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Exploring students’ conceptions of proof in high-school  

and university: A proposal for collaborations in Europe 

Cécile Ouvrier-Buffet 

Paris-Est Créteil University (UPEC), LDAR, Paris, France; cecile.ouvrier-buffet@u-pec.fr 

Although there is a considerable amount of research on proof in mathematics education, very few 

studies explore students’ conceptions of proof at the transition between secondary and tertiary level. 

Moreover, new didactic issues arise with proof assistants. The aims of this article are twofold: to 

highlight methods and theoretical backgrounds used in previous research mathematics education in 

order to identify undergraduate students’ conceptions of proof, and to propose a questionnaire (in a 

large-scale survey perspective) in order to trigger collaborations in Europe on this topic.   

Keywords: Proof, conception, survey, high-school and undergraduate students, proof assistants. 

Introduction – A rupture between secondary and tertiary education 

Proof is epistemologically constitutive of mathematical activity. Fundamental at all levels of 

schooling and teacher training, proof contributes significantly to the learning processes of 

mathematical knowledge (e.g. Hanna, 1996). Large-scale surveys at the international level show that 

proof occupies too marginal a place in education, at all levels of schooling, with insufficient or even 

inadequate teacher training (e.g. Stylianides, 2016). The rupture between secondary and tertiary 

education is internationally pointed out by researchers in mathematics education (e.g. Gueudet, 2008; 

Selden et al., 2010). In this transition, there is a change in the didactical contract, but also in the 

relationship to the mathematical concepts and proofs which requires a more complex and formal view 

of objects and processes of proof with a kind of acculturation to mathematicians’ practices (e.g. 

Dawkins & Weber, 2017; Selden, 2012). The students themselves feel like they are struggling, 

especially with regard to the "ways of thinking for mathematics" (Di Martino & Gregorio, 2019) and 

to the logic and formalism required in the activity of proving and writing proofs (e.g. Selden, 2012; 

Selden & Selden, 2003). Then, internationally, syntheses (those quoted for instance by Stylianides, 

2016; Selden, 2012; Gueudet & Vandebrouck, 2022) converge on students' difficulties and their 

causes: an insufficient knowledge of concepts and mathematical theorems, the abstract mathematical 

notions raising conceptualisation difficulties, the expectations referring to the expert practices of 

mathematicians, the lack of meta-knowledge about proof, a difference in institutional culture between 

secondary and tertiary education, a lack of articulation between semantic, syntactic and pragmatic 

approaches and, then, difficulties in writing a proof. Early college students (freshmen) use 

inappropriate reasoning, often based on everyday logic, when faced with mathematical concepts 

(Selden & Selden, 2003; Selden et al., 2010; Selden, 2012). Besides, one does not really know how 

students validate their proofs, both when they construct them and when they read them (except for 

the qualitative results of Weber’s research). Other factors explaining the “weak performance of 

students at the secondary and undergraduate levels on proof” exist such as “the disjointedness of 

reform efforts” (see the still relevant discussion of Harel & Fuller, 2009). In order to solve the 

persistent problem of students’ difficulties with proof, which seems to be real in all countries, the 
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arrival of proof assistants in didactic research can provide new opportunities for the teaching and the 

learning of proof in mathematics. I will explain why.  

Current issues on proof in mathematics, computer science and didactics 

New technologies influence mathematical practices and create new dynamics at the interface with 

computer science, reflecting the reality of a work done by contemporary mathematicians in proof. 

Hanna and Knipping (2020) show the need to develop new approaches to proof teaching taking into 

account proof assistants (henceforth noted PA). PAs (Coq, L∃∀N, Isabelle etc.) used by 

mathematicians are free open-source software that mechanically verify a proof, making the logic and 

the formalism visible. These transform the epistemology of proof, the best-known example being the 

verification of the 4-color theorem. Recently used in teaching with graphical interfaces 

(D∃∀DUCTION and Edukera for L∃∀N and Coq), they directly question mathematicians and 

didacticians on how proof processes should be transmitted to teaching. Thus, the question of teaching 

and learning proofs, problematic at the secondary-tertiary transition, joins current issues in 

mathematics, computer science and didactics. Isolated case studies show the interest of working at 

the articulation between formal proofs with PA and paper-and-pencil proofs as well as the 

contribution of PA for students in terms of their autonomy in controlling and structuring the proofs 

they produce, and understanding the mathematical statements (Kerjean et al., 2022; Avigad, 2019; 

Thoma & Iannone, 2022). Thus, recent syntheses on the question, based on the hindsight of 

Technology Enhanced Learning (TELs), and on the nature of the feedback provided by the machine, 

call for a multidisciplinary structuring of research to analyse the uses and contributions of PAs in the 

learning of proof (Hanna et al., 2019; Balacheff & Boy de la Tour, 2019). 

Research questions 

Bearing in mind the above context, the questions of my current research project coincide with two of 

those listed by Harel and Fuller (2009, pp. 355–356): What theoretical tools seem suitable to 

investigate students’ conceptions of proof? (Q1). What are students’ current conceptions of proof? 

(Q2).  Considering PAs, my third research questions is: How PAs do impact students’ conceptions 

and performances in proof? (Q3). To answer to Q3, in a large-scale study, I will implement PAs with 

freshmen in three universities in France next year, using a didactical engineering, in the frame of a 

collaborative national project. My aim is to evaluate how interventions with a PA impact students’ 

conceptions and performances. I will use two devices to answer to Q2: a questionnaire for an initial 

large-scale study (with open and multiple-choices questions) and interviews with pairs of students to 

refine the results of the questionnaire. Note that such devices aim at being reusable to evaluate the 

impact of PAs on students’ conceptions and difficulties (before and after the didactical engineering). 

Designing such a questionnaire is difficult for several reasons: it aims to be large, and it requires 

synthesising previous results about students’ conceptions of proof, while taking into account the 

underlying theoretical frameworks used about proof. Indeed, the nature of the questions depends on 

the theoretical frameworks about proof. It leads me to finely consider Q1 with a bibliographical study 

to identify where and how undergraduate students’ conceptions of proof are explored in research. In 

this paper, firstly, I will present a preliminary bibliographical study (linked with Q1). Secondly, I will 

explain my theoretical and methodological choices to assess students’ proof conceptions. I will 



 

 

exemplify an exploratory questionnaire to identify proof conceptions of high-school and 

undergraduate students and to conduct pre- and post- diagnosis when specific interventions (with PAs 

for instance) are implemented (linked with Q2). Thirdly, I will propose a way to explore students’ 

conceptions at the secondary-tertiary transition in a collaborative perspective in Europe.  

Bibliographical study 

To circumscribe how researchers in mathematics education have investigated the undergraduate 

students’ conceptions about proof, I have conducted a bibliographical study aimed at identifying the 

nature of the mathematical domains involved, the methods and the theoretical underlying 

backgrounds used in such surveys. I used only one database, the Education Resources Information 

Center (ERIC), a free, large, online digital library of education research that is easily accessible to 

anyone, recognizing that a search in English will not allow us to identify existing research in other 

languages. My search in ERIC in February 2023 was the following: “(mathematics AND proof AND 

students AND undergraduate) AND (conception OR survey OR interview OR questionnaire)”. I 

found for “All Publication Type” and “Any Education Level”: 63 articles since 2004, 38 since 2014, 

17 since 2019, 4 since 2022. 47 are journal articles, 43 are research reports, and the rest are 

proceedings, conference papers etc. 56 articles are in higher education, 28 in postsecondary 

education, and 5 in secondary education. For this article, I then focused on “Journal Articles” of the 

last ten years (since 2014): 30 articles remained (8 are reports or proceedings). I read the 30 articles 

and classified them with 8 characteristics: name of the journal, year, country of the study, research 

questions and methods, population analysed in the study, number of participants, theoretical tools and 

mathematical contents. Regarding my research questions, I only kept articles that deal with a specific 

population (students in university or at the secondary-tertiary transition) and whose research 

questions focus on proof and proving processes. The reading of the articles led me to define five 

exclusion criteria1 and to eliminate 14 articles, leaving a corpus of 16 articles (Table 1). 10 papers of 

the 16 retained referred to the USA, 1 from Algeria, 2 from Indonesia, 1 from Iran, 1 from South 

Africa (Lesotho). Europe is poorly represented with only 1 article from Turkey. Most of the papers 

used interviews with students, always after a preliminary survey, questionnaire, assessment, or 

analysis of students’ writings or readings proofs. Only one paper conducted a complete large-scale 

survey with early undergraduate students (Stylianou et al., 2015). The methods and the theoretical 

background clearly depend on the research questions and on the mathematical contents. Most of the 

mathematical fields involved in the 16 selected papers are very specific to university (functions and 

continuity, differentiability, integrability, Cauchy generalized mean value theorem; limits of 

sequences; infinite series; linear algebra; holomorphic functions; proof by contradiction). Some of 

the papers explore more transversal domains such as arithmetic, geometry and algebra. The following 

list of the emblematic theoretical backgrounds used in the selected papers reflects a wide variety of 

approaches: Tall (2008)’s three worlds, Harel (1998)’s intellectual need, Mejia-Ramos et al. (2017)’s 

assessment model, Harel and Sowder (1998)’s proof schemes, Weber (2008)’s classification on proof 

validation, Balacheff’ (1988ab)’s typology of arguments. To date, in the last 10 years, no systematic 

                                                

1 5 excluded articles deal with resources (syllabi, workbooks etc.) or teaching methods, task design, etc.; 3 focus on 

mathematical concepts but not on proof; 2 focus on mathematicians; 3 focus on teachers and 1 was off topic. 



 

 

large-scale diagnostic survey has been conducted in Europe on students' conceptions of proof, 

particularly at the transition from secondary to tertiary education. Bearing in mind my aim to design 

a large-scale survey questionnaire, I have focused on Stylianou et al. (2015), but also on the 

theoretical backgrounds used in the other articles (snowball method). When tracing their common 

references, some authors return regularly: L. Healy and C. Hoyles, G. Harel and L. Sowder, and K. 

Weber (alone or with others). Moreover, one of the underlying backgrounds shared by Stylianou et 

al. (2015) and Healy and Hoyles (1998) is that of Balacheff (1988ab). I have therefore structured my 

questionnaire using these frameworks and some of the types of questions used in the large-scale study 

by Healy and Hoyles (1998) reused in Stylianou et al. (2015) and analysed with the typology of 

Balacheff (1998ab), itself based on the Lakatosian epistemology. 

Table 1: References of the 16 selected papers 

Azrou, N. & Khelladi, A. (2019). Why do students write poor proof texts? A case study in undergraduates’ proof writing. 
ESM, 102(2), 257–274. 

Derrick, J. & Cavey, L. (2021). High school students’ understanding of proof. Mathematics Teacher: Learning and 
Teaching PK-12, 114(3), 212–218. 

Erickson, S.A. & Lockwood, E. (2021). Investigating combinatorial provers’ reasoning about multiplication. IJRUME, 
7(1), 77–106. 

Faizah, S., Nusantara, T., Sudirman, Rahardi, R. (2022). Constructing students' thinking process through assimilation and 
accommodation framework. Mathematics Teaching Research Journal, 14(1), 253–269. 

Huda, N., Subanji, Nusantar, T., Susiswo, Sutawidjaja, A., Rahardjo, S. (2016). University students' metacognitive failures 

in mathematical proving investigated based on the framework of assimilation and accommodation. Educational 
research and reviews, 11(12), 1119–1128. 

Kolahdouz, F., Radmehr, F., Alamolhodaei, H. (2020). Exploring students' proof comprehension of the Cauchy 
generalized mean value theorem. Teaching Maths and Its Applications, 39(3), 213–235. 

Mejia-Ramos, J.P., Lew, K., de la Torre, J., Weber, K. (2017). Developing and validating proof comprehension tests in 
undergraduate mathematics. RME, 19(2), 130–146. 

Melhuish, K., Larsen, S., Cook, S. (2019). When students prove a theorem without explicitly using a necessary condition: 
Digging into a subtle problem from practice. IJRUME, 5(2), 205–227. 

Moru, E. K., Nchejane, J., Ramollo, M., Rammea, L. (2017). University undergraduate science students' validation and 

comprehension of written proof in the context of infinite series. African Journal of Research in Mathematics, Science 
and Technology Education, 21(3), 256–270. 

Rabin, J. M. & Quarfoot, D. (2022). Sources of students’ difficulties with proof by contradiction. IJRUME, 8(3), 521–549. 

Sevimli, E. (2018). Undergraduates’ propositional knowledge and proof schemes regarding differentiability and 
integrability concepts. IJMEST, 49(7), 1052–1068. 

Stewart, S. & Thomas, M. O. J. (2019). Student perspectives on proof in linear algebra. ZDM, 51(7), 1069–1082. 

Stylianou, D.A., Blanton, M.L., Rotou, O. (2015). Undergraduate students' understanding of proof: Relationships between 
proof conceptions, beliefs, and classroom experiences with learning proof. IJRUME, 1(1), 91–134. 

Weber, K. (2015). Effective proof reading strategies for comprehending mathematical proofs. IJRUME, 1(3), 289–314. 

Weber, K. & Mejia-Ramos, J.P. (2014). Mathematics majors’ beliefs about proof reading. IJMEST, 45(1), 89–103. 

Zazkis, D. & Villanueva, M. (2016). Student conceptions of what it means to base a proof on a informal argument. 
IJRUME, 2(3), 318–337. 

Design of a questionnaire on students’ conceptions of proof 

My research questions guided the design of the questionnaire, considering both proof as a product 

and proving as a process: How do students construct proofs? What are students’ judgements of given 

proofs? What are students’ global perceptions of proof? My aim is to build a questionnaire which 

will be usable throughout high-school, college, and pre-service teacher training, mainly with 



 

 

specialist students in mathematics, for several snapshots: to identify students’ conceptions and to 

evaluate the development of these conceptions (also after interventions, for instance with PAs). I have 

taken into account several criteria: selecting mathematical contents where the obstacle of mastering 

the involved concepts is minimized; choosing mathematical problems outside of formalism (so that 

it is not an obstacle) and outside of curricula (to avoid obstacles or ready-made results and processes). 

So far, the questionnaire is currently being administered in universities in France and Belgium in a 

pilot testing phase (with freshmen and pre-service secondary teachers training). 

Theoretical backgrounds and aspects addressed by the questionnaire 

Built upon theoretical backgrounds and results previously quoted (mainly the significant students’ 

difficulties even with deductive short proofs), my questionnaire explores “basic” components of 

deductive proofs through the above-described aspects. Five sections structure the questionnaire. 

In Part I (Identification, enunciation and use of mathematical properties), the students are asked to 

state a known formal statement (of their choice) and to write a formal statement starting from a 

representation. They also have to use a given theorem (Thales intercept theorem) in a specific 

configuration: I want to evaluate their abilities to check the hypotheses of a given theorem by 

themselves and to specify the instances of this theorem, as well as their abilities with formal 

statements (to correlate them with students’ proof writings in Part II). 

In Part II, the students are asked to write the three following proofs: a familiar one with several 

deductive steps in calculus (familiar because learnt at the beginning of high-school in France: “for 

any a, b positive real numbers, prove that √(a+b)<√a+√b”); a unfamiliar one in arithmetic (but with 

familiar contents: “prove that the sum of two consecutive odd numbers is divisible by 4”); and a 

unfamiliar one in a formal, local imaginary axiomatic with non-representational symbols to see how 

the students make the statements work (see below). The latter is inspired by Monks quoted in Reid 

and Knipping (2010, p.141). The symbols do not represent anything, and the rules only concern 

syntax (assessing students’ conceptions of this type of proof seems particularly interesting from the 

perspective of implementing PAs), see Table 2. 

Table 2: An example of Part II of the questionnaire (formal proofs to be written by the students) 

One defines an imaginary formal system with objects and rules to work with these objects. One wants to prove 

theorems in this formal system. Our starting points are as follows:  

Definition: a « TOY » is a sequence of an integer (strictly positive) number of symbols, consisting only of dots 

and circles, marked with • and O. For example, O•O•• is a TOY. 

To start building objects, we assume that: A1: O• is valid and A2: •O is valid. Three rules can be used: 

R1 : For any TOY w and v, if wv and vw are valid then w is valid 

R2 : For any TOY w and v, if w and v are valid then w•v is valid 
R3 : For any TOY w and v, if wv• is valid then wO is valid  

Prove the following theorems: Thm A: • is valid; Thm B: ••• is valid; Thm C: ••O is valid. 

In Part III, the students are asked to evaluate proofs. The design of the proof proposals follows 

previous large-scale surveys (Stylianou et al., 2015 with undergraduate students and Healy and 

Hoyles, 1998 with younger students) and Balacheff (1988ab)’s characterisation of arguments (mainly 

naïve empiricism, generic argument and intellectual proof). The main difference lies in the choice of 



 

 

the mathematical domains. Four correct mathematical statements are given (both in familiar and 

unfamiliar fields: arithmetic2, geometry3, graph theory4, combinatorial geometry5). For each of them, 

there are four proof proposals, presented in a variety of forms and arguments (following Balacheff 

1988a’s typology), as in Table 3 for the statement in combinatorial geometry. Some of the proof 

proposals are false or incomplete from a mathematical point of view. The students are asked to tick 

their answer(s) in multiple choices questions (adjustments of Healy and Hoyles 1998’s and Stylianou 

et al. 2015’s questions): Which answer is nearest to what you would have done? Which answer would 

you choose to explain the "solution" to your classmates? Which answer is the most "thorough" for 

you? What is/are the correct proof(s) for you? What is/are the incomplete proof(s) in your opinion? 

In Part IV, the questions explore the students’ global conception of proof (the way they think about 

proof) with open questions leading to kinds of proofs, functions of proofs, declarative students’ tools 

to write/read/evaluate proofs, and word clouds. And Part V is about respondent information. 

Table 3: An example of Part III – Proofs in combinatorial geometry to be evaluated by the students  

Answer A 

Let n be the number of vertices of a convex polygon. A vertex can be joined to all vertices except itself and its two 

neighbours, i.e. (n-3) diagonals per vertex. The same applies to all n vertices, so there are n(n-3) diagonals. But a 

diagonal joins two vertices X and Y: it is therefore counted twice (once for X and once for Y). The number of diagonals 
in a polygon with n vertices is therefore necessarily n(n-3)/2. 

Answer B 

Suppose that there exists a polynomial function f(n) that calculates the number of the diagonals of a polygon. 

Suppose it is a first-degree polynomial function of the form: f(n)=an+b where a and b are real numbers. Using special 

cases (the square, the pentagon, the heptagon) to find values for a and b, I see that there are no values for a and b that 

work. Therefore, I assume that f(n) is a second-degree polynomial function with the following form: f(n)=an2+bn+c 
where a, b and c are real numbers.  
Using the same method as above to find the values of a, b and c, I obtain f(n)=n2/2-3n/2. 

Answer C 

For example, if I take a five-sided polygon: two diagonals start from a vertex. The same applies to each vertex. So, 

there are 10 diagonals, but I have counted them twice: there are 10 divided by 2, so, there are 5.  
I conclude that there are n(n-3)/2 diagonals. 

Answer D 

There are as many diagonals as edges: this property is true for the 5-sided polygon. Then, check for a polygon with a 
large number of edges and conclude that the number of diagonals is equal to n (where n is the number of edges). 

Proposals for European collaborations 

I contend that all questions, mathematical contents (not specific to university, familiar for several 

years or unfamiliar but accessible with discrete concepts) and direct proofs were chosen to have a 

transferable questionnaire, for high-school, university and teacher training. Then, it is a tool, available 

in open access (in French and English and currently in a pilot testing phase: https://hal.science/hal-

03987587) to engage discussions to conduct an initial large-scale survey about the development of 

                                                
2 “The product of three consecutive numbers is a multiple of 6.” I made adjustments of Healy and Hoyles (1998). 
3 “The sum of the angles of a triangle is a straight angle.” 
4 “The sum of the degrees of the vertices of any (finite) graph is even.”. Definitions of graph, vertex and degree are given 
as well as an example. 
5 “Let n be the number of vertices of a convex polygon (n is a strictly positive integer). Calculate the number of its 
diagonals and prove the formula.” I made adjustments of Balacheff (1988b). 

https://hal.science/hal-03987587
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students’ conceptions and difficulties with proof and proving, in Europe. Only one proof depends on 

the current French high-school curricula: it can therefore be easily adapted to another country. 

Moreover, the underlying didactic frameworks – shared by our research community – and the chosen 

mathematical concepts and problems follow those of Balacheff (1988ab) and of Healy and Hoyles 

(1998) partially redesigned by Stylianou et al. (2015), both in a large-scale study. Besides, a 

collaborative work may lead researchers to develop additional diagnostic tools to evaluate the impact 

of the use of specific environments (such as PAs) or interventions on students’ conceptions of proof 

in high-school and university. This ambitious goal will be enriched by working together on – a priori 

– shared educational problematics.  
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