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Abstract: The olefinic dithioether (Z)-1,4-bis(pyridin-2-ylthio)but-2-ene Z-PyS(CH2CH=CHCH2)SPy
(L) was prepared by the treatment of cis-ClCH2CH=CHCH2Cl with in situ generated potassium
pyridine-2-thiolate Py-SK and analyzed by IR and NMR spectroscopy. To investigate the chemistry of
polynuclear iodobismuthate complexes, two equivalents of BiI3 were reacted with L in the MeOH
solution to afford the anionic tetranuclear title compound (C14H15S2N2)2(C9H10SN)2[Bi4I116] with
a N-protonated (Z)-1,4-bis(pyridin-2-ylthio)but-2-ene as a counterion. Compound 1 was character-
ized by IR and UV spectroscopy; the formation of a tetranuclear framework was ascertained by a
single-crystal X-ray diffraction study performed at 100 K. Furthermore, an unusual Bi(III)-meditated
cyclization of one Z-PyS(CH2CH=CHCH2)SPy ligand occurred, affording the bicyclic pyridinium
salt 3-vinyl-2,3-dihydrothiazolo[3,2-a]pyridinium bearing a terminal vinyl group, compensating the
second negative charge of the Bi4I16

4− cluster anion. The SCXRD characterization was completed by
a Hirshfeld surface analysis, revealing some secondary interactions occurring in the crystal.

Keywords: bismuth triiodide; olefinic dithioether; crystal structure; Hirshfeld analysis

1. Introduction

The family of trivalent p-block metal halides hybrids, in particular, halogenobis-
muthates described by the general formula BibX(3b+a)Ra (where R = organic and X = Cl, Br,
and I), have attracted attention as promising low-cost materials, not only due to their non-
toxicity and air stability but also due to their interesting optical and electronic properties,
including luminescence, semiconductivity, photochromism, thermochromism, etc., [1–4],
as well as their fascinating structural topologies. Iodobismuthates hybrid materials have
developed over the past few decades due to their electronic properties, optical properties,
and diverse structures. Until now, more than 30 different anionic structure types have
been structurally characterized [3,5,6]. It has been demonstrated that the anionic inorganic
subnetwork ranges from systems based on isolated 0D units (simple anions in [BiI6]3−) to
polynuclear cluster motifs such as [Bi8I30]6− [4,7–10], through 1D extended chains, most
commonly encountered in [BiI4]−n and [BiI5]2−

n [11–13]. To the best of our knowledge,
hybrid iodobismuthates featuring a two-dimensional (2D) network are very rare, since just
one 2D polymeric structure, namely [Bi2/3I4]2−

n, has been reported so far [14].
In the literature, there are three structural types of tetranuclear anions {Bi4X16}, which

we will name α-[Bi4I16]4−, β-[Bi4I16]4−, and γ-[Bi4Br16]4− (see Scheme 1). The most fre-
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quently used one is α-[Bi4I16]4−, A. It can be described as two sets of edge-sharing [Bi2I10]4−

bioctahedra, which are linked through four µ2-I and µ3-I bridges. The α-[Bi4I16]4− architec-
tures are very common in the literature [15–17], and they also appear for chloride [18] and
bromide [19] bismuthates. The second isomer of the {Bi4I16} anionic family is β-[Bi4I16]4−

B. It can be represented as containing [Bi2I10]4− anion face shared through six µ2-I atoms
with two neutral BiI3 units. This motif has been reported exclusively for iodides [20,21].
A literature survey shows that a third isomer of Bi4X16 units, γ-[Bi4X16]4−, has been in-
vestigated only in bromides [22]. As highlighted in C, the rarest isomer γ-[Bi4Br16]4− can
be described as a result of the fusion of two binuclear [Bi2Br9]3− moieties in which two
µ2-bridging bromide ligands are converted to µ3 ones.
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Most halogenobismutates are formed by the addition of hard N-donor ligands to the
corresponding Bi(III) salts. However, there are also some reports on halogenobismutates
obtained by treatment with softer S-donor ligands [23,24]. For example, the treatment of
BiI3 with dimethyl sulfide is reported to afford the dinuclear salt [SMe3]2[Bi2I8(SMe2)2] [24].
We recently investigated the reactivity of BiI3 vis à vis a thione-type ligand [25].

We have described in the past the complexation of unsaturated Z-ArS(CH2CH=CHCH2)
SAr on CuX salts, yielding both molecular compounds and coordination polymers (CPs)
of type [Cu4(µ3-I)4(µ-Z-ArS(CH2CH=CHCH2)SAr}2]n featuring tetranuclear Cu4I4 clus-
ters as secondary building units [26]. In 2004, the isomeric dithioether ligand E-PyS
(CH2CH=CHCH2)SPy was prepared by Zheng et al. and reacted with various Ag(I)
salts, affording CPs of type [Ag{µ-E-PyS(CH2CH=CHCH2)SPy} ](NO3)}n [27]. We were
therefore intrigued by the outcome using a ligand system featuring a mixed S,N-donor
set that may lead to a CP of type [(BiI3)n{µ-E-PyS(CH2CH=CHCH2)SPy}] with dative
N- or S-coordination bonds. An example of an N-bound coordination polymer is 1D
[(Bi2I6)(µ-bipy)]n, obtained by the reaction of BiI3 with 4,4′-bipyridine [28]. Alternatively,
the formation of an iodobismutate salt of the α-[Bi4I16]4− type, as mentioned above, may
occur. As the third alternative, other structural motifs such as [Bi2I8]2− dimers could be
expected a priori [29].

We present in this paper the synthesis of the hitherto unknown unsaturated pyridinic
dithioether Z-PyS(CH2CH=CHCH2)SPy (L), its reactivity with BiI3, and the crystal structure
of the resulting tetranuclear iodobismuthate organic inorganic hybrid material 1.

2. Results and Discussion

The ligand Z-Py-S(CH2CH=CHCH2)S-Py (L) was synthesized by in situ deprotonation
of the aromatic thiol Py-SH in the presence of KOH in an ethanolic solution and subsequent
reaction of the thiolate with cis-ClCH2CH=CHCH2Cl, according to Scheme 2. It was
isolated in the form of a colorless oil.
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Scheme 2. Synthesis of the ligand L.

The assignment of the internal vibrational modes is based on the comparison with
the well-documented spectra of homologous compounds [26,27]. The IR spectrum of L
in dichloromethane, shown in Figure S2, reveals at high wavenumbers the signals of the
aromatic ν(C-H) vibrations at 3074, 3048, and 2980 cm−1. The band located at 2932 cm−1

is associated with the aliphatic ν(C-H) vibrations. The absorptions observed at 1580 and
1557 cm−1 are attributed to ν(C=C) and ν(C=N) stretching. In addition, two further
absorptions at 1455 and 1415 cm−1 are attributed to the deformation δ(CH2). Finally, the
bending modes of aromatic δ(C–H) appear at 1148 and 1124 cm−1, while aliphatic δ(C–H)
bending is detected in the region 1089–986 cm−1.

Its 1H-NMR spectrum in CDCl3 (Figure 1) displays a pseudo-quadruplet-like multiplet
at δ 3.96 ppm, attributed to the (SCH2) groups, and the central olefinic HC=CH unit gives
rise to a multiplet centered at δ 5.67 ppm. The simulated spectrum using ChemDraw at
400.1 MHz in CDCl3 matches well with the experimental spectrum (Figure S3). Note that
the multiplicity of the signals cannot be interpreted by the first order, and the simulated
coupling constants are also listed in the supporting material. In the proton-decoupled 13C-
NMR spectrum depicted in Figure 2, the methylene groups and olefinic carbons resonate at
26.8 and 128 ppm, respectively. The assignment of the resonances is based on a comparison
with the spectra of related unsaturated compounds E-PyS(CH2CH=CHCH2)SPy and Z-
ArS(CH2CH=CHCH2)SAr [26,27].
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The title compound 1 was obtained via treatment of BiI3 with L in a 2:1 molar ratio in a
MeOH solution. The reaction was first stirred at room temperature for 2 h, and then heated
to 70 ◦C for 3 h. Upon cooling, the orange solid of 1 was collected by filtration, and the
solvent was allowed to evaporate partially to yield air-stable orange crystals (Scheme 3).

Molbank 2024, 2024, x FOR PEER REVIEW 4 of 14 
 

 
Figure 2. 13C{1H}-NMR spectrum (100.61 MHz, CDCl3) of L at 298 K. 

The title compound 1 was obtained via treatment of BiI3 with L in a 2:1 molar ratio in 
a MeOH solution. The reaction was first stirred at room temperature for 2 h, and then 
heated to 70 °C for 3 h. Upon cooling, the orange solid of 1 was collected by filtration, and 
the solvent was allowed to evaporate partially to yield air-stable orange crystals (Scheme 
3). 

 
Scheme 3. Synthesis of the title compound 1. 

As revealed by a single-crystal X-ray diffraction analysis, the tetranuclear compound 
1 crystallizes in the monoclinic space group P21/n. As shown in Figure 3, the asymmetric 
unit of 1 contains half of a [Bi4I16]4− anion, located on an inversion center, and two different 
monoprotonated cations, 1,4-bis(pyridinium-2-ylthio)but-2-ene and 3-vinyl-2,3-
dihydrothiazolo[3,2-a]pyridinium. In fact, the tetranuclear [Bi4I16]4− is generated from an 
inversion center via Bi2–I6–Bi11 and Bi11–I7–Bi21 bridges [11-x, 1-y, 2-z] to build the 

Scheme 3. Synthesis of the title compound 1.



Molbank 2024, 2024, M1755 5 of 13

As revealed by a single-crystal X-ray diffraction analysis, the tetranuclear compound
1 crystallizes in the monoclinic space group P21/n. As shown in Figure 3, the asymmet-
ric unit of 1 contains half of a [Bi4I16]4− anion, located on an inversion center, and two
different monoprotonated cations, 1,4-bis(pyridinium-2-ylthio)but-2-ene and 3-vinyl-2,3-
dihydrothiazolo[3,2-a]pyridinium. In fact, the tetranuclear [Bi4I16]4− is generated from
an inversion center via Bi2–I6–Bi11 and Bi11–I7–Bi21 bridges [11-x, 1-y, 2-z] to build the
complex (C14H15S2N2

+)2(C9H10SN+)2[Bi4I16
−]. Thermal ellipsoid plots of the components

of 1 are shown in Figure 3. The zero-dimensional tetraanion is constituted of four dis-
torted BiI6 octahedra, which are interconnected in an edge-sharing arrangement. The
overall connectivity consists of two sets of edge-sharing dioctahedra mutually sharing
three edges to generate the centrosymmetric anion (Figure 3). These specific connectivities
of the octahedra give rise to three iodide ligand bonding environments: two µ3-I (average
Bi-µ3-I = 3.347 Å), four µ2-I (average Bi-µ2-I = 3.183 Å), and ten terminal iodides (average
Bi–Iterminal = 2.922 Å). The I−Bi−I bond angles vary from 82.194(9) to 100.147(10)◦ for cis
and 168.466(11)◦ to 177.596(11)◦ for trans arrangements. The average intra-ionic Bi···Bi
distance in the [Bi4I16]4− cluster is 4.874 Å. This value is longer than twice the van der Waals
radii of Bismuth (4.68 Å) [30] and is well in accordance with those found in [1,2-diethyl-
3,4,5-trimethyl-pyrazolium]4[Bi4I16] [31] and (H2TMDP)2(Bi4I16).2EtOH (TMDP = 1,3-bis-
(4-piperidyl)propane) [30]. The geometrical features of the [Bi4I16]4− entities are consistent
with those observed in related iodobismuthate compounds [15,31–33]. The distorted octa-
hedral coordination geometry could be interpreted as the beginning of localization of the
lone pairs trans to the Bi–Bi vector and/or a geometric arrangement to minimize the Bi···Bi
interaction [4,12]. Note that the [Bi4I16]4− tetraanion is one of the largest known discrete
iodobismuthate polyanions in bismuth iodide chemistry. This statement is based on the
analysis of all hybrid iodobismutate structures available in the CSD (vers. 2023) database,
revealing thirty-seven entries for the [Bi4I16]4− motif. For example, treatment of BiI3 with
L-cysteine in the presence of HI is reported to afford [Bi4I16]4− clusters, whose negative
charge is balanced by two protonated L-cystineH2 cations [34]. The solvothermal reaction of
a mixture of BiI3, the salt 1,1′′-(1,4-butanediyl)bis[4,4′-bipyridinium]bis[tetrafluoroborate]
(bbpyf) and HI resulted in the formation of a 2D supramolecular consisting of [bbpy][Bi4I16]
units [35]. Further examples are [C6H14N2]2[Bi4I16]·2H2O resulting from solvothermal reac-
tion between BiI3, 1,2-benzenediamine in EtOH [36] or (1,3-MePy)4{[Bi4I16](I2)} stemming
from a mixture of BiI3, 1,3-dimethylpyridinium iodide and HI in MeCN solution [37]. Simi-
lar tetranuclear α-type anions [Bi4X16]4− [5] are described in the literature for X = Cl and
X = Br [38,39]. Related iodoantimonate anions of the α-type, [Sb4I16]4−, were investigated
by Vasiliev et al. [40].

From the dimensional reduction concept, the 1D anion Bi(III)I4
− can be obtained by

excision of the 2D layer of the parent BiI3 structure by adding an equivalent of I− to BiI3
(Scheme S1). By adding another I−, further dimensional reduction in this chain can lead, in
turn, to a Bi2I10

4− edge-shared octahedra dimer [41]. Starting from the binuclear [Bi2I10]4−

unit, the tetranuclear [Bi4I16]4− can be constructed by the hypothetical addition of two
neutral BiI3 molecules on opposing sides of the previous anion (Bi2I10

4− + 2 BiI3 = Bi4I16
4−

and Bi4I16
4− + 2 BiI3 = Bi6I22

4−) (see Scheme S1) [41]. This leads to a connectivity of the
octahedra that is also found in the layered CdI2 structure [42]. So, the [Bi4I16]4− anion can
also be viewed as a cut-out of those layers.

As shown in Figure 4A, the organic cations [C14H15S2N2]+ form a dimer by the
self-assembly of extensive intermolecular hydrogen bonds (N2–H2···S3 = 2.891 Å,
N2–H2···N3 = 1.813 Å). These distances are much shorter than the sum of the Van Der Waals
radii of H and S atoms (1.2 + 1.8 = 3 Å) and of H and N atoms (1.2 + 1.55 = 2.75 Å). These
dimers are in close contact with the [C9H10SN]+ cations via H/S···π interactions (with
d(H7···N3/C19-C23) = 2.903 Å and d(S1···N2/C15-C17) = 3.716 Å), and very strong hydro-
gen bonds of type H···N/S are also observed (H7···N3 = 2.530 Å and H6···S2 = 2.877 Å)
(Figure 4B, Table S2), serving to tether them together into a 2D supramolecular layered
network (see Figure 5A).
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As highlighted in the view along the a-axis (Figure 5), the crystal structure of 1 is
built from the packing of these open-2D supramolecular layers of organic cations, which
accommodate the [Bi4I16]4− anions in windows. Each [Bi4I16]4− anion forms four I···I
contacts with the four nearest anions. The shortest distance between the I atoms is 3.993 Å
(I3···I5), which is slightly greater than the sum of the van der Waals radii of two I atoms
(3.96 Å). These I···I interactions link the 0D anionic components by extending them along
the b- and c-axis to produce a pseudo-two-dimensional {[Bi4I16]4−} arrangement, which is
stacked perpendicular to the [101] crystallographic direction (see Figures 5A and S5).
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When viewing the crystal structure along the b-direction (Figures 5C and S7), the
pseudo-2D arrangement of the anionic moieties with the 2D supramolecular layer of organic
cations forms a sheet in the (202) plan (Figure 5C). A second layer of the 2D supramolecular
network is stacked on top or down, perpendicular to the [101] direction (Figure S6). The
cohesion between adjacent layers was held by a weak I···I halogen bond between the iodide
atoms on adjacent sheets with d(I8···I4) = 4.256 Å. This interaction links the adjacent sheets
together into a three-dimensional array (which is extended perpendicular to the [101]
direction). This distance exceeds the sum of the van der Waals radii of two I atoms (3.96 Å)
and is much shorter than twice the ionic radius for the iodide ion (2.2 Å) [43]. In comparison
with crystalline I2, the intermolecular I···I distances are 3.50 Å and 3.97 Å (intra-layer), and
4.27 Å between layers [44]. In addition, there are numerous H···I interactions (represented
on Figure S3) in the range of 3.062–3.315 Å between each I and H atom of the [C14H15S2N2]+

and [C9H10SN]+ cations (the sum of sum of the Van Der Waals radii of H and I is 3.18 Å). We
clearly see [C14H15S2N2]+ molecules interacting with terminal and µ2-bridging iodide via
short C-H···I hydrogen bonding interactions (with d(H···I) ranging from 3.134 to 3.315 Å
for the terminal iodide and from 3.306 to 3.309 Å for µ2-I bridging, respectively). The
[C9H10SN]+ cations are involved in quite strong C4-H4B···I4 (d(H···I) = 3.077 Å) hydrogen
bond and in C–H···I short contacts with the terminal iodides (d(H···I) in the 3.062–3.312 Å
range). Overall, the structure can be viewed as a three-dimensional connected array when
all the I···I intra/interlayer and hydrogen-bonding interactions are considered.

Furthermore, Hirshfeld molecular surface analyses were performed and generated
using the Crystal Explorer 17 program [45,46], allowing the visualization of the different
types of interactions within the crystal structure. The normalized contact distances, dnorm,
are charted in the range −0.680 to 0.981 a.u; de was mapped between (red) 0.6 and (blue)
2.6 Å, and Shape Index, S, was mapped between −1.0 (red) and +1.0 (blue) (Figure 6). The
white surface indicates contacts with distances equal to the sum of van der Waals radii, and
the red and blue surfaces indicate distances shorter (in close contact) or longer (distinct
contact) than the van der Waals radii, respectively. The presented areas are supportive of
the intermolecular interactions described in previous sections.
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The quantitative analysis provided by total and composed fingerprint plots (FPs) of
the main intermolecular contacts is shown in Figure 6 with their relative contributions to the
Hirshfeld surface. Indeed, the most important interaction is H· · · I/I· · ·H, which emerges
in a total of 57% of the Hirshfeld surface area, showing that those interactions have the most
significant contribution in the supramolecular net (Figure 6). These interactions, supported
by a quantitative analysis provided by a 2D fingerprint plot, appear as two symmetrical
spikes (where de > di), emphasizing the donor character played by the organic cations. The
H· · ·H interactions appear in the fingerprint plot with an overall HS contribution of 11.3%
(Figure 7), which is due to the large number of short H· · ·H interatomic contacts. These
interactions appear as widely scattered points of high density (where de = di = 1.2 A◦). The
organic cations are involved in significant H···π/π···H and H···S/S···H interactions. These
interactions were evaluated by means of Hirshfeld surface analysis mapped according
to dnorm, showing their relative contribution of 5.7% and 5%, respectively, in the totality
of interactions percentage (see Figure 7). These interactions appear as widely dispersed
high-density points. For anionic units, I···I interactions were detected with a percentage of
4.3%, helping in the maintenance of the cohesion of the structure. The other interactions,
i.e., I· · ·C/C· · · I and N· · ·H/H· · ·N appear with relatively minor percentages of Hirshfeld
surface area (4.9% and 2.4%), respectively.
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3. Discussion

While the formation of a higher-nuclear halogenobismuthate cluster upon reaction
with S- or N-donor ligands (see examples cited above) is not uncommon, the protonation
of L and the cyclization of a second L molecule yielding 3-vinyl-2,3-dihydrothiazolo[3,2-
a]pyridinium salt deserve some comment. The protonation of N-donor ligands in polar
solvents such as MeCN, THF, or MeOH has also been reported [31,32,47]. For exam-
ple, the treatment of BiI3 with 4,4′-bipyridine in THF affords the iodobismuthate salt
[4,4′-H2bipy]2+[Bi2I8(4,4′-bipy)2]2− [47]. More intriguing is the formation of the hitherto
unknown salt 3-vinyl-2,3-dihydrothiazolo[3,2-a]pyridinium. A similar heterocyclic scaffold,
namely 3-ethoxy-2H,3H-[1,3]thiazolo[3,2-a]pyridinium bromide bearing an ethoxy group
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at the three-position of the five-membered dihydro-thiazole cycle, has been prepared by
treatment of 2-pyridinesulfenyl bromide with vinyl ethyl ether [48]. To rationalize the
formation of 3-vinyl-2,3-dihydrothiazolo[3,2-a]pyridinium, we suggest a BiI3-mediated
cyclization of L accompanied by an H-shift reaction and cleavage of a CH2SPy fragment.
This cleavage of a carbon–carbon bond may be facilitated by π-coordination of the olefinic
double bond to BiI3 in a reaction intermediate. The intermediacy π-coordinated alkene
and alkyne species have also been proposed for Bi(III)-catalyzed hydration of terminal
alkynes [49]. However, we have not studied in detail the mechanistic aspect of this unusual
cyclization reaction. Note that BiX3 salts acting as Lewis acids are well established in
organic synthesis for catalytic and other Bismuth-mediated transformation [50–52]. To
check the reproducibility of these findings, we also repeated the reaction using dry MeCN
as a solvent. A SCXRD analysis of the resulting orange-red crystals revealed the material to
be identical with that in MeOH, excluding an impact of the solvent on the outcome.

4. Experimental

(Z)-1,4-bis(pyridine-2-ylthio)but-2-ene (L): 4-Mercaptopyridine (5.558 g, 50 mmol) was
stirred at room temperature with an excess of potassium hydroxide in 110 mL of ethanol. A
half equivalent of cis-1,4-dichloro-2-butene (3.125 g, 25 mmol) was added to the reaction
mixture. After 1 h of stirring at room temperature, the mixture was refluxed for 3 h. After
allowing it to reach ambient temperature, the resulting refrigerated product was filtered off,
rinsed with a small amount of EtOH, and air-dried. After that, the solution was extracted
with dichloromethane/H2O.The recombined organic layers were dried with anhydrous
sodium sulfate, filtered, and then concentrated. The residual solution was purified by silica
gel column chromatography using a cyclohexane/ether (4:1) mixture as eluent to yield
the pure product as a yellowish liquid. The yield was 92%. Anal. Calc. for C14H14N2S2
(M.W = 274.297 g·mol−1): C, 61.3; H, 5.1; N, 10.2; S, 23.3%. Found: C, 61.22; H, 5.23; N, 10.15;
S, 23.39%. 1H-NMR (400.1 MHz, CDCl3) at 298 K: δ (ppm): 8.38–8.37 m, 2Hd); 7.40–7.35
(m, 2Hb); 7.11–7.09 (m, 2Ha); 6.91–6.87 (m, Hc); 5.70–5.62 (m, 2Hf); 3.98–3.92 (m, 4He).
13C{1H}-NMR (100.61 MHz, CDCl3) at 298 K, δ (ppm): 158.4 (Cg); 149.3 (Cd); 135.7 (Cb);
128 (Cf); 122.1 (Ca); 119.3 (Cc); 26.8 (Ce).

Bis[(Z)-1,4-bis(pyridinium-2-ylthio)but-2-ene]Bis[3-vinyl-2,3-dihydrothiazolo[3,2-a]pyrid-
inium] hexadecaiodotetrabismuthate(III) (1): To a stirred solution of BiI3 (590 mg, 1 mmol) in
methanol (15 mL), 137 mg (0.5 mmol) of the ligand L was added in several portions. An
orange precipitate appeared rapidly. The reaction was first stirred at room temperature
for 2 h, and then heated to 70 ◦C for 3 h. After reaching ambient temperature, the orange
solid of 1 was collected by filtration, and the solvent was allowed to evaporate partially.
After 4 days, orange crystals were formed and then collected by filtration. The overall
yield was 82%. Anal. Calc. for C23H25Bi2I7.99N3S3 (M.W = 1872.80 g·mol−1): C, 14.74;
H, 1.33; N, 2.24; S, 5.13%. Found: C, 14.69; H, 1.21; N, 2.16; S, 5.24%. IR-ATR: 980–1090
ν(C-H), 1124–1156 δ(C-Harm), 1394–1468 δ(CH2), 1507–1629 ν(C=C) and ν(C=N), 3039–3077
ν(C–Harm bonded) cm−1, 3334 ν(N–H).

Crystal data for C23H25Bi2I7.99N3S3, M = 1872.80 g·mol−1, orange crystals, crystal size
0.357× 0.263× 0.204 mm3, Monoclinic, space group P21/n, a = 11.8209(6) Å, b = 18.6555(10) Å,
c = 18.6908(10) Å, β = 97.731(2)◦, V = 4084.3(4) Å3, Z = 2, Dcalc = 3.044 g/cm3, T = 100 K,
R1 = 0.0270, Rw2 = 0.0606 for 424,002 reflections with I > = 2σ (I) and 12476 independent
reflections. Largest diff. peak/hole e/Å−3 1.58/−1.46. Data were collected on a Bruker
D8 Venture four-circle diffractometer equipped with a PHOTON II CPAD detector by
Bruker AXS GmbH using graphite-monochromated MoKα radiation λ = 0.71073 Å and
have been deposited at the Cambridge Crystallographic Data Centre as CCDC 2282066.
(Supplementary Materials). The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures, accessed on
27 December 2023. The structure was solved by direct methods and refined by full-matrix
least-squares against F2 (SHELXL, 2015) [53–55]. Three of the eight independent iodine
positions appeared unusual when refining anisotropically. Anisotropic refinement of I2, I3,
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and I8 resulted in a large nearby residual electron density very close to the initial positions
of the latter. When the nearby residual electron densities peaks were included in the
refinement and the occupancies of these sites (I9, I11, and I10) and the main positions (I2,
I3, and I8) were refined freely, the resulting sum of the three pairs of occupancies was close
to unity. This feature was taken as evidence for a split position occupied solely by iodine.
We applied the occupancies of all disordered iodine atoms, which are 0.39 for I9, I10, and
I11 (21) and −21 for the corresponding three iodines. The final refined fractions are 0.99 for
I1 and 0.61/0.39 for the following pairs: I2/I9, I3/I11, and I8/I10.

5. Conclusions

A novel 0-D organic–inorganic Bismuth–iodide based on a Z-Py-S(CH2CH=CHCH2)S-
Py ligand was prepared and structurally characterized. We are currently extending this
facile preparation of organic–inorganic hybrid materials to other BiX3 salts (X = Cl and
Br) and are evaluating the impact of the metal-to-ligand ratio and variation of the solvent
polarity on the architecture of the resulting material.

Supplementary Materials: The following supporting information can be downloaded: CIF file,
Check-CIF report. Figure S1. Photograph of the single crystals of compound 1. Figure S2. IR
spectrum of L. Figure S3. ChemDraw simulation (prediction) of the 1H-NMR spectrum of L. Figure
S4. IR spectrum of compound 1. Scheme S1. Anionic networks, [BiI4]− and [Bi2I10]4−, derived from
the parent BiI3 compound illustrating the concept of dimensional reduction. Figure S5. Illustration of
side contacts between one 0D tetranuclear units of Bi4I16, [C14H15S2N2]+ and [C9H10SN]+ cations
showing H···I interactions. Figure S6. View of two adjacent 2D supramolecular networks in the 3D
network. Table S1. Selected interatomic distances (Å) and angles (deg) in the crystal structure of 1.
Table S2. Hydrogen bonds geometry (Å, ◦) for compound 1.
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