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In this paper, we present an ongoing research project developing a modelling tool for conceiving and 

analysing problem-based teaching and learning trajectories, in form of networks of problems. We 

explain the origins and the emergence of the model, the underlying theoretical choices. We emphasise 

how the model allows taking into account argumentation and proving aspects in the context of 

problem-solving activities. 
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Introduction 

This paper discusses a part of an ongoing project named Problem-based learning trajectories in 

discrete mathematics education (ProDiME), realized as a collaboration between the two authors and 

V. Durand-Guerrier. This project seeks to conceive and analyze teaching trajectories and their 

different implementations in French and Hungarian classrooms, with the help of a modelling tool 

based on “networks of problems”. The first step of the project is to develop this modelling tool by 

crossing our earlier works. In this paper, we explain how our respective preliminary research 

motivates the emergence of a model in terms of “networks of problems”, focusing particularly on 

aspects concerning argumentation and proof in the context of problem solving activities. 

Our project is closely connected to questions of Inquiry Based Mathematics Education (IBME). 

Although different interpretations and approaches exist to IBME, with slightly divergent 

characteristics (Artigue & Blomhoj 2013), they share a number of main principles, one of them being 

the central role accorded to problems in the learning of mathematics, and the conviction that new 

mathematical knowledge can only emerge by active participation of the learners in the construction 

process of mathematics. From this conviction follows the challenge of concerting problem solving 

activities with curricular learning. Different strategies exist, in different approaches to IBME, to 

conceive complex problem-based teaching and learning trajectories (Artigue et al 2020), but a general 

observation is that the conception, analysis and implementation of these trajectories as well as the 

dissemination of the conception strategies behind them remain difficult. 

In several approaches, and more particularly in our respective research, the idea of representing the 

structure of these trajectories in form of graphs emerged as a powerful tool both for research purposes 

and for communication with teachers. Our aim is to develop these attempts of representation into a 

theoretically well based modelling tool, relying on Vergnaud’s Theory of Conceptual Fields (2009) 

and Balacheff’s ckȼ model (2013). We thus discuss the question: 

 How to establish a theoretical model allowing the description of set of problems, their 

interrelations, and their relations with mathematical content, for didactical purposes? 

In this paper, we emphasize particularly a specific aspect of this work: 
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 What is the role of argumentation and proof in problem solving activities and problem-based 

mathematics education, and how can we take into account this role in the frame of our model?  

Reflecting argumentation and proof processes appears to be a crucial aspect in this work, for several 

reasons. First, the process of problem solving implies a series of decisions based on (correct or wrong) 

convictions and conjectures. A (rational) problem solver has implicit or explicit arguments to choose 

steps of the problem solving procedure, and solving a problem supposes reasons to be convinced that 

the solution is found and correct. We suggest interpreting problem solving steps as transformations 

of the original problem, and Balacheff’s ckȼ model allows us to take into account the above-

mentioned argumentative aspects as controls applied during the choice and execution of these steps.  

A second aspect is the connection of problem-solving activities with the construction of mathematical 

knowledge. Argumentation and proving play a crucial role in assuming the emergence of new 

elements of mathematical content.  

In the following, we first present the emergence and the role of problem networks in our respective 

preliminary research, then we discuss how a combination of these works leads us to the definition of 

a modelling tool. We will emphasise questions related to argumentation and proof in this presentation. 

“Series of problems” in history of mathematics and in mathematics education 

Gosztonyi’s research was partly inspired by an interdisciplinary history of sciences project 

introducing the term “series of problems” as a methodological tool for the analysis of texts from 

various historical contexts (Bernard, 2015). She developed analytical tools and methods by 

reinvesting them from one context to another. 

Series and networks of problems in the Hungarian context of mathematics education 

Gosztonyi’s work set out from the analysis of Hungarian traditions of teaching by “Guided 

Discovery”. She showed that one of the specificities of Guided Discovery is the conception of long 

and complex teaching trajectories based on “series of problems”, meaning a conscious ordering of 

problems for reaching one ore several specific teaching purposes (Gosztonyi, 2015). She showed that, 

although this idea appears quite coherently in different resources related to the approach, the 

identification of series problems, the reconstruction of the underlying principles of structuration, the 

related teaching purposes and aspects of implementation is quite a challenging task, both for 

researchers and for teachers who are novices to the approach. Based on the analysis of some specific 

texts where the design choices where explicated, she suggested a representation of the underlying 

structure of series of problems in form of problem networks, making the dense links between 

problems visible. In a collaborative project involving expert teachers of Guided Discovery, the 

problem network representation was reinvested as a mediator in discussions between teachers and 

researchers helping to explicate teachers’ design choices (Gosztonyi & Varga, 2023). 

An analysis of Clairaut’s Elements of Geometry 

The idea of problem network representation was also reinvested in the analysis of a text from another 

historical context, namely Clairaut’s Elements of geometry (1741) from 18th century France, which 

shows interesting analogies with texts of Hungarian Guided Discovery (Gosztonyi, 2022). Although 



 

 

we don’t exactly know its original destination, the preface talks about introducing “beginners” into 

geometry, and the book was interpreted by many as a didactical text, a kind of teacher guide. Clairaut 

proposes to write an “Elements of geometry” not in a deductive order but structured by problems. 

The intention is to allow beginners to “acquire more easily the spirit of discovery” (p. x). We present 

here some elements of the analysis of this book, which emphasise the connections between problem 

solving, proving and the construction of mathematical knowledge. 

The text is organised into four books, and structured mainly by numbered “paragraphs”; but different 

types of content (as definitions, theorems, demonstrations, problems, methods) are not explicitly 

distinguished. Gosztonyi, in collaboration with Bernard carried out a discursive analysis of the text 

to identify these types of content and interrelations between them, explicating the hidden structuration 

strategies of the text. One notable characteristics is the rich fabric of metadiscourse explaining 

interrelations between elements of the content and arguing transitions from one problem to another. 

The analysis of the metadiscourse allowed us to represent the structure of the text in form of a graph 

(Figure 1), and to interpret different types of links (represented on the figure as annotations of arrows). 

From a point of view of 

argumentation and proof, it is 

interesting to observe Clairaut’s 

ambiguous use of the term 

“problem”. In the few cases the 

term explicitly appears in the main 

text, it is used in the classical 

sense of construction or 

measurement problems. In the 

preface however, the term is used 

in a more general sense, covering 

also research questions leading to 

the discovery of theorems, which 

is closer to modern uses in the 

context of teaching by problem 

solving, as Pólya’s (1945). In our 

analysis, we distinguished 

‘problems’ and ‘proposition-

problems’ (PrB on the figure): 

problems are construction or 

measurement problems the 

solution of which is a procedure, 

while ‘proposition-problems’ are 

conjectures or research questions 

leading to a theorem, and their 

solution is a demonstration. The 

discursive structures of these two types of problems and their solutions are quite similar. 

Figure 1: Scheme for the analysis of Clairaut’s Elements of 

Geometry, Book III, paragraphs 9-22 (Gosztonyi, 2022) 



 

 

Clairaut suggests that two types of motivations can lead to the introduction of new problems: need or 

curiosity. The first book is mainly structured around problems motivated by practical needs of land 

surveying but we can already observe a combination of the description of procedures and 

argumentative, demonstrative passages in the description of the solutions. Our analysis pointed out 

that new ‘propositions’ emerge repeatedly as constitutive elements of a problem’s solution. In later 

books, proposition-problems and their demonstrations take a more central role, with a shift to 

motivation by ‘curiosity’. Figure 1 illustrates the structure of an extract from book III, underlying 

rich connections between problems and proposition-problems. The structuring strategies appear to be 

quite coherent throughout the different books of the text, nevertheless, new types of links (as 

inductions or generalisation by analogy) emerged together with the proposition-problems.  

Analysing problem solving paths in teaching mathematics and computer science 

Modeste, the second author of this paper, arrived at the idea of problem networks from another 

direction. He was interested in the analysis of problem-solving strategies and processes and of proof 

and validation, at the interface of mathematics and computer science (Modeste & al., 2019). 

Modeste (2020, Modeste & al, 2019) as well as Giroud (2011), inspired by the notion of problem 

used in the theory of algorithmic complexity (e.g., see Garey & Johnson, 1979), described problems 

as follows. A problem P is considered as a couple P=(I,Q) where I is a family of mathematical objects 

(instances),  and Q is a single question that can be asked about any element of I. This definition allows 

considering various levels of generality of a problem, and various domains of application. 

For example, we can consider the problem P1=(I,Q) where I is constituted of all the pairs of positive 

integers (m, n) (that is, the set N²), and Q is the question “how many different words can be written 

with m letters ‘a’ and n letters ‘b’?”. This description allows to distinguish this general problem from 

more restricted problems – like the problem P2, asking the same question Q but for a reduced set of 

instances where m is fixed at 2, or P3 asking the same question for the subset of instances where m=n. 

It also allows to consider instantiated problems, where you only take one element of the family of 

instances. A problem can also be modified by adding constraints to the question Q or by changing it.  

Another important choice coming from Modeste’s earlier work is the use of Balacheff’s ck¢ model. 

Based on Brousseau’s Theory of Didactical Situations (Brousseau & Warfield, 2020) and Vergnaud’s 

Theory of Conceptual Fields (2009), Balacheff (2013) describes a concept as composed of 4 

elements: a set P of problems that give meaning to the concept, a representation system L (the 

signifier), and invariants that are separated into a set R of operators which permits to act on problems 

(that is, transform a problem into another), and a set Σ of controls that permit to decide whether and 

how an operator r applies to a given problem, and to evaluate the effects an operator has had on a 

problem (in particular to determine whether or not a problem is solved). 

This last aspect, the distinction between operators and controls is one of the notable developments of 

Balacheff’s model, and this is the aspect on which we can rely for considering the important role of 

argumentation and proof in problem solving activities. The separation of operators, controls, and 

representation system is relevant to deal with problem solving activity, to describe the actions one 

can have on problems, but also to explicate controls as elements justifying the action, thus 

emphasising proof and proving aspects. The representation system component allows taking into 



 

 

account the semiotic registers in which the 

problem is represented, and to describe 

operators and controls available in this 

register (including those linked with 

changing register).  

Combined with the above-mentioned 

definition of problems, Modeste at al. 

(2019) implemented the ck¢ model for a 

priori analyses, describing possible 

problem solving paths, the way new 

problems are generated in the process and 

their relations to the previous problems. 

They illustrated how such a model can be 

used to make an a priori analysis of a given 

problem, modelling and analysing solving 

strategies, and explicating the possible 

operators and controls. This can be 

represented with a flowchart as in Figure 

2, presenting a mathematical solution of 

Problem 0 (Figure 2). 

Arrows between problems (blue) represent 

the transformations by an operator (green) 

selected according to a control (red) on 

operators and on the status of problems.  

Towards a modelling tool based on networks of problems 

In the ProDiME project, we combine the analysis of “series of problems”, that is, longer teaching 

trajectories conceived by a conscious ordering of problems, based on complex systems of problems, 

with the analysis of problem solving paths, that is, a set of problems generated by successive 

transformations of a given problem during problem-solving process. Although these are different 

types of analyses, there are numerous possible connections between them. For example, a teacher can 

conceive a series of problems with the intention of facilitating the solving of more complex problems, 

by posing some reduced versions of the target problem earlier in the series. In this case, the a priori 

analysis of possible problem solving paths can contribute to the conception of series of problems or 

to the interpretation of an existing one. 

We suggest that modelling in terms of networks of problems can be efficient in both cases, facilitating 

the connection of these two aspects. We consider several possible uses of networks of problems: 

- a priori analysis of problems and their possible solutions; 

- a priori analysis of series of problems conceived by teachers; 

- a posteriori analysis of students’ problem solving processes and learning trajectories; 

- design of teaching trajectories (by researchers as well as by teachers). 

Figure 2. A mathematical solving of Problem 0  

(Modeste & al., 2019) 



 

 

For developing our model, we rely on Balacheff’s ckȼ model and, more indirectly, on Brousseau’s 

and Vergnaud’s related theories. We consider mathematical activity from a cognitive and 

epistemological point of view as confrontation with problems and as successive transformation of 

problems into other ones up to reaching a problem which is solved (i.e. not being a problem anymore). 

A problem is considered, for an individual, as a question or a task of which the solution method is 

not directly accessible; or, as a disequilibrium between the individual and the “milieu” (TDS). 

Vergnaud introduced the term “conceptual field” as “a set of situations and a set of concepts tied 

together”. As he explains, “a concept’s meaning does not come from one situation only but from a 

variety of situations and that, reciprocally, a situation cannot be analysed with one concept alone, but 

rather with several concepts, forming systems” (Vergnaud, 2009, p. 86). By modelling in terms of 

networks of problems, we intend to describe the structure of such conceptual fields, and potential or 

actual trajectories constructing and exploring them. In the case of series of problems conceived by 

teachers or researchers, we may identify the “conceptual field” covered by the problems of the series, 

in case of problem-solving paths, we may consider the conceptual field generated by the initial 

problem (which might be different according to different paths traced by different individuals). 

A crucial question is to describe the nature of the relations between two (or more) problems, the 

solution processes and the related mathematical knowledge, in order to explicate the ways one can 

go across various problems making meaning (that is, learning). In the following, we discuss this 

question by referring back to the examples presented above. 

Our respective preliminary works contain elements to interpret these links, but the different 

approaches have to be conciliated with each other and with some other works, as Giroud (2011). Most 

notably, we consider that Pólya’s (1945) classical list of questions, intended to support problem 

solving processes, can also be read in this sense: indeed, many of Pólya’s questions suggest 

transforming problems into other problems or linking new problems with earlier solved ones. In this 

sense, Pólya’s suggested problem solving strategies do not deal with individual, isolated problems, 

they rather situate new problems in a progressively constructed network of earlier solved ones. 

The types of problem-solving steps implied by Pólya’s questions are quite coherent with the types of 

links we could identify in series of problems of different authors and teachers related to the Hungarian 

Guided Discovery approach (Gosztonyi, 2015): as finding a simpler or a more general problem, an 

analogous problem, reinvesting a method of solution… Many of the types of links identified in 

Clairaut’s book (see Figure 1) seem to be also similar to those described in the Hungarian context. 

Nevertheless, new types of problems emerged in our successive analyses. We are thus not proposing, 

at this stage of the research, a full classification of possible links, rather an open inventory of links. 

At the same time, the definition of problems as P=(I, Q) explained above allows us to give a coherent 

description of many possible relationships between problems.  

A first example comes from the idea of generality or specificity of problems. A problem P’ is a 

specialization of a problem P if P’ can be obtained by a restriction of the set of a problem’s instances 

or by fixing the values of some variables describing the set of instances. A particular (extreme) case 

is the instantiation of a problem, when all the parameters of the set of instances are fixed, that is when 



 

 

we look at one particular case. Another way of specializing a problem P into a problem P’ is when 

adding constraints to the question (see for ex. Figure 2).  

Another type of relation is sufficiency. When you try to solve a problem P, you can transform it into 

a problem P’ (or many problems P’1,…,P’n) such that solving P’ (or P’1,…,P’n ) is sufficient to solve 

P. We can also say that P is necessary to P’. Of course, identifying this relation relates to the controls 

of the operators used to transform P into P’, and can be or not identified by the individuals solving 

the problem. This type of relation was clearly identified and detailed by Giroud (2011).  

Clairaut’s ‘need-based’ transitions (i.e. when a problem is reduced to another one the solution of 

which is necessary to solve the original problem) can be interpreted in this sense. And indeed, Clairaut 

often arguments these reductions at length, and these are typically the points where new 

‘propositions’ emerge in his text (Gosztonyi, 2022). 

The relationships above (generality/specificity, necessity/sufficiency) are mostly of a logical or 

epistemological nature. We can explore relationships of different kind. For example, if we consider 

representations as semiotic registers, we can describe certain links between problems as conversions 

from one register to another. The new problem is not always equivalent to the first one. 

Another type of link between two problems can be related to operators. If an operator r has been 

useful to solve the problem P, and if there are similarities between P and P’ (which can be of various 

nature) it might be relevant to use r, or an adaptation of r, to operate on P’. This could be qualified as 

operator analogy. We can imagine that there are also analogies that concern controls and could be 

called control analogy. In fact, when two problems belong to a bigger family of problems, there can 

be general principles applied on them which can be considered as controls. In this case, the model 

allows clarification of the relationship between the two problems, by identifying a kind of “ancestor”, 

a problem of which they both are specialisations. In this case, we can consider that using similar 

operators or control are something deeper than an analogy. 

The search for generalization (of problems, operators, or controls) and for ancestor problems can play 

crucial role in establishing new mathematical knowledge and in increasing abstraction of concepts. 

In the context of Guided Discovery for example, mathematical knowledge is often built through 

progressive generalisation, by exploration of analogies between problems (Gosztonyi, 2015). 

The interpretation and classification of possible links will be developed through further analysis of 

examples. At the conference, we will present the analysis of specific problems and series of problems 

from the domain of discrete mathematics. We will emphasise the emergence and role of controls (i.e., 

proving) in these series of problems.  We will also explain how we plan to use the problem network 

model in collaboration with teachers. 

Acknowledgment: This research was realized in the frame of the Problem-based learning 

trajectories in discrete mathematics education (ProDiME), founded by the European Union. 
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