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Abstract: This article investigates the hygrothermal properties of earth-based materials by analyzing
experimental data from 88 articles spanning 32 countries worldwide. The focus is determining
effective techniques for leveraging the use of excavated soil in construction, particularly emphasizing
enhancement of hygrothermal comfort in specific climates. Based on statistical analysis, the study
presents a comprehensive classification of earth production techniques, incorporating additives, and
examines their impacts on hygrothermal properties of excavated soils. Additionally, it explores
the intricate relationship between the climatic conditions of a region and the chosen earth-material
production techniques. The analysis aims to propose standard parameters for earthen materials
and identify gaps in both methods and experimental studies. Therefore, this study will provide
valuable insights by proposing new design tools (ternary diagrams) to maximize the use of excavated
soils in construction practices. The proposed diagrams illustrate the intricate relation linking either
hygrothermal properties, the climate zone, and manufacturing techniques, or the relation between
the most studied manufacturing techniques (compaction, fibered, and stabilization) and expected dry
thermal conductivity. Thereby, results from this meta-analysis and critical review will contribute to
advancing sustainable construction practices.

Keywords: excavated soil; earth-based material; hygrothermal properties; Koppen climate classification;
sustainable construction; critical review; meta-analysis; ternary diagram

1. Introduction

As the construction industry confronts the pressing need to mitigate its carbon foot-
print, a shift towards materials with minimal environmental impacts and suitability to
local climates has gained momentum. Among these rekindled interests in ancient building
materials, earth-based materials emerge prominently, boasting a millennia-old history in
architecture and widespread availability, notably sourced from excavation sites. However,
unlike quarried earth, excavated soils exhibit significant heterogeneity, often relegated to
mere construction waste or primary embankment material, unlike other materials such as
demolished concrete.

In France, the construction and public works sector generated, in 2020, 213 million tons
of waste annually out of 315 million tons [1]. Approximately 80% of this waste came from
construction sites in the form of inert waste such as soil, concrete, and gravel [1]. Roughly
three-quarters of this debris was reused on-site by public works companies, primarily for
road construction and other related activities. This indicates that the construction sector
could reuse about 57 million tons of waste annually [1].

The growth in development across all regions in France has led to a substantial increase
in waste production. For instance, in areas like Réunion, around 1.5 million tons [2] of
excavated soil from construction sites could be repurposed for other uses. Large-scale
projects such as the Grand Paris Express or the 2024 Olympic Games are projected to
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generate 30 to 40 million tons of excavated soil [3] in the Île-de-France region. Moreover,
based on the data provided by the ELGIP Working Group on excavated soil backfilling
across Europe, Norway produced 3 million tons of excavated soil in 2017. The quantities in
Portugal were 339,000 tons in 2017 and 707,810 in 2016. Slovenia reported 2 million tonnes
of excavated soil in 2017 and 3.8 million in 2018. In Sweden, the production of excavated
soil amounted to 5.4 million tons in 2016 [4].

In the context of environmental commitments such as COP 21, the Grenelle Environ-
mental Roundtable, and the Energy Transition Law, it has become imperative to reuse
this excavated soil efficiently to meet the material needs of the construction sector. Con-
sequently, a study has been initiated to explore solutions for recycling excavated soil in
France [3]. Furthermore, several initiatives, like the MATARUN project in Réunion and the
NEXTERRE project in Nouvelle-Aquitaine, are underway to investigate recycling methods
suitable for these materials.

The allure of earth materials lies in their unique capacity as humidity and heat regu-
lators, offering promising potential for enhancing construction hygrometry and thermal
comfort. Structures constructed from this geological resource have the potential to stabilize
indoor humidity levels, thereby mitigating sources of hygrometric and thermal discomfort.
However, the diversity in earth valorization techniques and geographic variability in con-
ducted studies call for reevaluating current scientific analyses seeking to characterize these
hygrothermal properties experimentally.

Hence, this article offers a comprehensive and critical review of experimental analyses
concerning earth materials, regardless of their manufacturing methods. The primary
objective is establishing characteristic value ranges for hygrothermal properties influencing
building thermal comfort and providing insights into expected properties based on various
earthen material-use techniques. Additionally, this paper aims to explore correlations
between desired hygrothermal properties and earthen material use; we present documented
earthen materials using techniques, specifying the various biobased additives or binders
and indicating the geographical origin of the earth used. By investigating the impact
of additives on modifying the properties of earth materials independently of the origin
of the soil, we propose techniques for reusing excavated soil, characterized by its high
heterogeneity, as building earthen materials. Moreover, this analysis will shed light on
underexplored characterization methods and earth production techniques, guiding future
research directions. Drawing from our comprehensive meta-analysis of the entire dataset
and leveraging advanced statistical tools, we present three innovative design tools that link
hygrothermal properties to formulation, climate, or technique. These tools take the form
of ternary diagrams, offering new insights into studying the hygrothermal properties of
earth-based materials.

The literature presents documented earth valorization methods and explores relevant
hygrothermal properties crucial for construction in tropical climates. Subsequently, we
outline our bibliographic analysis methodology, providing an overview of the breadth of
our state-of-the-art review. We then compile comprehensive tables that categorize targeted
properties based on technique types and specify geographic measurement locations. Finally,
we analyze the correlations between these parameters to propose an innovative graphical
representation constructed using statistical tools: the “MATARUN” diagrams.

2. Materials and Methods
2.1. Methodology and Bibliometric Analysis

Drafting a comprehensive and precise state-of-the-art review involves gathering,
selecting, compiling, and analyzing a vast corpus of scientific articles. For this literature
review, the exploration of academic databases was essential. We chose to use the Crossref
database due to its user-friendly interface, accessibility, and the selection criteria it offers.
Although paid databases might provide greater comprehensiveness, our goal was to gather
a substantial yet relevant sample that was easily accessible within our research domain.
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To filter the most-cited studies, we utilized the software “Publish or Perish” [5].
The article selection was conducted exhaustively. Keywords were deliberately chosen to
encompass various studies without limiting them to a specific field. “Publish or Perish”
enabled us to extract citations via Crossref Metadata Search and subsequently calculate cita-
tion metrics, presented in the results. Each search had a limit of 1000 references, with terms
in the “Keywords” fields treated as a combination of “Keywords 1” and “Keywords 2”
using the logical connector “OR”, as described in Figure 1.

Keywords 2 (all in one)
Building ; Material ; Thermal ; 

Hygrothermal ; Comfort ;
Experiment

Keywords 1 (one by one)
Earth ; Unfired Clay ; Raw Clay ; Raw Earth ; Rammed Earth ; Mud ; Cob ; Wattle-

and-daub ; Compressed Stabilized Earth Brick (CSEB) ; Compressed Earth Brick 
(CEB); Earth Plaster ; Stabilized Rammed Earth (SRE) ; Light Earth ; Fired Earth ; 
Fired Clay ; Terracotta ; Extruded Earth ; Unfired Earth ; Laterite ; Adobe ; Earthbag

; Superadobe ; Tapial ; Poured Earth Concrete ; Earth Concrete ; Earth Sheltered

Number of results
25900 left

First screening
2323 left

Database analysis tool
Publish or Perish

Academic database : 
Crossref*

*Logical connector
between keywords: OR

Criteria N°1
• Remove duplicate references to the article URL ("http://dx.doi.org/... ")
• Exclude everything that is not: Journal; Journal article; Proceeding article; Report; Monograph
• Remove duplicate references to article titles
• Exclude all references that have not been published in a journal whose theme is: building, construction, 

architecture, energy, material, environment or recycling.
• Based on the article title : 

• Exclude review articles
• Exclude simulation articles 

Second screening
597 left

Criteria N°2
• Based on the article title : exclude articles without at least one of the Keywords 1 in their title.

Third screening
156 left

Criteria N°3
• Based on the article title : exclude articles whose title does not refer to thermal or hygrothermal aspects

Fourth screening
88 left

Criteria N°4
• Analysis of abstracts and conclusions of all articles

Intensive reading of 
articles

Figure 1. Methodology applied.

As a result, we collected no fewer than 25,900 references, inevitably including a signifi-
cant proportion of duplicates. Notably, “Keywords 1” were compiled after an extensive
search into terminology specific to earthen construction.

This substantial database eliminated duplicates based on a distinct element from each
reference, the URL-DOI of the article. We also excluded references other than articles
from scientific journals, conference papers, research reports, or monographs. To maintain
relevance in earthen construction, we excluded references unrelated to the building sector,
architecture, energy, materials, recycling, and the environment. State-of-the-art articles
summarizing information from other scientific articles were also excluded to avoid redun-
dancies. Finally, simulation articles were excluded to focus solely on experimental data.
This initial screening resulted in a database reduced to 2323 references.

A more in-depth analysis occurred during a second screening, focusing on article
titles. This process eliminated articles that did not contain at least one of the keywords
from the “Keywords 1” list. We assume that articles not explicitly mentioning a method of
using earth in their title do not address the sought-after subject. This filtering identified a
database containing multiphysical experimental analyses on earth material usage methods.
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Lastly, a third filtering was performed to refine the selection based on specific criteria
related to our study, again based on reference titles, excluding articles not addressing
thermal or hygrothermal aspects. This identified 156 references meeting these criteria.

These references were then carefully examined based on their abstracts and conclu-
sions. This helped exclude articles that, despite meeting previous criteria, did not align
with the desired content. For instance, we excluded articles that described no physical
experiments but used numerical simulations to infer optimal hygrothermals. This final
filtering retained 88 references ideally suited for our state-of-the-art analysis. These 88 refer-
ences were thoroughly analyzed to extract relevant information and analyses for the work
presented in our paper.

Furthermore, a comparative analysis of trends was conducted using the results from
PoP (Publish or Perish). Figure 2 illustrates the annual publication count for studies gener-
ally addressing the multiphysical characterization of earth utilization techniques (derived
from the database of the second screening, in red) and for articles explicitly focusing on
thermal and hygrothermal aspects (derived from the third screening, in blue). We observed
that scientific articles aiming to characterize earth utilization techniques experimentally
date back to 1975 and primarily centered on mechanical studies. It was not until eleven
years later, in 1986, that the first study explicitly delving into the hygrothermal characteri-
zation of an adobe structure was conducted and published in Solar Energy by researchers
in the United States. While this article lacked precision regarding intrinsic hygrothermal
properties, as targeted in our work, it already addressed concepts of thermal comfort
induced by the “earth” material. Overall, the surge in scientific studies examining the
multiphysical properties of earthen construction began in 2004, coinciding with the launch
year of the second version of the LEED (Leadership in Energy and Environmental De-
sign) rating system, marking a significant milestone in promoting sustainable buildings by
establishing standards for energy efficiency, sustainability, and environmental impact in
constructions. Since then, the number of studies has exponentially increased until showing
signs of fatigue between 2015 and 2017, notably aligned with the COP21 in Paris, empha-
sizing reducing carbon emissions in the construction sector. Considering the lag between
content creation and its validation and dissemination within the scientific community,
synchronizing historical events with scientific productions may not be fully representative.
Interestingly, multiphysical studies have again shown signs of a slowdown since 2021,
despite a significant increase in exploring purely thermal or hygrothermal properties of
earth techniques since 2019. We note that these studies align with the modulation of indoor
environments and the community’s aspiration to identify frugal, durable, and economically
viable materials.
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Figure 2. Trend in the number of publications on the characterization of earth use methods since 1975.

Finally, we constructed a word cloud from the database of reference titles resulting
from the second screening (see Figure 3). A word cloud is a visual representation of the



Recycling 2024, 9, 7 5 of 35

most frequently used keywords, word groups, or phrases in a text, in our case, within article
titles. Words used most frequently are displayed in a larger font, while less commonly
appearing words are depicted in a smaller font.

Figure 3. Word cloud on the database of article titles in the second screening.

This word cloud allowed us to analyze and comprehend the content of the second
screening’s database (597 references, see Figure 1). Words in red tended to represent areas
of analysis or types of experiments. In green, elements that seem more oriented towards
materials stand out. Lastly, in black were the methods of earth utilization.

The analysis revealed that rammed earth was the most cited and studied method,
followed by fired clay and adobe. Surprisingly, raw earth, historically applied, was not
among the most cited/studied methods.

Regarding materials, logically, “earth” is the most cited material, followed by “clay”,
an essential component of earth. The third material to appear prominently is cement,
frequently used as a stabilizer in reinforcing specific earth techniques.

In red, we notice that studies citing the term “thermal” are nearly as numerous as
those indicating “mechanical”. However, it is worth noting that some references include
both terms in their titles without genuinely addressing the intrinsic characterization of
techniques using earth. Additionally, the recurring term “wastes” demonstrates the com-
munity’s interest in studies aiming to combine earth with materials qualified as waste or
excavated earth, currently considered waste in Europe.

2.2. Methods for Recycling Excavated Soil

We present herein a categorization of various approaches and formulations applicable
to the revalorization of excavated soils. These elements are divided into three sections:

• Different typologies of earthen construction suitable for revalorizing excavated soils.
• Various technical processes associated with these typologies of earthen construction.
• Different additives associated with soil to enhance specific properties.

2.2.1. Earth-Based Materials in the Literature

Earth is a material with many uses. The scientific literature confirms its ability to
function independently under certain conditions and its capacity to be combined with
additives or specific techniques to impart various properties. We propose a brief description
of these approaches to present the existing methods comprehensively. This summary aims
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to clarify the different techniques and provide precise explanations. Our in-depth research
revealed a tendency among various authors to mix specific approaches, except for the
relatively popular soil enhancement techniques.

Adobe, invented in Mesopotamia in the 4th millennium BC, is a testament to enduring
architectural techniques (see Figure 4a). It has created some of the world’s most enduring
human habitats, such as those found in North America, which have stood for 900 years and
remain in active use. This process involves shaping mud bricks using wooden or metal
molds placed directly on the ground, followed by natural drying in the sun and air. Vegetal
fibers, generally straw, are often added to the soil to limit shrinkage and cracking observed
during drying. The adobe technique allows the use of a wide range of soils, particularly
those with a higher clay content.

(a) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(b)

Figure 4. Methods for recycling excavated soil. (a) Adobe, picture by ©LaMaisonSaintGobain.
(b) Fired earth brick, Terracotta, picture by ©Fruggo (CC BY-SA 1.0). (c) Light Earth Method (LEM),
picture by ©Amàco. (d) Wattle and daub, picture by ©Rod Waddington (CC BY-SA 2.0). (e) Earth
Plasters, picture by ©Esprit Cabane. (f) Pressed earth, picture by ©EESC Glossaries. (g) Printed
earth, picture by ©Lago Corazza. (h) Superadobe (earthbag) [6]. (i) Cob (bauge), picture by ©Amàco.
(j) Poured earth, picture by ©Amàco. (k) Rammed earth, picture by ©Messibat International. (l) Pre-
fabrication, picture by Ricola Herzog & De Meuron ©Daniel Lüthi.

Light Earth Method (LEM) finds its roots in the enduring European tradition of
incorporating lower-density straw and clay into construction practices, notably for filling
voids in half-timbered and wattle and daub structures (see Figure 4b). Operating as an infill
technique, LEM does not bear the direct load of the roof but functions as semi-structural
insulation. It involves a moist blend of natural fibers or lightweight minerals coated in a clay
slip binder, compacted within a structural frame and situated within temporary formwork
between structural wall framing elements. This approach yields walls up to 300 mm thick,
showcasing remarkable insulation capabilities influenced by tamping density and the ratio
of clay to fiber. Beyond insulation, the interest of LEM in low density is its ability to offer
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good thermal resistance accompanied by efficient inertia. It offers more density increases,
fewer mixtures are insulating, and they present better inertia. In summary, low densities
allow very good winter and summer comfort. Mean densities give a good winter comfort
and an excellent summer comfort.

Wattle and daub, also known as torchis in French, represent a construction method
used in crafting walls and buildings. It encompasses the weaving of a lattice made of
wooden strips, known as wattle, which is then coated with a sticky mixture typically
comprised of wet soil, clay, sand, animal dung, and straw (see Figure 4c).

Earth plasters are blended clay, fine aggregate, and fiber, often enriched with additives
like pigments, lime, casein, prickly pear cactus juice (Opuntia), manure, and linseed oil.
Primarily utilized as a finishing layer for walls and ceilings on surfaces such as masonry,
cob, or straw bale, or even on backing boards like gypsum, this plaster serves the dual
purpose of safeguarding structural elements and enhancing hygrothermal comfort while
introducing a diverse range of textures and hues (see Figure 4d).

Compressed Earth Blocks, a relatively recent advancement in earth-based construc-
tion, emerged in the past century and has garnered widespread global acclaim. Typically
sized at 295 × 140 × 95 mm, these bricks are crafted manually or mechanically from a
dry mixture, often containing up to 10% cement or other binders to enhance mechanical
properties. This process produces dense, consistently shaped bricks through compression,
offering the potential for diverse shapes and performed features (see Figure 4e). While
on-site manual compression or procurement from manufacturers is viable, transporting
earth bricks rich in cement might contradict energy conservation principles. Noteworthy
for their durability, solidity, and uniformity, compressed earth blocks enable precise align-
ment for geometric patterns or a more adaptable arrangement to suit desired aesthetics.
In terms of design, these blocks are similar to fired bricks while avoiding the cooking step.

Printed earth refers to a subset of construction 3D printing, which encompasses a
range of technologies utilizing 3D printing as a foundational method for creating buildings
or construction components (see Figure 4f).

Superadobe, also known as earthbag construction, pioneered by Iranian architect
Nader Khalili, presents a unique approach to earth-based building practices. This method
employs elongated fabric tubes or bags filled with adobe to create a compression structure
(see Figure 4g). The resulting edifices, frequently resembling beehives, leverage corbelled
arches, corbelled domes, and vaults to fashion resilient, single-, and double-curved shells.
Over the last couple of decades, Superadobe has gained significant traction within the
natural building and sustainability movements.

Cob, also known as “bauge” in French, stands as an ancient building method renowned
for its capacity to sculpt artistic and visually captivating wall formations (see Figure 4h).
The endurance of numerous well-preserved cob cottages on the South Island of New
Zealand, dating back to the last century, attests to its enduring strength. Cob is a traditional
technique based on clay soil mixed with water and vegetal fibers, generally straw. This
mixture is often shaped into balls in a plastic state. To raise a wall, they are accumulated in
successive layers of 40 to 60 cm in height, then adjusted and smoothed. While the resulting
surface is typically rough, it can be refined through trimming and rendering to achieve a
more refined appearance. Cob allows for the construction of sturdy, thick, or gracefully
curved walls, often tapering toward the top. However, the technique is notably susceptible
to shrinkage [7], requiring meticulous soil selection, continually adding fiber, and a long
construction time related to slow drying kinetics [8].

Poured Earth revolves around blending water, earth, and additives to achieve a
consistency akin to cake batter, facilitating its pouring into formworks directly onto the
wall (see Figure 4i). Once the mix sets, the formworks are removed. Unlike rammed earth,
this technique employs a mixture in a liquid state, potentially resulting in greater shrinkage.
Precise management of the soil mix becomes crucial to avert unwanted cracks during the
drying process.
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Rammed earth, an age-old building technique traced back to 7000 BC in Pakistan,
continues to find relevance worldwide, notably in segments of the Great Wall of China.
The process entails compacting soil within formworks, employing manual or pneumatic
rammers (see Figure 4j). The mixture must achieve a wet state that permits the immediate
removal of the formwork upon completion of a wall panel.

Fire bricks, or terracotta bricks, with their warm hues and timeless appeal, have been
an integral part of architectural heritage for centuries. Crafted from natural clay and fired
to perfection, these bricks embody a rich tradition of craftsmanship that seamlessly blends
aesthetics with functionality. Creating terracotta bricks begins with carefully selecting clay
and molding it into shape before undergoing a meticulous firing process. The firing not
only strengthens the bricks but also imparts a distinct earthy color, ranging from warm
reds to subtle browns, enhancing the visual allure of any structure they grace. Beyond their
aesthetic charm, terracotta bricks boast remarkable durability and weather resistance. Their
natural composition and firing process make them resilient to the elements, ensuring that
buildings constructed with these bricks withstand the test of time. Additionally, the porous
nature of terracotta contributes to effective moisture regulation, preventing damage caused
by humidity and providing a comfortable indoor environment.

Prefabrication, encompassing distinct processes for brick creation and assembly,
streamlines on-site construction schedules and circumvents issues tied to drying. This
method harmonizes rapidity with design adaptability, facilitating gradual assembly and
the convenient integration of utilities as construction advances (see Figure 4k). Recognized
prefabrication forms include compressed earth blocks and straw bales. Yet, the advantages
emerge in “wet” techniques like LEM and hempcrete, where pre-dried panels or blocks
drastically reduce construction timelines compared to traditional in situ drying. Challenges
arise with transporting and placing large precast panels due to their weight requiring
lifting equipment.

2.2.2. Earth-Based Material Production Techniques

The methodologies employed in fabricating the materials showcased below can be
categorized into four distinct groups:

• Non-mechanical or manual techniques involve utilizing the earth as a construction
material without applying mechanical means; instead, it involves solely manual
methods (see Figure 5d for example). This approach revolves around shaping the
material by hand, either with or without molds or formworks, to create bricks or
sections of a wall. Earth plaster, cob, and adobe are prime materials crafted using
these techniques.

• Compaction or compression refers to compacting earth within a mold or formwork,
utilizing either mechanical machinery or manual effort to create bricks or entire walls.
Compression forces span from 0.39 MPa [9] to 62 MPa (or 100 kN) [10]. Examples of
earth-based materials produced through this method include rammed earth, Com-
pressed Earth Blocks (CEB), and Compressed Stabilized Earth Blocks (CSEB), see
Figure 5b).

• Extrusion or pulverization encompasses the production of materials through extru-
sion processes, notably employed in 3D-printing methodologies (see Figure 5a,e).

• The fired method involves the production of bricks through the process of firing (see
Figure 5c). Fired bricks serve as an exemplar of this material.

2.2.3. Earth-Based Material Additives

Enhancing the performance of earth materials frequently involves the incorporation
of bio- or mineral-sourced materials, as well as the addition of chemicals or polymers by
the producer. We distinguish these different additives into three categories:

• Bioadditives encompass various types sourced from plants (leaves, fibers, and cores)
or animals (manure, wool, and blood), each offering distinct properties to the material.
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• Mineral additives primarily originate from the cement industry and include natu-
ral geosourced additions like lime and sand, contributing unique characteristics to
the mix.

• Other additives may comprise polymers, phase change materials, waste from mining
industries, and ash from power plants (from incineration processes), diversifying the
material’s composition and functionalities.

(a)

(c)

(d)

(e)(b)

Figure 5. Example of production techniques: (a) Extrusion press prototype developed in
Cameroon [11]; (b) Compressing earth with a press [12]; (c) Bricks being fired in Chembe [13];
(d) Manual technique used to build cob walls [14]; (e) Earth printing performed [15].

2.2.4. Soil-Excavated Valorization Techniques Nomenclature

In this article, for the sake of clarity and ease of comprehension regarding the subse-
quent results, we introduce the following terminology:

• N: Represents materials produced without mechanical intervention.
• C: Denotes materials formed through compaction or compression methods.
• E: Signifies materials produced through extrusion techniques.
• F: Represents materials created via firing processes.
• R: Refers to materials without any additives.
• Fb: Indicates materials with fiber additions.
• S: Stands for stabilized materials with mineral-sourced additives.
• M: Represents materials with a mixed composition (mineral-sourced, bio-, and

other additives).
• A: Denotes materials with other specific additions.

Figure 6 aims to establish a classification of techniques for valorizing excavated soil.
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Manufacturing techniques

No mechanical (N)Compacted (C)

Extruded (E) Fired (F)

Additives

Raw (R) Fibers (Fb)Stabilizer (S)

Mix additives (M)Others additives (A)

• Fired bricks• Printed earth

• Prefabrication
• CSEB, CEB

• Rammed earth

• Light Earth Method
• Adobe
• Cob
• Wattle and daub
• Earth plaster

No mechanical and raw (NR)
No mechanical with fibers 

(NFb)
No mechanical with stabilizer 

(NS)
No mechanical  with mix 

additives (NM)
No mechanical with others 

additives (NA) 

Compacted and raw (CR)
Compacted with fibers (CFb)
Compacted with stabilizer 
(CS)
Compacted with mix additives 
(CM)
Compacted with others 
additives (CA)

Fired and raw (FR)
Fired with fibers (FFb)
Fired with stabilizer (FS)
Fired with mix additives (FM)
Fired with others additives 
(FA)

Extruded and raw (ER)
Extruded with fibers (EFb)

Extruded with stabilizer (ES)
Extruded with mix additives 

(EM)
Extruded with others additives 

(EA)

Manufacturing techniques classification and corresponding earthen materials proposed in this article

Figure 6. Excavated soil valorization techniques classification.

2.3. Earth-Based Material Hygrothermal Properties

Our article focuses on the hygrothermal properties relevant to the material “earth”.
Through our survey, we’ve identified the most commonly measured hygrothermal prop-
erties by various authors. These properties delineate the mass and heat transfers within
different formulations. As such, we catalog:

• Dry Density: This parameter represents the mass per unit volume of soil when utterly
devoid of moisture, providing insight into the soil’s compactness and structural
composition.

• Thermal Conductivity (Dry): Thermal conductivity refers to the material’s ability
to conduct heat and is essential in understanding how efficiently heat is transferred
through the material when devoid of moisture.

• Dry Specific Heat: Specific heat is the amount of heat required to raise the temper-
ature of a unit mass of material by one degree Celsius when dry, indicating its heat
storage capacity.

• Thermal Diffusivity: This property quantifies how quickly a material responds to
changes in temperature, indicating its ability to conduct heat relative to its capacity to
store thermal energy.

• Thermal Effusivity: It signifies a material’s ability to exchange thermal energy with
its surroundings, influenced by thermal conductivity and specific heat.
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• Water Vapor Permeability: This parameter measures the rate of water vapor transmis-
sion through a unit area of material of a specified thickness, influenced by temperature,
humidity, and vapor pressure differences.

• Water Vapor Resistance Factor: It evaluates a material’s resistance to water vapor
passage, comparing it to the resistance offered by air.

• Moisture Buffer Value: This value directly measures a material’s capacity to absorb
and release moisture in response to changing environmental conditions.

• Moisture Effusivity: It characterizes the rate of moisture absorption by a material
when subjected to a sudden increase in surface humidity.

• Water Absorption Coefficient: This coefficient illustrates the rate at which porous
building materials absorb liquid water through capillary action.

• Moisture Content: The quantity of water in a material, reflecting its moisture state
under specific environmental conditions.

• Sorption Isotherms (Moisture Content per RH): Graphical representations indicating
the relationship between a substance’s moisture content and the relative humidity
of the surrounding air at a given temperature, essential for understanding moisture
equilibrium in materials.

2.4. Climate Classification (Köppen Climate Classification)

The diversity of earth resources and construction methods across the globe is re-
markable. Understanding how these materials interact with local climates is significant
in tailoring each region’s most fitting earth construction methods. This comprehension
also unveils correlations between climate, the essential traits of earth-based formulations,
and soil characteristics.

The Köppen climate classification, originating from the work of German–Russian
climatologist Wladimir Köppen in 1884 and further refined by Köppen himself in 1918 and
1936, stands as a preeminent system for classifying climates. Subsequent adaptations by
German climatologist Rudolf Geiger in 1954 and 1961 resulted in occasional references to
the Köppen-–Geiger climate classification [16,17].

This classification system categorizes the world’s climates into five major groups.
The following descriptions provide an overview, and a classification table (see Table 1)
is provided for reference. Additionally, the map presented in Figure 7) illustrates the
distribution of these climate groups described:

• Group A: Tropical/Megathermal Climates: These climates are characterized by con-
sistently high temperatures, usually above 18 °C (64.4 °F) throughout the year, partic-
ularly at sea level and low elevations. They are accompanied by significant annual
precipitation.

• Group B: Arid (Desert and Semi-arid) Climates: Arid climates are identified by
annual precipitation levels significantly lower than the potential evapotranspiration.

• Group C: Temperate/Mesothermal Climates: Temperate climates in the Köppen
system maintain temperatures above 0 °C (32 °F) (or −3 °C (26.6 °F) in previous
references) during their coldest month but remain below 18 °C (64.4 °F). The −3 °C
(26.6 °F) average temperature aligns with the equatorward limit of frozen ground and
sustained snow cover for a month or more.

• Group D: Continental/Microthermal Climates: These climates exhibit average tem-
peratures in the warmest month surpassing 10 °C (50 °F) and average temperatures in
the coldest month dropping below 0 °C (or −3 °C (27 °F) in previous mentions). Found
predominantly in continental interiors and upper east coasts, particularly above 40° N,
these climates are rarer in the Southern Hemisphere’s mid-latitudes due to smaller
land masses and limited land between 40 and 60° S. They occur primarily in select
highland locations.

• Group E: Polar Climates: Within the Köppen system, Polar climates maintain the
warmest monthly temperatures below 10 °C (50 °F). They can be categorized into
two main types: tundra and icecap climates.
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Table 1. Köppen climate classification.

1st 2nd 3rd

A (Tropical)

f (Rainforest)
m (Monsoon)
w (Savanna, dry winter)
s (Savanna, dry summer)

B (Dry) W (Arid desert) h (Hot)
S (Semi-Arid or steppe) k (Cold)

C (Temperate)
w (Dry winter) a (Hot summer)
f (No dry season) b (Warm summer)
s (Dry summer) c (Cold summer)

D (Continental)

w (Dry winter) a (Hot summer)
f (No dry season) b (Warm summer)
s (Dry summer) c (Cold summer)

d (Very cold winter)

E (Polar) T (Tundra)
F (Icecap)

3. Results
3.1. Comprehensive Analysis of Studies Investigating the Hygrothermal Properties of
Earth-Based Materials

Our analysis will primarily concentrate on the dry thermal conductivity and the
water vapor resistance factor, as these attributes represent the most extensively researched
hygrothermal properties in the literature. These parameters serve to delineate the insulating
capacity of earth-based materials. A comprehensive listing of all reviewed articles can be
found in Tables A1–A5, categorized by the nature of additives used and the manufacturing
techniques applied.

From the pool of 477 samples under consideration, the predominant techniques
explored revolve around compacted or compressed earth materials, categorized as CS
(compressed/compacted stabilized), CF (compressed/compacted with fiber), CR (com-
pressed/compacted raw), and CM (compressed/compacted mixed).

Cement, documented in numerous studies [18–32], is a prevalent stabilizer commonly
employed, typically incorporated at rates ranging between 5% and 15% depending on the
country of application. Additionally, alternative stabilizers such as lime [19,24,26,33–36],
pozzolan [32], sodium hydroxide (NaOH) [26], fiberglass [32], and calcium carbide residue [32]
have been explored for stabilizing earth-based materials in various studies.

The prevalent bioadditives commonly employed include hemp [37–44],
wheat [10,41,45–49], and barley [10,35,50–52]. Additionally, alternative bioadditives en-
countered in various studies encompass reed [37,41,53–55], olive [56–58], rice [53,59],
straw [37,60–63], flax [31,47,54,64], bagasse [59], corn [51], alfa [65,66], hibiscus cannabi-
nus [67], kenaf [68], lavender [50], palm [69], pennisetum setaceum [70], pumice [43],
sawdust [65], seaweed [31], thatch [71], typha australis [72,73], fonio [74], grass [53], cocos
nucifera [28], canarium schweinfurthii [28], and oat [75]. Fiber sizes vary from 0.63 cm to
6 cm, and the incorporation rates range widely from 0.4% to 67% across these materials.

Additional categories of additives commonly encountered encompass geopolymers.
In one study [27], tannin and a geopolymer binder, synthesized from a blend of local
clay (metakaolin) calcined at 700 °C and an alkaline solution of NaOH (12 M) in a mass
ratio (alkaline solution/solid material) of 0.8, were utilized. Furthermore, phase change
materials (PCMs) such as Micronal DS 5038X [64,75] or Nextek 24D [55], as well as com-
mercially available micro-encapsulated PCMs [30,32], animal wool (e.g., sheep wool [76]),
biomass ashes resulting from domestic wood heating or tree pruning [77], rice husk ash [23],
mining waste [78], gypsum [10], alginate (e.g., CIMALGIN HS4 [79]), agave [80], dung
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(such as cow dung [46]), glycerol carbonate [81], paper [82], guargum (HydroxyPropyl
Guar [32]), among others, have been investigated. These bio-sourced or mineral-sourced
additives are often combined. Common combinations include cement or lime mixed with
fibers [10,22,31,32,78], phase-change materials with fibers [55,64], or alginate with organic
fibers [79].

Moreover, these studies are prevalent across various climates (refer to Figure 7).
The highest concentration of studies exists in temperate or dry climates, whereas com-
paratively fewer studies are conducted in tropical and continental climates. Among the
countries contributing to these studies, France leads in Europe, followed closely by Morocco
in Africa.

All the data discussed in this article are detailed in Tables A6, A7, and A9 in Appendix A
and Table 2.

Table 2. Geographical distribution of presented techniques in correspondence with climate.

Climat Classification Techniques
(See Figure 6)

Country Number of
Studies

Tropical Am CR, CS, CFb Cameroon 1
Aw CR, CF, CS, CM, NR, NFb Benin, Burkina Faso, Cameroon,

Nigeria, Thailand
6

Dry

BSh CR, CS, CFb, CA, CM Burkina Faso, Mexico, Morocco, Senegal 9
BSk NR, CR, CS, NFb, CA, NS, CFb,

ER, CM
Afghanistan, Bulgaria, Iran, Italy, Morocco,
Sapin, Turkish

7

BWh CR, FR, CFb, CM, ER, NFb, CS Algeria, Egypt, Iran, Morocco, Peru, Sudan 10
BWk CR, FR, CS China, Morrocco 4

Temperate

Cfa NR, CR, ER, NFb, CFb, CM France 4
Cfb NR, CR, ER, FR, CS, NFb, CFb,

CA, CM
France 26

Csa CR, CA, CFb, FR, NR, NA, NM,
CS

Algeria, Cyprus, France, Morroco,
Portugal, Tunisia

8

Cwa CS, CM, CR Argentina, Brazil, China 3

Continental

Dfb CM, CR, CA, NFb Cameroon, Canada, Estonia, Poland 4
Dsa CR, CS, CA, CM Iran 1
Dwb CR China 1
Dwc CR China 1

3.2. Influence of Incorporation and Production Techniques on the Hygrothermal Properties of
Earth-Based Materials

Initially, statistical data analysis unveils insights into the influence of techniques and
additives within global practices. Subsequent investigations will investigate the correlation
between production parameters and hygrothermal properties. Finally, the relationship
between utilized techniques and the corresponding climatic zones of application will
be explored.

3.2.1. Global Influence

Overall, a global trend indicates that dry thermal conductivity and water vapor
resistance factor rise in tandem with dry density. Notably, there appears to be both an
exponential and linear correlation between dry thermal conductivity and dry density (refer
to Figure 8). Among the techniques studied, none of the mechanical or compressed with
fibers (NFb and CFb) exhibited the highest coefficient of determination: y = 0.0565e0.0013x

(R2 = 0.70) and y = 0.0004 × x − 0.1317 (R2 = 0.69) (where y = dry thermal conductivity,
and x = dry density).

Conversely, while there is an increasing tendency, the water vapor resistance factor
demonstrates no significant correlation.
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Figure 7. Localisation of study and earth-based material technique production around the world: Afghanistan [29], Algeria [48,77,83], Argentina [21],
Benin [68], Brazil [78], Bulgaria [49], Burkina Faso [23,27,74,84], Cameroon [22,28,71], Canada [85], China [34,86–90], Cyprus [61], Egypt [10], Estonia [82],
France [26,27,31,37–40,50,52,54,55,64,67,76,91–95] [31,41,42,44,47,63,81], Iran [30,32,96], Italy [35,56,58], Mexico [80], Morocco [45,57,65,66,69,70,97–100], Nigeria [101],
Peru [53], Poland [62], Portugal [75], Senegal [18,72,73], Spain [6,79,102,103], Sudan [19], Thailand [59], Tunisia [9,24], Turkey [46], and the UK [20,25,26,33,37,43,51].
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Figure 8. Relation between dry thermal conductivity and density according to earth-based materials.

Additive effects on hygrothermal properties are diverse. While fiber incorporation
tends to decrease dry thermal conductivity, adding substances like lignin sulfonate, tannin,
or sheep wool demonstrates an opposite trend, increasing the water vapor resistance
factor and dry thermal conductivity. Moreover, stabilizing agents, such as cement or other
additives, significantly reduce the heterogeneity observed in hygrothermal properties (refer
to Figure 9). These findings underscore the nuanced impact of different additives on the
performance characteristics of earth-based materials.
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Figure 9. Effects of additives on hygrothermal properties.

Production techniques subtly influence dry thermal conductivity, although properties
vary notably among compressed and mechanically manufactured techniques. Compression
and extrusion techniques tend to decrease the water vapor resistance factor, whereas
the cooking technique demonstrates an increase in this parameter (refer to Figure 10).
This disparity highlights the nuanced impact of different production methodologies on
hygrothermal properties.

3.2.2. Influence of Fiber Additives on Hygrothermal Properties

The impact of fiber additives on hygrothermal properties is noteworthy. Incorporating
fibers reduces dry thermal conductivity and the water vapor resistance factor. There
appears to be a correlation (power function) between the percentage of fiber incorporation
and dry thermal conductivity (refer to Figure 11). Table 3 presents equations indicating
the highest correlations observed. Notably, olive fiber demonstrates comparatively inferior
thermal properties with a minimum dry thermal conductivity of 0.4, whereas hemp and
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other fibers reach values lower than 0.3. Optimal thermal performance seems to require a
minimum fiber incorporation of 10%.

Dry thermal conductivity (W.m-1.K-1)

Technics
0

0.5

1
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2.5

Technics
0

5

10

15

20

25
Water vapor resistance (-)

Figure 10. Effects of production techniques on hygrothermal properties.
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Figure 11. Correlation between fiber incorporation rate and hygrothermal properties of earth-
based materials

In Table 3, various correlation rates for fiber incorporation are presented.

Table 3. Correlation between fiber incorporation rate and dry thermal conductivity (y = drythermal
conductivity. x = f iberincorporationrate).

Compressed No Mechanical

Hemp y = 0.0472x−0.668 R2 = 0.8198 y = 0.0832x−0.43 R2 = 0.9734
Barley y = 0.0145x−0.87 R2 = 0.8583 y = 0.0187x−0.843 R2 = 0.8509
Wheat y = 0.2762x−0.133 R2 = 0.8208
Reed y = 0.1084x−0.293 R2 = 0.9941
Rice y = 0.3943x−0.112 R2 = 0.8681
Global (all fibers) y = 0.0712x−0.529 R2 = 0.5731 y = 0.1305x−0.355 R2 = 0.4847

3.2.3. Stabilizer Additive Influence

Except for Calcium Carbide Residue (CCR), adding cement or lime generally increases
dry thermal conductivity and water vapor resistance. To maintain optimal thermal per-
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formance, limiting the addition of cement or lime to a maximum of 8% is advisable (see
Figure 12).
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Figure 12. Correlation between stabilizer incorporation rate and hygrothermal properties of earth-
based materials.

3.2.4. Influence of Other Additives and Mixtures

Incorporating a reed fiber mixture with a PCM (Phase Change Material) yields intrigu-
ing outcomes, showcasing low dry thermal conductivity alongside an average water vapor
resistance factor. Conversely, incorporating a flax fiber mixture with PCM results in less
compelling thermal insulating characteristics.

3.2.5. Influence of Compression Techniques

No correlation between stress rates and dry thermal conductivity or water vapor
resistance factor is observed (see Figure 13). Within a given compression setting, the thermal
conductivity tends to be the lowest for fiber materials, followed by stabilized materials.
Regardless of the stress applied, the dry thermal conductivity of raw earth materials never
falls below 0.5 W/(m.K). However, optimal thermal conductivity is achieved either with
compression of 2.5 MPa for materials with fiber or of 10 MPa for stabilized materials, or
3.47 MPa for mixed fibered/stabilized materials. This compression requirement can be
efficiently met using a manually operated hydraulic press, such as the calibrated M&O
brand [28].
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Figure 13. Comparative analysis of earth-based materials based on compression production techniques.
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3.3. Correlating Hygrothermal Properties, Production Techniques, and Climate Conditions

A statistical analysis of hygrothermal parameters (summarized in Table 4) highlights
that the techniques exhibit optimal thermal insulation performance in tropical, dry, and tem-
perate climates, especially Monsoon (Am), Arid desert hot (Bwh), and not dry season hot
summer (Cfa) seasons. Conversely, these techniques demonstrate superior hygroscopic
insulation performance in cold arid or semi-arid dry climates (Bsk and Bwk) or continental
climates (dry winter cold summer (Dwc) or no dry season warm summer continental
climate (Dfb)).

Based on the graphic analysis (see Figure 14), techniques such as no mechanical (with fiber
(NFb), mixed stabilizer/fiber (NM) or other additives (NA)), compressed with fiber (Nfb), and
extruded (with fiber (EFb) or without fiber (ER)) exhibit superior thermal insulation properties
on average. On the other hand, techniques like FR (fired material) or CA (compressed with
other additives) tend to excel in providing effective hygroscopic insulation.
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Figure 14. Comparative analysis of terrestrial materials according to climatic distribution of studies.

This suggests the potential for recommending earth manufacturing techniques tailored
to specific climate needs and end uses. For instance, an optimal technique for insulation in
tropical climates would prioritize hygrothermal coupling, characterized by low thermal
conductivity and, depending on the use, high water vapor resistance factor. Techniques
such as NFb (no mechanical with fibers standing for wattle and daub or earth plaster) align
well with this specific climatic requirement (see Figure 15).
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Figure 15. Comparison of earth-based materials according to production technics.
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Table 4. Mean hygrothermal properties across various techniques.

Technique
Dry Density Dry Thermal Conductivity Water Vapor Resistance

Mean Min Max Mean Min Max Mean Min Max

NR 1912.38 1699 2239 0.79 0.5051 1.35 5.00 3.3 6.7
CR 1906.19 1470 3120 0.91 0.35 2.1 8.44 5.4 15.83
ER 2045.25 1788 2268 0.54 0.19 0.91 5.00 3 7
FR 2039.12 1777 2567.6 0.75 0.346 1.04 17.80 12.6 23
NS 2016.50 1843 2190 1.54 0.892 2.18 9.30 9.3 9.3
CS 1807.19 1130 2490 0.78 0.243 1.47 7.51 5.9 14.34
ES - - - - - - - - -
FS - - - - - - - - -
NFb 1313.26 316 2028.4 0.45 0.115 0.87 9.22 3.5 18
CFb 1239.07 205 2520 0.51 0.06 1.7 6.58 1.28 15.1
EFb 1489.13 1283.7 1780.3 0.39 0.32 0.48 - - -
FFb - - - - - - - - -
NA 1270.00 1270 1270 0.51 0.51 0.51 - - -
CA 1503.63 220 2170 1.00 0.71 1.87 12.33 11 14
EA - - - - - - - - -
FA - - - - - - - - -
NM 1606.67 1430 1720 0.56 0.38 0.72 - -
CM 1475.12 700 1924 0.64 0.134 1.58 7.07 3.4 8.673
EM - - - - - - - - -
FM - - - - - - - - -

4. Discussions
4.1. Literature Gap Analysis

Over the past decade, an increasing focus has been placed on studying the hygrother-
mal properties of earthen materials. Our research targeted these properties to assess their
insulating or regulating capacity, emphasizing dry thermal conductivity and water vapor
resistance factor. Despite abundant existing literature, there remains a substantial gap
in articles that delve deeper into the intricate interplay between the buffering properties
of earth materials and their hygrothermal characteristics. An essential aspect for further
investigation concerns the relationship between water buffering capacity, measured by
the moisture buffering value, and thermal buffering capacity, indicated by thermal effu-
sivity. These parameters are decisive in achieving hygrothermal comfort, particularly in
constructions under tropical climates.

Moreover, most studies have been conducted in temperate with warm summer (Cfb)
and hot semi-arid dry (BWh) climates. Despite the significance of earth constructions
in tropical zones, a notable research gap persists in these regions, heavily affected by
hygrothermal comfort concerns in buildings. Areas such as East Africa, Central America,
and South Asia, classified under Group A in the Köppen climate classification, stand as
examples of tropical climatic zones requiring further exploration on this subject.

It is also noteworthy that earth materials could potentially add considerable value in
polar regions due to their thermal masses. This is evident in the vernacular architecture
of Icelandic farms, where substantial masses of peat protect and insulate long walls of
these constructions, particularly when not utilizing other forms of earth use, such as
cave dwellings.

Regarding earth-based material production techniques, methods like extrusion and
firing, specifically EF (extruded/fiber—for 3D printing), NF (raw with fibers), or FR (fired
bricks), remain among the least studied in terms of hygrothermal properties. However,
they could prove critical for specific climates, such as the tropical climate, offering low
dry thermal conductivity or high resistance to humidity. The lack of studies on these
techniques might be attributed to their substantial financial investment requirements for
implementation, a significant barrier in economically less favored countries.
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4.2. Critical Analysis of Study Repartition and Earth-Based Material-Manufactured Techniques
Around the World

The study of earthen architecture has predominantly thrived in Europe, notably France,
which is emerging as the epicenter of research in this field. This predominance is partly
explained by the correlation between the concentration of studies and regional climatic
characteristics, as well as political goals aimed at reducing the environmental impacts
of construction.

However, it is crucial to highlight that the history of earthen architecture dates back
to ancient times and spans numerous cultures worldwide. The earliest expressions of this
architectural form originated in regions where local resources were primarily composed
of earth, such as the Middle East, North Africa, Central Asia, and South America. Despite
this historical richness, the significant absence of studies in these geographical areas,
often tropical climates, raises questions. Development constraints within nations could
be an explanatory factor, with experiments being costly and universities in these regions
facing challenges related to funding and resources to conduct such research.

Another surprising observation is the lack of studies in the United States. Several
hypotheses could be proposed, including a potential lack of comprehensiveness in our
research database or a disinterest in studying the hygrothermal properties of earthen
materials, thus favoring more complex and scientifically notable technologies.

A notable finding is the substantial concentration of studies in Western Europe, indicat-
ing the sustained commitment of the European scientific community to explore sustainable
materials. Conversely, in Central Africa, the scientific community has engaged in study-
ing the hygrothermal potential of the earth, signaling a growing interest in earth-based
architecture research in this region. Notably, scientific interest in this issue is steadily
increasing, and it would not be surprising for Central African countries to inspire in-depth
studies on the characterization and optimization of earth usage methods. This is especially
plausible given the multiple initiatives emerging on this continent, such as promoting
the earth associated with typha in Senegal, aiming to foster enthusiasm for more frugal
construction methods.

Finally, it is worth noting that compressed materials are studied across all continents.
These materials, often bricks, play a pivotal role in construction, enhancing thermal comfort
and providing structural functionality.

In examining additive use, a distinct trend emerges: in Africa, cement or fibers are
frequently employed, whereas, in Europe, a broader spectrum of additives like polymers
and phase-changing materials is observed. This disparity arises from utilizing locally
available resources, often in economically disadvantaged or remote areas.

The choice of additives reflects regional resource accessibility and technological consid-
erations. In African contexts, where cement and fibers are prevalent additives, this could be
attributed to their widespread availability and established use within construction practices.
Conversely, in more developed regions like Europe, the diversification of additives toward
polymers and phase-changing materials might stem from research-driven advancements
seeking improved thermal and structural performance. This disparity underscores the
influence of local context and technological evolution on material choices in construction
practices worldwide.

In France, the study by Gasnier [3] introduced a strategy for recovering excavated
soil. This approach leverages existing processes utilized in construction sites linked to
significant projects in Paris (refer to Figure 16).

4.3. Proposal of New Decision-Support Tools: Development of MATARUN Ternary Diagrams

Ternary diagrams are precious tools for visualizing and understanding the intricate
relationships among multiple variables. They serve as decision guides to identify formu-
lations or techniques that may achieve specific performance goals. In earthen architec-
ture, two ternary diagrams, the Augustinik and Winkler diagrams, are commonly used
as references.
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Figure 16. Excavated soil valorization strategy (adapted from [3]).
Our research framework utilized this graphical method by creating ternary diagrams

based on our extensive database. This statistical approach allowed us to provide crucial
insights into the hygrothermal properties of earth-based methods.

To construct these diagrams, for the first diagram, we selected samples with a com-
paction pressure of less than 10 MPa and samples manufactured with compaction and fiber
or stabilizer addition. We have shown that compaction pressures of more than 10 MPa
are not conducive to dry thermal conductivity of less than 0.55 (W/m.K). So, the validity
domain of the first diagram is a maximum 15% of fiber, 10% of stabilizer (cement or lime),
and 10 MPa of compaction pressure. For the second diagram, we initially normalized
the data concerning the maximum values observed in our study. The maximum values
of dry thermal conductivity were 2.18 (W/m.K), maximum dry density was 3120 kg/m3,
and maximum water vapor resistance factor reached 23. These values served as bench-
marks for constructing our ternary diagrams using the Python library "scatter ternary” by
Plotly. Based on the dry thermal conductivity data statistical analysis (see Figure 17), we
divided the first diagram into three zones, corresponding to good (<0.55 W/m.K), average
(<0.95 W/m.K), and bad dry thermal conductivity (>0.95 W/m.K).
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Figure 17. Statistical analysis of dry thermal conductivity.

The first diagram, depicted in Figure 18, provides an in-depth analysis of the thermal
insulating properties of earthen materials according to techniques much studied (com-
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pressed with fiber (CFb), compressed with stabilizer (CS), compressed mix fibered/stabilizer
(CM) standing for prefabrication, compressed earth blocks, or rammed earth). It illustrates
the relationship and allows anticipation of the insulating properties of materials based
on the balance between the compression rate, fiber content, stabilizer content, and the
dry thermal conductivity expected. For example, if we consider earthen materials made
with 12% fiber, 0% stabilizer, and 10 MPa compaction pressure, this means that, on our
diagram, we will have the equilibrium fiber–stabilizer–compaction of 55%-0%-45%. There-
fore, we observe that this material belongs to the zone with good dry thermal conductivity
(<0.55 W/m.K). It is the same if we take a material made with 1% fiber, 5% stabilizer, and
3.47 MPa compaction pressure; on the diagram, we have 11%-53%-36%, and it belongs to
the zone with average dry thermal conductivity (<0.95 W/m.K). The opposite reasoning
could be applied. Supposedly, if we’re looking for materials with good or average dry
thermal conductivity, the diagram will determine the appropriate balance and, therefore,
the proportions of fiber, stabilizer, and compaction pressure to be applied. Analysis of this
diagram also reveals three promising prospects for a fiber–stabilizer–compaction balance.
The first is with a high fiber rate and low compaction pressure, the second with low fiber,
high stabilizer, and average compaction pressure, and, finally, with average stabilizer rate
and high compaction. However, a notable lack of studies exists for formulations with a
balance of high fiber rate, low stabilizer rate, and low compaction pressure. This diagram
confirms previous analyses by highlighting the significance of fibers in harnessing the
insulating capacity of earthen materials.

Figure 18. MATARUN Diagram No1: ternary representation of the relationship between compression,
fiber, and stabilizer balance ratio and dry thermal conductivity expected.

The second diagram presented in Figure 19 offers promising insights for more efficient
and suitable use of earth-based construction materials, considering their hygrothermal
properties and specific requirements of various climates. Among these, the temperate
climate, characterizing a no dry warm summer (Cfb), stands out as the most studied,
reflecting the prevalence of research in this climatic zone. Apart from the substantial
number of studies, this predominance also reveals the diversity of associated properties
and techniques, as indicated by the extensive scatter of data points in the diagram.

Notably, this diagram underscores a deficiency in climate diversity, which is crucial
given the close correlation between global climate and geology. Long-term geological
processes such as plate tectonics, mountain formation, erosion, and soil composition are
vital in planetary climate regulation. Therefore, a comprehensive approach to hygrothermal
studies must integrate a holistic properties analysis to comprehend climate’s impact on
earthen materials’ final characteristics.

The third diagram, represented in Figure 20, offers a fascinating perspective by as-
sociating hygrothermal performances with specific construction techniques, facilitating
technique selection based on desired performances for a given construction project. Re-
search on compressed and fibrous earth highlights their potential as hygroscopic regulators,
providing intriguing characteristics in this domain. Conversely, according to trends in
this diagram, extruded raw earth appears less adept at ensuring an effective role as a
thermal insulator.
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Figure 19. MATARUN Diagram No2: ternary diagram of relationship between hygrothermal and
physical properties balances and study climate zones.

However, a critical observation emerges from this diagram: the lack of dedicated
studies for optimizing hygrothermal performances comprehensively. Despite advances in
understanding specific characteristics of certain earth construction techniques, a crucial
need remains for more integrated approaches to combine these techniques to achieve
optimal hygrothermal performances in earthen constructions.

This diagram not only highlights the relative strengths and weaknesses of different
earth construction techniques in terms of hygrothermal performances but also emphasizes
the necessity for deeper and more holistic research to maximize the advantages of these
materials in sustainable construction.

Figure 20. MATARUN Diagram No3: ternary diagram of relationship between balance of hygrother-
mal and physical properties and various techniques.

5. Conclusions and Perspectives

The main objective of this study was to analyze an extensive database compiled within
the scope of our research. This allowed us to investigate the existing correlations among
various methods for valorizing excavated earth, their formulations, and their climatic
origins to explore the potential of these solutions to enhance the hygrothermal comfort of
buildings. We meticulously analyzed experimental data from 477 samples from 88 research
articles from 32 countries worldwide.

Several significant conclusions emerged from this in-depth analysis. We observed
that the addition of fibers generally showed a marked interest in improving dry thermal
conductivity. However, the incorporation of cement did not consistently demonstrate
benefits for the hydrothermal properties of the materials under study. Thus our findings
indicate that a minimum of 8% in weight of fiber content and a maximum of 8% in weight
of cement content are necessary to achieve satisfactory thermal performance. Additionally,
it is crucial to note that not all fibers are equivalent. For instance, using olive fibers does
not seem to lead to optimal hygrothermal properties.
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Moreover, we identified correlations between different parameters. For instance,
a significant relationship was observed between material density and their dry thermal
conductivity, as well as among varying fiber quantities used. By exploring various additives
such as geopolymers, tannins, or blends, it is possible to enhance the compatibility between
thermal and hygroscopic properties of materials. Additionally, we found that using fired
materials can result in high hygroscopic insulation capacity.

Lastly, we developed three ternary diagrams to visualize these intricate relationships
better and understand the correlations among hygrothermal properties, climates, and earth
manufacturing techniques. One of these ternary diagrams enabled a better understanding of
the general properties of dry thermal conductivity based on compression rates, fiber content,
and stabilizers, offering a valuable tool for the community to comprehend their formulations.

In the perspective of future studies, the improvement and validation of MATARUN
diagrams emerge as critical objectives. Exploring new approaches to optimize hygrothermal
insulation properties through alternative additives or combinations thereafter represents
a promising avenue to address the complex heterogeneity of excavated soil management.
In addition, in this article, the main bioadditive encountered was biofiber. The scientific
community should carry out more studies on other bioadditives like biopolymers or
biomineralisations, which are available in several regions and have good properties for
stabilizing and improving the mechanical and hygrothermal properties of earth materials.

Furthermore, our in-depth investigations have identified optimal parameters for
creating earth-based materials, regardless of the specific nature of the soil. These parameters
allow for valorizing the diversity of excavated land use methods.

Considering the integration of the hygrothermal parameters identified in our study
into a dynamic thermal simulation software, it becomes conceivable to numerically optimize
methods for valorizing excavated soil based on diverse climatic conditions. This approach
would guide analysis through DTS and help identify the best experimental formulations,
therefore reducing costs associated with future experiments.
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Appendix A

Appendix A.1. References of Research Presented on This Article

Table A1. Reference of raw earth material.

Technics References

No mechanical [29,37,43,46,49,51,75,81]
Compressed [9,10,23,26–30,32–34,40,45,47,48,50–52,57,59,65–71,76,77,84–91,95,96,98–100]
Extruded [57,91,93,94]
Fired [40,83,87,92,97,103]

Table A2. Reference of mineral additive data. Fired technics are not studied for hydrothermal
properties.

Mineral Additive No Mechanical Compressed Extruded

Lime [35,36] [19,21,26,34] -
Cement - [18–21,23,24,26,28,30–32,50] -
NaOH - [26] -
Fiberglass - [32] -
Pozzolan - [32] -
Calcium Carbide Residue - [23] -

Table A3. Reference of bioadditive data. Fired techniques are not studied for hydrothermal properties.

Bioadditive No Mechanical Compressed Extruded

Hemp [22,37] [38–43] -
Wheat [46,49] [10,41,45,47,48] -
Barley [35,51,52] [10,50,51] -
Reed [41,53,55] [37,54] -
Olive [56] [57,58] -
Rice [53,59] [53] -
Straw [61,63] [26,37,62] [37]
Bagasse [59] - -
Corn [51] - -
Alfa - [65,66] -
Hibiscus cannabinus - [67] -
Kenaf - [68] -
Lavender - [50] -
Palm - [69] -
Pennisetum Setaceum - [70] -
Pumice - [43] -
Sawdust - [65] -
Seaweed - [43] -
Thatch - [71] -
Typha Australis - [71] -
Fonio - [74] -
Grass [53] [53] -
Cocos Nucifera, Canarium Schwein-
furthii

- [28] -

Flax - [31,41,47,54,64] -
Typha australis - [72] -
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Table A4. Reference of other additional data. Fired and extruded technics are not studied for
hydrothermal properties.

Other Additive No Mechanical Compressed

PCM [75] [30,32]
Geopolymer (NaOH-activated MK) - [27]
Wood biomass ash (domestic wood heating,
wood from tree pruning)

- [77]

Lignin sulfonate - [76]
Tannin - [76]
Sheep Wool - [76,102]
Guar gum (HydroxyPropyl Guar) - [32]
Paper - [82]
Oat fiber - [75]

Table A5. Reference of mixed additive data. Fired and extruded technics are not studied for
hydrothermal properties.

Mix of Additive No Mechanical Compressed

Cement/Pozzolan - [22]
Cement/sawdust - [22]
Cement/Agave/cactus mucilage and xanthan gum - [80]
Cement/Agave - [80]
Cement/wheat straw - [10]
Cement/Barley straw - [10]
Cement/mining waste - [78]
Gypsum/wheat straw - [10]
Gypsum/Barley straw - [10]
Cement/Hemp fiber - [31]
Natural polymer (Alginate)/Organic fiber (Sheep wool) - [79]
PCM/Flax Straw - [64]
PCM/Reed - [55]
River sand/wheat straw - [46]
River sand/wheat straw/cow dung - [46]
Flax fiber/Glycerol Carbonate - [81]
Pozzolan/Microsilica - [32]
Calcium Carbide Residue/Rice Husk Ash - [23]
Lime/PCM [75] -
Lime/oat fiver [75] -

Appendix A.2. Hydrothermal Properties Presented on This Article

Table A6. Hygrothermal properties of raw data.

No Mechanical Compressed
Properties Mean Min Max Mean Min Max

Dry density 1912.38 1699.00 2239.00 1906.19 1470.00 3120.00
Water vapor permeability factor 5.00 3.30 6.70 8.44 5.40 15.83
Dry thermal conductivity 0.79 0.51 1.35 0.91 0.35 2.10

Extruded Fired
Properties Mean Min Max Mean Min Max

Dry density 2045.25 1788.00 2268.00 2039.12 1777.00 2567.60
Water vapor permeability factor 5.00 3.00 7.00 17.80 12.60 23.00
Dry thermal conductivity 0.54 0.19 0.91 0.75 0.35 1.04
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Table A7. Dry density data.

Additive Proportion No Mechanical (Min/Mean/Max) Compressed (Min/Mean/Max) Extruded (Min/Mean/Max)

Bioadditive
Hemp 1.5–67% 316/1016.25/1503.8 205/480.26/2244 -/-/-
Wheat 0.3–20% 971.21/1636.9/2028.4 1462/1605.39/1827.58 -/-/-
Barley 1–6% 1315/1458.71/1613 1139.9/1545.49/1818 -/-/-
Reed 3–35% 620/726.9/1047.6 650/1002.5/1355 -/-/-
Olive 4–40% 1409/1543.5/1669 1344.3/1509.15/1669 -/-/-
Rice 1–6% 836/836/836 -/-/- -/-/-
Straw 0.4–2% 1456/1614.6/1823.3 1211/1355.5/1500 1283.7/1489.13/1780.3
Bagasse 1–6% -/-/- -/-/- -/-/-
Corn 1–2% 948/1088.5/1229 -/-/- -/-/-
Alfa 1–8% -/-/- 1512/2182.67/2520 -/-/-
Hibiscus cannabinus 0.2–0.8% -/-/- -/-/- -/-/-
Kenaf 1.20% -/-/- -/-/- -/-/-
Lavender 3–6% -/-/- 1585/1678.5/1772 -/-/-
Palm 3–6% -/-/- 1122.3/1214.71/1285.6 -/-/-
Pennisetum Setaceum 8% -/-/- 1330/1330/1330 -/-/-
Pumice 3.50% -/-/- 831/831/831 -/-/-
Sawdust 8% -/-/- 1542/1542/1542 -/-/-
Seaweed 1–4% -/-/- 1100/1233.33/1400 -/-/-
Thatch 1–4% -/-/- 1741.66/1752.53/1770.61 -/-/-
Typha Australis 15.10–23% -/-/- 1000/1164.58/1304.5 -/-/-
Fonio 0.20–1% -/-/- -/-/- -/-/-
Grass -/-/- -/-/- 616/684/721 -/-/-
Cocos Nucifera. Canarium
Schweinfurthii 5–15% -/-/- 1120/1363.33/1650 -/-/-

Flax 1–3% -/-/- 1050/1591.19/1912.5 -/-/-
Typha australis 16–33% -/-/- 304.3/404.27/585.5 -/-/-

-/-/- -/-/- -/-/- -/-/-
Mineral additive
Lime 5–15% 1843/2016.5/2190 1130/1777.25/2190 -/-/-
Cement 3–15% -/-/- 1491/1886.44/2490 -/-/-
NaOH 3% -/-/- -/-/- -/-/-
Fiberglass 1–2% -/-/- -/-/- -/-/-
Pozzolan 10% -/-/- -/-/- -/-/-
Calcium Carbide Residue 5–25% -/-/- 1477/1594.4/1711 -/-/-

-/-/- -/-/- -/-/- -/-/-
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Table A7. Cont.

Additive Proportion No Mechanical (Min/Mean/Max) Compressed (Min/Mean/Max) Extruded (Min/Mean/Max)

Other additive
PCM 5–29% 1270/1270/1270 1750/1754.5/1768 -/-/-
Geopolymer (NaOH-activated MK) 5–20% -/-/- 1730/1780/1840 -/-/-
wood biomass ash (domestic wood
heating. wood from tree pruning) 5–20% -/-/- 1830/1869.375/1920 -/-/-

Lignin sulfonate 1% -/-/- 2170/2170/2170 -/-/-
tannin 1% -/-/- 2130/2130/2130 -/-/-
sheep Wool 0.25% -/-/- 2170/2170/2170 -/-/-
Guar gum (HydroxyPropyl Guar) 2.50% -/-/- 1611/1611/1611 -/-/-
Paper -/-/- -/-/- -/-/- -/-/-
Oat fiber 0.20% 1670/1670/1670 -/-/- -/-/-
Mix of additive
Cement/Pozzolan 10%/45% -/-/- 1329/1516/1643 -/-/-
Cement/sawdust 10%/9% -/-/- 1050/1118.33/1207 -/-/-
Cement/Agave/cactus mucilage
and xanthan gum 16%/1%/ -/-/- 1910/1910/1910 -/-/-

Cement/Agave 16%/1% -/-/- 1910/1910/1910 -/-/-
Cement/wheat straw 5–10%/1–3% -/-/- 1100/1188.18/1301.8 -/-/-
Cement/Barley straw 5–10%/1–3% -/-/- 1139.9/1215.93/1301.8 -/-/-
Cement/mining waste 10%/0–40% -/-/- 1650/1716/1750 -/-/-
Gypsum/wheat straw 5–10%/1–3% -/-/- 1211/1429.98/1575.6 -/-/-
Gypsum/Barley straw 5–10%/1–3% -/-/- 1211/1428.58/1575.6 -/-/-
Cement/Hemp fiber 5–9%/0.8% -/-/- -/-/- -/-/-
Natural polymer (Alginate)/
Organic fiber (Sheep wool) 3%/0.25% -/-/- 1390/1450/1510 -/-/-

PCM/Flax Straw 2–10%/2.5% -/-/- 1910.1/1915.67/1922.6 -/-/-
PCM/Reed 2–20%/25% -/-/- 700/700/700 -/-/-
River sand/wheat straw 80%/0–3.10% -/-/- 1313.8/1572.08/1748.2 -/-/-
River sand/wheat straw/cow dung 80%/0.7–1.60%/6–11% -/-/- 1312.8/1572.04/1748.9 -/-/-
Flax fiber/Glycerol Carbonate 0.75%/1% -/-/- 1593/1593/1593 -/-/-
Pozzolan/Microsilica 10%/1.5% -/-/- 1904/1904/1904 -/-/-
Calcium Carbide Residue/Rice
Husk Ash 12–18%/2–8% -/-/- 1555/1571.25/1578 -/-/-

Lime/PCM 1.6%/17% 1430/1430/1430 -/-/- -/-/-
Lime/oat fiver 2%/0.20% 1720/1720/1720 -/-/- -/-/-
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Table A8. Water vapor permeability factor data.

Additive Proportion No Mechanical (Min/Mean/Max) Compressed (Min/Mean/Max)

Bioadditive
Hemp 1.5–67% 3.5/3.5/3.5 2.24/3.71/6.8
Wheat 0.3–20% -/-/- 7.01/7.49/7.88
Barley 1–6% 5.5/7.82/11 -/-/-
Reed 3–35% 7.8/8.23/9 7.101/7.1/7.101
Olive 4–40% 12.5/13.78/15.1 12.5/13.78/15.1
Rice 1–6% -/-/- -/-/-
Straw 0.4–2% 7.27/11/18 -/-/-
Bagasse 1–6% -/-/- -/-/-
Corn 1–2% 4.5/5.25/6 -/-/-
Alfa 1–8% -/-/- -/-/-
Cocos Nucifera, Canarium Schweinfurthii 5–15% -/-/- -/-/-
Flax 1–3% -/-/- 9.25/11.32/13.75
Typha australis 16–33% -/-/- 1.28/1.69/2.5

Mineral additive
Lime 5–15% -/-/- 5.9/7.42/9.4
Cement 3–15% -/-/- 6.5/7.79/14.34

Other additive
Lignin sulfonate 1% -/-/- 14/14/14
Tannin 1% -/-/- 11/11/11
Sheep Wool 0.25% -/-/- 12/12/12

Mix of additive
PCM/Reed 2–20%/25% -/-/- 7.217/7.99/8.673
Flax fiber/Glycerol Carbonate 0.75%/1% -/-/- 3.4/3.4/3.4
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Table A9. Dry thermal conductivity data.

Additive Proportion No Mechanical (Min/Mean/Max) Compressed (Min/Mean/Max) Extruded (Min/Mean/Max)

Bioadditive
Hemp 1.5–67% 0.115/0.29/0.43 0.06/0.18/1.27 -/-/-
Wheat 0.3–20% 0.3032/0.44/0.58 0.25/0.44/1.041 -/-/-
Barley 1–6% 0.15/0.55/0.87 0.155/0.51/0.82 -/-/-
Reed 3–35% 0.13/0.16/0.25 0.156/0.22/0.32 -/-/-
Olive 4–40% 0.428/0.5/0.593 0.39/0.49/0.61 -/-/-
Rice 1–6% 0.178/0.52/0.65 0.19/0.19/0.19 -/-/-
Straw 0.4–2% 0.63/0.73/0.84 0.26/0.38/0.5 0.32/0.39/0.48
Bagasse 1–6% 0.45/0.57/0.65 -/-/- -/-/-
Corn 1–2% 0.3/0.44/0.58 -/-/- -/-/-
Alfa 1–8% -/-/- 0.401/1.15/1.44 -/-/-
Hibiscus cannabinus 0.2-0.8% -/-/- 1.3/1.44/1.57 -/-/-
Kenaf 1.20% -/-/- 0.9/1.33/1.7 -/-/-
Lavender 3–6% -/-/- 0.289/0.31/0.325 -/-/-
Palm 3–6% -/-/- 0.265/0.36/0.49 -/-/-
Pennisetum Setaceum 8% -/-/- 0.333/0.33/0.333 -/-/-
Pumice 3.50% -/-/- 0.15/0.15/0.15 -/-/-
Sawdust 8% -/-/- 0.509/0.51/0.509 -/-/-
Seaweed 1–4% -/-/- 0.4/0.53/0.65 -/-/-
Thatch 1–4% -/-/- 0.485/0.55/0.642 -/-/-
Typha Australis 15.10–23% -/-/- 0.127/0.15/0.163 -/-/-
Fonio 0.20–1% -/-/- 0.37/0.76/1 -/-/-
Grass -/-/- -/-/- 0.121/0.12/0.124 -/-/-
Cocos Nucifera. Canarium
Schweinfurthii 5–15% -/-/- 0.19/0.28/0.38 -/-/-

Flax 1–3% -/-/- 0.4/0.69/1.27 -/-/-
Typha australis 16%-33% -/-/- -/-/- -/-/-

Geoadditive
Lime 5–15% 0.892/1.54/2.18 0.25/0.79/2.18 -/-/-
Cement 3–15% -/-/- 0.243/0.81/1.47 -/-/-
NaOH 3% -/-/- -/-/- -/-/-
Fiberglass 1–2% -/-/- -/-/- -/-/-
Pozzolan 10% -/-/- -/-/- -/-/-
Calcium Carbide Residue 5–25% -/-/- 0.69/0.81/0.89 -/-/-
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Table A9. Cont.

Additive Proportion No Mechanical (Min/Mean/Max) Compressed (Min/Mean/Max) Extruded (Min/Mean/Max)

Other additive
PCM 5–29% 0.51/0.51/0.51 0.85/1.22/1.42 -/-/-
Geopolymer (NaOH-activated MK) 5–20% -/-/- 0.71/0.77/0.8 -/-/-
Wood biomass ash (domestic wood
heating. wood from tree pruning) 5–20% -/-/- 0.748/0.8/0.87 -/-/-

Lignin sulfonate 1% -/-/- 1.87/1.87/1.87 -/-/-
Tannin 1% -/-/- 1.45/1.45/1.45 -/-/-
Sheep Wool 0.25% -/-/- 1.45/1.45/1.45 -/-/-
Guar gum (HydroxyPropyl Guar) 2.50% -/-/- 0.83/0.83/0.83 -/-/-
Paper -/-/- -/-/- -/-/- -/-/-
Oat fiber 0.20% 0.58/0.58/0.58 -/-/- -/-/-

Mix of additive
Cement/Pozzolan 10%/45% -/-/- 0.65/0.68/0.71 -/-/-
Cement/sawdust 10%/9% -/-/- 0.5/0.55/0.65 -/-/-
Cement/Agave/cactus mucilage
and xanthan gum 16%/1%/ -/-/- 0.846/0.85/0.846 -/-/-

Cement/Agave 16%/1% -/-/- 0.786/0.79/0.786 -/-/-
Cement/wheat straw 5–10%/1–3% -/-/- 0.325/0.47/0.608 -/-/-
Cement/Barley straw 5–10%/1–3% -/-/- 0.38/0.51/0.632 -/-/-
Cement/mining waste 10%/0–40% -/-/- 1.42/1.46/1.58 -/-/-
Gypsum/wheat straw 5–10%/1–3% -/-/- 0.415/0.53/0.64 -/-/-
Gypsum/Barley straw 5–10%/1–3% -/-/- 0.424/0.54/0.64 -/-/-
Cement/Hemp fiber 5–9%/0.8% -/-/- 0.3/0.5/0.58 -/-/-
Natural polymer (Alginate)/
Organic fiber (Sheep wool) 3%/0.25% -/-/- 0.53/0.61/0.68 -/-/-

PCM/Flax Straw 2–10%/2.5% -/-/- 0.65/0.66/0.68 -/-/-
PCM/Reed 2–20%/25% -/-/- 0.134/0.14/0.144 -/-/-
River sand/wheat straw 80%/0–3.10% -/-/- 0.41/0.48/0.6 -/-/-
River sand/wheat straw/cow dung 80%/0.7–1.60%/6–11% -/-/- 0.43/0.83/1.19 -/-/-
Flax fiber/Glycerol Carbonate 0.75%/1% -/-/- 0.518/0.52/0.518 -/-/-
Pozzolan/Microsilica 10%/1.5% -/-/- 0.87/0.87/0.87 -/-/-
Calcium Carbide Residue/Rice
Husk Ash 12–18%/2–8% -/-/- 0.64/0.73/0.86 -/-/-

Lime/PCM 1.6%/17% 0.72/0.72/0.72 -/-/- -/-/-
Lime/oat fiver 2%/0.20% 0.38/0.38/0.38 -/-/- -/-/-
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