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In this paper, we characterise generic arguments based on examples and counterexamples by primary 

students in terms of argumentative structures. To accomplish this, we (1) employed a theoretical 

framework based on Balacheff’s levels of validation of proof and (2) conducted a Toulmin analysis 

adapted from the argumentation analysis described by Reid and Knipping. In sum, the results showed 

similarities and differences between example-based and counterexample-based arguments in terms 

of the complexity of their argumentative structures. Based on this analysis, we discuss what 

distinguishes generic arguments from other types of arguments (e.g., empirical and general). 
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Introduction 

A generic example refers to a particular case, but is used as a representation of generality (Mason & 

Pimm, 1984). This notion was further conceptualised by Balacheff (1988), who framed it as an 

argument that conveys the characteristic properties and structures of all possible cases without relying 

on characteristics that are solely applicable to the particular case(s) under consideration. In the 

literature on proof and proving, researchers have paid special attention to this notion, as it is often 

seen as an essential argument in the transition between empirical and mathematical proofs (Reid & 

Knipping, 2010). However, there is no consensus on what constitutes a generic example (also known 

as a generic argument or generic proof/proving) due to its complexity (e.g., Leron & Zaslavsky, 2013; 

Reid & Valleo Vargas, 2018). Using Balacheff’s theoretical framework and Toulmin’s analytical 

model, this study focused on the structural characteristics of generic arguments, with attention to 

areas that distinguish them from other types of arguments. Based on the idea of generic disproof 

(Zaslavsky, 2018), this study also developed a framework for analysing example-based arguments to 

prove a statement and counterexample-based arguments to disprove a statement.  

Theoretical framework 

Balacheff (1988) proposed a framework consisting of knowledge, formulation, and validation. The 

levels of validation of proof are particularly well-known. This framework allows us to analyse how 

(counter)example-based arguments are associated with the transition between pragmatic and 

mathematical proofs.  Referring to previous works (Miyakawa, 2002; Reid & Knipping, 2010), each 

level can be summarised as follows: 

 Naïve empiricism: in which the truth of a result is asserted after verifying several cases 

 Crucial experiment: in which a statement is verified on the basis of testing a special case that is 

chosen to be not too special (e.g., choosing an extreme case to explore the extent of its validity) 

 Generic example: in which a special case is used to stand for all possible cases on the basis of 

the characteristic properties and structures of its class 
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 Thought experiment: in which the representation is detached from special cases and actions; 

instead, it is based on operations or transformations that involve the characteristic properties and 

structures often explained by natural language1. 

The current study operated within this framework to characterise and analyse different types of 

arguments to prove and disprove a statement (Table 1). In principle, we considered a statement to be 

a general statement (or universal proposition). 

Table 1: Framework for characterising arguments based on Balacheff’s levels 

Balacheff’s levels of validation Proof of a statement Disproof of a statement 

Naïve empiricism Empirical argument by examples Empirical argument by 

counterexamples 

Crucial experiment 

Generic example Generic argument by examples Generic argument by counterexamples 

Thought experiment General argument by ordinary 

language 

General argument by ordinary 

language 

In terms of structural characteristics, no essential differences exist between the first two levels (as 

demonstrated later). Therefore, both correspond to empirical arguments in Table 1, although they are 

comparatively distinct. We categorised arguments by counterexamples based on Peled and Zaslavsky 

(1997), who proposed three levels in terms of explanatory features, including specific, semi-general 

(generic), and general counterexamples (Miura & Shinno, 2022). Unlike an empirical argument by 

examples, one by counterexamples is an acceptable mathematical proof, as a specific counterexample 

disproves a universal proposition. An argument made via a specific counterexample is therefore not 

a naïve empiricism but lies “in-between” empirical and generic arguments (Reid & Knipping, 2010, 

p. 133), as a prover carefully chooses a (counter)example to refuse a statement, which is seemingly 

associated with the nature of the crucial experiment. Although a specific counterexample shows that 

a statement is false without reason, semi-general (generic) and general counterexamples both offer 

explanations (Peled & Zaslavsky, 1997). From the research perspective, it is valuable to link an 

“argument that proves” with an “argument that disproves”, but few studies have attempted this (e.g., 

Lee, 2016). Thus, a basic question is as follows: What characterises the different arguments 

(empirical, generic, and general) produced by primary students for proving and disproving a 

statement? We addressed this by conducting an argumentation analysis using Toulmin’s model, 

which allowed us to understand and compare different arguments based on argumentative structures. 

                                                

1 According to Balacheff (1988), this remains marked by anecdotal temporality, but the operations and relationships that 

form the basis of the proof are designated otherwise than by the results of their use, which is the case for the generic 

example (p. 165). Balacheff took an example from Cauchy’s proof of the intermediate value theorem in 1821, which was 

mainly written in natural language with fewer symbols. The thought experiment can therefore be understood in the same 

way as the “discursive generic example” expressed in ordinary natural language. 



 

 

Methodology 

Argumentation analysis 

Toulmin’s (1958) work has widely been used to study mathematical arguments made by students 

and/or teachers in different ways (e.g., Knipping, 2008; Pedemonte & Balacheff, 2016). Focusing on 

argumentative structures in arguments written by primary students, this study adapted the Toulmin 

model from a method of argumentation analysis (AA) described by Knipping and Reid (2019). AA 

was first proposed to analyse complex arguments in classrooms from local and global argumentative 

structures. Although AA employs a reduced Toulmin scheme in terms of Claims/Conclusions, Data, 

Warrants, and Backings, we also used other auxiliary elements (Qualifiers and Rebuttals). An 

argument aims to establish a claim (C) based on specific data (D) and general warrants (W). Here, a 

warrant is produced to support the relationship between the data and the claim. If further justification 

is needed, then a backing (B) is produced to support the warrant. A qualifier (Q) expresses the degree 

of conviction or confidence to hold the conclusion, while a rebuttal (Reb) states the conditions under 

what extent the conclusion would (not) hold. We also incorporated the element of refutation (Ref) 

into the AA from Knipping and Reid (2019). Our method employed three stages to reconstruct written 

arguments as argumentation structures: 1) assign roles (C, D, W, Q, Reb, B, Ref) to statements; 2) 

group these into “steps” in which the C of one step is used as D for the next step (a chain “C/D” is 

called an intermediate conclusion, per Knipping and Reid (2019)); 3) interpret the levels of arguments 

(Table 1) in terms of the entire structure. Although AA permits the analysis of both local and global 

argumentation structures (the latter consists of different argumentation “streams” composed of 

different steps), we did not need to do this because we collected written data from students rather than 

using classroom data. 

Context and task 

This study investigated how primary students produced arguments by examples and counterexamples. 

In the Japanese mathematics curriculum, “proof” is an official secondary school content, but there is 

no explicit opportunity to informally learn this at the primary level. It is therefore important for 

researchers and teachers to develop a curriculum and task design for proof and proving across grades. 

To explore potentials and challenges, we designed a set of tasks for 90 Japanese primary students 

(grades 5–6, ages 10–12). After receiving ethics approval from a committee at our affiliated 

institution, we implemented these tasks in written form during June 2021 via survey; this consisted 

of three tasks, including (#1) an introductory task to understand the problem situation, (#2) a proving 

task with a true statement, and (#3) a disproving task with a false statement (This task (#3) was chosen 

from a national assessment test conducted among 7th graders in Japan in 2005). Figure 1 shows tasks 

#2 and #3. This material is well-known as a “number pyramid”, wherein students must calculate 

numbers in each row as follows: add adjacent numbers in the first (bottom) row, find and add two 

numbers in the second row, and find a number in the third (top) row. Task #1 consists of three sub-

tasks, including (#1-1) finding the number in the third row when the three numbers in the first row 



 

 

are given (e.g., [3,3,312] 2), (#1-2) expressing the number in the third row as an addition form (e.g., 

‘3+3+3+3=12’), and (#1-3) writing a general property to answer the question, ‘If all the three numbers 

in the first row are the same, then what can you state about the number in the third row?’ The 

participants were familiar with the number pyramid itself, but not necessarily as a (dis)proving task. 

To complete the tasks, all the participating students wrote in their native language (Japanese). We 

then translated their answers into English. In this paper, we could not consistently consider how ‘the 

same’ students behaved in tasks #2 and #3 (only one student was considered in this regard). Although 

this is a limitation of this study, the results of the present analysis show the potential for further 

analysis tracing individual students’ works. 

 

Figure 1: Proving and disproving tasks (translated by the authors) 

Results and analysis  

Results 

Using the Table 1 framework, we briefly summarised responses from participants (N=90). For task#2, 

73 students (≒81%) chose “A. True” correctly with writing reasons, while for task#3 only 37 students 

(≒41%) chose “B. Not true” with writing reasons. It seems that a considerable number of students 

failed to respond to the disproving task. Although it is worth analysing students’ incorrect choices 

and their difficulties (e.g., the order of tasks (#2 and #3) might influence students’ behaviours), in 

this paper, we focus on the participants’ responses which have been classified into the three types of 

arguments for each task in Table 2. 

Table 2: A summary of students’ responses (N=90) 

 Example-based (task#2) Counterexample-based (task#3) 

Incorrect choice 10 47 

Empirical arguments 31 17 

Generic arguments 20 13 

                                                

2 In students’ writings, they often drew a diagram of the number pyramid to represent some instances. For concision, we 

write [3,3,312] to show that the three numbers in the first row are (3,3,3) and the number in the third row is 12. 



 

 

General arguments 22 7 

Others 7 6 

Example-based arguments  

In task #2 (Figure 1), Yama’s statement is a claim (C), with three examples as data (D) supporting C. 

Participant S24 (G5) wrote why the statement was true as follows: 

S24 (G5):  I think it is right. I thought this was correct because when I tried it with other 
diagrams, like [8,5,826] I thought this was correct because it also appears [as 
even] when I try other numbers like [2,5,214, 7,6,726, 4,8,424] 

The additional examples used by S24 are also data (D2) that support C. Moreover, the underlined text 

works as a naïve empiricism to C. We therefore interpreted this as an empirical argument. Participant 

S43 (G5) wrote the following: 

S43 (G5): There are two sets of the same number. For example, if the numbers in the first step 
are 3, 2, 3, it is expressed as 3+2+2+3. Since there are two 3s and two 2s, the two 
different numbers are added and doubled so that (3+2)×2=10. An even number is a 
number divisible by 2, so the number in the third row is always even if the numbers 
at both ends of the first row are the same. 

Figure 2 shows a layout of S43’s argument, which creates an intermediate conclusion (C/D) referring 

to characteristic structures included in the task. W1 and W2 convey the general properties. The 

example used in this argument was taken from the original problem, and works as a generic example 

to explain. We interpreted such an argumentative structure as a generic argument. 

 

Figure 2: Layout of S43’s generic argument by example 

Participant S28 (G6) wrote the following: 

S28 (G6): Right + Middle [in the first row] = Right in the second row, Left + Middle = Left 
in the second, and all [two] numbers in the second rows are the same. Multiplying 
them by 2 means that [the third row] will be an even number 

Figure 3 shows a layout of S28’s argument, which creates C/D in the layout of a generic argument 

(Figure 2).  W1, W2, and B refer to the structure and properties supporting C, but are expressed as 

ordinary words rather than numerical examples. Thus, we interpreted this as a general argument. 

 

Figure 3: Layout of S28’s general argument by ordinary language 



 

 

Counterexample-based arguments 

In task #3 (Figure 1), Kimu’s statement is C1, with three examples as D supporting C. To refuse this 

statement, another claim (C2) may need to negate C1. Participant S43 (G5) wrote the following: 

S43 (G5): It just happens by chance 3  that the third column is even. Such like the case 
[3,4,415], the even number in the middle number [in the first row] does not 
necessarily make that the number in the third row is even. 

S43’s argument a new data-claim relation (D2, C2) with a counterexample to refuse the original 

statement (C1). We considered the words ‘just happens by chance’ as a qualifier (Q) to C1. S43’s 

argument is mathematically acceptable based on a specific counterexample (D2), but does not convey 

the reason why the statement is false. We therefore interpreted this as an empirical argument. 

Participant S12 (G6) wrote the following: 

S12 (G6): In the above case, it just happens by chance [or sometimes] that the ends of the first 
row were odd-numbered together and even-numbered together. If one breaks apart 
the odd and even numbers, the third row will be odd. For example, [see Figure 4] 

 

Figure 6: Layout of S42’s general argument by ordinary language 

Figure 5 shows a layout of S12’s argument, which includes the D2-C2 relation as well as W, Reb, 

and Q. The warrant supporting C2 and the rebuttal (with Q) conditioning C1 refer to the characteristic 

task structures and explain why C1 is refused. In other words, the participant’s understanding of the 

structures reveals how to generate a counterexample. Thus, we interpreted this as a generic argument. 

Participant S42 (G6) wrote the following: 

S42 (G6): All three examples [above] are either both odd or both even numbers at both ends 
[of the first row], so if the odd and even numbers are separated, the answer is always 
odd. So, I think it is incorrect. 

                                                

3 The original Japanese word ‘たまたま(tamatama)’, translated ‘by chance’, was interpreted as an unlikely or less plausible 

qualifier. 

 

 

Figure 4: S12’s drawing Figure 5: Layout of S12’s generic argument by counterexamples 



 

 

Figure 6 shows a layout of S42’s argument, which explains why C1 is refused using ordinary language 

rather than numerical examples. Hence, D2 is implicit data supporting C2. The warrant and the 

rebuttal refer to the characteristic structures, which are similar to those in S12’s generic argument.  

Discussion and conclusion 

In terms of argumentative structures, most arguments consisted of a single argumentation step, but 

some generic arguments included intermediate conclusions (C/D) for the next step (e.g., Figure 2). 

Although not shown in this paper, some generic arguments by counterexamples also referred to 

properties such as “the two numbers in the second row can be either even/odd or odd/even”. This 

feature of generic arguments is consistent with Balacheff’s definition of generic examples. By 

contrast, empirical arguments use a simple structure that often consists of D and C without other 

elements to support C. The structures of general arguments are very similar to those of the generic 

argument, albeit with different representations. Comparing example-based and counterexample-

based arguments, the latter involves a more complex structure because it requires the inclusion of two 

parallel D-C relations as well as a refutation (and correction) of the original statement. Then, generic 

arguments by counterexamples explain the strategic method to generate a counterexample based on 

the properties and structures of the problem. Different generic arguments may be reconstructed as 

various layouts, but this paper only provides one layout due to space constraints. These arguments 

sometimes involve C/D, B, Q, and Reb conditioning C. Although general arguments also convey the 

reason why the statement is false, their structures are less complex than those of generic arguments. 

This is likely because general arguments do not involve numerical counterexamples. 

In conclusion, the framework based on Balacheff’s levels allowed us to identify different arguments 

(empirical, generic, and general) for both proving and disproving a statement. However, this paper 

offers a relatively limited empirical analysis of the collected data because we could only present 

illustrative cases. There are some analyses one might undertake. First, the analysis focusing on how 

‘the same’ students behaved in different tasks consistently (or inconsistently) is promising, although 

only in the case for S43 are the related analyses available in this paper. Second, the order of the tasks 

(#1, #2, #3) might also affect the students’ behaviours (if a disproving task is presented before a 

proving task, might students behave differently?). Third, this study targeted the structural aspects of 

argumentation in terms of a Toulmin analysis, but future research should further enhance our 

understanding of the nature of proof by considering other aspects (such as linguistic, functional, 

epistemological). Regarding the linguistic aspects, for example, we considered the difference between 

generic and general arguments, but we paid scant attention to different informal representations (such 

as drawings, and ordinary Japanese words) included in students’ writings (as well as our translation 

from Japanese to English). How can such representations (and the translation issues) affect the 

structural aspects of argumentation? Further research is needed to address these limitations. 
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