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Incremental stabilization of cascade nonlinear systems
and harmonic regulation: a forwarding-based design

Mattia Giaccagli, Daniele Astolfi Member IEEE , Vincent Andrieu and Lorenzo Marconi, Fellow, IEEE

Abstract— In this work, we address the problem of designing
a control law for a system in feedforward form to be globally
incrementally exponentially stable. To do that, we develop an
incremental version of the so-called forwarding mod{LgV} ap-
proach. Then, we apply such a control design to the problem of
compensating matched disturbances assumed to be given by the
superimposition of a finite number of harmonics with unknown
amplitude. For this, we propose a dynamic controller made of L
linear oscillators processing the regulation error and a stabilizer
making the closed-loop system incrementally globally exponen-
tially stable, uniformly with respect to the external signals. This
guarantees that the closed-loop system asymptotically converges
to a periodic trajectory having the first L-Fourier coefficients of
the error to be zero. Then, we specialize our design for the class of
linear systems with a scalar nonlinearity and of minimum-phase
systems possessing contractive zero dynamics.

Index Terms— Harmonic regulation, contraction theory, incre-
mental stability, forwarding, minimum phase systems.

I. INTRODUCTION

Contractive systems are receiving a lot of attention from the
control community. Roughly speaking, a system is said to be
contractive (or incrementally exponentially stable) if the distance
between any two trajectories starting from different initial conditions
is decreasing exponentially in time, uniformly in the difference of
such initial conditions. The study of contractive systems has a long
history (see, e.g., [1]–[5] and references therein) but their interest
is still active thanks to the several useful properties that contractive
systems share, such as trajectories well-defined in positive times,
periodicity when excited by external periodic signals and robustness
with respect to (small) model uncertainties. These features motivate
why contraction theory is used to deal with engineering problems
such as output regulation ([6], [7]), multiagent synchronization ([8],
[9]) and observers design ([10]).

From this viewpoint, particular attention was given to answering
the question “how to design a control law for a system to define
a contraction”. The existing control strategies can be divided in
3 groups. i) Designs that focus on specific techniques applied to
particular classes of systems, such as backstepping design [11] for
systems in strict feedback form or LMI-based design for Lur’e
systems [12], [13]. These approaches provide tractable conditions,
which however apply only to the considered class of systems.
ii) Designs that make use of the similar notion of convergent
system, e.g. [7], [14] and [15]. Note that, however, the notions
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of convergent, contraction and incremental stability are similar but
not completely equivalent, e.g. [16]. iii) Optimization tools, e.g.
the Control Contraction Metrics [17] or [18]. These designs are
applicable to more general classes of systems, with the drawback
that they usually require the solution to an (online, pointwise)
optimization problem.

In this work, we focus on the class of continuous-time nonlinear
systems in the so-called feedforward form (also denoted “in cascade
form”). For this class of systems, existing results belonging to the
first and second groups of the aforementioned techniques cannot be
directly used. One could apply the tools belonging to the third group,
but the relative drawbacks would come alongside (i.e. solution
of an online optimization problem pointwise, loss of analytical
solutions, ...). As a consequence, our first main objective is to derive
design tools for such a class of systems. To this end, we focus
on the so-called “forwarding approach” that has been developed
for stabilization purposes (see [19]–[22] and references therein)
and we propose an extension to the incremental framework. In
particular, as our first result, we develop an incremental version
of the so-called forwarding mod{LgV } for multi-input multi-output
(MIMO) systems that has been proposed for the single-input single-
output (SISO) stabilization case in [22] (and inspired by [19]),
extending de-facto our preliminary result [6]. The advantage of
such an approach, especially for high-dimensional systems, is that it
provides a design with several degrees of freedom, that potentially
allows splitting the problem of control law construction for large
dimensional cascade systems into multiple (possibly recursive)
easier steps. Note that with respect to the previous classification
of methodologies, our result takes place in the first group.

The proposed incremental forwarding tool is then applied to the
context of harmonic regulation of nonlinear systems, e.g., [23], [24].
In this case, the objective is the design of a control action such that
the trajectories of the closed-loop system are bounded in forward
time and such that a regulation error with respect to a periodic
reference is periodic (with the same period) and does not have a
frequency content at certain frequencies. This is generally achieved
by first extending the plant with a dynamical system possessing
an internal model property and a feedback design for the extended
closed-loop system. We highlight that in the more general context of
output regulation and internal-model based regulators [25], existing
designs can be divided into two groups: the first group considers
systems that admit a globally defined normal form possessing stable
zero-dynamics [26, Section IV]. In such a case, output regulation is
achieved (semi)globally in the initial conditions and in the size of the
references, by means of a feedback control law composed by a term
depending on the internal model and an high-gain feedback (see
for instance [24], [27] and references therein). The main drawback
of this approach is that it requires the existence of a normal
form, which is not always well-defined globally and that might be
practically difficult to be found, especially for MIMO systems. The
second group of results works in the “original” coordinates and
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follows a passivity-like approach. Within this approach, we recall
for instance [14], where the problem is posed for incrementally
passive systems coupled with a linear output, the work [7] where
the problem is addressed under the notion of convergent systems
with the control that is designed by explicitly solving the so-called
regulator equations and, more recently, [28] for systems in Lur’e
form having convergent properties.

In this work, we follow a different approach, similar to the one
proposed in [29]. In particular, the idea is to first extend the plant
with a dynamical system composed of a bunch of linear oscillators at
the external reference’s frequency and its multiplies processing the
regulation error and to look for a stabilizer that makes the closed-
loop system incrementally globally exponentially stable, uniformly
with respect to the external signals. After adding the oscillators,
the (extended) system is in feedforward form and the incremental
forwarding mod{LgV } previously developed can be applied as the
feedback design. The proposed result overcomes the main limitation
of some existing techniques. With respect to designs such as [29],
where harmonic regulation was obtained semi-globally in the initial
conditions and only locally in the references/disturbances (that is,
only with the amplitude of the external signals being sufficiently
small), our design allows to handle external signals spanning the
whole set of finite L∞-norm. Moreover, the proposed approach does
not require the existence of a globally defined normal form [24],
[27], or (incrementally) passivity-based conditions [14]. Because
of the incremental properties enforced by our design, we show
sufficient conditions to achieve harmonic regulation globally in
the size of the external references and globally in the domain of
attraction for systems that do not explicitly require the existence of
a globally defined normal form. Then, as a case study, we specialize
our design for linear systems with a scalar nonlinearity and for
the case of minimum-phase systems possessing incrementally stable
zero dynamics. In the first case, we translate our conditions into an
(easy-to-check) test design. In the second case, we demonstrate that
the proposed conditions recover existing techniques, showing that
our design is not restrictive but rather comprehensive of existing
tools.

The paper is structured as follows: in Section II we present
the considered framework and we provide the structure of the
incremental forwarding mod{LgV } control law for the incremental
stabilization of nonlinear systems in feedforward form. Then, in
Section III-A we apply our result to the case of global harmonic
regulation. We then specialize our result for the class of linear
systems with a scalar nonlinearity in Section III-B and for the case
of minimum-phase systems possessing contractive zero-dynamics in
Section III-C. Conclusions are in Section IV.
Notation: We indicate with |·| the vector norm. Given a vector
field f : Rn → Rn and a C1 mapping h : Rn → Rm,
we denote the Lie derivative of h along f at x as Lfh(x) =
∂h
∂x (x)f(x). Given a vector field f : Rn 7→ Rn and a 2-tensor
P : Rn 7→ Rn × Rn both C1, we indicate with LfP (x) the
Lie derivative of the tensor P along f defined as LfP (x) =

limh→0
(I+h ∂f∂x (x))>P (x+hf(x,t))(I+h ∂f∂x (x))−P (x)

h , with coor-

dinates (LfP (x))i,j =
∑
k

[
2Pik

∂fk
∂xj

(x) +
∂Pij
∂xk

(x)fk(x)
]
.

Given a square matrix A we indicate He{A} = A + A> and
with det(A) its determinant. Given L square matrices A1, . . . , AL
we indicate with blkdiag(A1, . . . , AL) the block-diagonal matrix
having A1, . . . , AL on the main diagonal and zero everywhere else.
We indicate with I the identity matrix and with 0 the column vector
where each element is the number zero (the dimension is clear from

the context). We indicate with ⊗ the Kronecker product. Given a
n×m matrix B, we indicate with vec(B) the nm column vector
where the elements are the ordered elements of matrix B.

II. INCREMENTAL STABILITY OF CASCADE SYSTEMS

In this work, we first consider systems in the following feedfor-
ward form

ẋ = f(x) + g(x)u, (1a)

η̇ = Φη + v(x), (1b)

where x ∈ Rnx , η ∈ Rnη is the state, u ∈ Rnu is the control
action, f : Rnx 7→ Rnx , g : Rnx 7→ Rnx×nu and v : Rnx 7→ Rnη
are sufficiently smooth function with f(0) = 0, v(0) = 0 and Φ
is a matrix of appropriate dimension. We assume that there exists
ḡ > 0 such that |g(x)| ≤ ḡ for all x ∈ Rnx . We consider the
problem of designing a state-feedback control law

u = α(x, η) (2)

such that the closed-loop system is globally (exponentially) incre-
mentally stable in the sense that there exist k?, λ? > 0 such that
for any pair of initial conditions χa = (xa, ηa), χb = (xb, ηb) ∈
Rnx+nη we have that

|X (χa, t)−X (χb, t)| ≤ k? exp(−λ?t) |χa − χb| , ∀ t ≥ 0,

where X (χ0, t) denotes the trajectory of the closed-loop system (1),
(2) at time t and initial condition χ0. Such a property is verified,
for instance, if there exists a Riemannian metric along which the
closed-loop vector field generates trajectories for which the distance
associated with such Riemannian metric is monotonically decreasing
in forward time (i.e. for each t ≥ 0, χ 7→ X (χ, t) is a contraction),
see [1], [4]. The open-loop system (1) is in the so-called feedforward
(or cascade) form, for which forwarding-based control techniques
have been developed for equilibrium stabilization purposes ([19]–
[22], [30]). Practical examples of systems in this form are the disk-
inertia pendulum in [22] or the TORA system [31]. The structure of
the control law that we aim to develop is an incremental version of
the forwarding mod{LgV } control design for systems of the form
(1) first presented for stabilization purposes in [22] for the case
in which η is scalar with Φ = 0. This result extends de-facto the
author’s preliminary results in [6, Section III] in which the case of
Φ = 0 and nu ≥ nη has been studied. In this framework, we start
by assuming the following.

Assumption 1 (Pre-contractive feedback + Killing vector). Con-
sider system (1). There exist a C1 function α0 : Rnx 7→ Rnu ,
a C1 matrix function P : Rnx 7→ Rnx×nx taking symmetric and
positive values P = P> > 0 and three positive real numbers p, p̄, p
such that the function f0(x) = f(x) + g(x)α0(x) satisfies

Lf0P (x) ≤ −pI, pI ≤ P (x) ≤ p̄I (3)

LgP (x) = 0 (4)

for all x ∈ Rnx .

Assumption 1 asks for a pre-stabilizing feedback control action
such that the x-dynamics generates a contraction with respect to
a Riemannian metric induced by the matrix function P . Also, (4)
implies that g is a “Killing Vector” field1 for this metric (see [32]).
In the linear case, this corresponds to a stabilizability assumption,
where (4) is always satisfied as P is taken as a constant positive

1Given a C1 2-tensor P and a C1 vector field g, we say that g is a
Killing Vector field for P if LgP (x) = 0 for all x
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definite matrix solution of a Lyapunov equation. The design of α0

and P can be obtained following existing techniques ([7], [11],
[12], [14]). Note moreover that, by [32, Theorem 2], the Killing
vector property (4) guarantees that the x-dynamics is incrementally
(exponentially) ISS (see [3, Definition 4.1]) with respect to any input
u. From now on, we take f(x) = f0(x) without loss of generality
(i.e., Assumption 1 holds for α0(x) = 0 for all x, for some P ).

Assumption 2 (Non positiveness). There exists a symmetric positive
definite matrix H = H> > 0 such that

HΦ + Φ>H ≤ 0 (5)

To conclude, similarly to [22, Proposition 1], our last assumption
is the following.

Assumption 3 (Incremental Forwarding mod{LgV }). We know
three C1 functions M : Rnx 7→ Rnη , ∆ : Rnx 7→ Rnη and
% : Rnx 7→ Rnu such that, for all x ∈ Rnx :

1) the functions M and ∆ are solution of

LfM(x) = ΦM(x) + v(x) + ∆(x); (6)

2) there exists a matrix Λ such that

LgM(x) = Λ (7)

and such that the couple (Φ, (HΛ)>) is detectable;
3) the function % satisfies

Λ
∂%

∂x
(x) = −

∂∆

∂x
(x); (8)

4) the following inequality holds for some λ > 0

LfP (x) + He

{
P (x)g(x)

∂%

∂x
(x)

}
≤ −λI . (9)

Assumption 3 corresponds to a MIMO version of the assumptions
in [22, Proposition 1]. In our framework, item 1 corresponds to a
more general version of [22, Eq. (6)]. A solution M = M(x) of
(6) is known to exist for ∆ = 0, i.e. a function M satisfying

LfM(x) = ΦM(x) + v(x) (10)

always exists if x = 0 is a globally asymptotically stable and locally
exponentially stable equilibrium point for ẋ = f(x) and Φ has no
unstable eigenvalues (see [19, Lemma IV.2]). These conditions are
satisfied under Assumption 1 and Assumption 2. However, such a
solution can be practically difficult to compute (see [21, Section
III.A]). The main idea of forwarding mod{LgV } is to introduce
the term ∆, so that M becomes an easy-to-compute solution, in
which the mismatch between the exact solution M of (10) and
the approximated one M is represented by ∆. About item 2, the
term LgM(x) can be seen as a controllability assumption on the
control u to act on the dynamics of η of (1) in any point of the
state space x. Note that in case Φ = 0, the term LgM can be
seen as an approximation of the DC-gain between the input u and
an output y = v(x) along the trajectories of the system (see [6]
for a wider discussion). About item 3, as the dynamics of η in the
most general case can have a higher dimension than the one of u,
in order to mimic the result of [6, Proposition 4], we ask for the
mismatch term ∆ to be mapped in a (possibly lower) space of the
dimension of the input and to be integrable. Finally, item 4 asks
for a robustness-like property for the autonomous system. Indeed,
in order to rely on a free-to-choose PDE solution M rather than the
exact one M , the open-loop system must be sufficiently contractive
to merge the mismatch represented by ∆.

We’re now ready to state the main result of this section.

Theorem 1 (Incremental stability of feedforward systems). Con-
sider system (1) and let Assumption 1, 2 and 3 hold. Moreover
assume that there exists LM ≥ 0 such that

∣∣∣∂M∂x (x)
∣∣∣ ≤ LM for

all x. Then, for any gain κ > 0, the system (1) in closed-loop with
the control law

u = α0(x) + κ(HΛ)>(η −M(x)) + %(x) (11)

is globally incrementally exponentially stable.

Proof. We consider the change of coordinates η 7→ z := η−M(x)
with M solving (6). By making use of (7), the closed-loop system
can be then written in the form

ẋ = F (x), F (x) :=

[
f(x) + g(x)

[
κ(HΛ)>z + %(x)

]
(Φ− κΛ(HΛ)>)z − Λ%(x)−∆(x)

]
(12)

with x = (x>, z>)>. It is known (see [1], [4]) that if there exists
a C1 matrix function P : Rnx+nη 7→ Rnx+nη × Rnx+nη with
P = P> > 0 such that

LFP(x) ≤ −pI, pI ≤ P(x) ≤ pI (13)

for all x, for some strictly positive real numbers p, p, p > 0 then
(12) is globally exponentially incrementally stable. We look for a
metric of the form

P(x) :=

(
P (x) 0

0 µ(H + bS)

)
(14)

with b, µ being strictly positive real numbers to be defined, P taken
as in Assumption 1, H as in Assumption 2 and S being a strictly
positive definite matrix to be defined. The main intuition behind
this choice is that in view of Assumption 2 the matrix H by itself
doesn’t provide negativity in all the components of z. In order to
“strictify” the metric, we rely on a design inspired by [33] (also used
in [24]) by means of an observer. Indeed, by item 2 of Assumption
3, the couple (Φ, (HΛ)>) is detectable, and therefore there exist
two matrices S = S> > 0 and K solving

He
{
S(Φ−K(HΛ)>)

}
≤ −2I. (15)

Hence let S = S and consider the matrix function L : Rn×Rnη 7→
R(n+nη)×(n+nη)

L(x) := LFP(x) +

(
p1I 0
0 p2I

)
(16)

for some p1, p2 strictly positive real numbers to be chosen. If
L(x) ≤ 0 for all x and for some p1, p2, then (13) holds with
p = min{p1, p2}. Thanks to (8) and to the Killing Vector property
LgP (x) = 0 in Assumption 1, we have that

L(x) =

(
`1(x) `2(x)

`>2 (x) `3(x)

)
(17)

where

`1(x) = LfP (x) + He
{
P (x)g(x) ∂%∂x (x)

}
+ p1I

`2(x) = κP (x)g(x)(HΛ)>

`3(x) = µHe
{

(H + bS)(Φ− κΛ(HΛ)>)
}

+ p2I.
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By adding and subtracting the term µbHe{SK(HΛ)>}, by using
equation (13) and by Assumption 2 we get

`3(x) ≤ p2I − µ
[
2κHΛ(HΛ)> + 2bI

− bHe{S(K − κΛ)(HΛ)>}
]

≤ p2I − µ
[
2κHΛ(HΛ)> + 2bI

− b2

2βS(K − κΛ)(K − κΛ)>S − β
2HΛ(HΛ)>

]
for any real number β > 0, where we used the generalized Young’s
inequality. Therefore, we select β = 4κ, b < 2β

|S(K−κΛ)|2
and

p2 < µb
2 and we get `3(x) < 0 for all x, for any κ, µ > 0. In

order to have L < 0, it remains to check the sign of its Schur
complement SL(x). In particular, we need SL(x) := `1(x) +
`2(x)`−1

3 (x)`>2 (x) < 0. Keeping in mind item 4 of Assumption 3
and the upper bounds of P and g, we get

SL(x) ≤ −(λ− p1)I + 4κ2p2g2

µb (HΛ)>(HΛ).

Hence, for any κ > 0, set

p1 ≤
λ

4
, µ ≥

16κ2p2g2 |HΛ|2

λb

so that SL(x) < 0 and therefore L(x) < 0 for all x. Note that
the metric P has been obtained in the x = (x, z)-coordinates.
In order to complete the proof, we need to come back to the
original coordinates (x, η). This can be done with a globally
Lipschitz diffeomorphism. In particular, the metric P in the original
coordinates is defined as

P(x, η) := E(x)>P(x)E(x), E(x) :=

(
I 0

−∂M∂x (x) I

)
,

(18)

namely

P =

P (x) + µ(H + bS)∂M
>

∂x (x)∂M∂x (x) ?>

−µ(H + bS)∂M∂x (x) µ(H + bS)

 .

Note that

E(x)−1 =

(
I 0

∂M
∂x (x) I

)
,

and, since M is Lipschitz,

|E(x)| ≤ 1 + LM ,
∣∣∣E(x)−1

∣∣∣ ≤ 1 + LM , ∀ x ∈ Rn.

Hence, for all vectors v,

v>P(x, η)v ≥ min{p, µ |H + bS|} |E(x)v|2

≥ min{p, µ |H + bS|} |v|2

|E(x)−1|2

≥
min{p, µ |H + bS|}

(1 + LM )2
|v|2 .

On another hand,

v>P(x, η)v ≤ max{p, µ |H + bS|} |E(x)v|2

≤ max{p, µ |H + bS|} (1 + LM )2|v|2 .

Hence, the closed-loop system is incrementally globally exponen-
tially stable with respect to the contraction metric P satisfying

p
0
I ≤ P ≤ p̄0I and LFP(x, η) ≤ −p0I with F (x, η) be-

ing the closed-loop (12) in the original (x, η)-coordinates, p0 =
min{p1, p2} and

p̄0 := max{p, µ |H + bS|} (1 + LM )2,

p
0

:=
min{p, µ |H + bS|}

(1 + LM )2
.

To conclude, note that the proposed control design may be
applied recursively. As such, the feedback design procedure (and
the verification of the main assumptions) can be split into multiple
(easier) steps, in order to deal with (possibly) lower-dimensional
systems, greatly simplifying the more general feedback design
problem.

III. HARMONIC REGULATION

A. Sufficient conditions for global harmonic regulation
An interesting application context for the results in Section II

regards the problem of harmonic output regulation [29]. Assume to
have a nonlinear system of the form

ẋ = f(x) + g(x)(u+ d(t)), (19a)

e = h(x)− r(t) (19b)

where x ∈ Rnx in the state, u ∈ Rnu is the control action, f :
Rnx 7→ Rnx and g : Rnx 7→ Rnx×nu coupled with a regulation
error e where h : Rnx 7→ Rne with f, g, h to be C2 and f(0) = 0,
h(0) = 0 with ne ≤ nu

2. Let r : R 7→ Rne , d : R 7→ Rnu being
smooth time-varying external references with finite L∞-norm which
are T -periodic, i.e. there exists T ≥ 0 such that

r(t) = r(t+ T ) and d(t) = d(t+ T ) . (20)

Consider the problem of designing a control law such that system
(19) has bounded trajectories in forward time and the regulated error
(19b) asymptotically converges to a periodic trajectory that has no
harmonic content at some desired frequencies whose basic period
T is given from the signals (r, d). In other words, the objective
is to guarantee that the error (19b) is a T -periodic signal which
should not present a harmonic content at the frequencies w` = ` 2π

T
for ` = 0, 1, . . . , L for some L ≥ 0. Namely, the first L-Fourier
coefficients of e are zero, i.e.

c` :=
1

T

∫ T

0
e(t) exp

(
2i`π

t

T

)
dt = 0, ∀ ` = 0, . . . L.

(21)
A common approach to solve such a problem is to use an internal-
model based control design ([24], [27]), that is, to extend the plant
(19) with a dynamic system processing the regulation error and
containing harmonic oscillators at the desired frequencies, together
with a stabilizer for the closed-loop system. In particular, we
consider a dynamical controller of the form

η̇ = Φη + Γe (22)

where the matrices Φ,Γ are selected as

Φ = blkdiag
(
0 w1Φ1 . . . wLΦ1

)
,

Γ = blkdiag
(
Γ0 Γ1 . . . ΓL

) (23)

where Φ1 ∈ R2ne×2ne and Γ` ∈ R2ne are selected as

Φ1 = blkdiag
(
φ, . . . , φ

)
, φ =

(
0 1
−1 0

)
(24)

2Such a condition is known to be necessary for the linear systems case.
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and Γ` = (γ, . . . , γ) such that each couple (w`φ, γ) is controllable,
together with a stabilizer for the closed-loop (19),(22) (see [23],
[28]). In the considered framework, we allow the external signals
(r, d) to span the whole Rne × Rnu and we look for a global
result in the domain of attraction. The existing results have been
developed only for the class of nonlinear systems having a globally
defined normal form and possessing a minimum phase property
[24], [34]. On the other hand, for systems working in the “original”
coordinates the existing results are only local in the amplitude of
the external signals ([23], [29]), that is, with the external signal’s
amplitude being sufficiently small. Without normal forms but still
providing a global result, we rely on incremental properties of
nonlinear systems [6], [7]. In such a case, the idea is to rely on
the results developed in the previous Section to make the closed-
loop system incrementally globally exponentially stable, uniformly
with respect to the external signals. In fact, system (19), (22) is of
the form (1) with v(x) = Γh(x) and Assumption 2 is automatically
satisfied with H = I . Hence the following holds.

Proposition 1 (Global Harmonic Regulation). Consider system
(19) extended with the dynamical system (22), (23), (24) and let
Assumptions 1 and 3 hold with v(x) = Γh(x) and H = I . Then
for any (r, d) satisfying (20) and any initial conditions (x0, η0),
system (19) in closed-loop with the dynamic control law (22), (11)
with any gain κ > 0 has bounded trajectories and the error (19b)
asymptotically converges to a T -periodic solution satisfying (21).

Proof. We consider the change of coordinates η 7→ z := η−M(x)
with M solving (6). By making use of (7), the closed-loop system
can be then written in form

ẋ = F (x) + Ω(x)R(t), Ω(x) =

(
g(x) 0

Λ I

)
, (25)

with x = (x>, z>)>, the vector field F defined as in (12) and

R(t) =
[
d>(t) r>(t)

]>
. From Theorem 1, the matrix function

P defined in (14) is a Riemannian metric for the vector field F .
Moreover Ω(x) possesses the Killing vector property with respect
to such P(x), i.e. LΩP(x) = 0 for all x. Since Ω(x) is bounded
for all x, by [32, Theorem 2], this implies that the closed-loop is
incremental-ISS (see [3, Definition 2.1]) with respect to R(t). Since
(r, d) satisfy (20) with period T , then the trajectories of the system
and of the error e converge to a bounded and periodic solution with
same period T . This can be obtained by combining [3, Proposition
4.4] and [3, Proposition 4.5]. By construction of the matrices Φ,Γ
as in (23), (24) and by [29, Proposition 1], the first L-Fourier
coefficients of the error e are zero, i.e. (21) holds. To conclude,
note that the Killing vector property is invariant with respect to the
globally Lipschitz diffeomorphism (18), and hence the result holds
also in the coordinates (x, η).

B. A test design for a class of nonlinear systems

In this section, we propose a possible design to apply the results
in Proposition 1. We consider a nonlinear system of the form (19)
where

f(x) = Ax+Nϕ(ζ), g(x) = B,

h(x) = Cx+Dϕ(ζ), ζ = Jx
(26)

where A,N, J,B,C,D are constant matrices of suitable dimension
and ϕ(s) is a scalar C1 nonlinearity with ϕ(0) = 0 without loss of
generality. In this case, many practical examples can be found whose
plant belongs to the classes of systems described by (26). Some
examples are the mechanical ventilation machine in [28], a flexible

link manipulator in [35] and the surge system considered in [36],
[37]. For such a class of systems, we first assume that Assumption
1 is satisfied with respect to some constant metric P = P> > 0.
In order to rely on Proposition 1, we propose the following design.
Let Q be defined as the following matrix parametrized by a and ω

Q(a, ω) :=

(
A> ⊗ I − I ⊗ Φ(ω) −C> ⊗ I
J>(aB> −N>)⊗ I −J>D> ⊗ I

)
(27)

where Φ is as in (23) where we explicitly expressed the dependency
on the parameter ω = (w1, . . . , wL) for some L ≥ 1 and let A ⊂ R
be the set defined as

A(λ) :=
{
a ∈ R | ∀x ∈ Rn

He{P (A+ (N +Ba)∂ϕ∂ζ (Jx)J)} ≤ −λI
}
. (28)

Then the following holds.

Corollary 1. Consider system (26) and assume that Assumption 1
holds for some constant matrix P = P> > 0. Given ω > 0, let λ >
0 and suppose there exists a ∈ A(λ) such that det(Q(a, ω)) = 0.
Let M,Γ be any solution to

Q(a, ω)

(
vec(M)
vec(Γ)

)
= 0.

If (Φ, B>M>) is detectable and (Φ,Γ) is controllable, then
Assumption 3 holds with M,∆, %,Λ given as

M(x) = Mx, ∆(x) = (MN − ΓD)ϕ(Jx),

%(x) = aϕ(Jx), Λ = MB.
(29)

Proof. First, note that by Assumption 1 and by continuity, the set
A is non-empty. Then, let M,∆, %,Λ be defined as in (29). For
the considered class of systems (26), the main idea behind this
choice is to pick the function M(x) as a linear function which
satisfies the linear part of (6) (and therefore also (7)), and to stick
all the nonlinearities in the term ∆(x), which will be handled by the
robustness of the open-loop system with (9) through the existence
of a mapping %(x) satisfying (8). With this choice, the conditions
(6), (8) reduce to the existence of constant matrices M,Γ and a real
number a solution of the matrix equalities

MA = Φ(ω)M + ΓC (30a)

aMBJ = (MN − ΓD)J (30b)

where (30a) comes from the linear terms of (6) and (30b) from
the definition of ∆ in (29) and (8). Recalling the definition of
Sylvester equation, the conditions (30a), (30b) can be rewritten with
the Kronecker operator ⊗ as a linear problem of the form

Q(a, ω)Y = 0 (31)

where Y is a 2k× nx + 2k column vector of unknowns defined as
Y = (vec(M), vec(Γ))> and Q(a, ω) is the matrix defined as in
(27). For fixed ω, if there exists a ∈ A such that the matrix Q(ā, ω)
has a non-null kernel, then there exists at least one non-null vector
Y such that Q(a, ω)Y = 0. In such case, the matrices M,Γ can
be constructed from the vector Y and the function % is selected as
%(x) = aϕ(Jx). From such choice, (6), (8) are satisfied. Moreover,
since a ∈ A, then also (9) holds. Since (Φ, B>M>) is detectable
and (Φ,Γ) is controllable by assumption, then Assumption 3 holds.

Remark 1. Note that, for a given system and a fixed set A,
Corollary 1 shows the frequencies w that can be naturally regulated
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with the proposed design. In this case, the set of w that can be
regulated is a subset of the w satisfying the non-resonance condition

rank

(
A− σI B
C 0

)
= nx + ne

with σ being any eigenvalue of the matrix Φ, see [29].

Remark 2. Note that the design proposed in Corollary 1 provides
a test that can be performed on the system: for a given set of
frequencies ω = (w1, . . . , wN ), compute the matrix Q(a, ω). Then
compute its determinant which is a polynomial in the variable a.
Find the (finite) values of a that nullify the determinant and check
if such values are in the set A. If this is the case, then it’s sufficient
to check the detectability of (Φ, B>M>) and the controllability of
(Φ,Γ).

C. The case of minimum phase systems

The main drawback of the design provided by Theorem 1 when
applied to the case of harmonic regulation, is that in the most
general case a constructive design which is uniform on the number
of oscillators L and independent on the considered frequency w` to
check the validity of Assumption 3 might not be always possible but
instead depends on the considered system. In this section, we show
that this is not the case if we consider the special case of nonlinear
systems which admit a globally defined normal form ([26, Section
4]) with a zero-dynamics which is incrementally stable. We want to
stress that the result in Proposition 1 does not assume a priori the
existence of a globally defined normal form. We consider, for the
sake of simplicity, a single-input single-output (SISO) system with
unitary relative degree (the extension to higher relative degree can
be dealt with canonical tools, see, e.g., [27, Section V]) of the form

ż = ψ(z, y) ẏ = q(z, y) + u− r(t) (32)

where x = (z>, y)> ∈ Rnx−1 × R is the state, and the vector
fields ψ : Rnx−1 × R 7→ Rnx−1 and q : Rnx−1 × R 7→ R are
both C1 (we take d(t) = 0 for all t). Most of the existing results
on output regulation for nonlinear systems focus on systems having
a minimum phase zero-dynamics. As our approach is to cast the
problem in the contraction framework, we will assume that system
(32) possesses a contractive zero-dynamics as follows.

Assumption 4 (Minimum Phase). Consider system (32). There
exist positive real numbers q̄, ψ̄y, p̄z , pz , λz > 0 and a C1 matrix
function Pz : Rnx−1 7→ R(nx−1)×(nx−1) taking symmetric
positive values such that the following inequalities3 hold∣∣∣ ∂q∂x (x)

∣∣∣ ≤ q̄, ∣∣∣∂ψ∂y (x)
∣∣∣ ≤ ψ̄y, (33)

p
z
In−1 ≤ Pz(z) ≤ p̄zIn−1, LψPz(z) ≤ −2λzIn, (34)

for all x ∈ Rnx .

Remark 3. Note that the Assumption 4 extends (for the global case)
the assumption in [24, Theorem 1] on the zero-dynamics to have a
(locally) exponentially attractive steady-state when y = 0 (see also
[34, Assumption 2], [27]).

Under such an assumption we have the following result.

Proposition 2 (Global Harmonic Regulation for Minimum Phase
Systems). Consider system (32) extended with the dynamics (22),
(23), (24) and let Assumption 4 hold. Then for any number of

3The notation LψPz(z, y) has to be understood as the Lie derivative of
Pz along the vector field z 7→ ψ(z, y) where y is fixed.

oscillators L ≥ 0, Assumption 1 and 3 are satisfied with h(x) = y,
H = I and

P (x) =

(
Pz(z) 0

0 ε

)
, α0(x) = −ky,

M>(x) =
[
y M>1 (x) . . . M>L (x)

]
,

M>` (x) =
(
y y

)
, %(x) = −q(z, y) + (k − 1)y,

Λ> =
[
1 Λ>1 . . . Λ>L

]
, Λ>` =

(
1 1

)
,

Γ> =
[
−1 Γ>1 . . . Γ>L

]
, Γ>` =

[
−w` − 1 w` − 1

]
∆>(x) =

[
∆0(x) ∆>1 (x) . . . ∆>2L(x)

]
,

∆0(x) = ∆`(x) = −%(x)
(35)

with ` = 1, . . . , L for some gain k > 0 sufficiently large and ε > 0
sufficiently small, both independent on L.

Proof. We first show that Assumption 1 holds. After the pre-
stabilizing action α0, the open-loop system (32) is of the form (19)
where x = (z, y) and

f(x) =

(
ψ(z, y)

q(x, y)− ky

)
, g(x) =

(
0
1

)
Consider the metric P (x) defined as in (35). First, note that the
Killing Vector property is satisfied, i.e. LgP (x) = 0 for all x. We
look for p > 0 such that L(x) < 0 where

L(x) : = LfP (x)− pI

=


LψzPz(z) Pz(z)

∂ψ

∂y
(x) +

(
ε
∂q

∂z
(x)

)>
?> 2ε

(
∂q

∂y
(x)− k

)
− pI

Fix any ε > λz
2(p2zψ

2
y)

and set k ≥ k := q̄+
λk

2ελz
+

(p̄zψ̄y + εq̄)2

2ελz
for some λk > 0. From the bounds on q from Assumption 4, the
bottom-right term of LfP (x) is negative definite for any ε, λk >
0. Hence to show (3) we check the Schur’s complement S(x) of
LfP (x). With the bounds on ψ, q and since there exists λz such
that LψzPz(z) ≤ −2λzI from Assumption 4, we get

S(x) ≤

−2λz +

(
p̄zψ̄y + εq̄

)2
1
λz

(
λk +

(
p̄zψ̄y + εq̄

)2)
 I ≤ −2λkI

Therefore, Assumption 1 holds with P defined in (35), p =

min{p
z
, ε}, p = max{pz , ε} and p = min{2λk, 2λz ;

2λk
λz
}. We

then check each point of Assumption 3 separately. For item 1 note
that (6) holds. Indeed for ` = 0 we get

∂M0

∂x
(x)f(x) = h(x) + ∆0(x)

q(x)− τy = −y + ∆0

and we recover the definition of ∆0(x) in (35). Similarly, for ` =
1, . . . , L from the definitions of Φ,Γ as in (23), (24), (35) we have

∂M`

∂x
(x)f(x) =

(
0 w`
−w` 0

)
M`(x) + Γ`h(x) + ∆`(x)

which is a set of 2L identities of the form{
(q(x)− τy) = w`y + (−w` − 1)y + ∆`(x)

(q(x)− τy) = −w`y + (w` − 1)y + ∆`(x)
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from the definition of ∆ as in (35). About item 2, note that
LgM(x) = Λ. Since M is linear and Φ is block diagonal, the
observability matrix O of (Φ,Λ>) is

O = blkdiag{1,O1, . . . ,OL}, O` =

(
1 w`
1 −w`

)
which has non-zero determinant for all w` 6= 0. Hence (Φ,Λ>) is
detectable. About item 3, again, we recover a set of 2L+1 identities.
Indeed for all ` = 0, . . . , 2L we defined %(x) = −∆`(x). About
item 4, equation (9) readsLψzPz(z) Pz(z)∂ψ∂e (x) +

(
ε ∂q∂z (x)

)>
?> 2ε

(
∂q
∂e (x)− k

)


−

 0
(
ε ∂q∂z (z, y

)>
?> 2ε

(
∂q
∂y (z, y)− k + 1

)
 ≤ −λzI

where the right-hand-side follows a similar analysis as previously,
from the definition of ε and Assumption 4. To conclude the proof,
note that the controllability matrix C of (Φ,Γ) has a block-diagonal
structure of the form

C = blkdiag{1, C1, . . . , CL}, C` =

(
−w` − 1 w`(w` − 1)
w` − 1 w`(w` + 1)

)
where each C` is full rank and hence C is so.

From Proposition 1, the following then holds.

Corollary 2. Consider system (32) with any r ∈ R satisfying (20)
and let Assumption 4 hold. Then for any L ≥ 0, and any initial
condition (z0, y0, η0) the system in closed loop with the dynamical
control law (22), (11), (23), (24), (35) for any gain κ > 0 has
bounded T -periodic trajectories and the regulation error e = y −
r(t) satisfies (21).

Remark 4. The control (11) recovers known designs used in
nonlinear output regulation theory for minimum phase systems (see
[27], [29]). The term α0 = −ky is a high-gain which acts as a
pre-stabilizer for the y-dynamics where k is sufficiently large to
handle the Lipschitz constant of q while the term Λ>(η −M(x))
provides negativity in the directions of the internal model. In the
design (11) a particular feature is the term % which behaves as a
feedback linearization term in the I/O mapping between u and η. It
allows obtaining an upper-triangular structure in the Jacobian of
the closed-loop system under the change of coordinates η 7→ z =
η −M(x).

D. Academic example

Consider system of the form (19) with

f(x) =

(
−5x1 + x2 + sin(x1)

x1 − 2x2

)
, g(x) =

(
−1
−1

)
and h(x) = sin(x1)− x2. We aim to cancel the harmonic content
at the frequency w = 2π

T = 1. The interest in such an example
is that the system does not admit a globally defined normal form.
Therefore, when global harmonic regulation is the goal, approaches
based on the use of normal forms cannot be applied. Indeed
Lgh(x) = cos(x1) + 1, which is not constant for x1 = (2j + 1)π
for any integer j. Yet, a solution does exist. Indeed, the approach
proposed in our work is a valuable tool. Assumption 1 is satisfied
with P = I where the Killing Vector property holds as both P and g
are constant. Then, following Proposition 1, we extend the plant with

the dynamics (22) where we pick Φ =

(
0 1
−1 0

)
, Γ =

(
0.478
0.433

)
.

We select M,∆, %,Γ,Λ solution of (6), (7), (8) according to
Corollary 1 where A = (−5, 1; 1,−2), B = (−1;−1), C =
(0,−1), D = 1, H = (1, 0), N = (1; 0) and ϕ(s) = sin(s).
In such case, we can select a = 0.4962 ∈ A(1) and check the
detectability of (Φ,Λ>) and the controllability of (Φ,Γ). With such
a choice, Assumption 3 holds, and global harmonic regulation is
achieved with the dynamic controller (22), (11).

IV. CONCLUSIONS

In this work, we provided sufficient conditions for the design of
a control law for systems in feedforward form to be incrementally
globally exponentially stable. For this, we presented an incremental
version of the forwarding mod{LgV }. Then we applied our result
for harmonic regulation by means of a dynamical controller made
of L linear oscillators processing a regulation error and an incre-
mental forwarding design for the closed-loop system to be globally
exponentially incrementally stable, uniformly with respect to the
external signals. With our design, the regulation error asymptotically
converges to a periodic steady-state bounded trajectory for any
initial condition and for any amplitude of the external signals.
On such a steady-state trajectory, harmonic regulation is achieved,
namely the first (desired) L-Fourier coefficients are zero. The
design is also specialized to a class of linear systems with a scalar
nonlinearity and minimum-phase systems with incrementally stable
zero-dynamics.
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