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Let int(•) denote left interior multiplication. The perturbed de Rham codifferential is given by δ h := δ +int(dh) and the perturbed Laplacian is given by ∆ h := d h δ h + δ h d h . For a generic metric g, ∆ h and ∆ will not be gauge equivalent and their spectra will be different. Witten obtained the Morse inequalities by analyzing the spectral asymptotics of the family of operators ∆ sh as s → ∞ when h is a Morse function; we also refer to subsequent work of Bismut and Zhang [START_REF] Bismut | An extension of a theorem by Cheeger and Muller[END_REF] and of Helffer and Sjöstrand [START_REF] Helffer | Puits multiples en mecanique semi-classique IV: Edude du complexe de Witten[END_REF]. One can replace dh by a real closed 1-form ω to define d ω := d + ext(ω). Since d ω need not be gauge equivalent to d, the twisted Betti numbers β p ω can be different. However the numbers β p sω defined by the family s → sω for s ∈ R have well defined ground values (common values of the numbers β p sω for all but finitely many s, where these numbers may jump), which are called the Novikov numbers and only depend upon the cohomology class defined by ω in de Rham cohomology. If ω is of Morse type, these Novikov numbers satisfy a generalized Morse inequality; we refer to work of Braverman and Farber [START_REF] Braverman | Novikov type inequalities for differential forms with non-isolated zeros[END_REF], Pazhitnov [START_REF] Pazhitnov | An analytic proof of the real part of Novikov's inequalities[END_REF], and other authors [START_REF] Burghelea | On the topology and analysis of a closed one form. I. (Novikov's theory revisited[END_REF][START_REF] Burghelea | Dynamics, Laplace transform and spectral geometry[END_REF][START_REF] Harvey | Morse Novikov theory and cohomology with forward supports[END_REF][START_REF] Minervini | A current approach to Morse and Novikov theories[END_REF].

We studied the local index density for Witten deformation of the de Rham and Dolbeault complexes in two previous papers. In [START_REF] Álvarez-López | The local index density of the perturbed de Rham complex[END_REF], we used invariance theory to show that the local index density of the twisted de Rham complex is the Euler form if m is even, and vanishes if m is odd; in particular, it does not depend on ω. A different proof of this result was given previously by the first author, Kordyukov, and Leichtnam [START_REF] Álvarez López | A trace formula for foliated flows[END_REF], where it was applied to study certain trace formulas for foliated flows. Let (E, h) be a Hermitian vector bundle over a Kähler manifold (M, g, J). In analogy to the real setting, one may introduce the perturbed Dolbeault operator ∂ω = ∂ + ext(ω) mapping C ∞ (E ⊗ Λ p,q (M )) → C ∞ (E ⊗ Λ p,q+1 (M )) where ω is a ∂ closed form of type [START_REF] Álvarez-López | The local index density of the perturbed de Rham complex[END_REF]0). If ω = 0, it follows from the work of Atiyah, Bott, and Patodi [START_REF] Atiyah | On the heat equation and the index theorem[END_REF] and the work the second author [START_REF] Gilkey | Curvature and the eigenvalues of the Laplacian for elliptic complexes[END_REF][START_REF] Gilkey | Curvature and the eigenvalues of Dolbeault complex for Kähler manifolds[END_REF] that the local index density is {Td(M, g, J) ∧ ch(E, h)} m as we shall explain presently; this result can fail if the metric is not assumed to be Kähler. In [START_REF] Álvarez-López | The Witten deformation of the Dolbeault complex[END_REF], we showed that the index density of ∂ω exhibits non-trivial dependence on ω; we summarize the results of [START_REF] Álvarez-López | The local index density of the perturbed de Rham complex[END_REF][START_REF] Álvarez-López | The Witten deformation of the Dolbeault complex[END_REF] below in Theorem 1.1.

Günther and Schimming [START_REF] Günther | Curvature and spectrum of compact Riemannian manifolds[END_REF] defined a sequence of secondary heat invariants for the de Rham complex of which the first is called the derived heat invariant. In a different form, this invariant was used by Ray and Singer [START_REF] Ray | R-torsion and the Laplacian on Riemannian manifold[END_REF] to study the analytic torsion. In the perturbed setting, define a deR m,n := p (-1) p p • a m,n (x, ∆ p ω ), where ∆ p ω is the restriction of ∆ ω to forms of degree p, and a m,n (x, ∆ p ω ) is its heat trace invariant of order n. Another version of this invariant, a Dol m,n , is similarly defined for the Witten-Novikov pertubation of the Dolbeault complex in the Kähler setting. Our results for these invariants are given below in Theorem 1.3. We summarize those results as follows. Consider first the Riemannian setting. Let E m,2k denote the Euler invariant of order 2k (see Section 1.3). We prove that a deR m,n vanishes if n < m -1, and exhibits a nontrivial dependence on ω for even n ≥ m. We show that a deR m,m-1 = E m,m-1 if m is odd, and that M a deR m,m dvol = m 2 M E m,m dvol if m is even. In particular, M a deR m,m dvol is independent of ω, which is relevant in [START_REF] Álvarez López | Zeta invariants of Morse forms[END_REF] to study certain zeta invariants associated to closed 1-forms (our original motivation). In the Kähler setting, the situation is more complicated. We show that a Dol m,n = 0 if n < m -2, and that a Dol m,n exhibits a nontrivial dependence on ω for even n ≥ m -2. We describe a Dol m,m-2 as a perturbation of 1 (m-1)! g(Td(M, g, J) ∧ ch(E, h), Ω m-1 ). We prove that M a Dol m,m dvol is a characteristic invariant independent of ω. We determine M a Dol m,m dvol in general if m = 2 or m = 4 in terms of characteristic classes of the complex tangent bundle of M and the twisting bundle E. This is a global result as the local invariants a Dol m,m exhibit non-trivial dependence on the twisting (1, 0) form ω.

1.2. The real setting. Let M := (M, g, ω) where (M, g) is an m-dimensional Riemannian manifold without boundary which is equipped with an auxiliary real closed 1-form ω. Let dvol be the associated Riemannian measure on M . Let J p m,n be the space of smooth p-form valued invariants which are homogeneous of weight n in the derivatives of the metric and ω; we refer to Section 2 for a precise definition. These spaces vanish for p + n odd. The First Theorem of Invariants of Weyl [START_REF] Weyl | The classical groups[END_REF] shows that such invariants can be expressed in terms of contractions of indices in pairs where the indices range from 1 to m. We illustrate this result as follows. Let R ijkl be the components of the curvature tensor and let ω i be the components of ω. The scalar curvature τ ∈ J 0 m,2 , the norm squared ω 2 ∈ J 0 m,2 , and the first Pontryagin form p 1 ∈ J 4 m,4 are given by

τ = m i,j,k, =1 g i g jk R ijkl , ω 2 = m j,k=1 g jk ω j ω k , p 1 = - 1 8π 2 g ad g bc R ijab R klcd dx i ∧ dx j ∧ dx k ∧ dx . The restriction map r : J p m,n → J p m-1
,n is defined by restricting the range of summation to range from 1 to m -1 rather than from 1 to m. We shall discuss the restriction map further in Section 2.

1.3. The Euler form. Let E m,2k be the integrand of the Chern-Gauss-Bonnet Theorem [START_REF] Chern | A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds[END_REF]:

E m,2k := m i 1 ,...,i k ,j 1 ,...,j k =1 (-1) k 8 k π k k! g(e i 1 ∧ • • • ∧ e i k , e j 1 ∧ • • • ∧ e j k ) R i 1 i 2 j 1 j 2 . . . R i k-1 i k j k-1 j k ∈ J 0 m,2k . This element is universal; r(E m,2k ) = E m-1,2k for any m. One has, for example, E m,2 := (4π) -1 τ and E m,4 := (32π 2 ) -1 {τ 2 -4 ρ 2 + R 2 }
where ρ is the Ricci tensor. Similar formulas for E m,6 and E m,8 can be found in Pekonen [START_REF] Pekonen | The Einstein field equation in a multidimensional universe[END_REF]. Let δ be the co-derivative

δ : J 1 m,n-1 → J 0 m,n .
1.4. The Kähler setting. Let K := (M, g, J, E, h, ω) where (M, g, J) is a Kähler manifold of real dimension m = 2m, (E, h) is a holomorphic vector bundle over M which is equipped with a Hermitian fiber metric h, and ω is a ∂ closed (1, 0) form. Let Ω be the Kähler form of

K; dvol = 1 m! Ω m . Let K k m,n
be the corresponding space of invariants in the complex setting; we refer to Section 2 for precise details. These spaces vanish for k + n odd. Again, we have a natural restriction map r : K k m,n → K k m-2,n . We can pair form valued invariants with an appropriate power of the Kähler form to obtain scalar invariants; if P ∈ K 2k m,2k then g(P, Ω k ) ∈ K 0 m,2k . For example, if k = m, then the Hodge operator takes the form P = 1 m! g(P, Ω m ). 1.5. The ring of characteristic forms. Let c k , ch k , and Td k be the k th Chern class, Chern character, and Todd class, respectively (see [START_REF] Hirzebruch | Topological methods in algebraic geometry[END_REF]). For example, ch 0 = dim(E), Td 0 = 1,

ch 1 = c 1 , ch 2 = 1 2 (c 2 1 -2c 2 ), ch 3 = 1 6 (c 3 1 -3c 1 c 2 + 3c 3 ), Td 1 = c 1 2 , Td 2 = c 2 1 +c 2 12 , Td 3 = c 1 c 2 24 .
Let T c M := (T M, J) be the associated complex tangent bundle. We decompose the graded ring of characteristic forms

C m := C[ch 1 (T c M ), . . . , ch m (T c M ), ch 1 (E, h), . . . , ch m (E, h)] into homogeneous components C m = ⊕ k C 2k
m where C 2k m ⊂ K 2k m,2k . 1.6. The Witten deformation. In the real setting, let d ω := d+ext(ω) be the Witten deformation of the exterior derivative; the adjoint is then given by δ ω := δ + int(ω). Decompose the associated Laplacian

∆ M := d ω δ ω + δ ω d ω = ⊕ p ∆ p M
where ∆ p M is a self-adjoint elliptic operator of Laplace type on C ∞ (Λ p (M )). Similarly, in the complex setting, let ∂ω = ∂ + ext(ω) define the deformation of the Dolbeault operator; the adjoint is then δ ω = δ + int(ω). Decompose the associated Laplacian ∆ K := 2( ∂ω δ ω + δ ω ∂ω ) = ⊕ p,q ∆ p,q K where ∆ p,q K is a self-adjoint operator of Laplace type on C ∞ (Λ p,q (M ) ⊗ E). 1.7. The local index density. If ∆ is an operator of Laplace type on a compact Riemannian manifold of dimension m, let a m,n (x, ∆) be the local heat trace asymptotics. If f ∈ C ∞ (M ), then

Tr L 2 {f e -t∆ } ∼ ∞ n=0 t (n-m)/2 M f (x)a m,n (x, ∆) dvol as t ↓ 0 .
The invariants a m,n (x, ∆) vanish for n odd. We introduce the local index densities for the de Rham complex and Dolbeault complex by setting:

a deR m,n (x) := p (-1) p a m,n (x, ∆ p M ) ∈ J 0 m,n , a Dol m,n (x) := p (-1) p a m,n (x, ∆ 0,p K ) ∈ K 0 m,n .
A cancellation argument due to Bott yields:

(1.1) M a deR m,n (x) dvol(g) = 0 for n = m Euler characteristic(M ) for n = m , M a Dol m,n (x) dvol(g) = 0 for n = m arithmetic genus(M, E)
for n = m .

Let (ω) be the imaginary part of ω. Set Θ := k 1 k!π k {d (ω)} k . We have the following previous results [START_REF] Álvarez-López | The local index density of the perturbed de Rham complex[END_REF][START_REF] Álvarez-López | The Witten deformation of the Dolbeault complex[END_REF] of the authors.

Theorem 1.1. a deR m,n = 0 if n < m E m,m if n = m , a Dol m,n = 0 if n < m 1 m! g(Ω m , {Td(T c M ) ∧ ch(E) ∧ Θ} m ) if n = m . Remark 1.2.
We note that this result for a Dol m,n can fail in the Hermitian setting. Although Equation (1.1) continues to hold if (M, g, J) is only assumed Hermitian, it is necessary to restrict to the context of Kähler geometry to identify the local index density with a characteristic form even if E is trivial and ω = 0. We refer to Gilkey, Nikčević, and Pohjanpelto [START_REF] Gilkey | The local index formula for a Hermitian manifold[END_REF] for details.

1.8. Derived invariants. The following is the first in a sequence of invariants introduced by Günther and Schimming [START_REF] Günther | Curvature and spectrum of compact Riemannian manifolds[END_REF] in the real category (see the discussion on page 181 of Gilkey [START_REF] Gilkey | Invariance Theory, the heat equation, and the Atiyah-Singer index theorem[END_REF]); a related invariant appears in the discussion by Ray and Singer [START_REF] Ray | R-torsion and the Laplacian on Riemannian manifold[END_REF] of analytic torsion. Define

a deR m,n := p (-1) p p • a m,n (x, ∆ p M ) ∈ J 0 m,n , a Dol m,n := p (-1) p p • a m,n (x, ∆ 0,p K ) ∈ K 0 m,n .

If we define (1.2)

A Der m,n (s) := p (-1) p s p a m,n (x, ∆ p ), A Dol m,n (s) := p (-1) p s p a m,n (x, ∆ 0,p ), we then have

(1.3) a deR m,n = A Der m,n (s)| s=1 , a deR m,n = ∂ s A Der m,n (s)| s=1 , a deR m,n = A Dol m,n (s)| s=1 , a deR m,n = ∂ s A Dol m,n (s)| s=1
. This formalism will play a useful role subsequently in Section 7 and perhaps justifies the words "derived" in discussing these invariants. The terminology "derived", is of course, not ours -see for example Bismut and Zhang [START_REF] Bismut | An extension of a theorem by Cheeger and Muller[END_REF]. Ramachandran [START_REF] Ramachandran | Higher Euler characteristics: variations on a theme of Euler[END_REF] notes concerning the invariant p (-1) p p dim H p (M ) that "...this secondary invariant dates back to 1848 when it was introduced by A. Cayley...". Theorem 1.3.

(1) Let M = (M, g, ω) be a Riemannian manifold which is equipped with an auxiliary closed 1-form ω.

(a) If n < m -1, then a deR m,n = 0. (b) If m is odd, then a deR m,m-1 = E m,m-1 is independent of ω. (c) If m is even, then a deR m,m = m 2 E m,m + δQ 1 m,m-1 where Q 1 m,n-1 ∈ J 1 m,n-1 is 1-form valued.
(2) Let K = (M, g, J, E, h, ω) where (M, g, J) is a Kähler manifold, (E, h) is a holomorphic Hermitian vector bundle over M , and ω is an auxiliary

∂ closed form of type (1, 0). (a) If n < m -2, a Dol m,n (K) = 0. (b) If n = m -2, a Dol m,m-2 = 1 (m-1)! g(Td(M, g, J) ∧ ch(E, h) ∧ Θ, Ω m-1 ). Moreover, there exists Q 1 m,m-3 ∈ K 1 m,m-3 so a Dol m,m-2 = 1 (m-1)! g(Td(M, g, J) ∧ ch(E, h), Ω m-1 ) + δQ 1 m,m-3 . (c) a Dol m,m = 1 m! g(R m m , Ω m ) + δQ 1 m,m-1 where Q m,m-1 ∈ K 1 m,m-1 is 1-form valued and where R m m ∈ C m m is a characteristic form. Assertion (1c) and Assertion (2c) show that M a deR
m,m dvol is a characteristic number which is independent of ω in the Riemannian setting and M a Dol m,m dvol is a characteristic number which is independent of the structures in the Kähler setting. In Theorem 1.3 (2b), we may eliminate Θ at the cost of introducing an additional divergence term. The divergence terms are in general present. We have, for example, Q 1 2,1 = (2π) -1 Θ in Assertion (2b). We will establish the following result in Section 7. It shows, in particular, that a Dol m,m is not a multiple of a Dol m,m .

Theorem 1.4. Use Theorem 1.3 to express a Dol m,m = 1 m! g(R m m , Ω m )+δQ 1 m,m-1 for Q 1 m,m-1 ∈ K 1 m,m-1 and R m m ∈ C m m .
(1) Let M = (M, g, J, E, h) where (M, g, J) is a Kähler manifold and (E, h) is a Hermitian vector bundle bundle. 

(a) If m = 2, R 2 2 = 1 3 c 1 (T c M ) ch 0 (E) + 1 2 c 1 (E). (b) If m = 4, R 4 4 = (Td 2 + 1 24 c 2 1 )(T c M ) ch 0 (E) + 7 12 c 1 (T c M )c 1 (E) + ch 2 (E). (2) Let M = M 1 × • • • × M m where M i = (M i , g i , J i ) are Riemann surfaces and (E i , h i ) are Hermitian line bundles. (a) If (M i , g i , J i ) are flat tori, R m m (M) = 1 2 ma Dol m,m (M) = 1 2 m ch m (E). (b) If (E i , h i ) is trivial for all i, R m m (M) = 2 3 ma Dol m,m (M) = 2 3 m Td m (T c M ).
= ω i dx i . Set |U | := a, ∂ i := ∂ ∂x i , ∂ U x := ∂ i 1 . . . ∂ ia , g ij := g(∂ i , ∂ j ), g ij/U := ∂ U x g ij , ω i/U := ∂ U x ω i , weight{g ij/U } = |U |, weight{ω i/U } = 1 + |U |.
Let S m (R) be the vector space of symmetric m × m real matrices. Let O m ⊂ S m (R) be the subset of matrices g so that g defines a positive definite inner product;

O m is an open subset of S m (R). Let R := C ∞ (O m )[g ij/U , ω i , ω i/U ] |U |>0 .
These are the local formulas in the derivatives of the metric and of ω with coefficients which are smooth functions of the Riemannian metric g which we will be considering. The weight induces a natural grading on R and we may decompose R m = ⊕ n R m,n into the polynomials which are homogeneous of weight n. If P ∈ R m , we can evaluate P in a coordinate system in the obvious fashion; we say P is invariant if the value of P is independent of the particular local coordinate system chosen and we let J m ⊂ R m be the ring of invariant local formulae; we may decompose J m = ⊕ n J m,n where J m,n ⊂ R m,n . The space of p-form valued invariants J p m,n is defined similarly. Clearly we can express the curvature tensor R and its covariant derivatives in terms of the derivatives of the metric. Conversely, in geodesic coordinates, we can express the derivatives of the metric in terms of the covariant derivatives of the curvature tensor. The weight of the curvature tensor R is 2 since it is linear in the second derivatives of the metric and quadratic in the first derivatives of the metric. We increase the weight by 1 for every explicit covariant derivative which appears. Thus, for example, the scalar curvature τ and ω 2 have weight 2 while the square of the norms ρ 2 and R 2 of the Ricci tensor and full curvature tensor, respectively, have weight 4. Similarly, ∇R 2 has weight 6 and E m,2k has weight 2k. 2.2. Spaces of local formulae in the complex setting. The situation is considerably more delicate here and we must proceed with some care. Let (M, g, J) be a Hermitian manifold; we assume J * g = g but do not impose the Kähler condition. Let (E, h) be a holomorphic vector bundle over M of dimension . Fix a point P of M . Choose local holomorphic coordinates z = (z 1 , . . . , z m ) centered at P and a local holomorphic frame s = (s 1 , . . . , s ) for E. Let U = (α 1 , . . . , α a ) and V = (β 1 , . . . , β b ) be collections of indices. Expand ω = ω α dz α and ω = ω β dz β . Set

|U | := a, |V | := b, ∂ α := ∂ ∂z α , ∂ z;U = ∂ α 1 . . . ∂ αa , ∂ β := ∂ ∂ z β , ∂ z; V = ∂ β1 . . . ∂ βb , g α β := g(∂ α , ∂ β ), h pq := h(s p , s q ) .
Introduce the following notation for the derivatives of the structures involved:

(2.1)

g α β/U V := ∂ z;U ∂ z; V g(∂ α , ∂ β ), h pq/U V := ∂ z;U ∂ z; V h(s p , s q ), ω α/U V := ∂ z;U ∂ z; V ω α , ω β/U V := ∂ z;U ∂ z; V ω β .
If |U | = 0, there are no holomorphic derivatives, if |V | = 0, there are no anti-holomorphic derivatives, and if |U | + |V | = 0, there are no derivatives at all. We have ∂ω = -ω α/ β dz α ∧ dz β and ∂ ω = ω β/α dz α ∧ dz β .

Consequently, the variables {ω α , ω α/ β , ω β , ω β/α } are tensorial unlike the remainder of the variables defined in Equation (2.1). Define

weight{g α β/U V } = weight{h pq/U V } = |U | + |V |, weight{ω α;U V } = weight{ω β;U V } = 1 + |U | + |V |.
Let S k (C) be the vector space of Hermitian k × k complex matrices. Let U m ⊂ S m (C) ⊗ S (C) be the subset of matrices (g, h) so that g and h define positive definite inner products; U m is an open subset of S m (C) ⊗ S (C). We suppress the dependence upon in the interests of notational simplicity as it will play no role in our further development whereas the dependence on m will be crucial. We consider the polynomial ring

P m := C ∞ (U m )[g α β/U V , h pq/U V , ω α/U V , ω β/U V , ω α , ω β ] |U |+|V |>0 .
As in the real setting, we say that P ∈ P m is invariant if the evaluation is independent of the particular coordinate system z and frame s chosen. Let K m be the ring of invariants in the Kähler context; K m is a graded ring and we may use the weight to decompose K m = ⊕ n K m,n into the polynomials which are homogeneous of weight n. For example, a m,n (∆ p,q ) ∈ K m,n . The spaces K p m,n of p-form valued invariants are defined similarly. For example, dω ∈ K 2 m,2 . 2.3. Homotheties. The weight of a polynomial describes its behaviour under homotheties. The following is immediate from the definition and could be used to give an equivalent definition of the weight.

Lemma 2.1.

(1) Let P ∈ J p m,k . Then P (x, c 2 g, ω) = c p-k P (x, g, ω).

(2) Let P ∈ K p m,k . Then P (x, c 2 g, J, E, h, ω) = c p-k P (x, g, J, E, h, ω). Example 2.2. It is worth giving some examples to illustrate Lemma 2.1. We work in the real context. Let ω 2 g := g ij ω i ω j . Since ω i has weight 1, ω 2 g has weight 2 so ω 2 g ∈ J 0 m,2 . If we rescale the metric and set

g c;ij = c 2 g ij , then g ij c = c -2 g ij so ω 2 gc = c -2 ω 2
g . The components of the curvature tensor R ijk have weight 2 since they are linear in the 2-jets of the metric and quadratic in the 1-jets of the metric. The Levi-Civita connection is unchanged if we rescale the metric and thus R gc;ijk = R g;ijk . Let τ g ∈ J 0 m,2 be the scalar curvature;

τ gc = g jk c R ijk i = c -2 g jk R ijk i = c -2 τ g .
We have dτ g ∈ J 1 m,3 and dτ gc = c -2 dτ g . 2.4. The restriction map. As noted in the introduction, a spanning set for the space of invariants in the real setting is given by contraction of indices in pairs and alternations of indices where the indices range from 1 to m; there is an analogous result in the complex setting. If P ∈ J p m,n , r(P ) ∈ J p m-1,n is defined by restricting the range of summation to range from 1 to m -1. Although Weyl's First Theorem of Invariants yields a spanning set, it is not a basis as one has the Bianchi identities and higher order analogues. Thus it is not immediately obvious that the restriction map is independent of the particular expression of an invariant in terms of a Weyl spanning set. To get around this difficulty, it is convenient to use a slightly different more geometric formalism. Let T 1 = (S 1 , dθ 2 , 0) be the circle with the flat structures. If N = (N, ds 2 N , ω N ) is an m -1 dimensional structure, one forms the m dimensional structure

M = N × T 1 := (N × S 1 , ds 2 N + dθ 2 , π * 1 ω N ) . Let i θ (x) = (x, θ) be an inclusion of N in N × S 1 ; the particular basepoint θ chosen is irrelevant since T 1 is homogeneous. Then r(P ) ∈ J p m-1,n is characterized by the identity (2.2)
r(P )(N ) := i * θ P (N × T 1 ) . In the complex setting, the invariance theory is that of the unitary group rather than the orthogonal group and one sums over pairs of holomorphic and anti-holomorphic indices where the indices range from 1 to m. Instead of considering T 1 one considers the flat 2-torus T 2 but the remainder of the analysis is the same and one obtains:

Lemma 2.3.
(1) r is a well defined map from J p m,n onto J p m-1,n . (2) r is a well defined map from K p m,n onto K p m-2,n . We introduce the ring

T m := C[ch k (T M, J, g), ch k (E, h), dω, dω, ω, ω] .
We may decompose T m := ⊕ k T k m where T k m ⊂ K k m,k . We refer to [START_REF] Álvarez-López | The local index density of the perturbed de Rham complex[END_REF] for the proof of Assertions (1) and to [START_REF] Álvarez-López | The Witten deformation of the Dolbeault complex[END_REF] for the proof of Assertions 2 in the following result; it is necessary to restrict to the Kähler setting. Lemma 2.4.

(1) In the Riemannian setting, we have that:

(a) r : J 0 m,n → J 0 m-1,n is injective if n < m. (b) If m is even, then ker{r : J 0 m,m → J 0 m-1,m } = E m,m • R. (2)
In the Kähler setting, we have that:

(a) r :

K 0 m,n → K 0 m-2,n is injective if n < m. (b) ker{r : K 0 m,m → K 0 m-2,m } = T m m .
We have the following useful result.

Lemma 2.5. r(a deR m,n ) = -(4π) -1/2 a deR m-1,n and r(a Dol m,n ) = -(4π) -1 a Dol m-1,n . Proof.
Although the lemma in the real setting follows from work of Günther and Schimming [START_REF] Günther | Curvature and spectrum of compact Riemannian manifolds[END_REF], we shall give a direct proof in the interests of completeness. Let M m = N m-1 × T 1 . We compute:

Λ p M = Λ p N ⊕ Λ p-1 N ∧ dθ, ∆ p M = {∆ p N ⊗ id + id ⊗∆ 0 T 1 } ⊕ {∆ p-1 N ⊗ id + id ⊗∆ 1 T 1 }, a m,n ((x, θ), ∆ p M ) = (4π) -1/2 {a m-1,n (x, ∆ p N ) + a m-1,n (x, ∆ p-1 N )}, p (-1) p p • a m,n ((x, θ), ∆ p M ) = (4π) -1/2 p (-1) p p • a m-1,n (x, ∆ p N ) + a m-1,n (x, ∆ p-1 N ) = (4π) -1/2 p (-1) p a m-1,n (x, ∆ p N ){p -(p + 1)}.
Assertion 1 now follows from Equation (2.2); the argument is the same for the Dolbeault complex.

2.5. Low dimensional computations. We refer to [START_REF] Álvarez-López | The local index density of the perturbed de Rham complex[END_REF] for the following result:

Lemma 2.6. a deR 1,2 = - δω √ π and a Dol 2,2 = τ 8π - 1 π δ( (ω)).

The proof of Theorem 1.3 (1a,2a)

Let n < m -1. By Lemma 2.5, r(a deR m,n ) = a deR m-1,n . By Theorem 1.1, a deR m-1,n = 0. By Lemma 2.4, r : J m,n → J m-1,n is injective for n < m. This shows that a deR m,n = 0 which establishes Theorem 1.3 (1a); the proof of Theorem 1.3 (2a) is the same in the Kähler setting.

The proof of Theorem 1.3 (1b,2b)

We use Lemma 2.5 and Theorem 1.1 to see r(a deR 2k+1,2k ) = -(4π) -1/2 a deR 2k,2k and a deR 2k,2k = E 2k,2k . By Lemma 2.4, r : J 2k+1,2k → J 2k,2k is injective. By construction, we have that rE 2k+1,2k = E 2k,2k . Assertion (1b) follows. The same argument in the Kähler setting shows

a Dol m,m-2 = 1 (m -1)! g(Td(M, g, J) ∧ ch(E, h) ∧ Θ, Ω m-1 )
which establishes the first part of Assertion 2b. It is immediate from the definition that Θ = 1 + dΦ. Since Td and ch are closed,

{Td(M, g, J) ∧ ch(E, h) ∧ Θ} m-2 = {Td(M, g, J) ∧ ch(E, h)} m-2 + d{Td(M, g, J) ∧ ch(E, h) ∧ Φ} m-3 .
Taking the inner product with 1 (m-1)! Ω m-1 is just the Hodge operator in complex dimension m -1. Thus (4.1)

1 (m-1)! g(Td(M, g, J) ∧ ch(E, h) ∧ Θ, Ω m-1 ) = 1 (m-1)! g(Td(M, g, J) ∧ ch(E, h), Ω m-1 ) + δQ 1 m-2,m-3 for Q 1 m-2,m-3 = {Td(M, g, J) ∧ ch(E, h) ∧ Φ} m-3 .
We have δr = rδ. By Lemma 2.3 and Lemma 2.4, we can lift Equation (4.1) to a corresponding equation in complex dimension m and thereby complete the proof of Assertion (2b). 

m,m-3 ∈ K 1 m,m-3 such that r(Q 1 m,m-3 ) = {Td ∧ ch ∧Φ} m-3 ∈ K 1 m-2,m-3 .

The proof of Theorem 1.3 (1c)

We continue our discussion by generalizing a result of Gilkey [START_REF] Gilkey | Invariance Theory, the heat equation, and the Atiyah-Singer index theorem[END_REF] (see Assertion 4 of Lemma 2.9.1 on page 210) from the context of purely metric invariants to invariants which also depend upon the derivatives of ω.

Lemma 5.1. Let P ∈ J m,n where n = m. Suppose M P (x, g, ω) dvol(g) is independent of (g, ω) for all closed m-dimensional manifolds M . Then there exists Q m,n-1 ∈ J 1 m,n-1 so that P = δQ m,n-1 . Proof. Let f ∈ C ∞ (M ) and ε ∈ R. We consider the conformal variation

P 1 (f, g, ω) dvol(g) := ∂ ε P (x, e 2εf g, ω) dvol(e 2εf g) ε=0 .
Since P 1 is linear in the jets of f , we have that

P 1 (f, g, ω) = k i 1 ,...,i k f ;i 1 ...i k Q i 1 ...i k (g, ω) .
We integrate by parts formally to express

P 1 = δQ + k i 1 ,...,i k (-1) k f Q i 1 ...i k ;i k ...i 1 .
By assumption,

0 = ∂ ε M P (x, e 2εf g, ω) dvol(e 2εf g) ε=0 = M P 1 (f, g, ω) dvol(g) = M f k i 1 ,...,i k (-1) k Q i 1 ...i k ;i k ...i 1 dvol(g) . Since f was arbitrary, k i 1 ,...,i k (-1) k Q i 1 ...i k ;i k ...i 1 = 0 .
Thus P 1 (f, g, ω) = δQ(f, g, ω). We set f = 1 to see (5.1)

P 1 (1, g, ω) = δQ(1, g, ω) .
We have that dvol(e 2ε g) = e mε dvol(g). Since P is homogeneous of weight n, Lemma 2.1 yields P (x, e 2ε g, ω) dvol(e 2ε g) = e (m-n)ε P (x, g, ω) dvol(g). Differentiating this identity shows P 1 = (m -n)P ; the Lemma now follows from Equation (5.1).

We now establish Assertion (1c) of Theorem 1.3. Let P = r(a deR m,m ) belong to J 0 m-1,m . By Lemma 2.5, P is a multiple of a deR m-1,m . The hypothesis of Lemma 5.1 are satisfied by Equation (1.1). Consequently, Lemma 5.1 shows that r(a deR m,m ) = δQ 1 m-1,m-1 . By Lemma 2.4, we may choose

Q 1 m,m-1 so r(Q 1 m,m-1 ) = Q 1 m-1,m-1 .
Since δr = rδ, r(a deR m,m -δQ 1 m,m-1 ) = 0. We use Lemma 2.4 to see that

a deR m,m -δQ m,m-1 = c(m)E m,m .
To evaluate the coefficient c(m), we may take ω = 0 and use (local) Poincare duality to see that a m,m (∆ p M ) = a m,m (∆ m-p M ). Consequently, we may show that c(m) = 1 2 m by computing:

2a deR m,m = p (-1) p p • a m,m (x, ∆ p M ) + a m,m (x, ∆ m-p M ) = p (-1) p a m,m (x, ∆ p M ){p + m -p} = m • a deR m,m . Suppose m = 2. We use Lemma 2.6 to see -(4π) -1/2 a deR 1,2 = (2π) -1 δω. Consequently, r(Q 1 2,1
) is non-zero.

The proof of Theorem 1.3 (2c)

There are several fundamental differences between the real and the complex settings and we must treat the variables {ω α , ω β } differently from the other variables. In Section 6.1, we introduce some additional notation. Section 6.2 is devoted to showing that in fact the heat trace invariants a m,n (∆ p,q ) do not involve the {ω α , ω β } variables but only the derivatives of positive order in ω are present; this uses a gauge renormalization. This is in marked contrast to the real setting. In Section 6.3, we complete the analysis; again, there is a subtlety in that the conformal variation of a Kähler metric need no longer be Kähler. Consequently, we pass (temporarily) to the Hermitian setting.

6.1. Spaces of invariants. We adopt the notation of Section 2.2. Recall that U m ⊂ S m (C) ⊗ S (C) is the subset of matrices (g, h) so that g and h define positive definite inner products on C m and C , respectively. We adjoin variables sucessively to the ground ring C ∞ (U m ) to define the sub-rings:

U m := C ∞ (U m )[g α β/U V , h pq/U V ] |U |+|V |>0 , V m := U m [ω α/U V , ω β/U V ] |U |+|V |>0 .
We explicitly exclude the variables {ω α , ω β } from U m and from V m . Let U m,n ⊂ U m and V m,n ⊂ V m be the subspaces of weight n. We impose no assumption of invariance as we are simply interested in the nature of the polynomials for the moment. Let End(Λ p,q (M ) ⊗ E; U) and End(Λ p,q (M ) ⊗ E; V) be the vector space of endomorphisms of Λ p,q (M ) ⊗ E with coefficients in the rings U and V, respectively. 6.2. Normalizing the gauge. The variables {ω α , ω β } are troublesome and we eliminate them from consideration as follows. We work in the Hermitian setting as we have imposed no conditions on Ω. Lemma 6.1. a m,n (x, ∆ p,q ) ∈ V m,n , i.e., a m,n (x, ∆ p,q ) does not involve the variables {ω α , ω β }.

Proof. We may decompose

∂ω = ext(dz β ) ∂ β + ω β and δ ω = int(dz α ) {-∂ α + ω α } + L
where L ∈ End(Λ(M ) ⊗ E; U m,1 ) arises by taking the adjoint of ∂ and is linear in the first derivatives of g and of h; L and int(dz α ) lower the antiholomorphic index q by 1 and ext(dz β ) raises the anti-holomorphic index q by 1. We define:

E p,q 1 := ext(dz β ) int(dz α )ω α/ β ∈ End(Λ p,q (M ) ⊗ E; V m,2 ), E p,q 2 := int(dz α ) ext(dz β )ω β/α ∈ End(Λ p,q (M ) ⊗ E; V m,2 ), L p,q,α := ext(dz β )∂ β {int(dz α )} ∈ End(Λ p,q (M ) ⊗ E; U m,1 ), L p,q, β := ext(dz β )L + L ext(dz β ) ∈ End(Λ p,q (M ) ⊗ E; U m,1 ), Q p,q := ext(dz β )∂ β {L} ∈ End(Λ p,q (M ) ⊗ E; U m,2 ).
Since the matrices ext(dz β ) are constant with respect to the coordinate frame, we do not need to introduce their derivatives. Note that E p,q 1 and E p,q 2 are invariantly defined while L p,q,α , L p,q, β , and Q p,q are not invariantly defined but rather depend on ( z, s). We use the identity int(dz α ) ext(dz β ) + ext(dz β ) int(dz α ) = g α β to express ∆ p,q := 2δ ω ∂ ω + 2∂ ωδ ω in the form:

∆ p,q = 2g α β {-∂ α ∂ β + ω α ∂ β -ω β ∂ α + ω α ω β } + 2E p,q 1 -2E p,q 2 + 2Q p,q +2L p,q,α (-∂ α + ω α ) + 2L p,q, β (∂ β + ω β ).
Fix a point P of M and let ξ := ω α (P )z α -ω β (P )z β . Since ξ is purely imaginary, ∆ p,q ξ := e -ξ ∆ p,q e ξ is defined by a unitary change of gauge. We compute

∆ p,q ξ = 2g α β {-∂ α ∂ β + (ω α -ω α (P ))∂ β -(ω β -ω β (P ))∂ α } +2g α β (ω α -ω α (P ))(ω β -ω β (P )) + 2E p,q 1 -2E p,q 2 
+ 2Q p,q +2L p,q,α (-∂ α + ω α -ω α (P )) + 2L p,q, β (∂ β + ω β -ω β (P )).

Since ∆ p,q and ∆ p,q ξ differ by a gauge transformation, a m,n (∆ p,q ) = a m,n (∆ p,q ξ ) . It is immediate that the symbol of ∆ p,q ξ and all the derivatives of the symbol of ∆ p,q ξ at P do not involve the ω α and ω β variables. Consequently, a m,n (∆ p,q ξ ) ∈ V m,n . Remark 6.2. We have exploited a fundamental difference between the deformed real Laplacian and the deformed complex Laplacian that relates to gauge freedom. We illustrate this as follows. Suppose m = 1. We work on the circle. Let ω = adx for a ∈ R. Then

d a = ∂ x + a and δ a = -∂ x + a; ∆ 0 a = ∆ 1 a = δ a d a = -(∂ 2 x + a 2
) is already normalized optimally since there is no first order term and, unlike in the complex setting, it is not possible to make a change of gauge that eliminates the dependence of the symbol on a. 

S m m = C m m + d{ω ∧ S m-2 m + ω ∧ S m-2 m }, S m m = C m m + δ {ω ∧ S m-2 m + ω ∧ S m-2 m } .
7. The proof of Theorem 1.4

Let ∆ p,q E be the complex Laplacian with coefficients in E. Let ∆ n be the real Laplacian. If P is a local invariant, let P [M] = M P (M) dvol. We will use the following resuls in our analysis. Assertion 1 is immediate from the definition, Assertions (2,3) are Serre-duality, and Assertions [START_REF] Álvarez López | Zeta invariants of Morse forms[END_REF][START_REF] Atiyah | On the heat equation and the index theorem[END_REF] follow by specializing the Hirzebruch-Riemann-Roch Theorem.

Theorem 7.1. Let E be a holomorphic vector bundle over a Kähler manifold M.

(1) ∆ p,q E = ∆ 0,q Λ p,0 ⊗E . (2) There exists a conjugate linear isomorphism intertwining ∆ p,q E and ∆ m-p,m-q E * .

(3) Complex conjugation intertwines ∆ p,q and ∆ q,p ;

∆ n = ⊕ p+q=n ∆ p,q . (4) If m=2, then index( ∂) = { 1 2 c 1 (T c M ) ch 0 (E) + c 1 (E)}[M ]. (5) If m=4, then index( ∂) = {Td 2 (T c M ) ch 0 (E) + ch 1 (T c M ) ch 1 (E) + ch 2 (E)}[M].
We use Leibnitz's formula to establish the following result.

Lemma 7.2. Let M j have real dimension m j . Then

a Dol m 1 +m 2 ,m 1 +m 2 [M 1 × M 2 ] = a Dol m 1 ,m 1 [M 1 ]a Dol m 2 ,m 2 [M 2 ] + a Dol m 1 ,m 1 [M 1 ]a Dol m 2 ,m 2 [M 2 ] . Proof.
We adopt the notion of Equation (1.2) and set

A Dol m,n [M](s) := p (-1) p a m,n (∆ (0,p) )[M]s p .
We have the following product formula for the heat trace asymptotics:

a m,n (∆ (0,p) )[M 1 × M 2 ] = p 1 +p 2 =p n 1 +n 2 =n a m 1 ,n 1 (∆ (0,p 1 ) )[M 1 ] • a m 2 ,n 2 (∆ (0,p 2 ) )[M 2 ] .
This then yields that (7.1)

A Dol m,n [M 1 × M 2 ](s) = n 1 +n 2 =n A Dol m 1 ,n 1 [M 1 ](s) • A Dol m 2 ,n 2 [M 2 ](s) .
We differentiate Equation (7.1) and use Equation (1.3) to obtain

a Dol m,m [M] = n 1 +n 2 =m a Dol m 1 ,n 1 [M 1 ] • a Dol m 2 ,n 2 [M 2 ] + a Dol m 1 ,n 1 [M 1 ] • a Dol m 2 ,n 2 [M 2 ] .
We have that a

Dol m 1 ,n 1 [M 1 ] = 0 if m 1 = n 1 and a Dol m 2 ,n 2 [M 2 ] = 0 if m 2 = n 2 .
We may therefore safely set n 1 = m 1 and n 2 = m 2 in the above identity to complete the proof of Lemma 7.2.

The heat trace invariants are additive with respect to direct sums, i.e.

a m,n (∆ p,q )(M, g, J, E 1 ⊕ E 2 , h 1 ⊕ h 2 ) = a m,n (∆ p,q )(M, g, J, E 1 , h 1 ) + a m,n (∆ p,q )(M, g, J, E 2 , h 2 ) .

Since a Dol

m,m and a Dol m,m can be expressed in terms of characteristic classes, only the Chern character ch(E) enters. If E is a line bundle, then we have that ch

k (E, h) = 1 k! c k 1 (E, h).
7.1. The proof of Theorem 1.4 (1a). Suppose that m = 2. There exist constants α q and β q so that a 2,2 (∆ 0,q E ) = α q c 1 (T c M ) ch 0 (E) + β q c 1 (E). We have c 1 (E * ) = -c 1 (E). Since Λ 1,0 (M ) is the dual of T c M , we have that c 1 (Λ 1,0 M ) = -c 1 (T c M ). We suppose dim E = 1 and use Theorem 7.1 to compute:

{α 1 c 1 (T c M ) + β 1 c 1 (E)}[M] = a 2,2 (∆ 0,1 E )[M] = a 2,2 (∆ 1,0 E * )[M] = a 2,2 (∆ 0,0 Λ 1,0 (M )⊗E * )[M] = {α 0 c 1 (T c M ) + β 0 c 1 (Λ 1,0 (M )) + β 0 c 1 (E * )}[M] = (α 0 -β 0 )c 1 (T c M ) -β 0 c 1 (E)} M] . Consequently, α 1 = α 0 -β 0 and β 1 = -β 0 . Therefore, index( ∂E ) = 1 2 {c 1 (T c M ) + c 1 (E)}[M] = a Dol 2,2 [M] = {(α 0 -α 1 )c 1 (T c M ) + (β 0 -β 1 )c 1 (E)}[M] = {β 0 c 1 (T c M ) + 2β 0 c 1 (E)}[M] .
Consequently, β 0 = 1 2 and β 1 = -1 2 . Let S 2 be the unit sphere in R 3 with the usual metric and complex structure; τ = 2 and vol(S 2 ) = 4π. We compute

1 8π τ [S 2 ] = 1 = index( ∂)[S 2 ] = 1 2 c 1 [S 2 ] so c 1 (S 2 ) = 1 4π τ . Take E trivial.
McKean and Singer [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF] (see also Patodi [START_REF] Patodi | Curvature and the eigenforms of the Laplace operator[END_REF]) computed a 2,2 (∆ p ). Together with Theorem 7.1, this shows

a 2,2 (∆ 0,0 ) = a 2,2 (∆ 0 ) = 1 24π τ = 1 6 c 1 (T c ), a 2,2 (∆ 0,1 ) = 1 2 a 2,2 (∆ 1 ) = 1 2 1 24π (-4τ ) = -1 3 c 1 (T c ) . Thus α 0 = 1 6 and α 1 = α 0 -β 0 = 1 6 -1 2 = -1 3 .
7.2. The proof of Theorem 1.4 (1b). Suppose that m = 4 and that M = (M, g, J, E, h) is a complex surface. There exist constants α and β and a characteristic class P 2 (T c M ) so that 

βc 1 (E 1 )[M 1 ] • c 1 (E 2 )[M 2 ] = β ch 2 (E 1 ⊗ E 2 )[M] = a Dol 4,4 [M] = a Dol 2,2 [M 1 ] • a Dol 2,2 [M 2 ] + a Dol 2,2 [M 1 ] • a Dol 2,2 [M 2 ] = 1 2 c 1 (E 1 )[M 1 ] • c 1 (E 2 )[M 2 ] + c 1 (E 1 )[M 1 ] • 1 2 c 1 (E 2 )[M 2 ] = c 1 (E 1 )[M 1 ] • c 1 (E 2 )[M 2 ] .
This shows that β = 1. Suppose M 1 = S 2 , E 1 is trivial, M 2 is the flat torus, and c 1 (E 2 )[M 2 ] = 0. Then P 2 (T c M ) ch 0 (E) = P 2 (T c M 1 ⊕ 1) ch 0 (E) = 0 and ch 2 (E) = ch 2 (E 2 ) = 0 . Thus

αc 1 (T c M 1 )[M 1 ] • c 1 (E 2 )[M 2 ] = a Dol 4,4 [M] = a Dol 2,2 [M 1 ] • a Dol 2,2 [M 2 ] + a Dol 2,2 [M 1 ] • a Dol 2,2 [M 2 ] = 1 3 c 1 (T c M 1 )[M 1 ] • c 1 (E 2 )[M 2 ] + 1 2 c 1 (T c M 1 )[M 1 ] • 1 2 c 1 (E 2 )[M 2 ]
. This shows that α = 1 3 + 1 4 = 7 12 . Therefore, we have that (7. 

= i c 1 (E i )[N i ], A Dol 2,2 (s)[N i ] = 1 2 (1 + s)c 1 (E i )[N i ], a Dol m,m [M] = ∂ s A Dol m,m (s)[M] | s=1 = ∂ s {2 -m (1 + s) m i c 1 (E i )[N i ]}| s=1 = 1 2 m ch k (E)[M] = 1 2 m Dol 2,2 [M].
Similarly, let M i be arbitrary Riemann surfaces and let (E i , h i ) be trivial. We complete the proof of Theorem 1. 

1 . Introduction 1 . 1 .

 111 Motivation. Let h be a smooth function on a compact Riemannian manifold M = (M, g) without boundary of dimension m. In this context, Witten [27] defined a perturbed de Rham differential d h := d + ext(dh) where ext(•) denotes left exterior multiplication. Since d h = e -h • d • e h , d h is gauge equivalent to d and consequently the Betti numbers are unchanged.

2. Spaces of invariants 2 . 1 .

 21 Spaces of local formula in the real setting. It is necessary to be a bit careful concerning what we mean by a local formula. Introduce local coordinates x = (x 1 , . . . , x m ) which are centered at a point P of M . Let U = (i 1 , . . . , i a ) be a collection of indices. Decompose ω

Remark 4 . 1 .

 41 This gives an explicit description of the 1-form Q 1 m,m-3 of Theorem 1.3 (2b) as the unique element Q 1

6. 3 .

 3 Conformal variations. If g is a Kähler metric, then the conformal variation e 2εf g need no longer be Kähler. However, this variation remains within the class of Hermitian manifolds. Since Equation (1.1) continues to hold for Hermitian manifolds, the argument given to prove Lemma 5.1 shows that we may express a Dol m-2,m = δQ 1 m-2,m-1 in the class of Hermitian and hence in the class of Kähler manifolds. Thus we may choose Q 1 m,m-1 so that a Dol m,m -δQ 1 m,m-1 ∈ ker(r) . The integration by parts procedure discussed in Section 5 arises from a conformal variation of g; thus although additional derivatives of ω may be introduced, the number of derivatives of ω are not reduced. Thus Q belongs to V 1 m,m-1 and we have a Dol m,m -δQ ∈ V m,m . Let S m := C[ch k (T M, J, g), ch k (E, h), dω, dω] ⊂ T m be obtained by omitting the {ω α , ω β } variables. We restrict to the Kähler setting to obtaina Dol m,m -δQ ∈ {T m m } ∩ V m,m = S m m .Since we have omitted the {ω α , ω β } variables, and since ch k is a closed differential form, we complete the proof of Theorem 1.3 by computing

a Dol 4 , 4 [

 44 M] = {P 2 (T c M ) ch 0 (E) + αc 1 (T c M )c 1 (E) + β ch 2 (E)}[M] . Let M = M 1 × M 2 . Suppose first that M i are flat tori and (E i , h i ) are line bundles with c 1 (E i )[M i ] = 0. Then c 1 (T c (M ))[M] = 0, {P 2 (T c M ) ch 0 (E)}[M] = 0, ch 2 (E 1 ⊗ E 2 )[M] = c 1 (E 1 )[M 1 ] • c 1 (E 2 )[M 2 ] .Thus Theorem 7.1, Lemma 7.2 and Theorem 1.4 (1a) yield

2 ) a Dol 4 , 4 [

 244 M] = {P 2 (T c M ) ch 0 (E) + 7 12 c 1 (T c M )c 1 (E) + ch 2 (E)}[M] .We now use Serre duality. Let E = 1 ⊕ Λ 2,0 (T c M ). We have(7.3) a Dol 4,4 (M) = -a 4,4 (∆ 0,1 1⊕Λ 2,0 ) + 2a 4,4 (∆ 0,2 1⊕Λ 2,0 ) = -a 4,4 (∆ 2,1 1⊕(Λ 2,0 ) * ) + 2a 4,4 (∆ 2,0 1⊕(Λ 2,0 ) * ) = -a 4,4 (∆ 0,1 Λ 2,0 ⊕1 ) + 2a 4,4 (∆ 0,0 Λ 2,0 ⊕1) We add the expressions of the second and third lines of Equation (7.3) to see(7.4) 2a Dol 4,4 (M) = 2a 4,4 (∆ 0,0 E ) -2a 4,4 (∆ 0,1 E ) + 2a 4,4 (∆ 0,2 E ) = 2a Dol 4,4(M) . We use Equation (7.2), Equation (7.4), and Theorem 1.4 to see{P 2 (T c M ) ch 0 (E) + 7 12 c 1 (T c M )c 1 (E) + ch 2 (E)}[M] = {Td 2 (T c M ) ch 0 (E) + 1 2 c 1 (T c M )c 1 (E) + ch 2 (E)}[M] . We have ch 0 (E) = 2 and ch 1 (E) = c 1 (Λ 2,0 ) = -c 1 (T c M ). Consequently P 2 (T c M ) = Td 2 (T c M ) + 1 2 ( 1 2 -7 12 )(-c 2 1 (T c M )) = Td 2 (T c M ) + 1 24 c 2 1 (T c M ). 7.3. The proof of Theorem 1.4 (2a,2b). Let M := N 1 × • • • × N m where (N i , g i , J i ) are flat tori of real dimension 2 and (E i , h i ) are Hermitian line bundles over N i . Let E = E 1 ⊗ • • • ⊗ E m . Then ch m (E) = c 1 (E 1 ) . . . c 1 (E m ).We apply Lemma 7.2 and Theorem 1.4 to prove Theorem 1.4 (2a) by computing a Dol 2,2 [M]

  4 (2b) by computinga Dol 2,2 [M] = 2 -m i c 1 (T c )[M i ], a Dol m,m [M] = ∂ s A Dol m,m (s)[M] | s=1 = ∂ s {6 -m (1 + 2s) m i c 1 (T c )[M i ]} | s=1 = 1 3 m2 -m+1 i c 1 (T c )[M i ] = 2 3 ma Dol m,m [M]. Research Support.Research partially supported by grants: PID2019-105138GB-C21 (Spain) MTM2017-89686-P (AEI/FEDER, UE).