process M .

The transition probability matrices P (t) are given for t ≥ 0 by the matrix exponential:

P (t) = etQ =
∞∑

n=0

(tQ)n

n!
. (9)

The stationary distribution is defined by πQ = 0. It also satisfies πP (t) = π for all t > 0.

Assume that m = 2,S = {0, 1}, i.e., that the Markov process M has the two states 0 and 1. In
this case, we simplify the notation and refer to the off-diagonal elements of Q as q0 and q1, so that
q00 = −q0, q01 = q0, q10 = q1, q11 = −q1. We assume that 0 < q0, q1 < ∞. The generator Q is given by:

Q =

(
q00 q01
q10 q11

)
=

(
−q0 q0
q1 −q1

)
.

Using Kolmogorov’s backward equation (Stroock, 2005):

P ′(t) = QP (t),

with:

P (t) =

(
p00(t) p01(t)
p10(t) p11(t)

)

it can be shown that:

p00(t) =
q1

q0 + q1
+

q0
q0 + q1

e−(q0+q1)t, (10)

p01(t) =
q0

q0 + q1
− q0

q0 + q1
e−(q0+q1)t, (11)

p10(t) =
q1

q0 + q1
− q1

q0 + q1
e−(q0+q1)t, (12)

p11(t) =
q0

q0 + q1
+

q1
q0 + q1

e−(q0+q1)t. (13)

Note that we have p00(t) + p01(t) = 1 and p10(t) + p11(t) = 1, which is natural from a Markov chain
point of view. Note also that for the sum of the diagonal probabilities we have the condition:

p00(t) + p11(t) > 1, (14)

and for the sum of the off-diagonal probabilities we have the condition:

p01(t) + p10(t) < 1. (15)

10
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(15), then the generator Q can be calculated from it as follows. This will be useful for estimating the
parameters of the Markov process M .

Adding equations (11) and (12) gives:

p01(t) + p10(t) = 1− e−(q0+q1)t,

and therefore:

q0 + q1 = −1

t
ln(1− p01(t)− p10(t)). (16)

Now, substituting (16) in (11) and (12), respectively, gives:

q0 = −1

t
ln(1− p01(t)− p10(t)) ·

p01(t)

p01(t) + p10(t)
(17)

q1 = −1

t
ln(1− p01(t)− p10(t)) ·

p10(t)

p01(t) + p10(t)
(18)

The stationary distribution, satisfying πQ = 0, is given by π = ( q1
q0+q1

, q0
q0+q1

).

3.3 An Interconnector Model with Regime Switching

We now combine the Cartea and González-Pedraz (2012) model of Section 3.1 with the Markov regime-
switching process of Section 3.2.

Let S0 = (S0,t)t≥0 and S1 = (S1,t)t≥0 be two stochastic processes defined over the same probability
space as the Markov process M . Further, we assume that S0 and S1 are both independent of the process
M . We define the regime-switching process S as:

S(t) = S0(t)I{Mt=0} + S1(t)I{Mt=1}. (19)

The characteristic function ϕST
= ϕT of S(T ) is then given for u ∈ R by:

ϕT (u) = E[eiuS(T )]

= P(MT = 0)E[eiuS(T )|MT = 0] + P(MT = 1)E[eiuS(T )|MT = 1]

= P(MT = 0)E[eiuS0(T )] + P(MT = 1)E[eiuS1(T )]

= P(MT = 0)ϕ0,T (u) + P(MT = 1)ϕ1,T (u),

where ϕ0,T and ϕ1,T are the characteristic functions of S0(T ) and S1(T ), respectively.

The probability vector π = (π0, π1), with 0 < π0, π1 < 1 and π0+π1 = 1, of the stationary distribution
of the Markov chain satisfies the relationship:

πP (t) = π,

or, equivalently,
πQ = 0.

For the generator Q as given above, we obtain:

π =

(
q1

q0 + q1
,

q0
q0 + q1

)
.
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We now come to the specification of the two regimes in our model. As we described in Section 2, the
market switches between two regimes in which the spread SA,B(t) = SA(t) − SB(t) between electricity
prices in two locations A and B at time t, as defined in equation (2), is either equal to 0 or different
from 0. These are our regimes 0 and 1. We therefore specify that the process S0 is constant and equal
to 0, and that the process S1 is the one proposed by Cartea and González-Pedraz (2012), i.e.:

S0(t) ≡ 0, (20)

S1(t) = f(T ) +X(T ) + Y (T ), (21)

where S1(t) = SA,B(t) is the process given in equation (3).

3.4 Spread Option Pricing

In the case of a monthly interconnection product, the option gives the right to dispatch electricity from
location A to location B at each hour of the considered month. Thus the valuation of interconnection
capacity between two locations is equivalent to evaluating a strip of European-style options, where the
underlying is the spread price between the two countries. Let r be the continuously-compounded risk-free
interest rate. The price at time t of a call option on the spread SA,B at a single hour T is given by:

CA,B(t, T,KA,B) = e−r(T−t)Et

[
max(SA,B(T )−KA,B , 0)

]
.

It follows that the value of a monthly call option on the spread SA,B during the month M is then given
by:

CA,B
M (t,KA,B) =

TN∑

T=T1

CA,B(t, T,KA,B),

where T1,..., TN are the hours of delivery in this month.

Using the model’s characteristic function ϕ, the price of the call option can be evaluated as:

CA,B(t, T,KA,B) = − 1

2π

∫ ∞−iα

−∞−iα

e−izK 1

z2
ϕ(z)dz.

These results are well-known and stated for completeness in Appendix A.

We also have a parity between call options on spreads in opposite directions with opposite strikes.
Let CA,B(t, T,K) and CB,A(t, T,−K) be two call options with the same maturity T on the opposite
spreads SA,B(T ) and SB,A(T ) with opposite strikes K and −K. Their present values are then given by
the expressions:

CA,B(t, T,K) = e−r(T−t)Et

[
max(SA,B(T )−K, 0)

]
,

CB,A(t, T,−K) = e−r(T−t)Et

[
max(SB,A(T ) +K, 0)

]
.

Observe that the call option CB,A(t, T,−K) with strike−K can also be seen as a put option PA,B(t, T,K)
with strike K, since:

Et

[
max(SB,A(t) +K, 0)

]
= Et

[
max(K − SA,B(t), 0)

]
.

We therefore have, from standard call-put parity:

CA,B(t, T,K)− CB,A(t, T,−K) = e−r(T−t) · (Et

[
SA,B(T )

]
−K).

12
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4.1 Our Data Set

Our data set covers the period from 1 January 2017 to 31 August 2022 and comprises three types of
data:

1) European hourly electricity prices from the European Power Exchange (EPEX-SPOT):
https://www.epexspot.com/en/market-data

2) European monthly futures prices from the European Energy Exchange (EEX):
https://www.eex.com/en/market-data/power/futures

3) European monthly auction prices from the Joint Allocation Office (JAO):
https://www.jao.eu/auctions/

Note that while the historical data from the EPEX-SPOT are only provided on a subscription basis,
data from the EEX and JAO are public and freely available on the internet websites given above.

The behaviour of electricity prices in European wholesale markets has changed significantly in recent
years. Figure 4 illustrates this change, beginning around September 2021, with the example of the
DE→FR spread between France and Germany. Post-covid Chinese economic revival, the European gas
crisis caused by the war in Ukraine, low electricity production in France due to maintenance issues with
nuclear power plants, an especially hot summer in 2021 - all of these factors have wrought profound
changes in the equilibrium of commodity markets and have led to large increases in price levels and
market volatility.

Our article does not attempt to provide a detailed explanation of the new fundamentals underlying
this paradigm change. However, in order to estimate our model, we need to take these changes into
account. We therefore split our data set into two parts:

1) from 1 January 2017 to 31 August 2021;

2) from 1 September 2021 to 31 August 2022.

From now on, we also refer to these two parts of our original data set as data set 1 and data set 2,
respectively, in order to simplify our terminology.

Table 3 summarises the model parameters to be estimated. Note that we estimate them in the order
given in the table, from top to bottom.

Parameter Role
q0, q1 infinitesimal generator Q of Markov regime-switching process M
λ+, η+ intensity and inverse mean of upward jumps J+

λ−, η− intensity and inverse mean of downward jumps J−

α, σ mean-reversion and volatility of Ornstein-Uhlenbeck process X
β mean-reversion of pure jump process Y

Table 3: Model Parameters.
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Figure 4: Spread DE→FR before and after September 2021.

4.2 Specifying and Estimating the Seasonality Function

It is well known that electricity prices are seasonal at several frequencies, such as daily, weekly, monthly,
and yearly. Accordingly, seasonality functions are an important topic in the literature; see, for example,
Lucia and Schwartz (2002) and Cartea and Villaplana (2008) for discussions and various specifications.

Seasonality is less of an issue for electricity price spreads between neighbouring countries, the case
considered in this article. Most of the European countries studied here are in the same time-zone and
share many consumption patterns. Seasonal fluctuations therefore tend to cancel out to a large degree.
And of course, as periods of market coupling increase between countries, the importance of seasonality
diminishes even further, since it plays no role during coupled periods.

Moreover, the market only provides information on forward prices, which are given at a monthly
granularity at the moment of the auctions. Therefore, when pricing monthly spread options, we only
have a constant view of the spread for the given period. To be consistent with the pricing in the
calibration procedure, we therefore shift the process by a constant whose value is simply given by the
mean of the historical spread process in the data set. Since we account for regime switching of market
coupling, we only consider this component during decoupled periods.

As described above, when we price spread options, we will use the market forward price that is
appropriate for the option period. For example, when pricing monthly spread options, we will take the
difference of the two monthly forward prices of the countries in question as input. In our model, we have:

f(T ) = π0f0(T ) + π1f1(T ).

We assume f0(T ) = 0 for all T . Therefore, in order for the model to reproduce the market forward f(T )
for time T , we set:

f1(T ) =
1

π1
f(T ).

14
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We continue the description of our multi-step estimation procedure by estimating the transition proba-
bilities of the Markov process M introduced in Section 3.2.

First we need to identify the switches between the two regimes represented byM(t) = 0 andM(t) = 1.
This step allows us to estimate the infinitesimal generator Q of the Markov process M . Note that this
first step is directly based on the spread data and is therefore simple and stable.

Let Ni→j denote the number of times the process switches from state i to state j ̸= i, and let Ni

denote the number of steps spent in state i. We can then estimate the 1-hour transition probabilities as:

p01 = p01(1 hour) =
N0→1

N0
, (22)

p10 = p10(1 hour) =
N1→0

N1
, (23)

which, using equations (17) and (18), gives us the estimates:

q0 = − ln(1− p01 − p10)
p01

p01 + p10
, (24)

q1 = − ln(1− p01 − p10)
p10

p01 + p10
, (25)

for the entries q0 = q01 = −q00 and q1 = q10 = −q11 of the matrix Q. Note that the coefficient 1
t = 1

in this case, since our unit of time is one hour. This estimation of the parameters of the infinitesimal
generator Q completely describes the behaviour of the Markov process M over time.

Interconnection DE→FR
Start Date 01/01/2017 01/09/2021
End Date 31/08/2021 31/08/2022
p01(1 hour) 0.1760 0.1817
p10(1 hour) 0.1278 0.1109

q0 0.2098 0.2150
q1 0.1523 0.1312

Table 4: Transition probabilities of the Markov process M .

Table 4 shows the parameters describing the Markov process M . In the first data set, the probability
of switching from the coupled regime 0 to the uncoupled regime 1 is estimated to be p01 = 17.60% per
hour. This means that the expected length of staying in the coupled regime is p−1

01 = 5.68 hours. For the
second data set, this length decreases slightly to 0.1817−1 = 5.50 hours. In the other direction, in the
first data set, the probability of switching from the uncoupled regime 1 to the coupled regime 0 is 12.78%
per hour, which translates into an expected length of staying in the uncoupled regime of 0.1278−1 = 7.82
hours. For the second data set, this length increases slightly to 0.1109−1 = 9.02 hours. Note that the
transition probabilities remain relatively stable over the two data sets. We will see shortly that this is
not at all the case for most of the other model parameters.

Figure 5 highlights the times at which regime switching occurs for the price spread between France
and Germany in the first days of January 2020. The plotted spreads are in line with the random behaviour
of the regime switching described in Table 4. In the first week, four longer periods of coupled markets
can be observed, as well as one long period of decoupled markets. However, towards the end of the
period shown, there is more frequent regime-switching, and only one slightly longer period of uncoupled
markets can be seen.
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Figure 5: Identification of regime switching moments (spread DE→FR).

4.4 Detecting Jumps and Estimating their Intensity and Distribution

The goal of this section is to estimate the parameters λ+, η+ and λ−, η−, which describe the intensity and
inverse mean of the upward and downward jumps J+ and J− given in equations (6) and (7), respectively.
The remaining mean-reversion parameter β, needed to completely describe the pure jump process Y given
in equation (5), will be estimated in the following Section 4.5.

In the previous Section 4.3, we identified the state of the Markov process M at all times (hours) t in
our sample. We remove all t for which M(t) = 0, i.e., S(t) = S0(t) = 0, from our spread series S(t) in
order to focus on the estimation of the parameters of the process S1 from now on.

In this new, reduced series, however, we want to avoid counting spurious jumps that result from
gluing the series together after having taken out an interval during which S(t) = 0. For example, let us
assume that the last time the series is in state 1 before a regime switch 1 → 0 is ti, and then again the
first time the series is in state 1 after a regime switch 0 → 1 is tj ; then, after removing the data points
for times ti+1, ..., tj−1 from our series, we tag the price move from S(ti) to S(tj) as an invalid candidate
for a jump.

Figure 6 illustrates the process with these points removed. In the upper graph, we have marked in
red the “false” jumps, caused by regime-switching, that we wish to exclude from the estimation of the
jump process Y . In the lower graph, we show the sequence of price spreads for which we are actually
going to estimate the jump parameters λ+, η+ and λ−, η−.

Detecting potential jumps

To detect big price movements and potential jump-times, and then determine whether such a big
movement is really due to a jump or whether it is only an effect of mean-reversion, we follow the
methodology presented in Cartea and González-Pedraz (2012).
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Figure 6: Process netted of points from regime switching.

We apply a recursive semi-parametric filter to identify the calendar position of the jumps in the price
spread. The procedure identifies the hypothetical arrival of a jump when the spread difference deviates,
in absolute value, by more than three standard deviations from its mean. It is therefore dependent on
the length of the estimation time-windows.

Figure 7 highlights the jumps we identified for the DE→FR spread in the first half of 2020, during
the estimation procedure for the first part of our data set (from 01/01/2017 to 31/08/2021).

Estimating jump intensities and jump size parameters

Once we have identified all up- and down-jumps in our time series, we need to identify the respective
intensities λ+ and λ− of the Poisson processes N+ and N− appearing in the jump process Y . We do this
by determining the frequency with which the jumps occur. We then fit two exponential distributions for
the size of up- and down-jumps in the jump process Y .

The price spread is highly unbalanced in the second part of our data set, with French electricity
prices almost always lying above German ones. Consequently, our estimation procedure does not detect
any downward jumps; downward moves of the spread are entirely due to mean-reversion. We conclude
that the jump process Y only allows for upward jumps.

Our results are shown in Table 5. Regarding the first part of our data set, we see that the frequency
λ+ of positive jumps is higher than the frequency λ− of negative jumps. Also, the average size of positive
jumps is 0.0433−1 = 23.09 and slightly greater in magnitude than the average size of negative jumps,
0.0461−1 = 21.69. This observation is exacerbated in the second part of our data set, where all jumps
are positive, and their size is now 0.0030−1 = 333.3 on average.

Figure 8 shows the probability density functions of the exponential distributions for the values of η+

and η− given in Table 5. It can be clearly seen that the density for the second data set has a much fatter
tail to the right.

17



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 7: Jumps identified in the estimation procedure.

Interconnection DE→FR
Start Date 01/01/2017 01/09/2021
End Date 31/08/2021 31/08/2022

λ+ 0.0114 0.0031
λ− 0.00252 0.0
η+ 0.0433 0.0030
η− 0.0461 −

Table 5: Parameters of the compound Poisson processes J+ and J−.
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Figure 8: Exponential densities for both data sets.

4.5 Estimating the Mean-Reversion Speeds and Volatility

In order to conclude our estimation of the model parameters, we need to estimate the parameters α and
σ, which describe the Ornstein-Uhlenbeck process X given by equation (4), as well as the parameter β,
which describes the mean-reversion speed of the pure jump process Y given by equation (5).

We proceed by minimising the mean of the squared differences between observed and modelled
spreads. There is, however, a difficulty, since it is not possible to observe the realised time series followed
by X and Y individually, but only their sum X+Y . We therefore first fix the mean reversion parameter
β of the process Y , and then apply the least-squares method to find the parameters α and σ of the
process X implied for this value of β. We then repeat this step until we find the optimal value for the
parameter β, and therefore the overall optimal triplet α, σ and β.

Table 6 shows the results for the spread DE→FR for both calibration windows. The mean reversion
speeds α and β are relatively stable over the two data sets. However, the estimated volatility σ of the
second time window is almost 10 times higher than that of the first one. We will see in Section 5.1 below
that similar, if not quite so extreme, increases in volatility also hold for other pairs of neighbouring
countries.

Interconnection DE→FR
Start Date 01/01/2017 01/09/2021
End Date 31/08/2021 31/08/2022

α 0.060 0.083
σ 4.506 43.632
β 0.100 0.100

Table 6: Mean reversion and volatility parameters of the processes X and Y .
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The first part of our results illustrates how dramatically electricity market conditions in Europe changed
in 2021, and demonstrates that our model is capable of adapting to this new environment of high prices
and volatility. The second part compares auction prices of monthly spread options from the past years
to traded futures quotes and model prices for these options, and also to realised spreads during these
periods.

5.1 A New European Paradigm

We begin with the regime-switching model estimated over data set 1, i.e., the period from 1 January
2017 to 31 August 2021. In Figure 9, we compare the realised price spread to a path that was simulated
with the model. We see that our regime-switching model successfully captures the important stylised
features of intermittently coupled markets:

1) two regime states, representing coupled and decoupled markets;

2) up- and downward jumps in the spread process;

3) a strong mean-reversion characteristic.

Figure 9: Comparison of realised and simulated price spreads for data set 1.

We also estimate the regime-switching model over data set 2, i.e., the period from 1 September 2021
to 31 August 2022. Our estimation procedure reveals a significant increase in the spread volatility σ.
Table 7 presents estimated volatility parameters for all interconnections with Germany for both data
sets. We see that the volatility of the spread has been multiplied by factors ranging from close to 3 (DE
→ BE, DE → NL, DE → PL) to almost 10 (DE → FR).
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data set DE → AT DE → BE DE → FR DE → NL DE → PL DE → CZ

1 3.022 6.543 4.506 3.676 11.584 3.010
2 14.060 17.306 43.632 11.021 33.980 14.283

To graphically show this change in the market, Figure 10 presents three sample paths simulated for
the first data set estimation on the left, and for the second data set on the right. We intentionally keep
the same scale on both sides in order to highlight the radically different spread levels prevalent in the
two data sets. The new paradigm in the electricity market can be clearly observed. Before the summer
of 2021, as can be seen in the historical spreads on the top left, price spreads mostly stayed in the range
of ±50 EUR, with a few drops to around −100 EUR. After this time, as can be seen on the top right,
price spreads frequently reach levels of 300 EUR, and the tenfold increase in volatility is easily visible.

Furthermore, the simulations show that our model is able to capture the unbalanced spread that we
observe in the historical data. Note that although the estimated downward jump intensity λ− is equal to
zero for the second data set, we still observe negative spreads in the simulations on the right-hand side
of Figure 10. This is because the continuous part of the spread process, X, is not defined individually
for negative and positive spreads, and can therefore in itself lead to negative spreads.

5.2 A Comparison of Traded and Real Options

Table 8 compares market and model prices of monthly spread options for the country couple (DE, FR)
in both directions. The market prices were obtained from the Joint Allocation Office (JAO) “Auctions”
website. We also report monthly futures prices from the European Energy Exchange (EEX) for the
closing date of the JAO auction for reference, together with their difference or spread. It is important
to note that these spread option prices are auction prices, obtained from a 3-day bidding period and
published on the closing date. The link between option prices and futures prices is therefore less direct
here than in situations where option prices are real-time trading prices, and futures and options can be
traded in synchrony.

Tables 9 and 10 show the profit-and-loss results of a trading strategy that simply makes bids for
monthly spread options in the JAO auction at the model price. We assume here for simplicity that our
bid does not alter the final auction price, which is reasonable if the volume is low compared to the total
volume of interconnection exchange. Table 9 shows the results for the model estimated on the first data
set, and Table 10 for the model estimated on the second data set. Naturally, in order to obtain proper
out-of-sample results, we only use a model for bidding at auctions occurring after the end of the model’s
estimation period. If our bid succeeds in the auction, i.e., our model price is higher than the auction
price, then we make a profit if the spread that is realised during the course of the calendar month is
higher than the auction price at which we bought the option; otherwise, we make a loss. If our bid is too
low and therefore not executed in the auction, we still compare the auction price to the realised spread
and report whether our insufficient bid turned out to be right or wrong.

The analysis of our trading results is revealing and sheds further light on our findings about the “new
European paradigm” in Section 5.1. Table 9 shows that the trading strategy executed with the model
estimated for data set 1 is highly successful from September 2021 to August 2022: 20 out of 24 bids
are made in the correct direction, and the overall profit is decidedly positive. However, with the market
turmoil beginning in the summer of 2022, the situation reverses completely, and the trading strategy
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Figure 10: Comparison of realised and simulated price spreads for data set 1, on the left, and data set
2, on the right.
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outcome is essentially the same when we use prices from the model estimated on the more recent data
set 2: bids are now also made for the direction FR → DE and lead to a slight loss; however, the bids
in the more expensive direction DE → FR are unchanged and lead to the same losses as with the first
model.

The finding that our model, used with two starkly differing sets of parameters, leads to essentially
identical trading results is in part explained by the futures spreads of Table 8. These futures spreads
turn out to be much higher than the realised spreads from September to December 2022. And since the
futures spreads are a first-order input to the pricing model, it is a direct consequence that the model
prices are also much higher than the realised spreads.

Finally, we can see from Tables 9 and 10 that from February 2023 onward, JAO auction prices have
come down and realigned with the realised spreads. From February to August 2023, Model 1 performs
marginally worse than Model 2 in the direction DE→ FR (−6.95 vs −6.75 EUR), and slightly better (2.47
vs 1.98 EUR) in the direction FR → DE. Given that the realised spreads have decreased substantially in
this period, we believe that it is necessary to regularly re-estimate model parameters on a rolling window
basis. This allows us to work with a model that is a good fit with current market conditions and that
can achieve positive trading results, as for example with Model 1 in the period before September 2022.

Table 8: Market and Regime-Switching Model Prices of Monthly DE-FR Spread Options in EUR/MWh

JAO Market JAO
Auction Futures Options Model 1 Model 2 Model 1 Model 2

Closing Date DE FR Spread DE→FR FR→DE DE→FR DE→FR FR→DE FR→DE

22/09/21 135.07 154.26 19.19 18.27 1.08 20.44 - 0.21 -
25/10/21 191.42 228.80 37.38 37.06 1.29 38.59 - 0.03 -
24/11/21 186.62 268.23 81.61 66.13 1.03 82.82 - 0.00 -
23/12/21 346.28 431.23 84.95 40.00 1.31 86.16 - 0.00 -
24/01/22 210.97 251.38 40.41 39.75 0.85 41.62 - 0.03 -
23/02/22 198.83 225.93 27.10 29.11 1.01 28.32 - 0.09 -
23/03/22 242.39 260.00 17.61 52.08 0.85 18.88 - 0.26 -
22/04/22 205.14 226.23 21.09 21.00 1.59 22.33 - 0.17 -
24/05/22 184.65 208.55 23.90 23.03 0.87 25.13 - 0.12 -
22/06/22 274.51 316.97 42.46 44.10 0.80 43.67 - 0.02 -
25/07/22 351.42 411.59 60.17 63.08 0.62 61.38 - 0.00 -
23/08/22 550.56 650.00 99.44 95.78 2.41 100.65 - 0.00 -

22/09/22 365.61 475.87 110.26 100.00 1.13 111.47 116.61 0.00 3.73
24/10/22 243.44 435.33 191.89 180.00 1.55 193.10 196.66 0.00 1.30
23/11/22 276.98 442.50 165.52 178.60 1.33 166.73 170.47 0.00 1.68
15/12/22 327.07 416.87 89.80 91.54 1.38 91.01 97.58 0.00 5.51
24/01/23 131.50 152.12 20.62 19.56 1.16 21.86 42.94 0.18 21.72
23/02/23 129.61 146.76 17.15 15.11 0.93 18.42 40.78 0.28 23.13
23/03/23 106.52 115.64 9.12 8.98 1.55 10.77 36.04 0.97 26.65
25/04/23 97.62 99.17 1.55 4.65 2.12 4.93 31.91 3.24 30.32
23/05/23 83.65 80.17 -3.48 2.61 5.49 2.43 29.35 6.21 32.93
23/06/23 95.07 96.96 1.89 3.59 3.67 5.14 32.09 3.09 30.14
25/07/23 89.44 81.77 -7.67 2.77 9.15 1.23 27.33 9.50 35.22
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JAO Realised JAO Trading
Auction Spread Price Model 1 Strategy

Month DE→FR FR→DE DE→FR FR→DE DE→FR FR→DE DE→FR FR→DE

Oct 21 33.55 0.67 18.27 1.08 20.44 0.21 15.28 not exec
Nov 21 41.58 0.67 37.06 1.29 38.59 0.03 4.52 not exec
Dec 21 53.99 0.37 66.13 1.03 82.82 0.00 -12.14 not exec
Jan 22 43.87 0.17 40.00 1.31 86.16 0.00 3.87 not exec
Feb 22 56.75 0.01 39.75 0.85 41.62 0.03 17.00 not exec
Mar 22 43.69 0.49 29.11 1.01 28.32 0.09 not exec not exec
Apr 22 67.50 0.13 52.08 0.85 18.88 0.26 not exec not exec
May 22 20.12 0.17 21.00 1.59 22.33 0.17 -0.88 not exec
Jun 22 31.06 0.69 23.03 0.87 25.13 0.12 8.03 not exec
Jul 22 85.90 0.04 44.10 0.80 43.67 0.02 not exec not exec
Aug 22 28.46 1.16 63.08 0.62 61.38 0.00 not exec not exec
Sep 22 49.14 0.55 95.78 2.41 100.65 0.00 -46.64 not exec

Oct 22 28.22 2.02 100.00 1.13 111.47 0.00 -71.78 not exec
Nov 22 19.15 0.90 180.00 1.55 193.10 0.00 -160.85 not exec
Dec 22 20.07 0.80 178.60 1.33 166.73 0.00 not exec not exec
Jan 23 14.64 0.37 91.54 1.38 91.01 0.00 not exec not exec
Feb 23 20.61 0.16 19.56 1.16 21.86 0.18 1.05 not exec
Mar 23 10.38 0.94 15.11 0.93 18.42 0.28 -4.73 not exec
Apr 23 6.20 0.58 8.98 1.55 10.77 0.97 -2.78 not exec
May 23 2.57 6.74 4.65 2.12 4.93 3.24 -2.08 4.62
Jun 23 1.18 4.64 2.61 5.49 2.43 6.21 not exec -0.85
Jul 23 5.18 5.14 3.59 3.67 5.14 3.09 1.59 not exec
Aug 23 4.40 7.85 2.77 9.15 1.23 9.50 not exec -1.30

Table 10: Performance of trading strategy calculated with model for data set 2

JAO Realised JAO Trading
Auction Spread Price Model 2 Strategy

Month DE→FR FR→DE DE→FR FR→DE DE→FR FR→DE DE→FR FR→DE

Oct 22 28.22 2.02 100.00 1.13 116.61 3.73 -71.78 0.89
Nov 22 19.15 0.90 180.00 1.55 196.66 1.30 -160.85 not exec
Dec 22 20.07 0.80 178.60 1.33 170.47 1.68 not exec -0.53
Jan 23 14.64 0.37 91.54 1.38 97.58 5.51 -76.90 -1.01
Feb 23 20.61 0.16 19.56 1.16 42.94 21.72 1.05 -1.00
Mar 23 10.38 0.94 15.11 0.93 40.78 23.13 -4.73 0.01
Apr 23 6.20 0.58 8.98 1.55 36.04 26.65 -2.78 -0.97
May 23 2.57 6.74 4.65 2.12 31.91 30.32 -2.08 4.62
Jun 23 1.18 4.64 2.61 5.49 29.35 32.93 -1.43 -0.85
Jul 23 5.18 5.14 3.59 3.67 32.09 30.14 1.59 1.47
Aug 23 4.40 7.85 2.77 9.15 27.33 35.22 1.63 -1.30
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Auctions of transmission rights between neighbouring countries are becoming increasingly active. In a
parallel development, the introduction of market coupling frequently leads to smaller price differences
between such countries. Indeed, if two countries are completely coupled, the price of a given hour of
electricity will be identical in each country, resulting in a price spread of zero.

Clearly, it is important to take this market coupling into account when evaluating transmission rights,
as neglecting it would lead to a significant overvaluation of this right. In order to address this issue, we
introduce a general regime-switching mechanism that can be applied to many models in the literature.
We describe the model estimation procedure in detail, and compare model and market prices of European
spread options. We observe a dramatic paradigm shift in our data set at the end of the summer of 2021,
and show that this shift has a strong effect on the model parameters. We also see that the reliable pricing
and trading of spread options has become more problematic.

In future work, it would be interesting to investigate the causes of regime-switching, and introduce
the possibility of correlating the states of the regime-switching Markov process to electricity price levels
or to other variables. These variables could include market volatility, prices in related markets such as
natural gas markets and weather conditions such as sun and wind, which affect the electricity produced
by renewable sources.
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A The Call Option Formula via the Fourier Transform

The characteristic function ϕ = ϕT of the spot price ST at time T is given for u ∈ R by:

ϕT (u) = E[eiuST ] =

∫ ∞

−∞
eiuSp(S)dS, (26)

where p is the probability density function of ST .

For example, for the Bachelier model:

dSt = µdt+ σdBt, S0 ∈ R,

with drift µ ∈ R and volatility σ > 0, and with solution:

ST = S0 + µT + σBT , BT ∼ N(0, T ),

the characteristic function ϕB is given by:

ϕB(u) = eiu(S0+µT )− 1
2u

2σ2T .

In general, for a European call option with strike K and maturity T , we have:

C(K) = e−rT

∫ ∞

K

(S −K)p(S)dS.

For α > 0, define the modified or damped call price by:

c(K) = eαKC(K). (27)
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ĉ(u) =

∫ ∞

−∞
eiuK

∫ ∞

K

eαK(S −K)p(S)dSdK

=

∫ ∞

−∞
p(S)

∫ S

−∞
(S −K)e(α+iu)KdKdS.

The inner integral is calculated using integration by parts as:

∫ S

−∞
(S −K)e(α+iu)KdK =

[
(S −K)

1

α+ iu
e(α+iu)K

]S

−∞︸ ︷︷ ︸
=0

−
∫ S

−∞
− 1

α+ iu
e(α+iu)KdK

=

[
1

(α+ iu)2
e(α+iu)K

]S

−∞

=
1

(α+ iu)2
e(α+iu)S .

Using this result, we finally obtain:

ĉ(u) =

∫ ∞

−∞
p(S)

1

(α+ iu)2
ei(u−iα)SdS (28)

=
1

(α+ iu)2

∫ ∞

−∞
p(S)ei(u−iα)SdS

=
1

(α+ iu)2
ϕ(u− iα).

The call option price is then obtained via Fourier inversion as:

C(K) =
e−αK

2π

∫ ∞

−∞
e−iuK ĉ(u)du. (29)

Since the imaginary part of the integrand is odd in u, and the real part even, this integral can also be
calculated as:

C(K) =
e−αK

π

∫ ∞

0

ℜ
[
e−iuK ĉ(u)

]
du. (30)

Note that the function ĉ has a pole of order 2 at u = iα.

An equivalent formulation is often found in the literature, e.g., Lee (2004) and Cartea and González-
Pedraz (2012), which we will present next. By introducing the variable z = u− iα, and using iz = iu+α,
we can define the function Ĉ as:

ĉ(u) =

∫ ∞

−∞
p(S)

1

(α+ iu)2
ei(u−iα)SdS

= −
∫ ∞

−∞
p(S)

1

z2
eizSdS

= − 1

z2
ϕ(z)

=: Ĉ(z).
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C(K) =
e−αK

2π

∫ ∞

−∞
e−iuK ĉ(u)du

=
e−αK

2π

∫ ∞−iα

−∞−iα

e−i(z+iα)KĈ(z)dz

=
1

2π

∫ ∞−iα

−∞−iα

e−izKĈ(z)dz

= − 1

2π

∫ ∞−iα

−∞−iα

e−izK 1

z2
ϕ(z)dz

We denote the integrand above as a function g,

g(z) := e−izK 1

z2
ϕ(z),

and proceed to calculate the residue of g at z = 0, or u = iα in terms of the variable u. Using (26)
together with the exponential series, we can expand g as:

g(z) =

∫ ∞

−∞
(1 + izS + ...)(1− izK + ...)

1

z2
p(S)dS

=

∫ ∞

−∞
(1 + izS − izK + ...)

1

z2
p(S)dS

=

∫ ∞

−∞
(
iS

z
− iK

z
+ ...)p(S)dS.

Since
d

du
ϕ(u) = ϕ′(u) = E[iSeiuS ] =

∫ ∞

−∞
iSeiuSp(S)dS,

it follows that the residue has two components R1 and R2, with:

R1 =

∫ ∞

−∞
iSp(S)dS = ϕ′(0) = iE[ST ],

R2 =

∫ ∞

−∞
−iKp(S)dS = −iKϕ(0) = −iK,

and we obtain:
R = R1 +R2 = i(E[ST ]−K). (31)

Finally,

− 1

2π

∮
g(z)dz = − 1

2π
· 2πiR = E[ST ]−K.
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Our main contributions are:
1) We increase the resolution from daily (peak, off-peak) electricity prices to 
hourly prices, and add regime-switching to reflect coupled and decoupled hours.
2) We perform a simulation exercise to demonstrate that our regime-switching 
model successfully captures the important stylised features of intermittently 
connected markets.
3) We show that our model can adapt to the new market paradigm of high prices, 
uncertainty and volatility.
4) We find that the pricing of spread options works well in a ``normal'' market 
environment. However, in a highly volatile environment, both auction and model 
ex ante spread option prices may turn out to lie far from ex post realised 
payoffs.


