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In this work, we address the problem of designing a control law for a system in feedforward form to be globally incrementally exponentially stable. To do that, we develop an incremental version of the so-called forwarding mod{LgV} approach. Then, we apply such a control design to the problem of compensating matched disturbances assumed to be given by the superimposition of a finite number of harmonics with unknown amplitude. For this, we propose a dynamic controller made of L linear oscillators processing the regulation error and a stabilizer making the closed-loop system incrementally globally exponentially stable, uniformly with respect to the external signals. This guarantees that the closed-loop system asymptotically converges to a periodic trajectory having the first L-Fourier coefficients of the error to be zero. Then, we specialize our design for the class of linear systems with a scalar nonlinearity and of minimum-phase systems possessing contractive zero dynamics.

I. INTRODUCTION

Contractive systems are receiving a lot of attention from the control community. Roughly speaking, a system is said to be contractive (or incrementally exponentially stable) if the distance between any two trajectories starting from different initial conditions is decreasing exponentially in time, uniformly in the difference of such initial conditions. The study of contractive systems has a long history (see, e.g., [START_REF] Lohmiller | On contraction analysis for non-linear systems[END_REF]- [START_REF] Bullo | Contraction Theory for Dynamical Systems[END_REF] and references therein) but their interest is still active thanks to the several useful properties that contractive systems share, such as trajectories well-defined in positive times, periodicity when excited by external periodic signals and robustness with respect to (small) model uncertainties. These features motivate why contraction theory is used to deal with engineering problems such as output regulation ( [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF], [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF]), multiagent synchronization ( [START_REF] Giaccagli | Sufficient metric conditions for synchronization of leader-connected homogeneous nonlinear multi-agent systems[END_REF], [START_REF] Jafarpour | Weak and semicontraction for network systems and diffusively coupled oscillators[END_REF]) and observers design ( [START_REF] Sanfelice | Convergence of nonlinear observers on R n with a Riemannian metric (Part I)[END_REF]).

From this viewpoint, particular attention was given to answering the question "how to design a control law for a system to define a contraction". The existing control strategies can be divided in 3 groups. i) Designs that focus on specific techniques applied to particular classes of systems, such as backstepping design [START_REF] Zamani | Backstepping controller synthesis and characterizations of incremental stability[END_REF] for systems in strict feedback form or LMI-based design for Lur'e systems [START_REF] Giaccagli | Infinite gain margin, contraction and optimality: an LMI-based design[END_REF], [START_REF]LMI conditions for contraction, integral action, and output feedback stabilization for a class of nonlinear systems[END_REF]. These approaches provide tractable conditions, which however apply only to the considered class of systems. ii) Designs that make use of the similar notion of convergent system, e.g. [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF], [START_REF] Pavlov | Incremental passivity and output regulation[END_REF] and [START_REF] Corless | Incremental quadratic stability[END_REF]. Note that, however, the notions
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of convergent, contraction and incremental stability are similar but not completely equivalent, e.g. [START_REF] Rüffer | Convergent systems vs. incremental stability[END_REF]. iii) Optimization tools, e.g. the Control Contraction Metrics [START_REF] Manchester | Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design[END_REF] or [START_REF] Tsukamoto | Neural contraction metrics for robust estimation and control: A convex optimization approach[END_REF]. These designs are applicable to more general classes of systems, with the drawback that they usually require the solution to an (online, pointwise) optimization problem.

In this work, we focus on the class of continuous-time nonlinear systems in the so-called feedforward form (also denoted "in cascade form"). For this class of systems, existing results belonging to the first and second groups of the aforementioned techniques cannot be directly used. One could apply the tools belonging to the third group, but the relative drawbacks would come alongside (i.e. solution of an online optimization problem pointwise, loss of analytical solutions, ...). As a consequence, our first main objective is to derive design tools for such a class of systems. To this end, we focus on the so-called "forwarding approach" that has been developed for stabilization purposes (see [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF]- [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF] and references therein) and we propose an extension to the incremental framework. In particular, as our first result, we develop an incremental version of the so-called forwarding mod{LgV } for multi-input multi-output (MIMO) systems that has been proposed for the single-input singleoutput (SISO) stabilization case in [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF] (and inspired by [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF]), extending de-facto our preliminary result [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF]. The advantage of such an approach, especially for high-dimensional systems, is that it provides a design with several degrees of freedom, that potentially allows splitting the problem of control law construction for large dimensional cascade systems into multiple (possibly recursive) easier steps. Note that with respect to the previous classification of methodologies, our result takes place in the first group.

The proposed incremental forwarding tool is then applied to the context of harmonic regulation of nonlinear systems, e.g., [START_REF] Ghosh | Nonlinear repetitive control[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF]. In this case, the objective is the design of a control action such that the trajectories of the closed-loop system are bounded in forward time and such that a regulation error with respect to a periodic reference is periodic (with the same period) and does not have a frequency content at certain frequencies. This is generally achieved by first extending the plant with a dynamical system possessing an internal model property and a feedback design for the extended closed-loop system. We highlight that in the more general context of output regulation and internal-model based regulators [START_REF] Bin | About robustness of control systems embedding an internal model[END_REF], existing designs can be divided into two groups: the first group considers systems that admit a globally defined normal form possessing stable zero-dynamics [START_REF] Isidori | Nonlinear control systems[END_REF]Section IV]. In such a case, output regulation is achieved (semi)globally in the initial conditions and in the size of the references, by means of a feedback control law composed by a term depending on the internal model and an high-gain feedback (see for instance [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF] and references therein). The main drawback of this approach is that it requires the existence of a normal form, which is not always well-defined globally and that might be practically difficult to be found, especially for MIMO systems. The second group of results works in the "original" coordinates and follows a passivity-like approach. Within this approach, we recall for instance [START_REF] Pavlov | Incremental passivity and output regulation[END_REF], where the problem is posed for incrementally passive systems coupled with a linear output, the work [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF] where the problem is addressed under the notion of convergent systems with the control that is designed by explicitly solving the so-called regulator equations and, more recently, [START_REF] Reinders | Repetitive control for Lur'e-type systems: application to mechanical ventilation[END_REF] for systems in Lur'e form having convergent properties.

In this work, we follow a different approach, similar to the one proposed in [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF]. In particular, the idea is to first extend the plant with a dynamical system composed of a bunch of linear oscillators at the external reference's frequency and its multiplies processing the regulation error and to look for a stabilizer that makes the closedloop system incrementally globally exponentially stable, uniformly with respect to the external signals. After adding the oscillators, the (extended) system is in feedforward form and the incremental forwarding mod{LgV } previously developed can be applied as the feedback design. The proposed result overcomes the main limitation of some existing techniques. With respect to designs such as [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF], where harmonic regulation was obtained semi-globally in the initial conditions and only locally in the references/disturbances (that is, only with the amplitude of the external signals being sufficiently small), our design allows to handle external signals spanning the whole set of finite L∞-norm. Moreover, the proposed approach does not require the existence of a globally defined normal form [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF], or (incrementally) passivity-based conditions [START_REF] Pavlov | Incremental passivity and output regulation[END_REF]. Because of the incremental properties enforced by our design, we show sufficient conditions to achieve harmonic regulation globally in the size of the external references and globally in the domain of attraction for systems that do not explicitly require the existence of a globally defined normal form. Then, as a case study, we specialize our design for linear systems with a scalar nonlinearity and for the case of minimum-phase systems possessing incrementally stable zero dynamics. In the first case, we translate our conditions into an (easy-to-check) test design. In the second case, we demonstrate that the proposed conditions recover existing techniques, showing that our design is not restrictive but rather comprehensive of existing tools.

The paper is structured as follows: in Section II we present the considered framework and we provide the structure of the incremental forwarding mod{LgV } control law for the incremental stabilization of nonlinear systems in feedforward form. Then, in Section III-A we apply our result to the case of global harmonic regulation. We then specialize our result for the class of linear systems with a scalar nonlinearity in Section III-B and for the case of minimum-phase systems possessing contractive zero-dynamics in Section III-C. Conclusions are in Section IV. Notation: We indicate with |•| the vector norm. Given a vector field f : R n → R n and a C1 mapping h : R n → R m , we denote the Lie derivative of h along f at x as L f h(x) = ∂h ∂x (x)f (x). Given a vector field f : R n → R n and a 2-tensor P : R n → R n × R n both C 1 , we indicate with L f P (x) the Lie derivative of the tensor P along f defined as

L f P (x) = lim h→0 (I+h ∂f ∂x (x)) P (x+hf (x,t))(I+h ∂f ∂x (x))-P (x) h , with coor- dinates (L f P (x)) i,j = k 2P ik ∂f k ∂x j (x) + ∂P ij ∂x k (x)f k (x) .
Given a square matrix A we indicate He{A} = A + A and with det(A) its determinant. Given L square matrices A 1 , . . . , A L we indicate with blkdiag(A 1 , . . . , A L ) the block-diagonal matrix having A 1 , . . . , A L on the main diagonal and zero everywhere else. We indicate with I the identity matrix and with 0 the column vector where each element is the number zero (the dimension is clear from the context). We indicate with ⊗ the Kronecker product. Given a n × m matrix B, we indicate with vec(B) the nm column vector where the elements are the ordered elements of matrix B.

II. INCREMENTAL STABILITY OF CASCADE SYSTEMS

In this work, we first consider systems in the following feedforward form

ẋ = f (x) + g(x)u, (1a) 
η = Φη + v(x), (1b) 
where x ∈ R nx , η ∈ R nη is the state, u ∈ R nu is the control action, f : R nx → R nx , g : R nx → R nx×nu and v : R nx → R nη are sufficiently smooth function with f (0) = 0, v(0) = 0 and Φ is a matrix of appropriate dimension. We assume that there exists ḡ > 0 such that |g(x)| ≤ ḡ for all x ∈ R nx . We consider the problem of designing a state-feedback control law

u = α(x, η) (2) 
such that the closed-loop system is globally (exponentially) incrementally stable in the sense that there exist k , λ > 0 such that for any pair of initial conditions χa = (xa, ηa),

χ b = (x b , η b ) ∈ R nx+nη we have that |X (χa, t) -X (χ b , t)| ≤ k exp(-λ t) |χa -χ b | , ∀ t ≥ 0,
where X (χ 0 , t) denotes the trajectory of the closed-loop system (1),

(2) at time t and initial condition χ 0 . Such a property is verified, for instance, if there exists a Riemannian metric along which the closed-loop vector field generates trajectories for which the distance associated with such Riemannian metric is monotonically decreasing in forward time (i.e. for each t ≥ 0, χ → X (χ, t) is a contraction), see [START_REF] Lohmiller | On contraction analysis for non-linear systems[END_REF], [START_REF] Andrieu | Transverse exponential stability and applications[END_REF]. The open-loop system (1) is in the so-called feedforward (or cascade) form, for which forwarding-based control techniques have been developed for equilibrium stabilization purposes ([19]- [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF], [START_REF] Simon | Robust regulation of a power flow controller via nonlinear integral action[END_REF]). Practical examples of systems in this form are the diskinertia pendulum in [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF] or the TORA system [START_REF] Jankovic | TORA example: cascadeand passivity-based control designs[END_REF]. The structure of the control law that we aim to develop is an incremental version of the forwarding mod{LgV } control design for systems of the form (1) first presented for stabilization purposes in [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF] for the case in which η is scalar with Φ = 0. This result extends de-facto the author's preliminary results in [6, Section III] in which the case of Φ = 0 and nu ≥ nη has been studied. In this framework, we start by assuming the following.

Assumption 1 (Pre-contractive feedback + Killing vector). Consider system (1). There exist a C 1 function α 0 : R nx → R nu , a C 1 matrix function P : R nx → R nx×nx taking symmetric and positive values P = P > 0 and three positive real numbers p, p, p such that the function

f 0 (x) = f (x) + g(x)α 0 (x) satisfies L f 0 P (x) ≤ -pI, pI ≤ P (x) ≤ pI (3) LgP (x) = 0 (4) 
for all x ∈ R nx .

Assumption 1 asks for a pre-stabilizing feedback control action such that the x-dynamics generates a contraction with respect to a Riemannian metric induced by the matrix function P . Also, (4) implies that g is a "Killing Vector" field 1 for this metric (see [START_REF] Giaccagli | Further results on incremental input-to-state stability based on contraction-metric analysis[END_REF]). In the linear case, this corresponds to a stabilizability assumption, where (4) is always satisfied as P is taken as a constant positive definite matrix solution of a Lyapunov equation. The design of α 0 and P can be obtained following existing techniques ( [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF], [START_REF] Zamani | Backstepping controller synthesis and characterizations of incremental stability[END_REF], [START_REF] Giaccagli | Infinite gain margin, contraction and optimality: an LMI-based design[END_REF], [START_REF] Pavlov | Incremental passivity and output regulation[END_REF]). Note moreover that, by [32, Theorem 2], the Killing vector property (4) guarantees that the x-dynamics is incrementally (exponentially) ISS (see [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF]Definition 4.1]) with respect to any input u. From now on, we take f (x) = f 0 (x) without loss of generality (i.e., Assumption 1 holds for α 0 (x) = 0 for all x, for some P ).

Assumption 2 (Non positiveness). There exists a symmetric positive definite matrix H = H > 0 such that

HΦ + Φ H ≤ 0 (5) 
To conclude, similarly to [22, Proposition 1], our last assumption is the following.

Assumption 3 (Incremental Forwarding mod{LgV }). We know three C 1 functions M : R nx → R nη , ∆ : R nx → R nη and : R nx → R nu such that, for all x ∈ R nx :

1) the functions M and ∆ are solution of

L f M (x) = ΦM (x) + v(x) + ∆(x); (6) 
2) there exists a matrix Λ such that

LgM (x) = Λ (7)
and such that the couple (Φ, (HΛ) ) is detectable; 3) the function satisfies

Λ ∂ ∂x (x) = - ∂∆ ∂x (x); (8) 
4) the following inequality holds for some λ > 0

L f P (x) + He P (x)g(x) ∂ ∂x (x) ≤ -λI . (9) 
Assumption 3 corresponds to a MIMO version of the assumptions in [22, Proposition 1]. In our framework, item 1 corresponds to a more general version of [22, Eq. ( 6)]. A solution M = M (x) of ( 6) is known to exist for ∆ = 0, i.e. a function M satisfying

L f M (x) = ΦM (x) + v(x) (10) 
always exists if x = 0 is a globally asymptotically stable and locally exponentially stable equilibrium point for ẋ = f (x) and Φ has no unstable eigenvalues (see [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF]Lemma IV.2]). These conditions are satisfied under Assumption 1 and Assumption 2. However, such a solution can be practically difficult to compute (see [21, Section III.A]). The main idea of forwarding mod{LgV } is to introduce the term ∆, so that M becomes an easy-to-compute solution, in which the mismatch between the exact solution M of ( 10) and the approximated one M is represented by ∆. About item 2, the term LgM (x) can be seen as a controllability assumption on the control u to act on the dynamics of η of (1) in any point of the state space x. Note that in case Φ = 0, the term LgM can be seen as an approximation of the DC-gain between the input u and an output y = v(x) along the trajectories of the system (see [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF] for a wider discussion). About item 3, as the dynamics of η in the most general case can have a higher dimension than the one of u, in order to mimic the result of [6, Proposition 4], we ask for the mismatch term ∆ to be mapped in a (possibly lower) space of the dimension of the input and to be integrable. Finally, item 4 asks for a robustness-like property for the autonomous system. Indeed, in order to rely on a free-to-choose PDE solution M rather than the exact one M , the open-loop system must be sufficiently contractive to merge the mismatch represented by ∆.

We're now ready to state the main result of this section.

Theorem 1 (Incremental stability of feedforward systems). Consider system (1) and let Assumption 1, 2 and 3 hold. Moreover assume that there exists L M ≥ 0 such that ∂M ∂x (x) ≤ L M for all x. Then, for any gain κ > 0, the system (1) in closed-loop with the control law

u = α 0 (x) + κ(HΛ) (η -M (x)) + (x) (11) 
is globally incrementally exponentially stable.

Proof. We consider the change of coordinates η → z := η -M (x) with M solving [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF]. By making use of ( 7), the closed-loop system can be then written in the form

ẋ = F (x), F (x) := f (x) + g(x) κ(HΛ) z + (x) (Φ -κΛ(HΛ) )z -Λ (x) -∆(x) (12) 
with x = (x , z ) . It is known (see [START_REF] Lohmiller | On contraction analysis for non-linear systems[END_REF], [START_REF] Andrieu | Transverse exponential stability and applications[END_REF]) that if there exists a C 1 matrix function P : R nx+nη → R nx+nη × R nx+nη with P = P > 0 such that

L F P(x) ≤ -pI, pI ≤ P(x) ≤ pI (13) 
for all x, for some strictly positive real numbers p, p, p > 0 then ( 12) is globally exponentially incrementally stable. We look for a metric of the form

P(x) := P (x) 0 0 µ(H + bS) (14) 
with b, µ being strictly positive real numbers to be defined, P taken as in Assumption 1, H as in Assumption 2 and S being a strictly positive definite matrix to be defined. The main intuition behind this choice is that in view of Assumption 2 the matrix H by itself doesn't provide negativity in all the components of z. In order to "strictify" the metric, we rely on a design inspired by [START_REF] Praly | Observers to the aid of "strictification" of Lyapunov functions[END_REF] (also used in [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF]) by means of an observer. Indeed, by item 2 of Assumption 3, the couple (Φ, (HΛ) ) is detectable, and therefore there exist two matrices S = S > 0 and K solving He S(Φ -K(HΛ) ) ≤ -2I.

Hence let S = S and consider the matrix function

L : R n ×R nη → R (n+nη )×(n+nη ) L(x) := L F P(x) + p 1 I 0 0 p 2 I (16) 
for some p 1 , p 2 strictly positive real numbers to be chosen. If L(x) ≤ 0 for all x and for some p 1 , p 2 , then (13) holds with p = min{p 1 , p 2 }. Thanks to [START_REF] Giaccagli | Sufficient metric conditions for synchronization of leader-connected homogeneous nonlinear multi-agent systems[END_REF] and to the Killing Vector property LgP (x) = 0 in Assumption 1, we have that

L(x) = 1 (x) 2 (x) 2 (x) 3 (x) (17) 
where

1 (x) = L f P (x) + He P (x)g(x) ∂ ∂x (x) + p 1 I 2 (x) = κP (x)g(x)(HΛ) 3 (x) = µHe (H + bS)(Φ -κΛ(HΛ) ) + p 2 I.
By adding and subtracting the term µbHe{SK(HΛ) }, by using equation [START_REF]LMI conditions for contraction, integral action, and output feedback stabilization for a class of nonlinear systems[END_REF] and by Assumption 2 we get

3 (x) ≤ p 2 I -µ 2κHΛ(HΛ) + 2bI -bHe{S(K -κΛ)(HΛ) } ≤ p 2 I -µ 2κHΛ(HΛ) + 2bI -b 2 2β S(K -κΛ)(K -κΛ) S -β 2 HΛ(HΛ)
for any real number β > 0, where we used the generalized Young's inequality. Therefore, we select

β = 4κ, b < 2β |S(K-κΛ)| 2 and p 2 < µb
2 and we get 3 (x) < 0 for all x, for any κ, µ > 0. In order to have L < 0, it remains to check the sign of its Schur complement S L (x). In particular, we need S L (x) :

= 1 (x) + 2 (x) -1 3 (x) 2 (x) < 0.
Keeping in mind item 4 of Assumption 3 and the upper bounds of P and g, we get

S L (x) ≤ -(λ -p 1 )I + 4κ 2 p 2 g 2 µb (HΛ) (HΛ).
Hence, for any κ > 0, set

p 1 ≤ λ 4 , µ ≥ 16κ 2 p 2 g 2 |HΛ| 2 λb
so that S L (x) < 0 and therefore L(x) < 0 for all x. Note that the metric P has been obtained in the x = (x, z)-coordinates.

In order to complete the proof, we need to come back to the original coordinates (x, η). This can be done with a globally Lipschitz diffeomorphism. In particular, the metric P in the original coordinates is defined as

P(x, η) := E(x) P(x)E(x), E(x) := I 0 -∂M ∂x (x) I , (18) 
namely

P =   P (x) + µ(H + bS) ∂M ∂x (x) ∂M ∂x (x) -µ(H + bS) ∂M ∂x (x) µ(H + bS)   .
Note that

E(x) -1 = I 0 ∂M ∂x (x) I ,
and, since M is Lipschitz,

|E(x)| ≤ 1 + L M , E(x) -1 ≤ 1 + L M , ∀ x ∈ R n .
Hence, for all vectors v,

v P(x, η)v ≥ min{p, µ |H + bS|} |E(x)v| 2 ≥ min{p, µ |H + bS|} |v| 2 |E(x) -1 | 2 ≥ min{p, µ |H + bS|} (1 + L M ) 2 |v| 2 .
On another hand,

v P(x, η)v ≤ max{p, µ |H + bS|} |E(x)v| 2 ≤ max{p, µ |H + bS|} (1 + L M ) 2 |v| 2 .
Hence, the closed-loop system is incrementally globally exponentially stable with respect to the contraction metric P satisfying p 0 I ≤ P ≤ p0 I and L F P(x, η) ≤ -p 0 I with F (x, η) being the closed-loop [START_REF] Giaccagli | Infinite gain margin, contraction and optimality: an LMI-based design[END_REF] in the original (x, η)-coordinates, p 0 = min{p 1 , p 2 } and

p0 := max{p, µ |H + bS|} (1 + L M ) 2 , p 0 := min{p, µ |H + bS|} (1 + L M ) 2 .
To conclude, note that the proposed control design may be applied recursively. As such, the feedback design procedure (and the verification of the main assumptions) can be split into multiple (easier) steps, in order to deal with (possibly) lower-dimensional systems, greatly simplifying the more general feedback design problem.

III. HARMONIC REGULATION

A. Sufficient conditions for global harmonic regulation

An interesting application context for the results in Section II regards the problem of harmonic output regulation [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF]. Assume to have a nonlinear system of the form

ẋ = f (x) + g(x)(u + d(t)), (19a) 
e = h(x) -r(t) (19b) 
where x ∈ R nx in the state, u ∈ R nu is the control action, f : R nx → R nx and g : R nx → R nx×nu coupled with a regulation error e where h : R nx → R ne with f, g, h to be C2 and f (0) = 0, h(0) = 0 with ne ≤ nu 2 . Let r : R → R ne , d : R → R nu being smooth time-varying external references with finite L∞-norm which are T -periodic, i.e. there exists T ≥ 0 such that

r(t) = r(t + T ) and d(t) = d(t + T ) . (20) 
Consider the problem of designing a control law such that system (19) has bounded trajectories in forward time and the regulated error (19b) asymptotically converges to a periodic trajectory that has no harmonic content at some desired frequencies whose basic period T is given from the signals (r, d). In other words, the objective is to guarantee that the error (19b) is a T -periodic signal which should not present a harmonic content at the frequencies w = 2π T for = 0, 1, . . . , L for some L ≥ 0. Namely, the first L-Fourier coefficients of e are zero, i.e.

c := 1 T T 0 e(t) exp 2i π t T dt = 0, ∀ = 0, . . . L. (21) 
A common approach to solve such a problem is to use an internalmodel based control design ( [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF]), that is, to extend the plant (19) with a dynamic system processing the regulation error and containing harmonic oscillators at the desired frequencies, together with a stabilizer for the closed-loop system. In particular, we consider a dynamical controller of the form η = Φη + Γe [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF] where the matrices Φ, Γ are selected as

Φ = blkdiag 0 w 1 Φ 1 . . . w L Φ 1 , Γ = blkdiag Γ 0 Γ 1 . . . Γ L (23) 
where Φ 1 ∈ R 2ne×2ne and Γ ∈ R 2ne are selected as

Φ 1 = blkdiag φ, . . . , φ , φ = 0 1 -1 0 (24) 
and Γ = (γ, . . . , γ) such that each couple (w φ, γ) is controllable, together with a stabilizer for the closed-loop ( 19), [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF] (see [START_REF] Ghosh | Nonlinear repetitive control[END_REF], [START_REF] Reinders | Repetitive control for Lur'e-type systems: application to mechanical ventilation[END_REF]). In the considered framework, we allow the external signals (r, d) to span the whole R ne × R nu and we look for a global result in the domain of attraction. The existing results have been developed only for the class of nonlinear systems having a globally defined normal form and possessing a minimum phase property [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF]. On the other hand, for systems working in the "original" coordinates the existing results are only local in the amplitude of the external signals ( [START_REF] Ghosh | Nonlinear repetitive control[END_REF], [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF]), that is, with the external signal's amplitude being sufficiently small. Without normal forms but still providing a global result, we rely on incremental properties of nonlinear systems [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF], [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF]. In such a case, the idea is to rely on the results developed in the previous Section to make the closedloop system incrementally globally exponentially stable, uniformly with respect to the external signals. In fact, system ( 19), ( 22) is of the form (1) with v(x) = Γh(x) and Assumption 2 is automatically satisfied with H = I. Hence the following holds.

Proposition 1 (Global Harmonic Regulation). Consider system [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF] extended with the dynamical system ( 22), ( 23), ( 24) and let Assumptions 1 and 3 hold with v(x) = Γh(x) and H = I. Then for any (r, d) satisfying (20) and any initial conditions (x 0 , η 0 ), system [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF] in closed-loop with the dynamic control law [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF], [START_REF] Zamani | Backstepping controller synthesis and characterizations of incremental stability[END_REF] with any gain κ > 0 has bounded trajectories and the error (19b) asymptotically converges to a T -periodic solution satisfying [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF].

Proof. We consider the change of coordinates η → z := η -M (x) with M solving [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF]. By making use of ( 7), the closed-loop system can be then written in form

ẋ = F (x) + Ω(x)R(t), Ω(x) = g(x) 0 Λ I , (25) 
with x = (x , z ) , the vector field F defined as in [START_REF] Giaccagli | Infinite gain margin, contraction and optimality: an LMI-based design[END_REF] and

R(t) = d (t) r (t) .
From Theorem 1, the matrix function P defined in ( 14) is a Riemannian metric for the vector field F .

Moreover Ω(x) possesses the Killing vector property with respect to such P(x), i.e. L Ω P(x) = 0 for all x. Since Ω(x) is bounded for all x, by [START_REF] Giaccagli | Further results on incremental input-to-state stability based on contraction-metric analysis[END_REF]Theorem 2], this implies that the closed-loop is incremental-ISS (see [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF]Definition 2.1]) with respect to R(t). Since (r, d) satisfy ( 20) with period T , then the trajectories of the system and of the error e converge to a bounded and periodic solution with same period T . This can be obtained by combining [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF]Proposition 4.4] and [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF]Proposition 4.5]. By construction of the matrices Φ, Γ as in ( 23), [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF] and by [29, Proposition 1], the first L-Fourier coefficients of the error e are zero, i.e. ( 21) holds. To conclude, note that the Killing vector property is invariant with respect to the globally Lipschitz diffeomorphism [START_REF] Tsukamoto | Neural contraction metrics for robust estimation and control: A convex optimization approach[END_REF], and hence the result holds also in the coordinates (x, η).

B. A test design for a class of nonlinear systems

In this section, we propose a possible design to apply the results in Proposition 1. We consider a nonlinear system of the form [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF] where

f (x) = Ax + N ϕ(ζ), g(x) = B, h(x) = Cx + Dϕ(ζ), ζ = Jx (26) 
where A, N, J, B, C, D are constant matrices of suitable dimension and ϕ(s) is a scalar C 1 nonlinearity with ϕ(0) = 0 without loss of generality. In this case, many practical examples can be found whose plant belongs to the classes of systems described by [START_REF] Isidori | Nonlinear control systems[END_REF]. Some examples are the mechanical ventilation machine in [START_REF] Reinders | Repetitive control for Lur'e-type systems: application to mechanical ventilation[END_REF], a flexible link manipulator in [START_REF] Wu | Observer-based stabilization of one-sided Lipschitz systems with application to flexible link manipulator[END_REF] and the surge system considered in [START_REF] Arcak | Circle and Popov criteria as tools for nonlinear feedback design[END_REF], [START_REF] Andersson | Robustness of the Moore-Greitzer compressor model's surge subsystem with new dynamic output feedback controllers[END_REF]. For such a class of systems, we first assume that Assumption 1 is satisfied with respect to some constant metric P = P > 0.

In order to rely on Proposition 1, we propose the following design.

Let Q be defined as the following matrix parametrized by a and ω

Q(a, ω) := A ⊗ I -I ⊗ Φ(ω) -C ⊗ I J (aB -N ) ⊗ I -J D ⊗ I ( 27 
)
where Φ is as in [START_REF] Ghosh | Nonlinear repetitive control[END_REF] where we explicitly expressed the dependency on the parameter ω = (w 1 , . . . , w L ) for some L ≥ 1 and let A ⊂ R be the set defined as

A(λ) := a ∈ R | ∀x ∈ R n He{P (A + (N + Ba) ∂ϕ ∂ζ (Jx)J)} ≤ -λI . ( 28 
)
Then the following holds.

Corollary 1. Consider system [START_REF] Isidori | Nonlinear control systems[END_REF] and assume that Assumption 1 holds for some constant matrix P = P > 0. Given ω > 0, let λ > 0 and suppose there exists a ∈ A(λ) such that det(Q(a, ω)) = 0.

Let M, Γ be any solution to

Q(a, ω) vec(M ) vec(Γ) = 0.
If (Φ, B M ) is detectable and (Φ, Γ) is controllable, then Assumption 3 holds with M , ∆, , Λ given as

M (x) = M x, ∆(x) = (M N -ΓD)ϕ(Jx), (x) = aϕ(Jx), Λ = M B. (29) 
Proof. First, note that by Assumption 1 and by continuity, the set A is non-empty. Then, let M , ∆, , Λ be defined as in [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF]. For the considered class of systems [START_REF] Isidori | Nonlinear control systems[END_REF], the main idea behind this choice is to pick the function M (x) as a linear function which satisfies the linear part of (6) (and therefore also [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF]), and to stick all the nonlinearities in the term ∆(x), which will be handled by the robustness of the open-loop system with (9) through the existence of a mapping (x) satisfying [START_REF] Giaccagli | Sufficient metric conditions for synchronization of leader-connected homogeneous nonlinear multi-agent systems[END_REF]. With this choice, the conditions (6), [START_REF] Giaccagli | Sufficient metric conditions for synchronization of leader-connected homogeneous nonlinear multi-agent systems[END_REF] reduce to the existence of constant matrices M, Γ and a real number a solution of the matrix equalities

M A = Φ(ω)M + ΓC (30a) aM BJ = (M N -ΓD)J (30b) 
where (30a) comes from the linear terms of ( 6) and (30b) from the definition of ∆ in ( 29) and [START_REF] Giaccagli | Sufficient metric conditions for synchronization of leader-connected homogeneous nonlinear multi-agent systems[END_REF]. Recalling the definition of Sylvester equation, the conditions (30a), (30b) can be rewritten with the Kronecker operator ⊗ as a linear problem of the form

Q(a, ω)Y = 0 ( 31 
)
where Y is a 2k × nx + 2k column vector of unknowns defined as Y = (vec(M ), vec(Γ)) and Q(a, ω) is the matrix defined as in [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF]. For fixed ω, if there exists a ∈ A such that the matrix Q(ā, ω) has a non-null kernel, then there exists at least one non-null vector Y such that Q(a, ω)Y = 0. In such case, the matrices M, Γ can be constructed from the vector Y and the function is selected as (x) = aϕ(Jx). From such choice, ( 6), ( 8) are satisfied. Moreover, since a ∈ A, then also [START_REF] Jafarpour | Weak and semicontraction for network systems and diffusively coupled oscillators[END_REF] holds. Since (Φ, B M ) is detectable and (Φ, Γ) is controllable by assumption, then Assumption 3 holds.

Remark 1. Note that, for a given system and a fixed set A, Corollary 1 shows the frequencies w that can be naturally regulated with the proposed design. In this case, the set of w that can be regulated is a subset of the w satisfying the non-resonance condition rank A -σI B C 0 = nx + ne with σ being any eigenvalue of the matrix Φ, see [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF].

Remark 2. Note that the design proposed in Corollary 1 provides a test that can be performed on the system: for a given set of frequencies ω = (w 1 , . . . , w N ), compute the matrix Q(a, ω). Then compute its determinant which is a polynomial in the variable a.

Find the (finite) values of a that nullify the determinant and check if such values are in the set A. If this is the case, then it's sufficient to check the detectability of (Φ, B M ) and the controllability of (Φ, Γ).

C. The case of minimum phase systems

The main drawback of the design provided by Theorem 1 when applied to the case of harmonic regulation, is that in the most general case a constructive design which is uniform on the number of oscillators L and independent on the considered frequency w to check the validity of Assumption 3 might not be always possible but instead depends on the considered system. In this section, we show that this is not the case if we consider the special case of nonlinear systems which admit a globally defined normal form ([26, Section 4]) with a zero-dynamics which is incrementally stable. We want to stress that the result in Proposition 1 does not assume a priori the existence of a globally defined normal form. We consider, for the sake of simplicity, a single-input single-output (SISO) system with unitary relative degree (the extension to higher relative degree can be dealt with canonical tools, see, e.g., [27, Section V]) of the form ż = ψ(z, y) ẏ = q(z, y) + u -r(t) [START_REF] Giaccagli | Further results on incremental input-to-state stability based on contraction-metric analysis[END_REF] where x = (z , y) ∈ R nx-1 × R is the state, and the vector fields ψ : R nx-1 × R → R nx-1 and q : R nx-1 × R → R are both C 1 (we take d(t) = 0 for all t). Most of the existing results on output regulation for nonlinear systems focus on systems having a minimum phase zero-dynamics. As our approach is to cast the problem in the contraction framework, we will assume that system (32) possesses a contractive zero-dynamics as follows.

Assumption 4 (Minimum Phase). Consider system [START_REF] Giaccagli | Further results on incremental input-to-state stability based on contraction-metric analysis[END_REF]. There exist positive real numbers q, ψy, pz, p z , λz > 0 and a C 1 matrix function Pz : R nx-1 → R (nx-1)×(nx-1) taking symmetric positive values such that the following inequalities3 hold

∂q ∂x (x) ≤ q, ∂ψ ∂y (x) ≤ ψy, (33) 
p z I n-1 ≤ Pz(z) ≤ pzIn-1, L ψ Pz(z) ≤ -2λzIn, (34) 
for all x ∈ R nx .

Remark 3. Note that the Assumption 4 extends (for the global case) the assumption in [24, Theorem 1] on the zero-dynamics to have a (locally) exponentially attractive steady-state when y = 0 (see also [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF]Assumption 2], [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF]).

Under such an assumption we have the following result.

Proposition 2 (Global Harmonic Regulation for Minimum Phase Systems). Consider system (32) extended with the dynamics (22), ( 23), [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF] and let Assumption 4 hold. Then for any number of oscillators L ≥ 0, Assumption 1 and 3 are satisfied with h(x) = y, H = I and

P (x) = Pz(z) 0 0 ε , α 0 (x) = -ky, M (x) = y M 1 (x) . . . M L (x) , M (x) = y y , (x) = -q(z, y) + (k -1)y, Λ = 1 Λ 1 . . . Λ L , Λ = 1 1 , Γ = -1 Γ 1 . . . Γ L , Γ = -w -1 w -1 ∆ (x) = ∆ 0 (x) ∆ 1 (x) . . . ∆ 2L (x) , ∆ 0 (x) = ∆ (x) = -(x) (35) 
with = 1, . . . , L for some gain k > 0 sufficiently large and ε > 0 sufficiently small, both independent on L.

Proof. We first show that Assumption 1 holds. After the prestabilizing action α 0 , the open-loop system (32) is of the form [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF] where x = (z, y) and

f (x) = ψ(z, y) q(x, y) -ky , g(x) = 0 1
Consider the metric P (x) defined as in [START_REF] Wu | Observer-based stabilization of one-sided Lipschitz systems with application to flexible link manipulator[END_REF]. First, note that the Killing Vector property is satisfied, i.e. LgP (x) = 0 for all x. We look for p > 0 such that L(x) < 0 where

L(x) : = L f P (x) -pI =       L ψz Pz(z) Pz(z) ∂ψ ∂y (x) + ε ∂q ∂z (x) 2ε ∂q ∂y (x) -k       -pI Fix any ε > λz 2(p 2 z ψ 2 y )
and set k ≥ k := q + λ k 2ελz + (pz ψy + εq) 2 2ελz for some λ k > 0. From the bounds on q from Assumption 4, the bottom-right term of L f P (x) is negative definite for any ε, λ k > 0. Hence to show (3) we check the Schur's complement S(x) of L f P (x). With the bounds on ψ, q and since there exists λz such that L ψz Pz(z) ≤ -2λzI from Assumption 4, we get

S(x) ≤   -2λz + pz ψy + εq 2 1 λz λ k + pz ψy + εq 2   I ≤ -2λ k I
Therefore, Assumption 1 holds with P defined in [START_REF] Wu | Observer-based stabilization of one-sided Lipschitz systems with application to flexible link manipulator[END_REF], p = min{p z , ε}, p = max{pz, ε} and p = min{2λ k , 2λz; 2λ k λz }. We then check each point of Assumption 3 separately. For item 1 note that (6) holds. Indeed for = 0 we get

∂M 0 ∂x (x)f (x) = h(x) + ∆ 0 (x) q(x) -τ y = -y + ∆ 0
and we recover the definition of ∆ 0 (x) in [START_REF] Wu | Observer-based stabilization of one-sided Lipschitz systems with application to flexible link manipulator[END_REF]. Similarly, for = 1, . . . , L from the definitions of Φ, Γ as in ( 23), ( 24), [START_REF] Wu | Observer-based stabilization of one-sided Lipschitz systems with application to flexible link manipulator[END_REF] we have

∂M ∂x (x)f (x) = 0 w -w 0 M (x) + Γ h(x) + ∆ (x)
which is a set of 2L identities of the form

(q(x) -τ y) = w y + (-w -1)y + ∆ (x) (q(x) -τ y) = -w y + (w -1)y + ∆ (x)
from the definition of ∆ as in [START_REF] Wu | Observer-based stabilization of one-sided Lipschitz systems with application to flexible link manipulator[END_REF]. About item 2, note that LgM (x) = Λ. Since M is linear and Φ is block diagonal, the observability matrix O of (Φ, Λ ) is

O = blkdiag{1, O 1 , . . . , O L }, O = 1 w 1 -w
which has non-zero determinant for all w = 0. Hence (Φ, Λ ) is detectable. About item 3, again, we recover a set of 2L+1 identities. Indeed for all = 0, . . . , 2L we defined (x) = -∆ (x). About item 4, equation ( 9) reads

  L ψz Pz(z) Pz(z) ∂ψ ∂e (x) + ε ∂q ∂z (x) 2ε ∂q ∂e (x) -k   -   0 ε ∂q ∂z (z, y 2ε ∂q ∂y (z, y) -k + 1   ≤ -λzI
where the right-hand-side follows a similar analysis as previously, from the definition of ε and Assumption 4. To conclude the proof, note that the controllability matrix C of (Φ, Γ) has a block-diagonal structure of the form

C = blkdiag{1, C 1 , . . . , C L }, C = -w -1 w (w -1) w -1 w (w + 1)
where each C is full rank and hence C is so.

From Proposition 1, the following then holds.

Corollary 2. Consider system (32) with any r ∈ R satisfying (20) and let Assumption 4 hold. Then for any L ≥ 0, and any initial condition (z 0 , y 0 , η 0 ) the system in closed loop with the dynamical control law [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF], ( 11), ( 23), [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Wu | Observer-based stabilization of one-sided Lipschitz systems with application to flexible link manipulator[END_REF] for any gain κ > 0 has bounded T -periodic trajectories and the regulation error e = yr(t) satisfies [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF].

Remark 4. The control (11) recovers known designs used in nonlinear output regulation theory for minimum phase systems (see [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF], [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF]). The term α 0 = -ky is a high-gain which acts as a pre-stabilizer for the y-dynamics where k is sufficiently large to handle the Lipschitz constant of q while the term Λ (η -M (x)) provides negativity in the directions of the internal model. In the design (11) a particular feature is the term which behaves as a feedback linearization term in the I/O mapping between u and η. It allows obtaining an upper-triangular structure in the Jacobian of the closed-loop system under the change of coordinates η → z = η -M (x).

D. Academic example

Consider system of the form [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF] with

f (x) = -5x 1 + x 2 + sin(x 1 ) x 1 -2x 2 , g(x) = -1 -1
and h(x) = sin(x 1 ) -x 2 . We aim to cancel the harmonic content at the frequency w = 2π T = 1. The interest in such an example is that the system does not admit a globally defined normal form. Therefore, when global harmonic regulation is the goal, approaches based on the use of normal forms cannot be applied. Indeed Lgh(x) = cos(x 1 ) + 1, which is not constant for x 1 = (2j + 1)π for any integer j. Yet, a solution does exist. Indeed, the approach proposed in our work is a valuable tool. Assumption 1 is satisfied with P = I where the Killing Vector property holds as both P and g are constant. Then, following Proposition 1, we extend the plant with the dynamics [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod {LgV }[END_REF] where we pick Φ = 0 1 -1 0 , Γ = 0.478 0.433 .

We select M , ∆, , Γ, Λ solution of ( 6), [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF], [START_REF] Giaccagli | Sufficient metric conditions for synchronization of leader-connected homogeneous nonlinear multi-agent systems[END_REF] according to Corollary 1 where A = (-5, 1; 1, -2), B = (-1; -1), C = (0, -1), D = 1, H = (1, 0), N = (1; 0) and ϕ(s) = sin(s).

In such case, we can select a = 0.4962 ∈ A(1) and check the detectability of (Φ, Λ ) and the controllability of (Φ, Γ). With such a choice, Assumption 3 holds, and global harmonic regulation is achieved with the dynamic controller ( 22), [START_REF] Zamani | Backstepping controller synthesis and characterizations of incremental stability[END_REF].

IV. CONCLUSIONS

In this work, we provided sufficient conditions for the design of a control law for systems in feedforward form to be incrementally globally exponentially stable. For this, we presented an incremental version of the forwarding mod{LgV }. Then we applied our result for harmonic regulation by means of a dynamical controller made of L linear oscillators processing a regulation error and an incremental forwarding design for the closed-loop system to be globally exponentially incrementally stable, uniformly with respect to the external signals. With our design, the regulation error asymptotically converges to a periodic steady-state bounded trajectory for any initial condition and for any amplitude of the external signals.

On such a steady-state trajectory, harmonic regulation is achieved, namely the first (desired) L-Fourier coefficients are zero. The design is also specialized to a class of linear systems with a scalar nonlinearity and minimum-phase systems with incrementally stable zero-dynamics.

Given a C 1

2-tensor P and a C 1 vector field g, we say that g is a Killing Vector field for P if LgP (x) = 0 for all x

Such a condition is known to be necessary for the linear systems case.

The notation L ψ Pz(z, y) has to be understood as the Lie derivative of Pz along the vector field z → ψ(z, y) where y is fixed.