
HAL Id: hal-04411149
https://hal.science/hal-04411149

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatically Adapting System Pace Towards User
Pace -Empirical Studies

Andy Cockburn, Alix Goguey, Carl Gutwin, Zhe Chen, Pang Suwanaposee,
Stewart Dowding

To cite this version:
Andy Cockburn, Alix Goguey, Carl Gutwin, Zhe Chen, Pang Suwanaposee, et al.. Automatically
Adapting System Pace Towards User Pace -Empirical Studies. International Journal of Human-
Computer Studies, 2024, 185, pp.103228. �10.1016/j.ijhcs.2024.103228�. �hal-04411149�

https://hal.science/hal-04411149
https://hal.archives-ouvertes.fr

Highlights

Automatically Adapting System Pace Towards User Pace – Empirical

Studies

Andy Cockburn, Alix Goguey, Carl Gutwin, Zhe Chen, Pang Suwanaposee,

Stewart Dowding

• Provides empirical evidence that user preferences for system pace (inter-

face conditions that vary only in the duration of interface timeouts) covary

with user pace.

• Reveals characteristics of user performance that can be automatically mea-

sured by a system as a basis for automatically adapting system pace.

• Shows that users converge their rate of interaction towards that of the

system.

• Empirically demonstrates that fast-paced users prefer an adaptive system

pace to a ‘one size fits all’ static pace.

Automatically Adapting System Pace Towards User
Pace – Empirical Studies

Andy Cockburna, Alix Gogueyb, Carl Gutwinc, Zhe Chena, Pang
Suwanaposeea, Stewart Dowdinga

aUniversity of Canterbury, Christchurch, 8041, Canterbury, New Zealand
bUniversité Grenoble Alpes, 700, avenue centrale, 38400 Saint-Martin-d’Hères, France

cUniversity of Saskatchewan, 110 Science Place, Saskatoon, Canada

Abstract

An interactive application’s overall pace of interaction is a combination of the

user’s pace and the system’s pace, and if the system’s pace is mismatched to

the user’s pace (e.g., timeouts or animations are too fast or slow for the user),

usability and user experience can be impaired. Through a series of four studies,

we investigated whether users prefer systems where the system’s pace better

matches their own pace. All of the studies used common drag-and-drop inter-

actions with hierarchical folder widgets, in which a folder would expand when

the cursor hovered over it for a timeout period. If the system pace in these

interactions is too fast (i.e., the timeout is too short), then the user’s perfor-

mance and subjective experience is likely to be impaired because of unintended

expansions; and if the system pace is too slow (i.e., the timeout is too long),

then performance and experience could be impaired by unnecessary delay be-

fore folders expand. The first experiment was designed to validate the premise

that fast-paced users prefer a fast system pace to a slow one (and the inverse

for slow-paced users), and results confirmed this premise. The second study

used the first experiment’s data to look for measures of user pace that could

enable automatic adaptation of system pace, and also examined whether partic-

Email addresses: andy.cockburn@canterbury.ac.nz (Andy Cockburn),
alix.goguey@univ-grenoble-alpes.fr (Alix Goguey), gutwin@cs.usask.ca (Carl Gutwin),
zhe.chen@canterbury.ac.nz (Zhe Chen), pang.suwanaposee@pg.canterbury.ac.nz (Pang
Suwanaposee), stewart.dowding@canterbury.ac.nz (Stewart Dowding)

Preprint submitted to International Journal of Human-Computer Studies January 23, 2024

ipants adjusted their pace towards that of the system. The study found reliable

measures of user pace and showed that participants do entrain to the system’s

pace. The third and fourth studies examined whether users would prefer a sys-

tem that adapted its pace to the user over a system that used a static baseline

pace. Results indicated that a majority of fast-paced users preferred the adap-

tive interface, but that slow-paced users generally preferred the static baseline

interface. We discuss several design implications, including opportunities for

systems to improve user experience for fast users by automatically adapting

system pace to user pace.

Keywords: Interface pace, adaptation, timeouts, user preferences.

1. Introduction

Interaction with computer-based interfaces involves a dialogue between the

user and the system in which both parties contribute to the overall interaction

pace. On the human side (user pace) some users will be slow, perhaps due to

careful contemplation of each action or to unhurried input device manipulation;

other users will be fast, making decisions and manipulations much more quickly.

Furthermore, an individual’s preferred interaction pace may vary due to factors

such as fatigue, workload, illness, or stress.

On the system side of the interaction, many factors within the operating

system and the application can influence the system pace. On desktop comput-

ers, examples include the animated appearance and disappearance of windows,

menus, and control panels (e.g., the Windows Start Menu and Mac OS Dock),

pop-up tooltips and hotkeys that appear after a hover delay, and accessibility

features such as screen readers, which have a speech rate and a hover timeout

delay before screen reading initiates. Mobile operating systems and applica-

tions also make extensive use of timeouts to discriminate between taps and

long-presses, to interpret intentions (e.g., dragging an icon between homescreen

pages), and to control input transfer functions (e.g., the iOS keyboard delete

key, which increases the deletion rate the longer it is held down).

2

Figure 1: Thunderbird’s drag-and-drop folder expansion – folders automatically expand (right)

when an object is dragged over a parent item (middle) for longer than a timeout.

Importantly, while preferences for system pace are likely to differ between

users (who may themselves work sedately or quickly), system pace is almost

always set to a fixed value by the designer in a ‘one size fits all’ manner. In a

few cases designers provide configuration facilities that allow elements of system

pace to be customised – but customisation features are known to be seldom used

[33, 27, 34], leaving most users with the default set by the designer.

Instead of using fixed (or even user-customisable) system pace, systems could

be designed to automatically adapt in order to better match the user’s pace. Ex-

emplifying this type of behaviour, Giacolone [18] describes a gambling machine

interface that adapts to the user’s rate of play. When the user is slow to press

the machine’s “deal” button, an animation depicts hands slowly dealing cards to

the user, but the animation is faster when the user presses the button quickly:

“if one wants to play at a leisurely pace, the game will proceed at its normal

play rate, but if the player’s excitement level increases and he demonstrates a

desire to play faster, the game play rate will be automatically increased” [18,

col. 2:8-11].

There are at least two reasons (further reviewed in Section 2) suggesting that

users might appreciate systems that automatically adapt their pace to better

match that of the user. First, findings from the communication studies literature

indicate a variety of positive outcomes, including liking between interlocutors,

when people adapt their patterns of communication to better match one an-

other – the same may be true for human-computer communication. Second,

3

from a cognitive-motor processing perspective, individuals’ reaction times vary

(typically characterised by an ex-Gaussian distribution), and therefore a system

that requires users to interact at a ‘one size fits all’ rate is likely to be too fast

for some users and too slow for others.

Conversely, however, there are also reasons for suspecting that automatic

system pace adaptation may be undesirable. In particular, any change in system

pace necessarily introduces an element of inconsistency into the interaction, and

the absence of consistency is a well known source of interaction problems (e.g.,

[38]).

Motivated by the possibility to improve interaction through automatic adap-

tation of system pace, we conducted a series of empirical studies that exam-

ined one specific element of system pace – the timeout that is widely used

in hierarchical-folder widgets, such as the Windows File Explorer, the MacOS

Finder, and many email clients and IDEs. As exemplified in Figure 1, during

drag-and-drop actions, hierarchy widgets commonly use a built-in timeout to

determine when a hierarchical item will expand to show its children: items au-

tomatically expand when the cursor hovers over them for longer than a timeout

period. The length of the timeout can have an important effect on user expe-

rience: if the timeout is too short, then unintended item expansions will occur,

which is likely to be frustrating; and if the timeout is too long, the user will

need to wait for expansions to occur, which is also likely to cause frustration.

We report on four studies that examine issues related to interaction pace,

focusing on the potential for improving user experience by automatically mea-

suring the user’s pace and adapting system pace accordingly rather than using

a ‘one size fits all’ setting for system pace. The first study (previously published

as [20]) tests a basic premise underlying the entire investigation – hypothesis

H1, that user preferences for system pace covary with a measure of their user

pace (determined by the time taken to complete a set of initial drag-and-drop

trials). Results confirm that fast-paced users prefer a fast-paced interface to a

slow one, and that slow-paced users prefer the inverse. The second study re-

ports on new analyses of the low-level data from the first study that investigates

4

whether in-situ user performance characteristics can be used to automatically

determine the user’s pace, without need for an artificial set of tasks. Results

indicate that the time between the cursor entering a target item and the click

to select it provides a good indicator of the user’s pace and of their preference

for fast/slow interfaces. The new analyses also show that users tend to entrain

to the system’s pace – that is, users interact faster than normal when using a

fast interface, and slower when using a slow interface.

Studies three and four tested hypothesis H2, that users would prefer an

interface that dynamically adapted its timeout-based pace towards that of the

user to an interface that used a traditional static timeout. Results indicate

that there are differences based on whether users are fast or slow: automatic

adaptation was preferred by the majority of fast-paced users, but not by the

majority of slow-paced users. We conclude that adaptation is likely appropriate

for fast users but inappropriate for slow ones – and our results also highlight

the importance of various nuances in the design and conduct of experiments

relating to interaction pace.

The contributions of this work are as follows:

1. We provide empirical evidence that user preferences for system pace (in-

terface conditions that vary only in the duration of interface timeouts)

covary with user pace;

2. We reveal characteristics of user performance that can be automatically

measured by a system as a basis for automatic adaptation of system pace;

3. We show that users converge their rate of interaction towards that of the

system;

4. We empirically demonstrate that fast-paced users prefer an adaptive sys-

tem pace to a ‘one size fits all’ static pace.

5

2. Background

Two main areas of related work provide the motivation and background for

this research. First, we review findings from communication studies indicating

that the convergence of communication patterns between interlocutors is corre-

lated with positive affective outcomes, such as affinity and pro-social behaviour.

Second, we review HCI literature that address issues related to interaction pace.

2.1. Inspiration from studies of communication convergence

Communication patterns may converge towards one another, increasing sim-

ilarity or synchronisation – for example, a speaker may talk faster and more

energetically than they would normally when conversing with an energetic fast

speaker. But patterns may also diverge away from one another, such as a person

using clipped short sentences to respond to a speaker who is perceived to be

verbose when time is short. Convergence and entrainment have been examined

and demonstrated across many aspects of speech and communication, including

the pitch and loudness of speech (e.g., Levitan and Hirschberg [30]), pronun-

ciation (e.g., Pardo et al. [42]), and the use of gestures (e.g., Chartrand and

Bargh [6]) or of lexical constructs (e.g., Bradac et al. [1]). Interested readers are

directed to Giles et al. [19], Pardo et al. [42] and Lewandowski and Jilka [31] for

more extensive introductions related to these general communication effects.

Our particular interest is on temporal aspects of convergence (i.e., the pace

of the interaction dialogue between the system and the user). In communication

studies, temporal aspects of convergence have been widely studied through the

analysis of speech rate effects. Jungers et al. [28], for example, showed that

experimental participants adapted their rate of speech to converge towards that

of fast or slow speakers in audio recordings, and results from Schultz et al. [47]

show similar effects in scripted turn-taking dialogues.

In a prisoners’ dilemma study, Manson et al. [35] observed that speech rate

convergence indicated pro-social behaviour (i.e., greater cooperation on the pris-

oners’ dilemma task) and that participants evaluated each other more positively

6

when their speech rates converged. Manson’s findings are echoed in other stud-

ies of different communication modes, including the following: Chartrand and

Bargh [6] observed greater liking between partners who mimic one another’s

gestures; van Baaren et al. [50] found that larger tips are given when a con-

federate waitress mimicked her customers’ orders than when she did not; and

Pickering and Garrod [44] showed that mutual understanding is enhanced when

language is adapted to increase similarity in grammatical structures and word

use.

In summary, previous work from communication studies indicates a vari-

ety of positive outcomes from communication convergence, including pro-social

behaviour and affinity between people.

2.2. Interaction Pace in HCI

During human-computer interaction, both the user and the system con-

tribute to the overall interaction pace. The variability of cognitive and motor

aspects of user pace has been well documented since early HCI research. Card

et al. [2] introduced the notion of ‘slowman’, ‘middleman’, and ‘fastman’, with

a wide range of time estimates for even the most basic actions – for example,

estimates for the time taken to press the space bar in reaction to the appear-

ance of a symbol varied from 105 ms to 470 ms. While the ideal model of the

distribution of individuals’ reaction times remains an active area of research, an

ex-Gaussian (right skewed) model is prominent [e.g. 24, 22, 46].

Early studies relating to system pace focused on the implications of system

delays (for example, see [48]). Although there have been relatively few studies

of pace convergence in HCI, Shneiderman’s review [48] mentions the possibility

that the user may converge towards a system’s fast pace: “As users pick up the

pace of a rapid interaction sequence, they may learn less, read with lower com-

prehension, make ill-considered decisions, and commit more data entry errors”

[48, p. 266]1. Design guidance relating to system delays is now routinely in-

1Jakob Nielsen recently made similar points in favour of slow interaction, although with

7

cluded in undergraduate HCI courses, with approximate threshold times of less

than 0.1 seconds for the user to feel that the system is reacting instantaneously,

less than 1.0 seconds for the user to maintain an uninterrupted train of thought,

and less than 10 seconds to maintain the user’s attention [39].

System delays are often caused by compute-bound processes (such as search-

ing a large data structure) or by limitations in network bandwidth, latency, or

jitter. While these limitations still influence interaction, hardware improvements

typically reduce their magnitude and frequency. However, unlike the delays that

are imposed on the system by processing or transmission requirements, interac-

tion effects with temporal properties such as animations and timeouts are often

intentionally engineered into systems. These intentionally engineered timeout

effects are the focus of our work.

In the following paragraphs we first review the state of the art in contem-

porary user interfaces, demonstrating the widespread use of temporal effects in

current interfaces. We then briefly review HCI literature investigating effects

related to interface pace adaptation.

2.2.1. Interaction pace features in contemporary interfaces

We see four main ways that current interfaces are designed to incorporate

elements of system pace: animation and motion effects, information rate ef-

fects, input device transfer functions, and temporal effects to discriminate user

intentions with overloaded input. Other system factors may also influence the

overall pace of interaction, such as the availability of interface shortcuts, but in

general shortcut facilities are designed to enable the user to obtain the fastest

pace possible, rather than the system imposing some element of pace on the

user.

Animations are widely used to accompany the appearance and disappear-

ance of basic interface controls such as windows and menus. Animations pro-

vide several potential advantages to the user, including softening visual effects

tongue firmly in cheek. https://www.nngroup.com/articles/slow-ui/.

8

that might otherwise be perceptually jarring, and providing a spatial cue to

the source and destination of objects when they appear or disappear. For ex-

ample, in the default configuration of Microsoft Windows 10 the Start Menu

appears with a fast-in-slow-out animation, windows zoom and fade when they

appear/disappear from the taskbar, and menus are animated. Operating sys-

tems typically provide personalization options to reduce or disable animations,

and some provide expert configuration options to set the duration of animations

(e.g., Windows allows users to edit the MenuShowDelay value in the Windows

system registry). Animations such as those described above are typically of

short duration at around 300 ms. Interested readers are directed to Chevalier

et al. [8] and to Hudson and Stasko [25] for high quality reviews of animation

effects.

Information rate effects determine the amount of information presented

to the user per unit time, and they can be related to animation effects. These

effects are commonly used to manipulate the difficulty of computer games. For

example, a game might present waves of items to contend with in each level (e.g.,

asteroids or enemies), manipulating the number of items and the time available

– Denisova and Cairns [12] discuss the use of ‘time manipulation’ techniques

to increase game immersion, and Vicencio-Moreira et al. [51] describe in-game

methods for adjusting difficulty to balancing skill across players. Visualisation

techniques such as Rapid Serial Visual Presentation also manipulate information

rate to assist activities such as rapid comprehension or search [11, 52].

Input device transfer functions are used to translate low-level signals re-

ceived from input devices into output control effects displayed on the screen. For

example, transfer functions determine the mapping between mouse and cursor

movement, and on mobile devices they determine how swiping gestures influ-

ence scrolling movement. These functions are often sophisticated, attempting to

appropriately amplify the user’s input when it appears that the user wishes to

move quickly, yet diminish input when it appears that the user wants precision.

Transfer functions can therefore influence the system’s pace of interaction. For

example, a low-acceleration scrollwheel transfer function will require the user to

9

repeatedly rotate the wheel to move through a long document; but conversely

a high acceleration transfer function risks a twitchy behaviour that results in

extensive over-shooting. Operating systems and input device vendors typically

provide configuration interfaces that allow the user to directly control transfer

function behaviour for cursor movement and scrollwheel operation. Interested

readers are directed to Quinn et al. [45] for a discussion of transfer functions in

touch scrolling and to Casiez et al. [4] for their use with mouse input devices.

Temporal discrimination with overloaded input is the area examined

in our experimental work. Input devices offer a limited vocabulary of possible

actions for the user to express their intent – for example, a mouse will typically

have only two or three buttons, a scrollwheel, and a displacement sensor, and

a touchscreen may report only the coordinates of one or more contacts. To

increase the user’s ability to express varied intentions designers often exploit

the temporal components of user actions to discriminate intent. For example,

using a mouse, two successive clicks are only interpreted as a double-click if

they occur within a timeout period. If this time period is too short for the

user then they will fail to reliably double-click, but if it is too long then the

system may misinterpret separate manipulations as a single double-click action.

Temporal discrimination is also widely used on mobile devices – for example,

on the iOS homescreen a single tap on an icon opens the object, a long press

(a press longer than a timeout) posts a context menu, and a very long press

(longer than another timeout) enters a reconfiguration mode.

Related timeout methods are also commonly employed in interfaces when

the input mechanism used for a particular action is temporarily unavailable

because it is consumed by an ongoing user action. For example, in hierarchical

browsers a mouse left button click is used to expand a parent object and reveal

its children. But during drag-and-drop actions the left button must remain

pressed because releasing drops the dragged item onto the underlying object.

Therefore, designers use a hover timeout to resolve the problem of overloaded

input – if the cursor hovers over a parent item for longer than the timeout

then the underlying item expands to show its children. This hover-expansion

10

technique (also named ‘spring-loaded folders’ [17, 10]) is widely used across

platforms and applications, including Windows Explorer, Mac Finder, most

email clients, and many programming IDEs, and similar timeouts exist in a

wide range of interfaces, including dragging items across homescreen pages on

mobile devices.

System timeout values such as these influence a system’s pace of interaction.

In general, long timeouts permit slow-paced interaction, but they also risk frus-

trating users who want to proceed more quickly. For example, a user who wants

to drag an icon across several homescreen pages on their phone must wait for

the timeout to expire at the edge of each page. Conversely, short timeouts per-

mit fast interaction but risk frustrating the user by incorrectly identifying their

intention – the user might accidentally change to the next homescreen page as

a result of briefly dragging an item near the edge of the screen.

To gain insight into the timeout values used in current software systems,

we used a screen recorder to inspect the timeouts used for hover expansion in

the Thunderbird email client and in the Mac Finder. The Thunderbird timeout

value was fixed at 1000 ms, but the July 2023 release (version 115) reduced the

value to 170 ms, creating frustration for users, including one of the authors, due

to unintended folder expansions while filing email2. The Finder’s value varies

depending on which view is enabled. By default, the timeout is 600 ms in the

column view, and 1000 ms in other views, although the user can configure the

timeout using the ‘spring-loaded delay’ setting in System Preferences (the range

of values available with the setting is 200-1200 ms in the column view, and 500-

1200 ms in other views). In many systems the timeouts are configured in a ‘one

size fits all’ manner, and even if customisation facilities are provided they are

known to be seldom used [33, 27, 34]. Consequently, users who would prefer to

proceed more quickly or more slowly are likely to be constrained by an invariant

system pace.

2https://www.reddit.com/r/Thunderbird/comments/162lh4m/auto_expand_subfolder_

while_dragndrop_over_it/

11

2.2.2. HCI research and interaction pace

As mentioned above, Shneiderman considered interaction pace within his

seminal review of system delays [48], and Dix [13] directly examined interaction

pace in the context of computer-mediated collaboration between people. A

few authors have contemplated how users might benefit from interfaces that

promote slower, reflective, laid-back and restful interactions in mobile search

[26] and in a music player that adapts to the user’s pace [15]; similar issues were

also discussed at a DIS conference workshop [40]. Others have scrutinised how

aspects of performance and satisfaction change as users are prompted to alter

their pace of interaction, demonstrating a strong increase in errors in a game

[36] and in abstract pointing tasks [53].

HCI researchers have also examined issues related to communication conver-

gence, particularly in speech interaction. In an early and comprehensive study

Oviatt et al. [41] demonstrated that 70-95% of child participants (aged 7-10)

quickly converged their rate of speech towards that of an animated agent. More

recently Dohsaka et al. [14] examined convergence in the opposite direction –

where the duration of the agent’s speech pauses converged towards that of the

human – with Likert item responses suggesting positive subjective outcomes

from system convergence. Related positive findings have been demonstrated for

automated speech rate adaptation in synthesised Mandarin speech [7]. Other

recent studies have examined speech convergence and entrainment effects to

promote positive turn-taking behaviour in human users and to build positive

social responses to the system [29, 32].

The previous HCI study most closely related to ours is the PhD thesis work

of Yu [55]. The thesis examines the effects of timing on users’ perceived control

when interacting with intelligent systems, and it examines related effects includ-

ing pace entrainment between humans and their systems. The key finding from

three controlled experiments was that consistency in system timing is beneficial

for subjective experience, enhancing the user’s sense of control, and reducing

perceived stress and effort; inconsistent timing, such as that provided by adap-

12

tive system pace, had negative effects, including elevated stress and effort, and

harming subjective experience.

3. Study 1: User Pace and Preference for a Fast versus Slow Interface

With the exception of the findings of Yu [55], the review of prior work sug-

gests that users’ preference for interfaces may be enhanced if the system’s pace

is more similar to the user’s own pace. Furthermore, there may be opportuni-

ties to improve users’ overall preference for interfaces by having the system pace

converge towards that of the user. However, Yu’s findings suggest that the pace

inconsistency of an adaptive system could negate any benefits of automatic pace

adaptation.

We therefore conducted an initial study to validate the underlying premise

that fast users would prefer a fast system pace to a slow one, and that slow

users would prefer a slow system pace to a fast one. The hypothesis is formally

expressed as follows:

H1 User preferences for system pace (as exhibited through system delay time-

outs) covary with user pace — faster users show stronger preference for

shorter timeouts, and slower users show stronger preference for longer

timeouts.

If supported, this hypothesis suggests that system designers could improve

user preferences by matching the system’s interaction pace (e.g., timeout dura-

tion) to the user’s pace of interaction, in a form of interface pace convergence.

However, there are at least three reasons to think that the hypothesis may not

be supported. First, the measure of user pace may be insensitive, providing

poor distinction between users. Second, measured user pace may be a poor

predictor of user preferences for system pace – for example, all users might pre-

fer faster (or slower) system response, regardless of their user pace. Third, the

hypothesised effect (if any) may be sufficiently small to make it impractical to

demonstrate at reasonable experimental scale.

13

To briefly summarise the method, participants first completed an initial se-

ries of drag-and-drop actions that did not involve the timeout-based hierarchical

folder-expansion feature, with the data used to characterise their pace of inter-

action. Each participant then completed a series of hierarchical drag-and-drop

tasks using two interfaces – one fast and one slow – that differed only in the

hover timeout required before a hierarchical item would automatically expand

to reveal its children. They then selected which of the two interfaces they pre-

ferred. Finally, they used a slider to configure and test their preferred timeout

for a final series of drag-and-drop tasks.

3.1. Task Interactions

We based Study 1 (and Studies 2-4) on drag-and-drop behaviours similar

to those widely used in hierarchical file and email interfaces. Subjects had to

drag a series of boxes onto targets located in a hierarchical structure. At the

beginning of each task the structure was fully contracted, and when the cursor

hovered over a hierarchical item for longer than a timeout period the item auto-

matically expanded to reveal its child items. Each time an item expanded, any

previously expanded item at the same hierarchy level was contracted, so at most

a single item at each level of the hierarchy could be expanded at once. The ex-

pansion/contraction of hierarchical items was not animated. The item beneath

the cursor was highlighted light blue (see Figure 1), and the blue highlighting

flickered if the item under the cursor could be expanded.

We chose to base the experiments on hierarchical drag-and-drop for four

main reasons:

1. Familiarity – the participants would be familiar with these behaviours

from everyday computer use and should therefore be able to understand

task requirements without extensive training.

2. Simple interface actions that are readily modelled – the participants’ ac-

tions in completing the tasks include simple manipulations that are amenable

to well-validated models such as Fitts’s Law [16].

14

3. Ease of experimental control – related to the previous point, system prop-

erties within these behaviours can be precisely configured, including the

distance that an icon must be dragged, the target size, and the hover

timeout before an item will expand.

4. Ecological validity – several common interfaces (including the Mac OS

Finder, Windows Explorer, and most email clients) include system-imposed

hover timeouts for hierarchy expansion during drag-and-drop, and some

provide configuration controls for customizing the timeout duration.

Each task was cued by showing a blue icon containing a number series at the

top of the display. The number series, such as “3.1.2”, indicated the required

target. The hierarchical structure was shown immediately beneath the cued

item, initially showing the fully contracted view of sixteen items, enumerated 1

– 16 (see Figure 2b, which shows a partially expanded hierarchy).

3.2. Timeout setting and pilot studies

The key manipulation in the study was the duration of the hover timeout. If

the timeout was too short (i.e., the system pace was too fast for the user), then

unintended items would expand while the user dragged the item towards the

target. And if the timeout was too long (i.e., the system pace was too slow for

the user), then users would be overly delayed, potentially causing frustration.

The choice of timeout values for the ‘fast’ and ‘slow’ interfaces was critical

for our experiment. Ideally, across the full set of participants roughly half

would prefer the ‘fast’ interface and half the ‘slow’ interface. And inappropriate

timeout selection would create ceiling or flooring effects, such as the strong

majority of participants preferring the slow interface if the fast timeout was

much too fast.

We conducted a series of small pilot studies using the method described

below, but varying only the fast and slow timeout values. The first pilot study

(n=15) used values of 450 ms and 900 ms, with 100% of participants preferring

450 ms. The second pilot study (n=5) used 400 ms and 800 ms, and again 100%

15

preferred the faster condition. The third pilot (n=12) used 200 ms and 800 ms,

with 70% preferring the slow condition. A final pilot study (n=10) used 250 ms

and 750 ms, with a 50:50 split in preferences. We therefore used these values of

250 ms and 750 ms for Study 1.

3.3. Procedure

We conducted Study 1 on Amazon Mechanical Turk. Each participant pro-

ceeded through three experimental stages: 1. user pace determination; 2. sys-

tem pace experience and preference; 3. setting and experience of user-tailored

system pace.

3.3.1. Stage 1. User pace determination

After collecting background demographics (age, gender, pointing device, fre-

quency of computer use and game play), participants completed a set of one-

dimensional drag-and-drop trials. A web page instructed participants that they

needed to drag a blue box containing a number onto the target grey box showing

the same number. Participants clicked a button labelled ‘Start Tasks’ at the

bottom of the instruction page when ready to continue.

Sixteen grey target boxes were vertically arranged below the blue draggable

box, enumerated 1 – 16 (see Figure 2a). The dragged box moved with the cursor

and turned green while the cursor was over the target. Participants completed

each trial by dropping the dragged box while it was green. Correctly completing

one trial caused the next target to be immediately displayed in the blue box at

the top of the display. If the box was dropped onto the wrong target, the same

blue box was animated moving back at the top of the list to notify participants

that they needed to redo the trial (preventing participants from racing through

the experiment without regard to accuracy).

Each participant completed 20 drag-and-drop trials, consisting of four fa-

miliarisation tasks (dragging items to randomly selected odd-numbered targets)

and 16 controlled tasks (two repetitions for each of the even-numbered targets).

16

(a) Stage 1 task (no hierarchy). (b) Stage 2 & 3 task (hierarchy).

Figure 2: Drag-and-drop tasks. The item was torn off from the top and dragged to the

numerical target.

Data from the 16 controlled tasks was used to determine each participant’s

user pace, as determined from their mean time on error-free trials.

3.3.2. Stage 2. System pace experience and preference

On completing the final task in stage 1, a web page displaying instructions

was automatically shown for the next stage. In stage 2, participants completed

trials with two different settings for system pace, and then chose their preference.

The instruction page included a sample hierarchy and instructed participants to

drag the blue box to the target identified by its number string, such as ‘5.2.3’,

meaning that the item should be dragged to item 5 at the first level, item 2 at

the second level, and items 3 at the third level (see Figure 2b). Participants

were required to complete four familiarisation trials on the instruction page,

each involving dragging the box to a target at the third level of the hierarchy.

In these familiarisation trials, each level of the hierarchy opened after a hover

timeout of 1000 ms.

17

Having completed the four familiarisation trials, a ‘Next’ button appeared,

and clicking it advanced to a new page informing participants that they would

use two systems – ‘System A’ then ‘System B’ – to complete two sets of hierar-

chical drag-and-drop trials. Participants clicked a button labelled ‘Start System

A Tasks’ when ready to proceed. After completing the set of trials with Sys-

tem A, they then clicked a button labelled ‘Start System B Tasks’ to begin the

second set of trials.

Similar to the previous stage, the blue box to be dragged was shown at the

top of the display, immediately above sixteen grey box items, numbered 1 – 16

and prefixed with a symbol ‘I’. Consistent with many commercial interfaces,

the I symbol indicted that the box contained children. At the start of each

trial all items within the hierarchy were collapsed. When the dragged blue box

hovered over a hierarchical parent item for longer than the timeout period, the

item would expand to reveal its hierarchical content (see Figure 2b). Only one

item at each level of the hierarchy could be expanded at any time, so when

a hierarchical item was expanded, any previously expanded item at that level

was automatically contracted. Each of the sixteen top-level items contained five

child items (enumerated 1-5), and each of the child items contained between

one and five grand-child items – item n.1 contained four items, n.2 three, n.3

two, n.4 one, and n.5 contained five items. This structure was used to reduce

target item spatial stability when unintended items were expanded (as normally

occurs in real data hierarchies) – if all items had the same number of children

then the location of a target would remain constant when one item expands and

another contracts, for example, item 10 would remain spatially stable while the

user dragged downwards to replace the five children of 2.1 with five children of

2.2. As at most only one item at each level of the hierarchy could be expanded,

the maximum number of items displayed at once in the hierarchical view was

26 (16+5+5), plus the dragged item.

The dragged box turned green when it was over the final target. Dropping

the box while green completed the trial, causing the next trial to be immediately

displayed. Dropping the box on the wrong target caused the trial to begin anew,

18

with the hierarchy fully contracted. If the cursor was moved outside of the list

while dragging the box, the same blue target item was re-displayed at the top

of the list (preventing participants from avoiding the expansion feature).

Each participant completed 16 trials with each of the two systems (‘A’ and

‘B’), starting with four familiarization trials, and then 12 trials comprising one

selection at each of the top-levels targets in the range 3 – 14. Each second

and third level target was always item 5. We avoided using the top-most and

bottom-most top-level items because they are least likely to induce unintended

expansions (e.g., there is no expandable item beneath item 16, so the user

can slowly approach item 16 from below without risking unintended expansion,

unlike other locations). We always used the last item (item 5) at the second- and

third- level because it is the most likely item to suffer unintended expansions

– for example, dragging off the bottom of target item 6.5 or 6.5.5 risks the

unintended expansion of item 7.

Having completed all of the trials with both Systems A and B, participants

were asked to respond to the following forced-choice question:

If completing these tasks again, I would prefer to use:

� System A � System B

The only difference between System A and System B was the timeout dura-

tion used to trigger hierarchy expansion. The two settings were fast (250 ms)

and slow (750 ms). For half of the participants, ‘System A’ was fast and ‘System

B’ was slow, with the inverse for the other half.

3.3.3. Stage 3. Setting and experience of user-tailored system pace

Up to this point in the experiment the participants had not been informed

about the use of different timeouts in the systems. A web page instructed

participants that Systems A and B differed only in the length of the hover

timeout used for item expansion. The web page included a slider showing the

time settings used for Systems A and B (see Figure 3). A slider handle allowed

users to set the timeout for an upcoming set of trials with System C. The web

19

Figure 3: Timeout configuration page and sandbox hierarchy, used to set timeout in Stage 3

of Study 1.

page also included an interactive ‘sandbox’ version of the System C interface,

showing the same hierarchy as that used in Stage 2.

Participants were instructed that they would complete a final set of drag-

and-drop trials using ‘System C’, and that they should first use the slider to

set their preferred timeout value in the range 1 – 1500 ms. The timeout was

initially shown to match that of their preferred option (i.e., that used by their

preferred of System A or B). Once the participants had manipulated the slider

at least once, and completed at least one selection using the sandbox interface,

a button at the bottom of the page was enabled stating ‘Start System C Tasks’.

Finally, participants were asked to type any final comments they might have

about the experiment. The study terminated with a web page that thanked

them for their time.

3.4. Subjects and Apparatus

Study 1 involved 208 participants on Amazon Mechanical Turk. Conditions

for inclusion were that each crowdworker had to be based in the United States,

with a HIT approval rate greater than 90%, with at least 1000 approved HITs,

and with no prior participation in the study (these conditions are used across

20

all of the crowdworker studies 1, 3, 4, and 6). The participants’ mean age was

36.6 years (s.d., 10.5, min. 18, max. 70); 61.5% self reported as male, 37.5%

as female, and 1% declined to answer. Participants were asked to report the

input device used for the study, with 83% reporting that they used a mouse,

and 17% using a trackpad. Operating system use was divided between Microsoft

Windows (89%), MacOS (8%), and Linux (3%).

The experiment took approximately 10 minutes to complete, with participa-

tion rewarded with a payment of USD$2.50 (apportioned from an hourly rate

of USD$15 per hour).

The experiment ran within each participant’s web browser, allowing precise

control of the drag-and-drop interface, including control of the hover expansion

timeout with millisecond granularity. Software was written in HTML/CSS/JS,

using the Paper.js library and a Firebase database to log all user actions, in-

cluding the time taken to complete each of the trials and any errors made.3 The

software automatically detected whether the zoom level of the browser window

was sufficient to display the full height of the expanded menu without scrolling,

and if not, it prompted users to zoom out until the condition was satisfied.

3.5. Design

The hypothesis H1 (that fast users have stronger preference for fast timeouts,

and slow users have stronger preference for slow timeouts) is tested through two

main analyses.

The first analysis compares the proportions of participants who choose the

fast system in preference to the slow system (when choosing between System A

and System B) across three quantile bands of user pace classification (Q1 (fast),

Q2 (medium), and Q3 (slow)) based on their performance in the stage 1 tasks.

The dependent measures for this analysis are as follows:

3The software can be accessed and run at https://www.csse.canterbury.ac.nz/andrew.

cockburn/AdaptivePace/. Anonymised data and analysis scripts for all studies is available in

supplementary materials for this paper, including data for an additional related study (n=250)

that is not reported in this paper.

21

1. user pace classification – the classification of each user’s pace was based on

their stage 1 data, dividing participants into three quantile bands based

on their mean drag-and-drop completion times (Q1, the fastest 331⁄3%

of participants; Q2, the second quantile, representing the middle third

of participants; Q3, the third quantile, representing the slowest third of

participants). We used three quantiles (rather than two or other value) for

three reasons: first, to provide a simple and natural alignment with our

hypothesis; second, to provide a clear separation between fast and slow

categories; third, to ensure a large sample within each of the fast and slow

categories.

2. system pace preference – the participant’s binary preference choice of ei-

ther the fast or slow interface (i.e., the preference of either System A or

System B after stage 2 of the study).

The hypothesis is tested using a χ2 test of proportions. The hypothesis

requires that a higher proportion of participants who are classified within ‘Q1

(fast)’ choose the fast interface than do those who are classified within ‘Q3

(slow)’.

The second analysis examines the relationship between the participants’ user

pace (as indicated by their mean performance in the stage 1 trials) and the

timeout value that they select using the slider for System C. The dependent

measures for this analysis are as follows:

1. user pace – each participant’s mean time on stage 1 trials.

2. System C timeout setting – the time that each participant selects as de-

sirable for their stage 3 trials with System C.

In this second analysis, support for the hypothesis requires a positive correlation

between user pace and System C timeout setting – fast-pace users with a low

mean time on stage 1 trials should set a low timeout value for System C, and

slow pace users should set a high timeout value for System C.

22

Additional secondary analyses are also conducted to further characterise

the results, including analyses of the effects of participant gender and gaming

experience, as well as participants’ comments.

3.6. Study 1 results

3.6.1. User pace characterisation from stage 1 trials

The analysis of results requires first determining each participant’s user pace

from their performance in stage 1 trials. We only included data for correct

selections because including the time for errors could misrepresent a ‘rushing’

user who is fast but inaccurate as having a slow pace of interaction.

Participants’ mean time for stage 1 trials ranged from an extremely fast

656 ms to a sedate 4100 ms, with an overall mean of 1544 ms (s.d., 624, 95%

CI [1458, 1631]).

We computed quantile values that split the participants into three equally

sized pools according to their mean performance on stage 1 trials, classifying

users as Q1 (fast), Q2 (medium), and Q3 (slow). The fastest 331⁄3% of partici-

pants were categorised as Q1 if their mean trial time was less than 1219 ms; the

middle 331⁄3% were classified as Q2 if their mean was in the range 1219-1567 ms;

and the slowest third of participant were categorised as Q3 if their mean was

greater than 1567 ms.

3.6.2. Preference for fast or slow system A/B, across user pace characterisation

Although not part of our hypothesis, there was a general preference for the

first system experienced, with 59% of participants choosing System A (used

first) over System B (χ2 = 6.58, p = .01). Similar preference rates for the first

condition in forced-choice experiments have been observed in other studies (e.g.,

Harrison et al. [21]).

Figure 4a summarises the main result, showing the proportion of users in

each classification quantile that selected the fast (250 ms timeout) or slow

(750 ms timeout) System A/B as their preferred interface. Importantly, 58.0%

of users who were classified in the Q1 quantile selected the fast 250 ms system

23

0.58

0.42

0.41

0.59

0.39

0.61

0.00

0.25

0.50

0.75

1.00

Q1 (fast) Q2 (medium) Q3 (slow)
User pace category

P
ro

po
rt

io
n

pr
ef

er
en

ce

Prefer slow (750 ms) Prefer fast (250 ms)

(a) Proportion of participants choosing the

fast (250 ms) or slow (750 ms) system A/B,

across classification quantile.

0

500

1000

1500

Q1 (fast) Q2 (medium) Q3 (slow)
User pace category

U
se

r
se

le
ct

ed
 S

ys
te

m
 C

 ti
m

eo
ut

 (
m

s)

Timeout
Slow (750)
Mean System C (568)
Fast (250)

(b) Distribution of user-selected System C

timeouts across quantile.

Figure 4: Main results from Study 1 across 331⁄3 quantiles of user pace (Q1 fast to Q3 slow).

In all box-whisker plots red dots show the mean, black dots show outliers, the middle bar

shows the median, hinges show first and third quartiles, and whiskers extend to max/min

value within 1.5× the inter-quartile range from the hinge.

as preferred to the slow 750 ms system. This preference for the fast interface de-

creased to 40.6% for the medium-paced Q2 users, and to 38.6% for the Q3 users.

A χ2 test of proportions shows that data as extreme as this sample should sel-

dom occur in the absence of an underlying effect: χ2 = 6.35, p = .042, ω = 0.174.

This supports H1, with further analyses of H1 below.

3.6.3. System C timeout setting across user pace

The second main analysis concerns the relationship between user pace and

participants’ preferred slider setting for the System C timeout. The mean value

that participants set across quantiles is summarised in Figure 4b, from a low

of 429 ms (s.d., 250 ms) for Q1 participants, through a mean of 546 ms (s.d.,

302 ms) for Q2, to a maximum mean of 726 ms (s.d., 375 ms) for Q3 participants.

Analysis of variance for this data yields F2,205 = 15.77, p < 10−5. In addition,

4Cohen’s ω effect size [9, 37].

24

there was a positive linear correlation between participants’ mean time on stage

1 trials and their selected timeout value for System C (r = 0.41, p < 10−5).These

results all support H1.

3.6.4. Effect of gaming frequency and age

As many computer games expose users to a demanding pace of interaction,

we wondered whether the frequency of gaming use might influence preferences

for timeout duration. We therefore conducted a Spearman rank correlation

between participants’ self-reported frequency of gaming use and their setting

for the System C timeout, which showed at most a weak relationship (ρ =

0.13, p = .058), suggesting that gaming frequency was not a strong influence on

our results. Finally, analysis of the relationship between participants’ age and

their setting for System C timeout also showed no clear relationship (Pearson

r = .08, p = .24).

3.6.5. Participant comments

Participants’ comments amplified the quantitative observations above. Many

of the most forceful comments were from the fastest users who expressed strong

dislike for the 750 ms timeout in System A/B. For example, the participant

with the fastest mean time on stage 1 trials (participant 1389, mean 656 ms)

commented “I hated the length of the delay in system A.” This participant set

the System C timeout to 180 ms. The participant with the second fastest mean

time on stage 1 trials (participant 1100, mean 808 ms) set the System C timeout

to the minimum value available at 1 ms, but subsequently commented that this

was too short: “When I did the initial trials I thought that setting it to the

quickest speed would be the most efficient and it was for many of the trials.

But, if I got off track at all, it was harder to get back to the right section to

make the drop. The overall speed was a positive but it wasn’t perfect. Doing a

few more trials now makes me think that something around 75 ms would work

best for me. It’s just enough of a delay for me to easily get in the right box, but

not so much of a delay as to be annoyingly slow.”

25

At the other end of the spectrum of user pace, several participants in the slow

Q3 quantile made comments referring to the frustration of the timeout being

too short. For example, participant 1193 (mean 3254 ms) commented that she

had “a difficult time controlling the mouse to move the lines down to the correct

line” and that her selected timeout value of 857 ms was selected “because I

thought that maybe I could keep up with it better”, which suggests a desire for an

improved match between her pace and that of the system. Similarly, participant

1335 (mean 3760 ms) commented “It was aggravating when the numbers would

drop down before I wanted them to, the precision was very difficult”, and he

set a high timeout value of 897 ms, further commenting after completing the

System C trials that even this was too fast “If I could, I would have gone back

and chosen more time before the drop-down occurred.”

3.7. Discussion of Study 1

The results and participant comments from Study 1 indicate that user pref-

erences are positively influenced when the system’s pace better matches the

user’s pace. Participant preferences for slow and fast system pace aligned with

our categorisation of participants as having slow, medium, or fast user pace, and

the timeout values that users explicitly set for their upcoming trials correlated

with their mean time on an earlier set of trials that did not involve a timeout.

In short, as hypothesised, fast users preferred a faster interface, and slow users

preferred a slower one.

Although some interfaces provide facilities that allow the user to configure

timeouts many others do not, leaving users with a ‘one size fits all’ system pace.

And even when customisation facilities are provided they often go ignored, and

they necessarily increase the complexity of the interface presented to the user.

Our results suggest that instead of invariant pace or customisation facilities,

interfaces could be designed to observe the user’s pace of interaction, and au-

tomatically adapt interface properties to converge towards the user’s pace. In

this way, the interface might become more responsive (e.g., a shorter timeout)

when used by a fast user or when the user is inferred to be rushing, and the

26

timeout might increase when the user is slow or interacting more leisurely.

However, the conditions tested in Study 1 did not involve the system actually

converging to the user’s pace. Instead, the method measured each users’ mean

time in completing an artificially imposed set of drag-and-drop trials (the time

from picking up the box to dropping it on the target); this mean was then used

to categorise participants as fast, medium, or slow, based on 1
3 quantiles of the

distribution. And all participants chose their preferred between a fast (250 ms)

and slow (750 ms) interface.

This procedure is deficient as evidence for the viability of automatic interface

pace adaptation in three ways:

1. Data source for determining user pace. The method required users to

complete a set of artificially imposed ‘stage one’ drag-and-drop trials in

which every trial had a clear starting and terminating action (initiating

the drag at a specific location, and dropping the item on a predetermined

target). However, real interaction normally lacks such clear start and end

points. For example, it can be very difficult to determine where and when

a particular pointing action begins, and whether the target is successfully

hit or missed [5]. While the use of a set of specific trials served our exper-

imental purpose in characterising each user’s pace, this method would not

be acceptable in a real interface, where users want to get their own work

done and would likely resist completing an artificial set of system-imposed

tasks.

2. Posthoc assignment to quantiles. The assignment of each participant to

the fast, medium, and slow quantiles was conducted in hindsight – after

all of the participants had completed the experiment. Instead, in a real

deployment of adaptive pace, the system would need to measure and adapt

to each user’s pace in-situ.

3. Fast versus slow choice. Participants chose their preferred of two interfaces

– one that was intentionally fast and one that was intentionally slow.

However, in a real deployment designers would choose a sensible ‘one

27

size fits all’ baseline value that is intended to be neither too fast nor

too slow for the majority of users. Therefore a more ecologically valid

experiment would involve a less sensitive choice between a baseline pace

and an automatically adapted pace.

The following study further examines the dataset from Study 1 to charac-

terise aspects of the users’ pace so that these three limitations can be overcome

in Studies 3-4.

4. Study Two: Characteristics of User Pace

Study 2 consisted of a series of posthoc analyses of the Study 1 dataset, with

a focus on two aspects of user pace: first, what characteristics of the user’s pace

might be available to a system as a basis for automated system pace adaptation?;

second, do users adapt their pace towards that of the system (as suggested by

Shneiderman, see Section 2.2.2).

As mentioned above, traditional measures of user pace (such as Fitts’s Law

analyses) are problematic for automatic pace determination due to the difficulty

of inferring when the user’s pointing action begins and when it accurately ends.

However, we wondered whether other aspects of the user’s interaction might

permit reliable categorisation of the user’s pace. In particular, we wondered

whether fast-paced users might move the cursor more quickly than slow-paced

users (mean cursor velocity), whether they would have a higher peak velocity

per trial than slow paced users (mean maximum cursor velocity), or whether

fast users might exhibit a shorter delay between entering a target and releasing

the mouse button to select it (confirmation time).

4.1. Cursor velocity

First, we determined mean cursor velocity and mean maximum cursor ve-

locity for each participant in their stage 1 trials. To calculate these values, we

first measured cursor velocity at every Enter event in stage 1 (i.e., the velocity

when the cursor entered each of the 16 target items). Mean cursor velocity

28

was then calculated for each participant by determining the mean of the En-

ter velocities in each trial, and then calculating a grand mean across all trials.

Mean maximum cursor velocity for each participant was calculated by finding

the maximum Enter velocity for each trial, and then calculating a mean of these

values across all of the stage 1 trials for that participant.

The effectiveness of these two values for predicting users’ preference for sys-

tem pace was tested in two ways: first, using linear correlation of the variable

of interest (mean cursor velocity and mean maximum cursor velocity) with the

participant’s selected System C timeout; and second, using binomial logistic

regression of the variable of interest with the participants’ preference choice.

For mean cursor velocity, there was a significant negative linear correlation

with user selected System C timeout (r = −0.3, p = 8.5 × 10−6), providing

some indication that users who moved the cursor faster on average preferred

a lower value for System C (i.e., faster response). However, binomial logistic

regression showed no significant relationship between mean cursor velocity and

the participants’ preference choice for the fast or slow interface (p = 0.18).

Results were weaker for mean maximum cursor velocity, showing only a marginal

negative linear correlation with System C timeout (r = −0.14, p = .046), and no

binomial logistic regression fit with the participants’ preference choice (p = .66).

These results indicate that neither mean cursor velocity nor mean maximum

cursor velocity provide a good basis for adapting system pace to user pace.

We suspect that these measures are too noisy – for example, a user with high

cursor velocities might tend to overshoot the target more, causing slow overall

performance.

4.2. Confirmation time

Next we examined confirmation time, which, for each participant, was the

mean time between the cursor entering the final target in stage 1 trials (which

does not expand) and the mouse button being released to drop the dragged

object onto the target. To some extent this time represents the user’s reaction

time to observing that the cursor has entered and become stable within the

29

target. This time can be automatically measured by an interface for any drag-

and-drop action, so it is a viable candidate for automatic pace determination.

Our analysis determined confirmation time from the mean of the final three

stage 1 trials for each participant – that is, we only analyse the trials that were

used to classify participants’ pace in Study 1.

Across all participants, the mean confirmation time was 917 ms (s.d. 459). In

examining confirmation time across three quantiles (representing classifications

as Q1 fast, Q2 medium, and Q3 slow), the fastest quantile of participants had a

mean confirmation time of 555 ms (s.d. 84 ms), and the slowest quantile had a

mean of 1380 ms (s.d. 508 ms). There was also a significant positive correlation

between confirmation time and user selected System C timeout (r = 0.37, p =

4.7 × 10−8). Binomial logistic regression also showed a significant relationship

between confirmation time and preference choice (p = .008).

Finally, when participants were assigned to three quantiles according to con-

firmation time, the proportion of preferences for the fast interface (250 ms)

across quantiles was similar to that for Study 1 (see Figure 4a) at 56% for Q1

(fast), 59% for Q2 (medium), and 41% for Q3 (slow) participants.

Confirmation time therefore appears to be a promising metric for a sys-

tem to automatically determine the user’s pace – it is readily measured by the

system, it correlates reasonably well with users’ preferences and settings for pre-

ferred system pace, and the preference proportions across quantiles are similar

to those produced when the user’s pace is inferred from an analysis of Fitts’s

Law pointing performance.

4.3. Pace Entrainment

Although our research focus is on improving user preferences through auto-

matic adaptation of the system’s pace, a related issue concerns adaptation in

the opposite direction – do users adapt their pace to that of the system? As

reviewed in Section 2.2.2, previous HCI studies have indicated that user speech

rates adapt towards that of animated agents [41], so perhaps other aspects of

users’ interaction pace, such as confirmation time, will also entrain towards the

30

system’s pace. If users do entrain to the system’s pace then this might influ-

ence the design of adaptive systems as well as the design of experiments used

to evaluate them (both discussed later).

To examine whether and how the participants’ changed their pace in response

to the system’s pace, we conducted a series of analyses.

First, we analysed confirmation time across the fast (250 ms) and slow

(750 ms) conditions for systems A and B. Note that there is no requirement

for users to alter confirmation time with the fast and slow interfaces – the

250/750 ms timeout only influences the hover time necessary to expand parent

items, and it does not have any implemented effect on the final target item that

is used to determine confirmation time.

The mean confirmation time when using the fast condition was 739 ms (s.d.,

335), which was approximately 9% less than that with the slow condition (mean

814 ms, s.d., 384): F1,208 = 24.5, p < 10−5, η2
g = .105. This difference indicates

that users do indeed entrain to interface pace – subjects reacted more quickly

to the cursor-over state when using the fast interface than when using the slow

interface, even though there was no need for them to do so.

Second, we analysed how confirmation time changed across the series of

twelve trials using the fast and slow interfaces. With the slow interface, there

was a positive correlation between trial count (1-12) and confirmation time

(r = 0.53), with mean values increasing from 768 ms in the first trial to 858 ms

in the twelfth. Conversely, with the fast interface, the correlation was weakly

negative (r = −.043), with no clear trend across trials: mean 745 ms in the

first trial and 728 ms in the twelfth. The positive correlation for the slow

interface might imply that users gradually shifted towards a slower pace of

interaction when the pace requirements imposed by the interface are slower

(i.e., the relatively sedate 750 ms timeout).

Third, we examined whether patterns of entrainment differed across dif-

ferent categories of user pace using a 2×3 ANOVA of the dependent variable

confirmation time for independent variables interface pace ∈ {fast-ui (250 ms),

slow-ui (750 ms)} and user pace ∈ {Q1 fast, Q2 medium, Q3 slow}. Re-

31

0

500

1000

1500

2000

Q1 (fast) Q2 (medium) Q3 (slow)
User pace category

M
ea

n
co

nf
ir

m
at

io
n

tim
e

(m
s)

UI Fast (250 ms) Slow (750 ms)

Figure 5: Entrainment analysis: confirmation time when using the fast (250 ms) and slow

(750 ms) interface across user pace categories. In all box-whisker plots, red dots show the

mean, black dots show outliers, the centre line shows the median, the hinges show first and

third quartiles, and whiskers extend to max/min value within 1.5× the inter-quartile range

from the hinge.

sults are summarised in Figure 5. As should be expected from the results

reported above, this analysis showed a significant main effect of interface pace

(F1,206 = 24.8, p < 10−5, η2
g = .027) as well as a significant main effect of user

pace (F2,206 = 204.8, p < 10−5, η2
g = .61). However, there was no significant

interface pace×user pace interaction (F2,206 = 2.6, p = 0.07), providing no reli-

able evidence that users in different categories of pace exhibit different patterns

of entrainment.

4.4. Summary of pace characterisation

There are two main findings of Study 2’s pace characterisation. First, confir-

mation time – the time between the cursor entering a target and a terminating

release action on that object – appears to provide a good indication of user

pace, correlating fairly well with subjects’ preference choices for fast/slow inter-

face conditions and with their preferred setting for system pace. Importantly,

confirmation time is a value that any user interface can automatically measure

32

from basic user interface events. The upcoming studies reported in this paper

use confirmation time as a basis for automatic system pace adaptation.

Second, analysis of confirmation time indicates that users entrain towards

the system’s pace. Confirmation times were shorter when using the fast user

interface than when using the slow interface, even though the interface imposed

no need for confirmation time to vary in these conditions. This observation

supports the notion that users may “pick up the pace of a rapid interaction

sequence” postulated by Shneiderman almost 40 years ago [48]. We return to

the implications of this in the Discussion.

5. Study 3: Adapted Timeout versus a Baseline

Results from Study 1 indicate that preferences for system pace covary with

measures of the user’s pace, and results from Study 2 indicate that automatically

measurable aspects of the user’s pace (specifically, confirmation time) could be

used as a parameter for automatically adapting the system’s pace towards the

user’s pace.

Study 3 therefore examined whether users would prefer a system that au-

tomatically adapted its pace to a system that used a fixed baseline timeout.

The adaptive timeout was set by continually measuring the participant’s user

pace (based on the mean confirmation time as described in Section 4.2) across

the user’s last three trials). The study was conducted twice, once with crowd-

sourced participants on mechanical turk (Study3mTurk) and once with local

students (Study3local).

The hypothesis, H2, for Study 3 was that the majority of fast and slow

participants would prefer the adapted interface to the baseline interface.

5.1. Method

The experiment used a similar method to that of Study 1. Participants com-

pleted a set of stage 1 trials, with the confirmation time data from the final

three trials used to establish the initial timeout value for the adaptive inter-

face. In stage 2, participants completed a series of trials using the baseline and

33

adaptive interfaces, which were presented as ‘System A’ and ‘System B’ (order

counterbalanced), selecting their preferred interface after completing trials with

System B (see Section 3.3.2). Finally, they completed stage 3, setting their

preferred static timeout value for ‘System C’ (see Section 3.3.3).

For Study 3mTurk, 83 participants were recruited on Amazon Mechanical

Turk: 28 female, 55 male; mean age 40.3 years (s.d. 11.7); 76 reported using a

mouse for input, 7 reported using a trackpad. For Study 3local, 121 participants

were recruited from an undergraduate computer science course, and carried out

the study in a supervised computer lab. Participants’ mean age was 21.8 years

(s.d. 2.8); 23 female, 96 male, 2 other; 96 used a mouse for input, 25 used a

trackpad.

After all participants had completed the study, our analysis classified each

person into one of three quantiles (Q1 fast, Q2 medium, and Q3 slow, sepa-

rately for Study 3mTurk and Study 3local), and then assessed the proportion of

participants in each quantile who preferred the adaptive or baseline interfaces.

Participants were classified into quantiles based on their mean adapted timeout,

which is the mean of the timeout value used by the adaptive interface across

all of the stage 2 trials for each user. Mean adapted timeout provides a more

complete characterisation of the user’s pace than the measures used in Study 1

because it covers all of each user’s trials throughout the main part of the exper-

iment (recall that in Study 1 participants were statically assigned to a fast or

slow interface based on their pace using only stage 1 trials).

5.2. Study 3 results

Figure 6a summarises the main results for Study 3mTurk (left) and Study 3local

(right), showing the proportion of participants who selected the adaptive and

baseline interface as preferred across three user-pace quantiles, from Q1 (fast)

to Q3 (slow). In Study 3mTurk, the proportion preferring the adaptive inter-

face was 43% in Q1 (fast), 32% in Q2 (medium) and 58% in Q3 (slow); all

showing no significant difference (Q1 χ
2 = 0.3, p = .57; Q2 χ

2 = 2.4, p = .12;

Q3 χ
2 = 0.3, p = .57). The proportions preferring the adaptive interface were

34

higher in Study3local, at 60% in Q1, 63% in Q2 and 41% in Q3; again all show-

ing no significant difference (Q1 χ2 = 1.2, p = .27; Q2 χ2 = 2.0, p = .15;

Q3 χ
2 = 1.6, p = .21).

While these preference choice results do not provide support for H2, the

difference between the baseline timeout and the adapted timeout (which we

term the ‘delta’ value) is an important factor in how much benefit is potentially

provided by the adaptive interface. If the difference between the baseline and

the adapted timeout is small, then there is little value provided by the adapted

interface (and therefore little reason for users to prefer it). Figure 6b shows the

distributions of mean adapted timeout values across quantiles in Study 3, and it

also shows the baseline timeout. The figure highlights several important points,

as follows.

First, the crowdsourced participants in Study3mTurk had much longer mean

adapted timeout values (mean 836 ms, s.d. 237) than the local participants in

Study31ocal (mean 502 ms, s.d. 123 ms). In other words, the crowdsourced

participants interacted much more slowly than the local participants – recall

that mean adapted timeout values are derived from how quickly users release

the mouse button to drop a dragged object after entering the target.

Second, as a consequence of their slow pace, the fastest quantile (Q1) of

crowdsourced participants received adaptive timeout values that were similar

to the baseline (a mean difference of only 11 ms), and they therefore had no

compelling reason to prefer adaptation. Participants in Q3, however, received

adaptive timeouts that were substantially different than the baseline (a mean

difference of 538 ms), and they therefore had a much stronger rationale for

preferring the adaptive interface, with a 58% majority doing so.

Third, the Q1 (fast) and Q2 (medium) local participants in Study 3local had

mean adapted timeout values that were notably faster than the 570 ms baseline

value, providing a reason for them to prefer the adapted system (and 60% and

63% did so).

Fourth, the delta value does not adequately explain why a minority of Q2

(medium) participants in Study 3mTurk andQ3 (slow) participants in Study 3local

35

0.43

0.32

0.58

0.57

0.68

0.42

0.60 0.63

0.41

0.40 0.37

0.59

mTurk local

Q1 (fast) Q2 (medium) Q3 (slow) Q1 (fast) Q2 (medium) Q3 (slow)

0.00

0.25

0.50

0.75

1.00

User pace category

P
ro

po
rt

io
n

pr
ef

er
en

ce
.

UI Baseline Adapted

(a) Preference choice.

mTurk local

Q1 (fast) Q2 (medium) Q3 (slow) Q1 (fast) Q2 (medium) Q3 (slow)

400

800

1200

1600

User pace category

M
ea

n
ad

ap
te

d
tim

eo
ut

 (
m

s)
.

Timeout
Baseline (570)

(b) Timeouts with the adaptive interface.

Figure 6: Results from Study 3 across three quantiles of user pace (Q1 (fast) to Q3 (slow)):

interface preference choice (left) and distribution of adapted timeouts (right). In each plot,

data from Study 3mTurk (n=83) is left and Study 3local (n=121) is right.

selected a preference for the adapted interface. In both of these conditions, the

mean adapted timeout value was higher than the baseline timeout (providing a

reason to prefer the slower pace of the adaptive interface), yet only 32% (Q2

in Study 3mTurk) and 41% (Q3 in Study 3local) did so. In these conditions, we

believe that the negative experience of inconsistency of the adapted timeout was

a stronger influence on the user’s experience than any positive effects associated

with the slower pace provided by the adaptive interface. These issues are further

examined in Study 4.

Finally, regarding the much slower interaction by the crowdsourced partici-

pants in Study 3mTurk than the local participants in Study 3local, we see three

possible explanations. First, the local participants were substantially younger

(mean age 21.8 years) than the Turkers (40.3 years). Second, the local partic-

ipants were likely more focused on the task than the Turkers (who may have

been completing more than one task concurrently). These two issues are further

discussed in Section 7.3. Third, entrainment effects may have also contributed

to the difference: for example, if a Turker was slow in one trial (perhaps due

to paying attention elsewhere), then the adaptive system would result in longer

36

timeout values for subsequent trials, and if the timeout was particularly long,

that may have encouraged them to split their attention during trials, potentially

leading to even longer timeout values. In contrast, an attentive participant who

interacted quickly might be encouraged to ‘pick up the pace of a rapid interac-

tion sequence’ [48], leading to a shorter adaptive timeout, encouraging yet faster

interaction pace. Consequently, we were concerned that the results of Study 3

may have been influenced by the participants’ susceptibility to entrain to the

system’s pace, rather than due to their preferences for a system that matched

their own more ‘natural’ pace. We therefore adjusted the experimental method

in Study 4 to reduce the likely influence of entrainment effects.

6. Study 4 – Adapted Timeout Versus a Baseline, with Mixed Tasks

In Studies 1 and 3, all of the stage 2 tasks involved dragging an item through

three hierarchical levels to reach a drop target (e.g., target item 11.5.5 as shown

in Figure 2b). All trials in stage 2 therefore exposed the user to the system pace,

and therefore every trial had the potential to reinforce entrainment effects, with

the users adapting their pace towards that of the system.

To mitigate this effect, Study 4 altered stage 2 to contain additional drag

and drop trials that did not involve exposure to the system pace. The studies

used 36 drag-and-drop trials (rather than the 12 used previously), consisting of

12 repetitions of a three-trial pattern with two trials that did not use a hierarchy

(e.g., ‘drop in 16’ as shown in Figure 2a) and one with hierarchy (e.g., ‘drop in

11.5.5’ as shown in Figure 2b). The non-hierarchical trials involved dropping

the target onto a non-expanding item, and therefore they did not involve any

system-imposed timeout. The additional trials allowed users to interact at their

own pace for two trials before encountering the element of system-imposed pace

in a third trial, with the goal of reducing artificial entrainment effects. Like

Study 3, Study 4 was completed by two participant cohorts – crowdworkers

in Study 4mTurk and local students in Study 4local. To account for the faster

interaction by local participants than crowdworkers in Study 3, the baseline

37

timeout value used with local students was reduced to 500 ms. Other than

these methodological variations, Study 4 was identical to Study 3.

Study 4mTurk ran on Amazon Mechanical Turk, with 42 participants whose

mean age was 40.7 years (s.d., 10.3); 18 female, 24 male; 32 mouse users, 10

trackpad. In Study 4local, 116 participants were recruited from undergraduate

classes at a local university (none of whom participated in the earlier experi-

ment) – mean age 21.7 years (sd 3.2); 85 male, 25 female, 6 declined to answer;

83 reported using a mouse for input, 33 a trackpad.

6.1. Study 4 results

The main results, concerning the proportion of preference for the adaptive

and baseline interfaces, are summarised in Figure 7a. In Study 4mTurk, a 78%

majority of Q1 (fast) participants preferred the adaptive interface (χ2 = 3.5, p =

.06, h = .625), aligning with hypothesis H2. However, in both Q2 (medium)

and Q3 (slow), a 57% majority of participants preferred the baseline interface

(χ2 = .07, p = .79 for both). And in Study 4local a 69% majority of Q1 (fast)

participants again preferred the adaptive interface (χ2 = 5.0, p = .025, h =

0.39), but with only 55% preference among Q2 participants (χ2 = 0.24, p = .63),

and 36% preference among Q3 participants (χ2 = 2.6, p = .11).

As in Study 3, the preference results are best understood with reference to

the mean adapted timeout values and their difference from the baseline timeout

values, as summarised in Figure 7b. The key observations are as follows.

First, as in Study 3, the crowdsourced participants were much slower than

the local participants, with respective mean mean adapted timeout values of

585 ms (s.d. 227 ms) and 394 ms (s.d. 74 ms).

Second, the methodological change between Studies 3 and 4 (adding trials

that did not involve the hierarchical timeout in Study 4) resulted in much faster

interaction in Study 4 than observed in Study 3. This is evident in the values of

mean adapted timeout, which reduced across studies from 836 ms to 585 ms for

5Cohen’s h effect size for proportions [9].

38

the crowdworkers, and from 502 ms to 394 ms for the local participants. These

relatively large value changes suggest that entrainment effects can have a sub-

stantial influence on interaction users’ pace, as further discussed in Section 7.4.

Third, the difference between the adapted timeout and the baseline, and the

consistency of the timeout values, can again provide insight into the results. In

both Study 4mTurk and Study 4local, the Q1 (fast) participants’ mean adapted

timeout values were substantially lower than then baseline timeout value, pro-

viding a rational explanation for the 79% and 69% preference for the adapted

interface – the Q1 mean of mean adapted timeout in Study 4mTurk was 380 ms,

190 ms lower than the baseline of 570 ms; in Study 4local the mean was 322 ms,

178 ms lower than the baseline of 500 ms. While the preference choices of Q1

(fast) participants align with H2, the choices of Q3 (slow) participants do not,

with a 57% and 65% majority choosing the baseline interface as preferred. In

Study 4local this preference for the baseline interface can be explained by two

factors – the mean mean adapted timeout value (at 477 ms) was very similar

to the 500 ms baseline, providing at most a minimal reason for preferring the

adaptive interface; and as shown in Figure 8, the adapted timeout values for Q3

participants were much more widely distributed than those for Q1 participants,

indicating that these Q3 received relatively inconsistent adaptive timeouts.

7. Discussion

To summarise the findings, Study 1 showed that fast-paced users preferred

a fast system pace to a slow one, and that slow-paced users preferred slow to

fast. Study 2 further examined the Study 1 data, with two main findings: users

adapt their pace of interaction towards that of the system, even when there is no

need to do so; and measures of confirmation time (the time between the cursor

entering a target item and releasing the mouse button to select it) correlate with

preferences for system pace. Studies 3-4 then examined whether users would

prefer a system that dynamically adapted its pace towards that of the user,

to a system that used a baseline pace. In general, the findings of Studies 3-4

39

0.79

0.43 0.43

0.21

0.57 0.57

0.69

0.55

0.35

0.31

0.45

0.65

mTurk local

Q1 (fast) Q2 (medium) Q3 (slow) Q1 (fast) Q2 (medium) Q3 (slow)

0.00

0.25

0.50

0.75

1.00

User pace category

P
ro

po
rt

io
n

pr
ef

er
en

ce
.

UI Baseline Adapted

(a) Preference choice.

mTurk local

Q1 (fast) Q2 (medium) Q3 (slow) Q1 (fast) Q2 (medium) Q3 (slow)

500

1000

User pace category

M
ea

n
ad

ap
te

d
tim

eo
ut

 (
m

s)
.

Timeout
Baseline

(b) Timeouts with the adaptive interface.

Figure 7: Results from Study 4 across three quantiles of user pace (Q1 (fast) to Q3 (slow)):

interface preference choice (left) and distribution of adapted timeouts (right). In each plot,

data from Study 4mTurk is left and Study 3local is right.

showed that the majority of fast users preferred the faster interaction enabled by

adaptive pace; however, results were less clear for slow-paced users. The studies

also identified two underlying issues that can help to explain the results: the size

of the difference between user pace and adapted pace (with larger differences

providing more reason to prefer adaptation), and the variability in the sequence

of adapted timeouts (with higher variance causing an inconsistent interactive

experience, reducing preference for the adaptation). Table 1 provides a summary

of numerical values associated with Studies 3 and 4.

Baseline Prefer Adapted Adapted T SystemC T

Study n T Q1 Q2 Q3 x̄ σ x̄ σ

3mTurk 83 570 ms 43% 32% 58% 836 ms 237 679 ms 385

3local 121 570 ms 60% 63% 41% 502 ms 123 372 ms 203

4mTurk 42 570 ms 78% 43% 43% 585 ms 227 563 ms 367

4local 116 500 ms 69% 55% 45% 394 ms 74 372 ms 178

Table 1: Summary of values across Studies 3 and 4. T for ‘timeout’. SystemC T values are

the user-selected preferred values for sytem timeout.

40

mTurk local

400 800 1200 400 800 1200

0.000

0.002

0.004

0.006

Adapted timeout.

de
ns

ity

User classification

Q1 (fast)
Q3 (slow)

Figure 8: Distribution of adapted timeout values that Q1 (fast) and Q3 (slow) participants

received in Study 4mTurk (left) and Study 4local (right). Timeout values were more variable

for Q3 (slow) participants than for Q1 (fast).

The following subsections provide a pooled data analysis of the results from

Studies 3-4, and discuss the full set of results, including possible explanations for

the findings, the implications for design, and study limitations and opportunities

for further work.

7.1. Pooled data analysis of Studies 3-4

We followed up on the idea of difference between user pace and adapted pace

by carrying out a pooled data analysis across Studies 3-4. Hypothetically, user

preferences for an ideal adaptive pace system should follow a U-shape across

the spectrum of user pace, as depicted in Figure 9a. If the baseline value is

well chosen, then around the median user pace, preferences should be roughly

evenly split between the adapted interface and the baseline (we show a slight

preference for the baseline interface at the mid-point because it is reasonable to

suspect that the pace inconsistency caused by adaptation will be less desirable

41

to these users than the consistency of an unchanging baseline.) The further the

users’ pace lies from the mid-point, however, the greater the proportion of users

who should prefer adaptation – very fast or very slow users should receive an

adapted pace that is substantially different from the baseline, and better suited

to their needs.

To examine conformance with this hypothetical trend, we pooled data from

Studies 3-4, determining a delta value for each participant that is the difference

between their mean adapted timeout and the baseline timeout. We then anal-

ysed the Spearman rank correlation between the delta values and the binary

preference choice for the adapted interface, conducting this analysis separately

for participants with negative delta (i.e., faster than the baseline) and positive

delta (slower than the baseline).

Figure 9b summarises the results. As hypothesised, for fast participants

(negative delta), there was a significant negative correlation between delta and

preference for the adapted interface (Spearman ρ = −.18, p = .005) – preference

for the adapted interface increased with the magnitude of delta, with the linear

model indicating ≈80% preference for the adaptive interface for the very fastest

participants (delta=-300) down to ≈40% preference at delta=0.

For slow participants (positive delta) there was a non-significant positive

correlation (Spearman ρ = 0.1, p = .25), with low levels of acceptance for the

adapted interface, ranging from ≈35% at delta=0 to ≈56% for the very slowest

users.

These results support the general findings reported above – while automatic

adaptation can improve the preferences of fast users, there is a lack of evidence

that it can succeed for slower users.

This pooled data analysis gives a wide spectrum of values of mean adapted

timeout. This analysis was not possible for the individual studies because the

proportion of participants with mean adapted timeout values above/below the

baseline timeout varied substantially across studies (see Figures 6b and 7b) – for

example, in Study 3mTurk few participants had a mean adapted timeout value

below that of the baseline, and in Study 4local few participants had a mean

42

0.5

1.0

Faster than baseline 0 Slower than baseline
User pace

P
ro

p
o

rt
io

n
 p

re
fe

rr
in

g
 a

d
a

p
ta

ti
o

n

Compared to baseline: Faster Slower

(a) Hypothetical curve showing the

proportion of users preferring an

interface that adapts to their pace

over a well chosen static baseline.

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman

ρ= -0.182

p = 0.005

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

Spearman ρ= 0.103

p = 0.246

0.00

0.25

0.50

0.75

1.00

-300 0 300 600

User pace as timeout delta in ms: (MeanAdaptedTimeout - Baseline)

P
re

fe
rr

e
d

 A
d

a
p

te
d

MeanAdaptedTimeout: Faster than Baseline Slower than Baseline

(b) Pooled data analysis of Studies 3-4 including lin-

ear correlations for participants faster than the base-

line (left) and slower (right), including 95% confidence

interval.

Figure 9: The proportion of participants who prefer the adapted interface to a static baseline

interface across user pace (fast to slow). Hypothetical U-shaped curve (left), and empirical

results (right).

adapted timeout above that of the baseline.

7.2. What caused the observed effects?

7.2.1. Why did fast users prefer the adaptive interface?

In Studies 1, 3local, 4mTurk, and 4local, the majority of fast-paced partic-

ipants preferred the faster pace provided by the adaptive interface: 58% in

Study 1, 60% in Study 3local, 79% in Study 4mTurk, and 69% in Study 4local.

In these studies, at least three factors may have contributed to the ‘fast’ par-

ticipants selecting the adaptive interface as preferred to the baseline interface.

First, as hypothesised, users who interact quickly may appreciate the faster in-

teraction enabled by the system. Although we have not highlighted participant

comments for Studies 3-4, many ‘fast’ participants made comments similar to

those reported for Study 1 (see Section 3.6.5), emphasising their satisfaction

with the adaptive system’s quick interaction. While further work is needed to

43

better understand exactly why the fast participants preferred fast interaction,

we suspect that the ability to complete tasks at a fast rate (i.e., high task

throughput with the interface) was a key factor.

Second, fast participants may have been dissatisfied with the slower inter-

action provided by the baseline. This possibility raises experimental concerns

related to the choice of the baseline value. In Studies 3local, 4mTurk, the baseline

was set at 570 ms, based on the mean value for System C selected as preferred

by participants in Study 1. In Study 4local, we reduced the baseline value to

500 ms because the local participants in Study 3local interacted much more

quickly than the crowd-workers in Studies 1 and 3mTurk (the choice of 500 ms

was based on the mean value of mean adapted timeout in Study 3local). As

discussed in Section 3.2, the choice of timeout value (for the baseline interface

in this case) is an important experimental consideration – if it is too high then

a flooring effect is likely, with most participants preferring a faster interface

regardless of their pace, and the inverse if it is too slow. While it is likely that

a higher baseline value would result in a higher proportion of ‘fast’ participants

choosing the adaptive interface as preferred, it is also likely that it would reduce

the number of ‘slow’ participants preferring adaptation. Further experimental

work is needed to examine these effects, but the baseline values used in our

studies are not dissimilar to the default values used in contemporary software

(for example, the 600 ms value used in the Mac OS Finder’s column view; see

Section 2.2.1). Furthermore, the pooled data analysis reported in Section 7.1

reduces some of the potential impact of the baseline value by examining results

with respect to the timeout delta from the baseline. The difficulty we had in

setting a baseline value that worked across multiple studies is also an indication

of how difficult it will be for designers to choose a reasonable one-size-fits-all

value that will work well for all users – providing additional rationale for the

adaptation approach.

Third, it is possible that fast participants may have appreciated the system’s

adaptation towards their pace, liking the fact that the system ‘cottoned on’ to

their desire for faster interaction. While this explanation remains a possibility,

44

we did not see participant comments directly referring to it, and we suspect

it was not a major influence in their preference choice. There are interesting

opportunities for further study into the subjective experience of observing that

the system is trying to adapt to better fit the user’s needs. Further research is

needed to better understand the role of each of these three potential explanations

on user preferences.

In Study 3mTurk, however, only 43% of participants classified as ‘fast’ pre-

ferred the fast interface. We believe that this too can be attributed to the

users’ pace with respect to the baseline value – as summarised in Figure 6b,

the mean timeout value provided to the crowdworkers was 581 ms and therefore

very similar to the baseline value (at 570 ms), providing little reason to select a

preference for the adaptive interface.

7.2.2. Why did adaptation fail for slow users?

While a 61% majority of slow-paced participants preferred the slow inter-

face to the fast interface in Study 1, in all of the adapted-pace studies (except

Study 3mTurk) the majority of slow-paced participants preferred the baseline

interface to the adaptive interface: 59% in Study 3local, 57% in Study 4mTurk

and 65% in Study 4local. In contrast, in Study 3mTurk, 58% of slow participants

preferred the adaptive interface.

Comparing data distributions between Q3 (slow) and Q1 (fast) participants

provides insights into why slow participants may not appreciate the adaptive

interfaces. In particular, data from Q3 participants is much more variable than

that for Q1 participants (see the distributions in Figure 8). This variability in

mean adapted timeout for Q3 participants will have caused inconsistent time-

out values in the adaptive interface, potentially explaining a preference for the

more consistent baseline interface. Furthermore, users who interact more slowly

may have difficulty building confidence with a system, and adaptations (such as

changing timeouts) may exacerbate these difficulties. These observations sup-

port the findings of Yu [55], who noted that a predictable interaction rhythm is

beneficial during interaction with intelligent systems. Our results suggest that

45

this finding may be especially true for users who interact more slowly.

Various methods could be used to reduce the instability of the adaptive time-

outs when users have higher variance in their interaction. We implemented two

controls in Study 3 and 4 (a limit on change and an overall cap), but more could

be done to improve the experience for slow users. For example, the one-Euro

filter developed by Casiez and colleagues has been shown to provide a reasonable

balance between responsiveness and stability for noisy human input streams [3].

Further work is necessary, however, to compare different hysteresis functions

and validate their effectiveness. At present, however, our studies indicate that

there is a lack of evidence that automatic pace adaptation can succeed for slow

users.

7.3. Why did the crowd-workers differ from the local students?

Studies 3 and 4 both used two participant cohorts – crowd-workers and

local students, with the crowd-workers interacting much slower than the local

students, and they therefore received much higher mean values for mean adapted

timeout : in Study 3 , 836 ms for the crowd-workers versus 502 ms for the local

students; and in Study 4 585 ms for the crowd-workers versus 394 ms for the

local students.

We suspect that the main reason for the crowd-workers’ slower performance

and preferences was due to their age. The mean age of the crowd-worker par-

ticipants was nearly two decades higher than than that of the local students

(40.5 years versus 21.8 years). Prior studies have demonstrated that age-related

cognitive-motor decline in reaction times begins from around 24 years of age

[49], with decline values estimated at 2.8 ms/year [54] for cognitive reaction time

alone. And a study of pointing performance [23] found no difference between

‘young’ (aged 12-14) and ‘adult’ participants (aged 25-33) , while ‘elderly’ par-

ticipants (aged 61-69) were significantly slower (means of 1587 ms and 2175 ms

for adults and elderly respectively).

However, we also suspect that a high proportion of crowd-workers had low

engagement with the study, possibly due to their trying to complete multi-

46

ple studies concurrently to maximise their income on the platform [43]. One

indication supporting this inference is that a surprisingly large number of crowd-

worker participants (79 of 548, 14%) gave a one-word response of ‘good,’ ‘noth-

ing,’ ‘none’ or ‘nice’ in the free-form comments at the end of the experiment; in

contrast, none of the 237 local students provided a one-word comment. Problems

with the veracity of data derived from crowd-sourced platforms, particularly on

Amazon Mechanical Turk, are discussed in Peer et al. [43].

7.4. The influence of entrainment

The main experimental tasks of stage 2 in Study 3 all involved dragging

an object through a series of three hierarchical levels. In Study 4 we modified

the method to introduce two non-hierarchical drag-and-drop tasks before each

hierarchical task. We did so to ease concerns that users may have been exces-

sively entraining to the pace of interaction imposed by the expansion timeout.

By introducing the non-hierarchical drag-and-drop tasks, users would be free to

interact at their preferred rate (for the non-hierarchical tasks) without needing

to wait for the timeout to expire.

We were surprised by how much this methodological adjustment influenced

the participants’ performance. For the crowd-workers in Study 3mTurk, the

mean value of mean adapted timeout was 836 ms, which reduced to 585 ms in

Study 4mTurk (a 32% reduction); and for the local students, the value reduced

from 502 ms to 394 ms (a 22% reduction).

There are three high-level implications of this observation. First, users ap-

pear to be strongly influenced by system pace, and they are likely to quickly

adapt their pace towards that of the system. Second, reflecting the findings of Yu

[55], consistent system pace creates a predictable pace that the user can entrain

towards; but the high variability of performance by slow users can impair pace

consistency in adaptive systems. Third, researchers conducting experiments re-

lating to system pace should think carefully about the nuances of their method,

including the desirability of amplifying or suppressing entrainment effects.

47

7.5. Study limitations, design implications, and further work

Many forms of interaction involve elements of system pace, including speech

interaction, animations, control-display gain functions, as well as the use of

timeouts to disambiguate user intentions (e.g., the use of long-press and very-

long-press on mobile touchscreen devices). All of our studies were conducted

within one limited interaction – the duration of the hover timeout used to deter-

mine when to expand a hierarchical item during drag-and-drop. While we hope

that our findings generalise to interactions beyond hierarchical drag-and-drop,

further studies are necessary. In particular, studies are needed to to replicate

our findings, to broaden timeout-based findings to other types of timeouts (such

as those used to discriminate gestures), and to generalise to other types of pace-

based interactions.

Within our specific domain of hierarchical drag-and-drop, the results have

important implications for a basic interaction that is used in an extremely wide

range of applications, including file browsers (such as Finder and Windows Ex-

plorer), email clients, code navigators, web-browser bookmarks, mobile phone

homescreens, photo browsers, and many more. While some applications or oper-

ating systems provide explicit customisation controls to configure the expansion

timeout, research suggests that such customisation features are seldom used

[33, 27, 34]. Furthermore, the default values used for the expansion timeout

varies substantially between applications (see Section 2.2.1), suggesting that

some users will be poorly served by the defaults – too fast for some, too slow for

others. Another avenue for further work within drag-and-drop interactions con-

cerns iterations and improvements of the adaptive algorithm: while our study

used confirmation time and a small amount of hysteresis to smooth adaptive

changes, other measures of user pace and other adaptive algorithms may further

improve user experience. Longitudinal studies could also examine how users’

pace changes over time, how preferences change over time, and how systems can

best adapt to long-term aspects of user pace.

Our results indicate that systems can automatically identify fast users who

are likely to benefit from a timeout value that is shorter than the default value

48

(by inspecting confirmation time), and that by reducing the timeout value for

these participants their subjective experience can be improved. The results

also indicate that for the remaining medium- and slow-paced users, the system

should leave the baseline timeout value unaltered. However, further work is

needed to better understand how the best possible ‘one size fits all’ baseline

value can be established for use in any experiment examining automatic pace

adaptation. For example, our studies showed that the crowd-workers interacted

much more slowly than our lab participants, possibly due to their older age.

8. Conclusion

We conducted a series of four studies to examine whether users would benefit

from a system pace that better matched their own pace of interaction. All of

the studies were based on drag-and-drop interactions, where a timeout is used

to determine when to expand a hierarchical item. The first study showed that

fast users prefer a fast timeout to a slow one, and the inverse for slow users.

The second study showed that the time between the cursor entering a target and

releasing the mouse button for selection provides a reliable measure of the users’

pace, and that users quickly adapt their pace towards the system’s pace even

when there is no need for them to do so. The third and fourth studies examined

whether users would prefer a system that adapts its pace toward that of the

user over a system that uses a ‘one size fits all’ timeout, with results showing

that adaptation can improve preferences for fast users, but not for medium-

or slow-paced users. This finding suggests that automatic timeout adaptation

could improve the preferences of a large and important group of users – fast,

high-performance users.

Acknowledgement

This research was supported by Royal Society of New Zealand Marsden grant

M1218.

49

References

[1] James J. Bradac, Anthony Mulac, and Ann House. 1988. Lexical diversity

and magnitude of convergent versus divergent style shifting-: Perceptual

and evaluative consequences. Language and Communication 8, 3 (1988),

213–228.

[2] Stuart K. Card, Thomas P. Moran, and Allen Newell. 1983. The psychology

of human-computer interaction. L. Erlbaum Associates, Hillsdale, N.J.

[3] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012. 1€ filter: a sim-

ple speed-based low-pass filter for noisy input in interactive systems. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. 2527–2530.

[4] Géry Casiez, Daniel Vogel, Ravin Balakrishnan, and Andy Cockburn. 2008.

The Impact of Control-Display Gain on User Performance in Pointing

Tasks. Human-Computer Interaction 23, 3 (2008), 215–250.

[5] Olivier Chapuis, Renaud Blanch, and Michel Beaudouin-Lafon. 2007. Fitts’

Law in the Wild: A Field Study of Aimed Movements. Technical Report.

https://hal.archives-ouvertes.fr/hal-00612026 LRI Technical Rep-

port Number 1480, Univ. Paris-Sud, 11 pages.

[6] Tanya L. Chartrand and John A. Bargh. 1999. The Chameleon Effect: The

Perception-Behavior Link and Social Interaction. Journal of Personality

and Social Psychology 76, 6 (1999), 893–910.

[7] Sin-Horng Chen, Chiao-Hua Hsieh, Chen-Yu Chiang, Hsi-Chun Hsiao, Yih-

Ru Wang, Yuan-Fu Liao, and Hsiu-Min Yu. 2014. Modeling of Speaking

Rate Influences on Mandarin Speech Prosody and Its Application to Speak-

ing Rate-Controlled TTS. IEEE/ACM Trans. Audio, Speech and Lang.

Proc. 22, 7 (July 2014), 1158–1171. https://doi.org/10.1109/TASLP.

2014.2321482

50

[8] Fanny Chevalier, Nathalie Henry Riche, Catherine Plaisant, Amira Chalbi,

and Christophe Hurter. 2016. Animations 25 Years Later: New Roles

and Opportunities. In Proceedings of the International Working Confer-

ence on Advanced Visual Interfaces (Bari, Italy) (AVI ’16). Associa-

tion for Computing Machinery, New York, NY, USA, 280–287. https:

//doi.org/10.1145/2909132.2909255

[9] Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences

(2nd ed.). L. Erlbaum Associates, Hillsdale, N.J.

[10] Thomas J Conrad and Yin Yin Wong. 2000. Computer system with

graphical user interface including spring-loaded enclosures. https:

//patents.google.com/patent/US6061061 Patent No. US6061061, Filed

Jul. 8, 1997, Issued May 9, 2000.

[11] Oscar de Bruijn and Robert Spence. 2000. Rapid Serial Visual Presentation:

A Space-Time Trade-off in Information Presentation. In Proceedings of the

Working Conference on Advanced Visual Interfaces (Palermo, Italy) (AVI

’00). Association for Computing Machinery, New York, NY, USA, 189–192.

https://doi.org/10.1145/345513.345309

[12] Alena Denisova and Paul Cairns. 2015. Adaptation in Digital Games: The

Effect of Challenge Adjustment on Player Performance and Experience.

In Proceedings of the 2015 Annual Symposium on Computer-Human In-

teraction in Play (London, United Kingdom) (CHI PLAY ’15). Associa-

tion for Computing Machinery, New York, NY, USA, 97–101. https:

//doi.org/10.1145/2793107.2793141

[13] AJ Dix. 1992. Pace and interaction. In Proceedings of HCI ’92: People and

computers VII. 171–190.

[14] Kohji Dohsaka, Atsushi Kanemoto, Ryuichiro Higashinaka, Yasuhiro Mi-

nami, and Eisaku Maeda. 2010. User-Adaptive Coordination of Agent Com-

municative Behavior in Spoken Dialogue. In Proceedings of the 11th Annual

51

Meeting of the Special Interest Group on Discourse and Dialogue (Tokyo,

Japan) (SIGDIAL ’10). Association for Computational Linguistics, USA,

314–321.

[15] Greg T. Elliott and Bill Tomlinson. 2006. PersonalSoundtrack: Context-

Aware Playlists That Adapt to User Pace. In CHI ’06 Extended Abstracts

on Human Factors in Computing Systems (Montréal, Québec, Canada)

(CHI EA ’06). Association for Computing Machinery, New York, NY, USA,

736–741. https://doi.org/10.1145/1125451.1125599

[16] PM Fitts. 1954. The Information Capacity of the Human Motor System in

Controlling the Amplitude of Movement. 47 (1954), 381–391.

[17] T. Francis. 1996. Mac OS 8 Revealed. Addison-Wesley. https://books.

google.co.nz/books?id=xELQOQAACAAJ

[18] Louis David Giacolone Jr. 1998. Dynamic rate control method and appa-

ratus for electronically played games and gaming machines. https://

patents.google.com/patent/US5758875 Patent No. US5758875A, Filed

Jan. 11th, 1996, Issued Jun. 2nd., 1998.

[19] Howard Giles, Anthony Mulac, James J. Bradac, and Patricia John-

son. 1987. Speech Accommodation Theory: The First Decade and Be-

yond. Annals of the International Communication Association 10, 1

(1987), 13–48. https://doi.org/10.1080/23808985.1987.11678638

arXiv:https://doi.org/10.1080/23808985.1987.11678638

[20] Alix Goguey, Carl Gutwin, Zhe Chen, Pang Suwanaposee, and Andy Cock-

burn. 2021. Interaction Pace and User Preferences. In Proceedings of the

2021 CHI Conference on Human Factors in Computing Systems (Yoko-

hama, Japan) (CHI ’21). Association for Computing Machinery, New York,

NY, USA, Article 195, 14 pages. https://doi.org/10.1145/3411764.

3445772

52

[21] Chris Harrison, Brian Amento, Stacey Kuznetsov, and Robert Bell. 2007.

Rethinking the Progress Bar. In Proceedings of the 20th Annual ACM Sym-

posium on User Interface Software and Technology (Newport, Rhode Is-

land, USA) (UIST ’07). ACM, New York, NY, USA, 115–118. https:

//doi.org/10.1145/1294211.1294231

[22] Andrew Heathcote, Stephen J. Popiel, and D. J. K. Mewhort. 1991. Anal-

ysis of Response Time Distributions: An Example Using the Stroop Task.

Psychological bulletin 109, 2 (1991), 340–347.

[23] Morten Hertzum and Kasper Hornbæk. 2010. How Age Affects Pointing

With Mouse and Touchpad: A Comparison of Young, Adult, and Elderly

Users. International journal of human-computer interaction 26, 7 (2010),

703–734.

[24] William E. Hockley. 1984. Analysis of response time distributions in the

study of cognitive processes. Journal of experimental psychology. Learning,

memory, and cognition 10, 4 (1984), 598–615.

[25] Scott E. Hudson and John T. Stasko. 1993. Animation Support in a User

Interface Toolkit: Flexible, Robust, and Reusable Abstractions. In Proceed-

ings of the 6th Annual ACM Symposium on User Interface Software and

Technology (Atlanta, Georgia, USA) (UIST ’93). Association for Comput-

ing Machinery, New York, NY, USA, 57–67. https://doi.org/10.1145/

168642.168648

[26] Matt Jones, Preeti Jain, George Buchanan, and Gary Marsden. 2003. Us-

ing a mobile device to vary the pace of search. Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) 2795 (2003), 390–394.

[27] Wiard Jorritsma, Fokie Cnossen, and Peter M. A. van Ooijen. 2015. Adap-

tive support for user interface customization: a study in radiology. Inter-

national Journal of Human - Computer Studies 77 (2015), 1–9.

53

[28] Melissa Jungers, Caroline Palmer, and Shari Speer. 2002. Time after time:

The coordinating influence of tempo in music and speech. Cognitive Pro-

cessing 1 (01 2002), 21–35.

[29] Rivk Levitan, Štefan Beňuš, Agust́ın Gravano, and Juli Hirschberg. 2015.

Entrainment and turn-taking in human-human dialogue, Vol. SS-15-07. 44–

51.

[30] Rivka Levitan and Julia Hirschberg. 2011. Measuring acoustic-prosodic en-

trainment with respect to multiple levels and dimensions. In Proceedings

of the Annual Conference of the International Speech Communication As-

sociation, INTERSPEECH 2011. 3081–3084. http://www.cs.columbia.

edu/~rlevitan/papers/IS11full_paper.pdf

[31] Natalie Lewandowski and Matthias Jilka. 2019. Phonetic Convergence,

Language Talent, Personality and Attention. Frontiers in Communication

4 (2019), 18. https://doi.org/10.3389/fcomm.2019.00018

[32] Nichola Lubold. 2017. Building Rapport through Dynamic Models of

Acoustic-Prosodic Entrainment. In Proceedings of the 2017 CHI Conference

Extended Abstracts on Human Factors in Computing Systems (Denver, Col-

orado, USA) (CHI EA ’17). Association for Computing Machinery, New

York, NY, USA, 297–300. https://doi.org/10.1145/3027063.3027132

[33] Wendy E. Mackay. 1991. Triggers and Barriers to Customizing Soft-

ware. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (New Orleans, Louisiana, USA) (CHI ’91). Associ-

ation for Computing Machinery, New York, NY, USA, 153–160. https:

//doi.org/10.1145/108844.108867

[34] Sylvain Malacria, Alix Goguey, Gilles Bailly, and Géry Casiez. 2016. Multi-

Touch Trackpads in the Wild. In Actes de La 28ième Conference Fran-

cophone Sur l’Interaction Homme-Machine (Fribourg, Switzerland) (IHM

’16). Association for Computing Machinery, New York, NY, USA, 19–24.

https://doi.org/10.1145/3004107.3004113

54

[35] Joseph H. Manson, Gregory A. Bryant, Matthew M. Gervais, and

Michelle A. Kline. 2013. Convergence of speech rate in conversation predicts

cooperation. Evolution and Human Behavior 34, 6 (2013), 419–426.

[36] Mudit Misra, Elena árquez Segura, and Ahmed Sabbir Arif. 2019. Explor-

ing the Pace of an Endless Runner Game in Stationary and Mobile Settings.

In Extended Abstracts of the Annual Symposium on Computer-Human In-

teraction in Play Companion Extended Abstracts (Barcelona, Spain) (CHI

PLAY ’19 Extended Abstracts). Association for Computing Machinery, New

York, NY, USA, 543–550. https://doi.org/10.1145/3341215.3356256

[37] Kevin R. Murphy and Brett Myors. 2004. Statistical power analysis: a

simple and general model for traditional and modern hypothesis tests (2nd

ed.). L. Erlbaum Associates, Publishers, Mahwah, N.J.

[38] Jakob Nielsen. 1993. Usability engineering. Academic Press, Boston.

[39] J Nielsen. 1993. Usability Engineering. London: Academic Press.

[40] William Odom, Richard Banks, Abigail Durrant, David Kirk, and James

Pierce. 2012. Slow Technology: Critical Reflection and Future Directions.

In Proceedings of the Designing Interactive Systems Conference (Newcas-

tle Upon Tyne, United Kingdom) (DIS ’12). Association for Computing

Machinery, New York, NY, USA, 816–817. https://doi.org/10.1145/

2317956.2318088

[41] Sharon Oviatt, Courtney Darves, and Rachel Coulston. 2004. Toward

Adaptive Conversational Interfaces: Modeling Speech Convergence with

Animated Personas. ACM Trans. Comput.-Hum. Interact. 11, 3 (Sept.

2004), 300–328. https://doi.org/10.1145/1017494.1017498

[42] Jennifer S. Pardo, Jennifer S. Pardo, Adelya Urmanche, Adelya Urmanche,

Sherilyn Wilman, Sherilyn Wilman, Jaclyn Wiener, and Jaclyn Wiener.

2017. Phonetic convergence across multiple measures and model talkers.

Attention, Perception, & Psychophysics 79, 2 (2017), 637–659.

55

[43] Eyal Peer, Laura Brandimarte, Sonam Samat, and Alessandro Acquisti.

2017. Beyond the Turk: Alternative platforms for crowdsourcing behavioral

research. Journal of experimental social psychology 70 (2017), 153–163.

[44] Martin J. Pickering and Simon Garrod. 2004. Toward a mechanistic psy-

chology of dialogue. The Behavioral and brain sciences 27, 2 (2004), 169–

190.

[45] Philip Quinn, Sylvain Malacria, and Andy Cockburn. 2013. Touch Scrolling

Transfer Functions. In Proceedings of the 26th Annual ACM Symposium on

User Interface Software and Technology (St. Andrews, Scotland, United

Kingdom) (UIST ’13). Association for Computing Machinery, New York,

NY, USA, 61–70. https://doi.org/10.1145/2501988.2501995

[46] Jeff Sauro and James R. Lewis. 2010. Average Task Times in Usability

Tests: What to Report?. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10).

Association for Computing Machinery, New York, NY, USA, 2347–2350.

https://doi.org/10.1145/1753326.1753679

[47] Benjamin G. Schultz, Irena O’Brien, Natalie Phillips, David H. McFarland,

Debra Titone, and Caroline Palmer. 2016. Speech rates converge in scripted

turn-taking conversations. Applied Psycholinguistics 37, 5 (2016), 1201–

1220.

[48] Ben Shneiderman. 1984. Response time and display rate in human perfor-

mance with computers. ACM Computing Surveys (CSUR) 16, 3 (1984),

265–285.

[49] Joseph J. Thompson, Mark R. Blair, and Andrew J. Henrey. 2014. Over

the hill at 24: persistent age-related cognitive-motor decline in reaction

times in an ecologically valid video game task begins in early adulthood.

PloS one 9, 4 (2014), e94215–e94215.

56

[50] Rick B. van Baaren, Rob W. Holland, Bregje Steenaert, and Ad van Knip-

penberg. 2003. Mimicry for money: Behavioral consequences of imitation.

Journal of experimental social psychology 39, 4 (2003), 393–398.

[51] Rodrigo Vicencio-Moreira, Regan L. Mandryk, and Carl Gutwin. 2015.

Now You Can Compete With Anyone: Balancing Players of Different Skill

Levels in a First-Person Shooter Game. In Proceedings of the 33rd Annual

ACM Conference on Human Factors in Computing Systems (Seoul, Repub-

lic of Korea) (CHI ’15). Association for Computing Machinery, New York,

NY, USA, 2255–2264. https://doi.org/10.1145/2702123.2702242

[52] Kent Wittenburg, Clifton Forlines, Tom Lanning, Alan Esenther, Shigeo

Harada, and Taizo Miyachi. 2003. Rapid Serial Visual Presentation Tech-

niques for Consumer Digital Video Devices. In Proceedings of the 16th An-

nual ACM Symposium on User Interface Software and Technology (Van-

couver, Canada) (UIST ’03). Association for Computing Machinery, New

York, NY, USA, 115–124. https://doi.org/10.1145/964696.964709

[53] Jacob O. Wobbrock, Edward Cutrell, Susumu Harada, and I. Scott

MacKenzie. 2008. An error model for pointing based on Fitts’ law. In

CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on Hu-

man factors in computing systems (Florence, Italy). ACM, New York, NY,

USA, 1613–1622. https://doi.org/10.1145/1357054.1357306

[54] David L. Woods, John M. Wyma, E. William Yund, Timothy J. Herron,

and Bruce Reed. 2015. Age-related slowing of response selection and pro-

duction in a visual choice reaction time task. Frontiers in Human Neuro-

science 9 (2015). https://doi.org/10.3389/fnhum.2015.00193

[55] Christine Guo Yu. 2019. Effects of timing on users’ perceived control when

interacting with intelligent systems. Technical Report UCAM-CL-TR-939.

University of Cambridge, Computer Laboratory. https://doi.org/10.

48456/tr-939

57

