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We conducted a study on the teaching and learning of mathematical induction, with undergraduate 

students (N=117) enrolled in a Discrete Mathematics course at a four-year university in the United 

States. We focus here on the design and implementation of tasks using analogies with the potential to 

give meaning to the Principle of Mathematical Induction (PMI).  
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Introduction 

Mathematical induction is a critical topic for students enrolled in Discrete Mathematics courses. 

Research on the teaching and learning of mathematical induction revealed students’ difficulties and 

their procedural approach to proofs, and proposed ways to improve the teaching of mathematical 

induction and increase students’ understanding, their performance on mathematical induction tasks, 

and their convictions in the validity of proofs by induction (Ernest, 1984; Gonzalez, 2020; Kokushkin, 

2020; Movshovitz-Hadar, 1993). At the heart of a proof by mathematical induction is PMI. In the 

textbook (Epp, 2019) used by the participants in this study, PMI is defined this way: 

Let ( )P n be a statement that depends on n, where n is a natural number, and let 0n be a natural 

number such that: 

i. 0( )P n is true; and 

ii. for any natural number 0k n , if ( )P k is true, then ( 1)P k   is true.  

Then, the statement ( )P n is true for all natural numbers 0n n . 

Ernest (1984) analysed the way the topic of mathematical induction was presented in 17 textbooks 

and found that only two of them addressed the students’ understanding of PMI and included an 

analogy of PMI. Ernest (1984) stressed the importance of using analogies to help students relate 

mathematical induction to their own experiences. The purpose of the study reported here is to gain 

insight into the use of analogies with the potential to give meaning to PMI. 

Theoretical background 

Analogy comes from the Greek mathematical word “analogia” meaning proportion (Pimm, 1981). 

Proportionality, interpreted as equality of ratios or agreement in the ratios of corresponding parts, can 

be seen as an analogy. Mathematicians and mathematics educators are familiar with Polya’s (1954) 

book, Mathematics and Plausible Reasoning: Induction and Analogy in Mathematics, with examples 

of analogies that help us see the solution to a problem more clearly and can provide new ways of 

thinking about problems. Ruppert (2013) argues that we can clarify the role of analogy in mathematics 
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education only by using the cognitive psychology approach. From a cognitive psychology 

perspective, Gentner & Markman (1997) argue that similarity, seen as a relation between two sets in 

which each element from the first set is associated with an element from the second set, is like analogy 

since both psychological processes involve structural alignment and mapping. According to the 

structural alignment view, people understand analogies by mapping the relational structure of one 

situation (the source) onto another situation (the target). In this paper, we consider an analogy as a 

mapping from the source structure to the target structure. In the learning of mathematics, the use of 

analogies may lead to the creation of abstract schemas representing the underlying structure of the 

source and target, thus contributing to the transfer of learning from source to target (Novick & 

Holyoak, 1991).   

The importance of visual representations and gestures used by the instructor during teaching was 

highlighted by Kokushkin (2020), and Richland et al. (2007). To exemplify the structural view of 

analogy, we used the falling dominoes analogy of PMI: 

To visualize the idea of mathematical induction, imagine an infinite collection of dominoes 

positioned one behind the other in such a way that if any given domino falls backward, it makes 

the one behind it fall backward also. Then imagine that the first domino falls backward. What 

happens? ... They all fall down! (Epp, 2019, p. 277) 

 

Figure 1: Falling dominoes analogy of PMI 

As can be seen in Figure 1, the first domino in the line falls backward. Figure 1 replaces the figure 

from Epp’s textbook (2019, p. 277) where the dominoes are labelled 1, 2, 3, …, k, k + 1, the dominoes 

labelled 1, 2, 3 are standing, and the domino labelled k falls backward. We found the replacement 

necessary to match the sentence “imagine that the first domino falls backward.” The following is a 

student description of the falling dominoes analogy: 

If an infinite amount of dominoes are up in a line, if I push the first one over, it will knock down 

the next one, and so forth. This implies P(1) is true (the first domino is pushed), and therefore if 

P(k) is true (the domino k will fall), then P(k + 1) is true (the next domino will also fall), thus 

indicating that all the dominoes will fall. 

According to English (1993), from the student’s point of view, effective analogies are those in which 

the student has clarity with respect to the source structure, can make the mapping from source to 

target, and can select for mapping only the relations forming a coherent structure. The student sees 

the dominoes being pushed and falling as being similar to the statements P(k) from PMI, there is a 

first element (first domino falling corresponding to P(1) in PMI), there is a logical implication, 

although  it is mapped from the target to the source (“if P(k) is true then P(k+1) is true”  is mapped 

to “the domino k will fall, the next domino will also fall”), and a concluding statement (“thus … all 

the dominoes will fall”) without any stated correspondence in PMI, the target structure. The student 

has clarity with respect to the source situation, and, possibly, with respect to the target situation, but 



 

 

the relations are not always mapped from source to target.  Those relations that are stated explicitly, 

should we consider all of them mapped from source to target, create a coherent structure.  

We propose another way to account for viable analogies, analogies that are good representations of 

mathematical ideas, and can be effective analogies (English, 1993).  This way offers a clear view of 

the mapping from the source to the target situation. Figure 2 represents a possible mapping of the 

relational structure from the source situation, the falling dominoes, to the relational structure from 

the target situation, PMI.  The mapping from Figure 2 was created based on the way the first author 

approached the falling dominoes analogy with her students, during lesson. 

 

 

Figure 2: Example of structural alignment of the analogy with falling dominoes 

In Figure 2, the objects from the source situation are concrete objects, like dominoes. These concrete 

objects, dominoes, are associated with mathematical objects from PMI, natural numbers. The 

similarity between concrete objects and mathematical objects is given by the mapping between the 

set of dominoes and the set of natural numbers. The mapping focuses on the relations between the 

concrete objects that are similar to the relations between the mathematical objects. There is a relation 

of order of the dominoes that can be mapped with the relation of order on the set of natural numbers 

1, 2, 3, …, k, k + 1, …, there is a first domino in line,  and the idea of successor of the kth domino 

being the (k +1)st  domino in line, and the alignment proposed maps the ranks of the dominoes in line 

with instances of the variables from PMI, even for the variable n that refers to all natural numbers. 

Also, by the nature of our physical limitations, the line of dominoes depicted in Figure 1 is finite, 

whereas the set of natural numbers is infinite. To show that the proposed structural alignment is 

viable, we check the psychological constraints that our alignment must satisfy (Gentner & Markman, 

1997): 

I. consistency expressed as parallel connectivity (matching relations have matching arguments) 

and one-to-one correspondence (each object/relation from the source situation is matched 

with one and only one object/relation in the target situation); 



 

 

II. relational focus (the focus is on matching similar relations rather than similar objects); 

III. systematicity (matching connected systems of relations rather than disconnected relations). 

The structural alignment proposed in Figure 2 has consistency. Indeed, the statement “falls backward” 

matches the statement P. The arguments of the statement “falls backward” are the ranks of the 

dominoes in the line, and are matched with arguments of the statement P, representing corresponding 

values of natural numbers. Hence, we have parallel connectivity. It can be easily seen from Figure 2 

that we have matched each statement/argument from the source situation with one and only one 

statement/argument from the target situation. Therefore, the one-to-one correspondence is satisfied. 

The alignment has relational focus,  since same types of  statements are matched: the simple statement 

“falls backward” matches P; the compound statement “If the kth domino falls backward is true then 

the ( 1k  )st domino falls backward is true” matches the compound statement “If P(k) is true then      

P( 1k  ) is true”; and the statement “All the dominoes, starting with the 1st one, fall backward” 

matches the quantified statement “ ( )P n is true for all natural numbers 0n n .” The relations 

(statements) and their types are important, and it does not matter that we have the representation of a 

line of dominoes instead of the set of natural numbers. Finally, the alignment has systematicity, and 

this can be observed from the types of statements that are matched and the way they are connected, 

the network of relations,  from the basis statement referring to the first domino, to the implication 

statement referring to the kth domino and its successor, to the conclusion statement referring to all the 

dominoes in the line, and their matching statements in the target situation. 

Methods  

The study reported here is part of a study that lasted three semesters. The first author taught the 

lessons. Participants were undergraduate students, STEM majors, enrolled in a face-to-face Discrete 

Mathematics course at a four-year university in the United States (21 participants in the first semester, 

37 participants in the second semester, 59 participants in the third semester). The objective of the 

study was to design and implement tasks with analogies that have the potential to give meaning to 

PMI. During the first semester, we stated PMI and discussed in class the analogy with the falling 

dominoes. During the second semester, after teaching the lesson when we stated PMI and used the 

falling dominoes analogy and introducing the proofs by induction, we assessed our students’ 

knowledge in a quiz with the following task: 

a) State PMI; 

b) Explain whether the following is a good analogy for PMI: An immortal fairy princess enters 

a castle with an infinite set of rooms numbered 1, 2, 3, 4,… . She has in her hand the key to 

room 1, and each room has the key to the next numbered room. Therefore, she can enter every 

room in the castle. 

None of the 37 students correctly stated PMI, and only 8 students considered the fairy princess and 

the castle analogy to be a good one. Instead of stating PMI, the students referred to its use and the 

steps of a proof by induction.  The main reason for rejecting the analogy as being a good one was the 

infinity concept (e.g., “it is impossible to reach infinity” or “there is no significance of the princess 

being immortal”). Other rejection reasons referred to the analogy as a problem to be solved or a 

statement to be proved (e.g., “the number of rooms is missing” or “the statement needs to be proven”) 



 

 

or showed a misunderstanding of the situation (“she can enter any room so that means she doesn’t 

need a key”).  

In this paper, given the space constraints, we focus on analogy tasks from the third semester.  

Previous research studies on using analogies in mathematics education indicate that mathematics 

teachers use analogies while teaching but they fail to assess their students’ understanding of those 

analogies, specifically the structural alignment between the source and the target (Richland et al., 

2004). Informed by previous research, we designed the following homework task, Task3 (see Figure 

3, below), using cognitive support (Richland et al., 2007) and allowing the students to create their 

own analogies (Vamvakoussi, 2019): 

 

Figure 3: Description of Task3 

The students submitted their homework online via Blackboard/Discussion Forum, and they could 

read and comment on their colleagues’ answers. The scoring rubric for assessing the students’ 

answers took into consideration the psychological constraints described in the section referring to the 

theoretical background (Gentner & Markman, 1997): I. consistency (4 points for parallel connectivity 

and 2 points for one-to-one correspondence); II. relational focus (3 points); III. systematicity (1 

point). For the category parallel connectivity, we created a 4-level scoring rubric (none, some, most, 

all) and assigned 0, 1, 2, 4 points respectively. For the category one-to-one correspondence, we 

created a 2-level rubric (no, yes) and assigned 0 or 2 points, respectively. For the category relational 

focus, we considered whether the focus was on matching similar relations (1 point), the relations were 



 

 

appropriately described (1 point), and all relations were accounted for (1 point). For the category 

systematicity, we created a 2-level rubric (no, yes) and assigned 0 or 1 point, respectively. Students’ 

answers were scored by two raters, and the inter-rater percentage of agreement was 95% (Cohen, 

1960).  

Analysis and results 

Table 1 presents the mean scores for Task3 (parts a and b), described above in Figure 3. 

Table 1: Score means for Task3 

Task3 Consistency Relational 

focus 

(3 points) 

Systematicity 

(1 point) 

Total 

(10 points) 
Parallel connectivity 

(4 points) 

One-to-one correspondence 

(2 points) 

Part a 2.4 0.9 1.9 1 6.2 

Part b 2.5 1.7 1.4 0.9 6.7 

As can be seen in Table 1, the mean scores for parallel connectivity for both parts a and b are very 

close, 2.4 and 2.5, respectively (on a scale from 0 to 4). For part a, most of the students’ answers were 

scored with only 2 points, because they did not properly account for the implication statement “if 

P(k) is true then P(k + 1) is true”. They mapped the implication statement with conclusion statements 

referring to the keys for the rooms (e.g., “there is a key for all the rooms”) or the princess who opens 

the rooms (e.g., “she can continue forever”). For part b, although the situations proposed had the 

potential to be viable analogies, the basis statement corresponding to P(1) and the conclusion 

statement “ ( )P n is true for all natural numbers 1n  ” were absent, and the implication statement was 

expressed as a possibility, like in the following student-created analogy:  

In Pokémon, in order to advance in the game, you need to fight the gym leaders. Each gym leader 

gives you a badge after winning and allows you to continue the story and challenge the other 8 

gyms in the game. 

The mean scores for one-to-one correspondence for Task3 part a and b, are 0.9 and 1.7 (on a scale 

from 0 to 2), respectively. For part a, the one-to-one correspondence was not observed in some of 

the students’ answers where the statement P(n) was mapped to “rooms numbered 1, 2, 3, …” and at 

the same time the statement P(k) was mapped to “keys to rooms”. For part b, the one-to-one 

correspondence was not violated, but some students did not answer, or they did not provide enough 

detail. The mean scores for relational focus for Task3 part a and b, are 1.9 and 1.4, respectively (on 

a scale from 0 to 3). For part a, the implication statement was not properly described in some of the 

students’ answers (e.g., “each room has the key to the next numbered room"). In addition, for part b, 

few students’ answers focused on objects and their properties instead of the relational network, for 

example on the ‘infinite’ nature of the natural numbers: 



 

 

In the world of high-performance cars, there are close to infinite amount of parts to combine with 

in order to find the best combination […] Each year, people manufacture better and better parts. 

Therefore, you are infinitely trying to find the best combination of parts […]. 

The mean scores for systematicity for Task3 part a and b, are 1 and 0.9, respectively (on a scale from 

0 to 1). Students’ answers contained connected systems of relations. 

Discussion and conclusion 

As seen in Table 1, the use of analogies of PMI has the potential to give meaning to PMI (total mean 

scores of  6.2 and 6.7, on a scale from 0 to 10). The total mean score of 6.7 for Task3 part b (student-

created analogy) is greater than the total mean score 6.2 for part a (structural alignment for a given 

analogy). A possible explanation may be that the symbolic representations and their meanings posed 

difficulties for students in part a, whereas in part b the context of the situation was familiar, based on 

students’ own experiences. Also, in part a, in the princess analogy, the basis and implication statement 

refer to having access to the key room, while the conclusion statement refers to being able to enter 

each room (given that she has the key to each room). The confusion between the implication and 

conclusion statement in Task3 part a and the absence of the conclusion statement from part b, may 

be related to the fact that, although we state PMI at the beginning of Task3, the conclusion statement 

does not appear in the structural alignment table from Task3 part a (see PMI features column, in the 

table from Figure 3). The analysis of the students’ answers on Task3 revealed that the student-created 

analogies were approached holistically, and not by parts. The holistic approach may be a key factor 

for the systematicity observed. 

With respect to student-created analogies, the difficulties of explicitly stating the basis statement, the 

implication statement, and the conclusion statement, mirrored the students’ difficulties with proofs 

by mathematical induction (Gonzalez, 2020). It may be that our way of representing the mapping in 

Figure 2 did not lead to students’ understanding of the way a mapping needs to be described, or that 

the underlining structure of the source or target situation in Task3 was not clear for our students. 

More research is needed with refined analogies tasks. In the future, we will continue using analogies 

tasks with cognitive support (Richland et al., 2007) and allowing the students to create their own 

analogies (Vamvakoussi, 2019). We will refine the design and implementation of Task3 by: i) making 

visible (pointing out, highlighting) the structure of the source; ii) focusing on the symbolization aspect 

of PMI; iii) clarifying the student understanding of the variable k from PMI (one can imagine a 

particular natural number k, 0k n , or all the natural numbers between 0n and k); iv) emphasizing 

the logical implication  in the statement “if P(k) is true then P(k + 1) is true” (writing it as an 

implication p q ); and v) adding the conclusion statement “ ( )P n is true for all natural numbers 

0n n ” to the structural alignment (in PMI features column from Task3).  
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