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Let M be a stratum of a compact stratified space A. It is equipped with a general adapted metric g, which is slightly more general than the adapted metrics of Nagase and Brasselet-Hector-Saralegi. In particular, g has a general type, which is an extension of the type of an adapted metric. A restriction on this general type is assumed, and then g is called good. We consider the maximum/minimum ideal boundary condition, d max/min , of the compactly supported de Rham complex on M , in the sense of Brüning-Lesch. Let H * max/min (M ) and ∆ max/min denote the cohomology and Laplacian of d max/min . The first main theorem states that ∆ max/min has a discrete spectrum satisfying a weak form of the Weyl's asymptotic formula. The second main theorem is a version of Morse inequalities using H * max/min (M ) and what we call rel-Morse functions. An ingredient of the proofs of both theorems is a version for d max/min of the Witten's perturbation of the de Rham complex. Another ingredient is certain perturbation of the Dunkl harmonic oscillator previously studied by the authors using classical perturbation theory.

The condition on g to be good is general enough in the following sense. Assume that A is a stratified pseudomanifold, and consider its intersection homology I pH * (A) with perversity p; in particular, the lower and upper middle perversities are denoted by m and n, respectively. Then, for any perversity p ≤ m, there is an associated good adapted metric on M satisfying the Nagase isomorphism H r max (M ) ∼ = I pHr (A) * (r ∈ N). If M is oriented and p ≥ n, we also get H r min (M ) ∼ = I pHr (A). Thus our version of the Morse inequalities can be described in terms of I pH * (A).

The following usual notation is used for a densely defined linear operator T in a Hilbert space. Its domain and range are denoted by D(T ) and R(T ). If T is essentially self-adjoint, its closure is denoted by T . If T is self-adjoint, its smooth core is D ∞ (T ) := ∞ m=1 D(T m ), and its spectrum is denoted by σ(T ).

A Hilbert complex (D, d) is a differential complex of finite length given by a densely defined closed operator d in a graded separable Hilbert space H [START_REF] Brüning | Hilbert complexes[END_REF]. Then the operator D = d + d * , with D(D) = D(d) ∩ D(d * ), is self-adjoint in H, and therefore the Laplacian ∆ = D 2 = dd * +d * d is also self-adjoint. Moreover D ∞ (∆) is a subcomplex of (D, d) with the same homology [9, Theorem 2.12]; it may be also said that D ∞ (∆) is the smooth core of d.

The above notion is applied here in the following case. For a Riemannian manifold M , let Ω 0 (M ) be the space of compactly supported differential forms, and L 2 Ω(M ) the graded Hilbert space of square integrable differential forms. Let d and δ be the de Rham derivative and coderivative acting on Ω 0 (M ), and let D = d + δ and ∆ = D 2 = dδ + δd (the Laplacian). Every Hilbert complex extension d of d in L 2 Ω(M ) is called an ideal boundary condition (i.b.c.) [START_REF] Brüning | Hilbert complexes[END_REF], giving rise to self-adjoint extensions D and ∆ of D and ∆ in L 2 Ω(M ). There exists a minimum/maximum i.b.c., d min = d and d max = δ * , inducing self-adjoint extensions D max/min and ∆ max/min of D and ∆. If M is oriented, then ∆ max corresponds to ∆ min by the Hodge star operator. The corresponding cohomologies, H max/min (M ), are quasi-isometric invariants of M ; for instance, H max (M ) is the usual L 2 cohomology H (2) (M ) [START_REF] Cheeger | On the Hodge theory of Riemannian pseudomanifolds[END_REF]. They give rise to versions of Betti numbers and Euler characteristic, β r max/min = β r max/min (M ) and χ max/min = χ max/min (M ). These concepts can indeed be defined for arbitrary elliptic complexes [START_REF] Brüning | Hilbert complexes[END_REF]. It is well known that d min = d max if M is complete. Thus considering an i.b.c. becomes interesting when M is not complete. For example, if M is the interior of a compact Riemannian manifold N with with ∂N = ∅, then d max/min is defined by taking absolute/relative boundary conditions. With more generality, we will assume that M is a stratum of a compact stratified space A [START_REF] Thom | Ensembles et morphismes stratifiés[END_REF][START_REF] Mather | Notes on topological stability[END_REF][START_REF]Stratifications and mappings, Dynamical systems[END_REF][START_REF] Verona | Stratified mappings-structure and triangulability[END_REF], equipped with a generalization of the adapted metrics considered in [START_REF] Nagase | L 2 -cohomology and intersection cohomology of stratified spaces[END_REF][START_REF]Sheaf theoretic L 2 -cohomology[END_REF][START_REF]L 2 -cohomologie des espaces stratifiés[END_REF]. As we will see, we can assume M = A if desired (it can be said that M is the regular strum in this case). 1.2. Stratified spaces. Roughly speaking, a (Thom-Mather ) stratified space (or stratification) is a Hausdorff, locally compact and second countable space A equipped with a partition into C ∞ manifolds (the strata), satisfying certain conditions [START_REF] Thom | Ensembles et morphismes stratifiés[END_REF][START_REF] Mather | Notes on topological stability[END_REF]. In particular, an order relation on the family of strata is defined by declaring X ≤ Y when X ⊂ Y . With respect to this ordering, the maximum length of chains of strata less or equal than a stratum X is called the depth of X. The supremum of the strata depth is called the depth of A, denoted depth A. The precise definition and needed preliminaries were collected in [4, Section 3], where we have mainly followed [START_REF] Verona | Stratified mappings-structure and triangulability[END_REF]. Instead of recalling it, let us describe how the strata of A fit together, describing also morphisms/isomorphisms of stratifications, and, in particular, the group of automorphisms, Aut(A). We proceed by induction on its depth. If depth A = 0, then A is just a C ∞ manifold, and Aut(A) consists of its diffeomorphisms. Now, given any k ∈ Z + , assume that any stratified space L is described if depth L < k, as well as Aut(L). If L is compact, the cone with link L is c(L) = (L × [0, ∞))/(L × {0}), whose vertex is the point * = L × {0} ∈ c(L). Let L be another compact stratification of depth < k, and φ : L → L a morphism. Then let c(φ) : c(L) → c(L ) be the map induced by φ × id : L × [0, ∞) → L × [0, ∞); in particular, we get the group c(Aut(L)) = { c(φ) | φ ∈ Aut(L) }. It is also declared that c(∅) = { * }, for the empty stratification, and c(∅) = id, for the empty map. The cone c(L) is used as a model stratified space of depth k if L is of depth k -1, whose strata are { * } and the manifolds Y × R + for strata Y of L. The second factor projection L × [0, ∞) → [0, ∞) defines a c(Aut(L))-invariant function ρ : c(L) → [0, ∞), called the radial function. The restrictions of ρ to the strata are C ∞ . A conic bundle is a fiber bundle T over a manifold X with typical fiber c(L) and structural group c(Aut(L)). Then ρ induces a radial function on T , also denoted by ρ, and the vertex of c(L) defines the vertex section of T , whose image is identified with X. Moreover the stratified structure defined on c(L) can be used to define a stratified structure on T , where X becomes the vertex stratum.

For any stratification A of depth k, every stratum X has an open neighborhood (a tube representative) that is isomorphic to an open neighborhood of X in some conic bundle T X over X (with the obvious restrictions of stratified structures to open subsets). The typical fiber of T X is of the form c(L X ) for some compact stratification L X (the link of X) with depth L X < depth A. The vertex and radial function of c(L X ) are denoted by * X and ρ X . Two such neighborhoods of X represent the same tube if their structure is equal on some smaller neighborhood of X. Note that X is open in A if and only if L X = ∅.

Finally, a morphism between two stratifications is a continuous map sending every stratum to another stratum, whose restrictions to the strata are C ∞ , and whose restrictions to small enough tube representatives are restrictions of conic bundle morphisms. Then isomorphisms and automorphisms of stratifications have the obvious meaning. This completes the description because the depth is locally finite by the local compactness.

The (topological) dimension of a stratification A equals the supremum of the dimensions of its strata. It may be infinite, but it is locally finite. The codimension of every stratum X is dim A -dim X. Our main results will assume that the stratification is compact, but non-compact stratifications will be also used in the proofs. In any case, we will only consider stratifications of finite dimension. If the above description of A is modified by requiring that, at every inductive step, only stratifications with no strata of codimension 1 are used, then A is called a stratified pseudomanifold .

A locally closed subset B ⊂ A is called a substratification of A if the restrictions of the strata and tubes of A to B define a stratified structure on B. For instance, A can be restricted to any open subset, to any locally closed union of strata, and to the closure of any stratum. If moreover there are tube representatives of A whose restrictions to B have the same fibers over points of B, then B is called saturated . Let x be a point of a stratum X of dimension m X in a stratification A. A local trivialization of T X on some open neighborhood U of x defines a chart O ≡ O of A for some open O ⊂ R m X × c(L X ). We can assume O = U × c (L X ), where U is some open neighborhood of 0 in R m X and c (L X ) is the subset of c(L X ) defined by the condition ρ X < , for some > 0. This chart is said to be centered at x if x ≡ (0, * X ) ∈ O . The corresponding concept of atlas has the obvious meaning. These concepts can be generalized as follows. Any finite product of stratifications has a non-canonical stratified structure [START_REF]Witten's perturbation on strata[END_REF]Section 3.1.2]; in particular, any finite product of cones is isomorphic to a cone [START_REF]Witten's perturbation on strata[END_REF]Lemma 3.8]. Moreover Aut(P ) × Aut(Q) is canonically injected in Aut(P × Q) for stratifications P and Q. Thus it makes sense to consider a decomposition c(L X ) ∼ = a X i=1 c(L X,i ) (a X ∈ N), for compact stratifications L X,i . The vertex and radial function of every c(L X,i ) are denoted by * X,i and ρ X,i . Then we can also consider general tube representatives given by bundles T X with typical fibers

a X i=1 c(L X,i ) and structural groups a X i=1 c(Aut(L X,i )). This gives rise to a general chart O ≡ O around x for some open O ⊂ R m X × a X i=1 c(L X,i ), which is centered at x if x ≡ (0, * X,1 , . . . , * X,a X ) ∈ O . As above, we can assume O = U × a X i=1 c (L X,i ) for some > 0. Let ρ X,0 denote the norm function on R m X . The function ρ = (ρ 2 X,0 + • • • + ρ 2 X,a X ) 1/2 is called the radial function of R m X × a X i=1 c(L X,i
), even though, when m X = 0, ρ is not the radial function of any cone structure on 

∩ O ≡ M ∩ O for M = R m X × a X i=1 (N i × R + )
, where every N i is some dense stratum of L X,i . We will use the notation k X,i = dim N i + 1.

General adapted metrics.

A general adapted metric g on M is defined by induction on the depth of M . It is any (Riemannian) metric if depth M = 0. Now, assume that depth M > 0 and general adapted metrics are defined for lower depth. Given any general chart O ≡ O as above, take any general adapted metric gi on every N i (depth N i < depth M ), and let

g i = ρ 2u X,i X,i gi + (dρ X,i ) 2 on N i × R + for some u X,i > 0. Let also g 0 be the Euclidean metric on R m X . Then g is a general adapted metric if, via any such general chart, g| O is quasi-isometric to ( a X i=0 g i )| O . In this case, the mapping X → u X := (u X,1 , . . . , u X,a X ) ∈ R a X + (X < M
) is called the general type of g. Such a general chart is called compatible with g, or with its general type.

Let us point out that a general metric does not completely determine its general type. For instance, suppose u X,i = u X,j = 1 for indices i = j. Write c(L X,i ) × c(L X,j ) ≡ c(L), with radial function ρ, for some stratification L.

Then N i × R + × N j × R + ≡ N × R + for some dense stratum N of L.
Moreover there is a general adapted metric g on N such that g i + g j is quasi-isometric to ρ 2 g + (dρ) 2 via the above identity. Therefore we can omit u X,i or u X,j in u X , obtaining a different type of g. This cannot be done if u X,i = u X,j = 1 (Proposition 2.1).

If the above definition of general adapted metric is modified by requiring that, at every inductive step, the general type satisfies u X,i ≤ 1 for all X < M and i = 1, . . . , a X , then the general adapted metric is called good for the scope of this paper. On the other hand, if the definition is modified by requiring at every inductive step that a X = 1 and u X depends only on k := k X,1 = codim X for all X < M , then we get the adapted metrics considered in [START_REF] Nagase | L 2 -cohomology and intersection cohomology of stratified spaces[END_REF][START_REF]Sheaf theoretic L 2 -cohomology[END_REF][START_REF]L 2 -cohomologie des espaces stratifiés[END_REF]. In this case, the general charts compatible with the general type are indeed charts. Writing u k = u X ≡ u X,1 ∈ R + , the condition on an adapted metric g to be good becomes u k ≤ 1 for all k, at every inductive step of its definition. In [START_REF] Nagase | L 2 -cohomology and intersection cohomology of stratified spaces[END_REF][START_REF]Sheaf theoretic L 2 -cohomology[END_REF][START_REF]L 2 -cohomologie des espaces stratifiés[END_REF], it is assumed that A is a stratified pseudomanifold, and then û = (u 2 , . . . , u n ) stands for the type of g. This û is determined by g. In particular, if the definition is modified by taking u k = 1 for all k at every inductive step, we get the adapted metrics of conic type considered in [START_REF] Cheeger | On the Hodge theory of Riemannian pseudomanifolds[END_REF][START_REF]Spectral geometry of singular Riemannian spaces[END_REF][START_REF] Cheeger | L 2 -cohomology and intersection homology of singular varieties[END_REF]. Be alerted about the three slightly different terms used for the scope of this paper: adapted metrics of conic type, adapted metrics and general adapted metrics. The class of (good) general adapted metrics is preserved by products, as well as the class of adapted metrics of conic type, but the class of adapted metrics does not have this property. The existence of general adapted metrics with any possible general type can be shown like in the case of adapted metrics [START_REF] Nagase | L 2 -cohomology and intersection cohomology of stratified spaces[END_REF]Lemma 4.3], [START_REF]L 2 -cohomologie des espaces stratifiés[END_REF]Appendix].

Like in [START_REF]Witten's perturbation on strata[END_REF], the term "relative(ly)" (or simply "rel-") usually means that some condition is required in the intersection of M with small neighborhoods of the points in M , or that some concept can be described using those intersections.

Let M be equipped with a general adapted metric g, with a general type X → u X as above. The rel-local metric completion M of M consists of the points in the metric completion represented by Cauchy sequences that converge in M ( M is the metric completion of M if M is compact). Figure 1 illustrates this concept. The limits of Cauchy sequences define a continuous map lim : M → M . The following properties can be proved like in the case of conic metrics [4, Proposition 3.20 (i),(ii)]. M has a unique stratified structure with connected strata so that lim : M → M is a morphism whose restrictions to the strata are local diffeomorphisms. Moreover g is also a general adapted metric with respect to M . • there is a general chart O ≡ O of M , centered at x and compatible with g, such that

M ∩ O ≡ M ∩ O for M = R m X × a X i=1 (N i × R + )
, where X is the stratum of M containing x; and

• f | M ∩O ≡ f (x) + 1 2 (ρ 2 + -ρ 2 -)| M ∩O , where ρ ± is the radial function of R m± × i∈I± c(L X,i ) for some expression m X = m + + m -(m ± ∈ N) and some partition of {1, . . . , a X } into sets I ± .
This local condition is used instead of requiring that Hess f is "rel-non-degenerate" at the rel-critical points because a "rel-Morse lemma" is missing. Moreover, for every r ∈ {0, . . . , n}, let

ν r x,max/min = (r1,...,ra X ) a X i=1 β ri max/min (N i ) , (1) 
where (r 1 , . . . , r a X ) runs in the subset of N a X determined by

r = m -+ a X i=1 r i + |I -| , r i < k X,i -1 2 + 1 2u X,i if i ∈ I + r i ≥ k X,i -1 2 + 1 2u X,i if i ∈ I - for ν r x,max , r i ≤ k X,i -1 2 -1 2u X,i if i ∈ I + r i > k X,i -1 2 -1 2u X,i if i ∈ I - for ν r x,min .                  (2) 
When a X = 0 in (1), the singleton N 0 consists of the empty sequence, obtaining1 ν r x,max/min = δ r,m-with the convention that the value of empty products is 1. Finally, let ν r max/min = x ν r x,max/min with x running in Crit rel (f ). The notation ν r

x,max/min (f ) and ν r max/min (f ) may be used if necessary. The existence of rel-Morse functions for general adapted metrics holds like in the case of adapted metrics [4, Proposition 4.9]. 1.5. Main theorems. The following is our first main theorem, where property (ii) is a weak version of the Weyl's asymptotic formula.

Theorem 1.1. The following properties hold on any stratum of a compact stratification with a good general adapted metric:

(i ) ∆ max/min has a discrete spectrum, 0 ≤ λ max/min,0 ≤ λ max/min,1 ≤ • • • , where
every eigenvalue is repeated according to its multiplicity. (ii ) lim inf k λ max/min,k k -θ > 0 for some θ > 0.

Our second main result is the following version of Morse inequalities for rel-Morse functions.

Theorem 1.2. For any rel-Morse function on a stratum of dimension n of a compact stratification, equipped with a good general adapted metric, we have

k r=0 (-1) k-r β r max/min ≤ k r=0 (-1) k-r ν r max/min (0 ≤ k < n) , χ max/min = n r=0
(-1) r ν r max/min .

In the case of adapted metrics of conic type, Theorem 1.1 (i) is essentially due to Cheeger [START_REF] Cheeger | On the Hodge theory of Riemannian pseudomanifolds[END_REF][START_REF]Spectral geometry of singular Riemannian spaces[END_REF] (see also [START_REF] Albin | Hodge theory on Cheeger spaces[END_REF][START_REF]The signature package on Witt spaces[END_REF][START_REF]Witten's perturbation on strata[END_REF]), Theorem 1.1-(ii) was proved by the authors [START_REF]Witten's perturbation on strata[END_REF], and Theorem 1.2 was proved by the authors [START_REF]Witten's perturbation on strata[END_REF] and Ludwig [START_REF]Comparison between two complexes on a singular space[END_REF] (with more restrictive conditions but stronger consequences). Other developments of elliptic theory on strata were made in [START_REF]Kähler-Hodge theory for conformal complex cones[END_REF][START_REF] Lesch | Differential operators of Fuchs type, conical singularities, and asymptotic methods[END_REF][START_REF] Hunsicker | Harmonic forms on manifolds with edges[END_REF][START_REF] Schulze | The iterative structure of corner operators[END_REF][START_REF] Debord | Groupoids and an index theorem for conical pseudomanifolds[END_REF][START_REF]The signature package on Witt spaces[END_REF][START_REF] Albin | Hodge theory on Cheeger spaces[END_REF], all of them using adapted metrics of conic type. The main novelty of our paper is the extension of the elliptic theory on strata to the wider class of good general adapted metrics, including good adapted metrics.

1.6. Applications to intersection homology. Consider now the case where A is a stratified pseudomanifold, and therefore M is its regular stratum. Let I pH * (A) denote its intersection homology with perversity p [START_REF] Goresky | Intersection homology theory[END_REF][START_REF]Intersection homology II[END_REF], taking real coefficients. Let β p r = β p r (A) and χ p = χ p(A) denote the versions of Betti numbers and Euler characteristic for I pH * (A). Every perversity can be considered as a sequence p = (p 2 , p 3 , . . . ) in N satisfying p 2 = 0 and p k ≤ p k+1 ≤ p k + 1. For example, the zero perversity is 0 = (0, 0, . . . ), the top perversity is t = (0, 1, 2, . . . ) (t k = k -2), the lower middle perversity is m = (0, 0, 1, 1, 2, 2, 3, . . . ) (m k = k 2 -1), and the upper middle perversity is n = (0, 1, 1, 2, 2, 3, 3, . . . ) (n k = k 2 -1). Recall also that two perversities p and q are called complementary if p+ q = t. Write p ≤ q if p k ≤ q k for all k. Let g be an adapted metric on M of type û = (u 2 , . . . , u n ). If û is associated with a perversity p ≤ m in the sense [START_REF] Nagase | L 2 -cohomology and intersection cohomology of stratified spaces[END_REF][START_REF]Sheaf theoretic L 2 -cohomology[END_REF][START_REF]L 2 -cohomologie des espaces stratifiés[END_REF], and therefore β p r = β r max . In particular, H r

1 k-1-2p k ≤ u k < 1 k-3-2p k if 2p k ≤ k -3 , 1 ≤ u k < ∞ if 2p k = k -2 , (3) 
then H r (2) (M ) ∼ = I pH r (A) * [
(2) (M ) ∼ = I mH r (A) * if g is an adapted metric of conic type [START_REF] Cheeger | L 2 -cohomology and intersection homology of singular varieties[END_REF]. Thus the incompatibility of adapted metrics with products is related to the subtleties of the versions of the Künneth theorem for intersection homology [START_REF] Cohen | On the Künneth formula for intersection cohomology[END_REF][START_REF] Friedman | Intersection homology Künneth theorems[END_REF]. For instance, the isomorphism I pH * (P ×Q) ∼ = I pH * (P )⊗I pH * (Q), for arbitrary pseudomanifolds P and Q, only holds with some special perversities p, including p = m. According to (3), there exist good adapted metrics on M whose type is associated with any given perversity ≤ m.

In (3), only the choices 2p k = k -2, k -4, . . . are possible if k is even, and only the choices 2p k = k -3, k -5, . . . are possible if k is odd. Thus, for every k, (3) establishes a bijection between the possibilities for p k and a partition of

[ 1 k-1 , ∞) into semi-open intervals, where u k is taken.
Let f be a rel-Morse function on M , let x ∈ Crit rel (f ), let X be the stratum of M containing x, and let k = codim X. With the above notation for a chart O ≡ O of M centered at x, there is an adapted metric g on N so that, via the chart, g| O is quasi-isometric to the restriction of

g 0 + ρ 2u k X g + (dρ X ) 2 to M ∩ O .
Then the type of g is also associated with p. Moreover there is some expression, m X = m + + m -(m ± ∈ N), and some decomposition, c(L

X ) ≡ c(L + ) × c(L -), so that M ≡ R m+ × N + × R + × R m-× N -× R + for dense strata N ± of L ± , and f | O ≡ f (x) + 1 2 (ρ 2 + -ρ 2 -)| O , where ρ ± is the radial function of R m± × c(L ± ). Let k ± = dim N ± + 1; thus k = k + + k -.
Here, some of the stratifications L ± may be empty; in fact, L + = ∅ = L -only can happen if u k = 1 (Section 1.3). From ( 1) and ( 2), it follows that the numbers ν r

x,max are independent of the choice of û associated with p, and therefore the notation ν p

x,r = ν p x,r (f ) will be used. Precisely, they have the following expressions:

• If L + = ∅ = L -(only if u k = 1), then ν p x,r =
(r+,r-)

β p r+ (L + ) β p r-(L -) ,
where (r + , r -) runs in the subset of N 2 determined by the conditions

r = m -+ r + + r -+ 1 , r + < k+ 2 , r -≥ k- 2 . • If L X = L + = ∅ (L -= ∅), then ν p x,r = r+ β p r+ (L X ) ,
where r + runs in the subset of N determined by the conditions

r = m -+ r + , r + < k -1 -p k if u k < 1 k 2 if u k = 1 . • If L X = L -= ∅ (L + = ∅), then ν p x,r = r- β p r-(L X ) ,
where r -runs in the subset of N determined by the conditions

r = m -+ r -+ 1 , r -≥ k -1 -p k if u k < 1 k 2 if u k = 1 . • If L X = ∅, then ν p x,r = δ r,m-. Finally, let ν p r = ν p r (f ) = x ν p x,r (x ∈ Crit rel (f ))
, which equals ν r max . Suppose now that A is oriented (M is oriented) and compact. We have β r min = β n-r max for all r because ∆ min corresponds to ∆ max by the Hodge star operator. On the other hand, for any perversity q ≥ n, if p ≤ m is complementary of q, then I q H r (A) ∼ = I pH n-r (A) * [START_REF] Goresky | Intersection homology theory[END_REF][START_REF]Intersection homology II[END_REF], and therefore β q r = β p n-r , obtaining β q r = β r min . As before, it follows from (1) and (2) that the numbers ν r

x,min are independent of the choice of û associated with p. Precisely, with the notation ν q

x,r = ν q x,r (f ) = ν r x,min , they have the following expressions:

• If L + = ∅ = L -(only if u k = 1), then ν q x,r = (r+,r-) β q r+ (L + ) β q r-(L -) ,
where (r + , r -) runs in the subset of N 2 determined by the conditions

r = m -+ r + + r -+ 1 , r + ≤ k+ 2 -1 , r -> k- 2 -1 . • If L X = L + = ∅ (L -= ∅), then ν q x,r = r+ β q r+ (L X ) ,
where r + runs in the subset of N determined by the conditions

r = m -+ r + , r + ≤ k -2 -q k if u k < 1 k 2 -1 if u k = 1 . • If L X = L -= ∅ (L + = ∅), then ν q x,r = r- β q r-(L X ) ,
where r -runs in the subset of N determined by the conditions

r = m -+ r -+ 1 , r -> k -2 -q k if u k < 1 k 2 -1 if u k = 1 .
• If L X = ∅, then ν q x,r = δ r,m-. Like ν p r , we also define ν q r = ν q r (f ) = x ν q x,r (x ∈ Crit rel (f )), which equals ν r min . Theorem 1.2 has the following direct consequence.

Corollary 1.3. Let A be a compact pseudomanifold of dimension n, let M be its regular stratum, and let p be a perversity. If p ≤ m, or if A is oriented and p ≥ n, then, for any rel-Morse function on M (with respect to any good adapted metric), we have

k r=0 (-1) k-r β p r ≤ k r=0 (-1) k-r ν p r (0 ≤ k < n) , χ p = n r=0
(-1) r ν p r .

Stratified Morse theory was introduced by Goresky and MacPherson [START_REF]Stratified Morse theory[END_REF], and has a great wealth of applications. In particular, Goresky and MacPherson have proved Morse inequalities on complex analytic varieties with Whitney stratifications, involving the intersection homology with perversity m [21, Chapter 6, Section 6.12]. Ludwig also gave an analytic interpretation of Morse theory in the spirit of Goresky and MacPherson for conformally conic manifolds [START_REF] Ludwig | The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions[END_REF][START_REF]A proof of stratified Morse inequalities for singular complex algebraic curves using Witten deformation[END_REF][START_REF]The Witten complex for singular spaces of dimension 2 with cone-like singularities[END_REF][START_REF]The Witten deformation for even dimensional conformally conic manifolds[END_REF]. Our version of Morse functions, critical points and associated numbers is different from those used in [START_REF]Stratified Morse theory[END_REF], even in the case of perversity m. To the authors' knowledge, Corollary 1.3 is the first version of Morse inequalities for intersection homology with perversity = m. 1.7. Ideas of the proofs. In the proofs of Theorems 1.1 and 1.2, several steps are like in the case of adapted metrics of conic type [START_REF]Witten's perturbation on strata[END_REF]. Only brief indications of those steps are given in this paper, whereas the parts with new ideas are explained with detail. We adapt the well-known analytic method of Witten [START_REF] Witten | Supersymmetry and Morse theory[END_REF]; specially, as described in [START_REF] Roe | Elliptic operators, topology and asymptotic methods[END_REF]Chapters 9 and 14]. Thus, given a rel-Morse function f on M , we consider the Witten's perturbation d s = e -sf de sf = d + s df ∧ on Ω 0 (M ) (s > 0). Let d s,max/min denote its maximum/minimum i.b.c., with corresponding Laplacian ∆ s,max/min . Since ∆ s,max/min -∆ max/min is bounded, it is enough to prove the properties of Theorem 1.1 for ∆ s,max/min . Moreover, using a globalization procedure [4, Propositions 14.2 and 14.3] and a version of the Künneth theorem [9, Corollary 2.15], [4, Lemma 5.1], it is enough to consider the case of a stratum M = N × R + of a cone c(L) (a non-compact stratification), with a good general adapted metric of the form g = ρ 2u g + dρ 2 , and the rel-Morse function ± 1 2 ρ 2 , where ρ is the radial function and L a compact stratification of smaller depth. A tilde is added to the notation of concepts considered for N . By induction on the depth, it is assumed that ∆ max/min satisfies the properties of Theorem 1.1. Then its eigenforms are used like in [START_REF]Witten's perturbation on strata[END_REF] to split d s,max/min into a direct sum of Hilbert complexes of length one and two, which can be described as the maximum/minimum i.b.c. of certain elliptic complexes on R + . The elliptic complexes of length one are of the same kind as in [START_REF]Witten's perturbation on strata[END_REF], so that the Laplacian of their maximum/minimum i.b.c. is induced by the Dunkl harmonic oscillator on R [3], whose spectrum is well known. However, the Laplacian of the elliptic complexes of length two is a perturbation of the Dunkl harmonic oscillator containing new terms of the form ρ -2u and ρ -2u-1 . A different analytic tool is used here, which was developed by the authors [START_REF] Álvarez López | A perturbation of the Dunkl harmonic oscillator on the line[END_REF]. Precisely, classical perturbation methods were used in [START_REF] Álvarez López | A perturbation of the Dunkl harmonic oscillator on the line[END_REF] to determine self-adjoint operators with discrete spectra defined by this perturbation of the Dunkl harmonic oscillator, giving also upper and lower estimates of its eigenvalues. The application of this analytic tool is what requires g to be good. The information obtained for this perturbation is weaker than for the Dunkl harmonic oscillator. For instance, such self-adjoint operators are only known to exist in some cases, and only a core of their square root is known. Thus more work is needed here than in [START_REF]Witten's perturbation on strata[END_REF] to describe the Laplacians of the maximum/minimum i.b.c. of the simple elliptic complexes of length two, using those self-adjoint operators. The proof of Theorem 1.1 can be completed with such information like in [START_REF]Witten's perturbation on strata[END_REF]. On the other hand, only eigenvalue estimates of those self-adjoint operators are known, which makes it more difficult to determine the "cohomological contribution" of the rel-critical points. This is the key idea to complete the proof of Theorem 1.2 like in [START_REF]Witten's perturbation on strata[END_REF]. 1.8. Some open problems. We do not know whether the condition on g to be good could be deleted. It depends on whether the result used from [START_REF] Álvarez López | A perturbation of the Dunkl harmonic oscillator on the line[END_REF] holds with weaker hypothesis.

The applications would increase by extending our version of Morse inequalities to "rel-Morse-Bott functions." Their rel-critical point set would be a finite union of substratifications.

There should be an extension of the isomorphism H r (2) (M ) ∼ = I pH r (A) * to the case of general adapted metrics and general perversities [START_REF]An introduction to intersection homology with general perversity functions, Topology of stratified spaces[END_REF]. In that direction, an extension of the de Rham theorem with general perversities was proved in [START_REF] Saralegi | Homological properties of stratified spaces[END_REF][START_REF]de Rham intersection cohomology for general perversities[END_REF]. The case with classical perversities was previously considered in [START_REF] Brylinski | Equivariant intersection cohomology, Kazhdan-Lusztig theory and related topics[END_REF][START_REF] Brasselet | Théorème de De Rham pour les variétés stratifiées[END_REF].

It is also natural to continue with the following program, already achieved on closed manifolds. First, it should be shown that there is a spectral gap of the form σ(∆ s,max/min ) ∩ (C 1 e -C2s , C 3 s) = ∅, for some C 1 , C 2 , C 3 > 0. This would define a finite-dimensional complex (S s,max/min , d s ) generated by the eigenforms corresponding to eigenvalues in [0, C 1 e -C2s ] ("small eigenvalues"). Second, it should be proved that (S s,max/min , d s ) "converges" to the "rel-Morse-Thom-Smale complex," assuming that the function satisfies the "rel-Morse-Smale transversality condition." It seems that the existence of the above spectral gap would follow easily by adapting the arguments of [4, Propositions 14.2 and 14.3]. The comparison of (S s,max/min , d s ) with the "rel-Morse-Thom-Smale complex" would require additional techniques, according to the case of closed manifolds [START_REF] Helffer | Puits multiples en mécanique semi-classique. IV. étude du complexe de Witten[END_REF], [START_REF] Bismut | Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle[END_REF]Section 6]. This program was developed by Ludwig in a special case [START_REF]Comparison between two complexes on a singular space[END_REF]. The product of two stratifications, A × A , has a stratification structure whose strata are the products of strata of A and A . However the tubes in

A × A depend on the choice of a function h : [0, ∞) 2 → [0, ∞) that is continuous, homogeneous of degree one, smooth on R 2 + , with h -1 (0) = {(0, 0)}, and such that, for some C > 1, we have h(r, r ) = max{r, r } if C min{r, r } < max{r, r } [4, Section 3.1.2]. Thus the stratification structure of A × A is not unique.
In the case of two cones, c(L) × c(L ) can be described as another cone in the following way [START_REF]Witten's perturbation on strata[END_REF]Lemma 3.8]. The function h(ρ×ρ

) : c(L)×c(L ) → [0, ∞) satisfies that L = (h(ρ × ρ )) -1 (1) is a compact saturated substratification of c(L) × c(L ). Then the map φ : c(L ) → c(L) × c(L ) , [([x, r], [x , r ]), s] → ([x, rs], [x , r s]) , is an isomorphism of stratifications. The vertex of c(L ) is * = φ -1 ( * , * ), and its radial function is ρ = φ * (h(ρ × ρ )). Thus the radial function of c(L) × c(L ), (ρ 2 + ρ 2 ) 1/2 , does not correspond to ρ via φ if L = ∅ = L . Assume that L = ∅ = L .
Let N and N be strata of L and L , and let M = N × R + and M = N × R + be the corresponding strata of c(L) and c(L ). Take general adapted metrics g and g on N and N , and fix any u > 0. We get general adapted metrics g = ρ 2u g + (dρ) 2 and g = ρ 2u g + (dρ ) 2 on M and M . On the other hand, with the above notation, we have φ -1 (M × M ) = N × R + =: M , where N = (M × M ) ∩ L (a stratum of L ). Let g be any general adapted metric on N so that N → M × M is quasi-isometric; for instance, we may take g = (g + g )| N . We get the general adapted metric g = ρ 2u g + (dρ ) 2 on M . Equip M × M with g + g and M with g .

Proposition 2.1. (i ) If u = 1, then φ : M → M × M is a quasi-isometry. (ii ) If u < 1, then φ : M ∩ O → (M × M ) ∩ φ(O) is not quasi-isometric for any neighborhood O of * in c(L ).
Proof. Without lost of generality, we can assume g = (g + g )| N . We have

M = N × R + ⊂ M × M × R + = N × R + × N × R + × R + .
According to this expression, an arbitrary point p ∈ M can be written as p = (x, r, x , r , r ) ≡ (p, r ), obtaining

φ(p) = (x, rr , x , r r ) ∈ M × M = N × R + × N × R + .
Thus we can canonically consider

T pN ⊂ T x N ⊕ R ⊕ T x N ⊕ R , T p M ⊂ T x N ⊕ R ⊕ T x N ⊕ R ⊕ R , T φ(p) (M × M ) = T x N ⊕ R ⊕ T x N ⊕ R .
We easily get

φ * (∂ ρ (p)) = (0, r∂ ρ (rr ), 0, r ∂ ρ (r r )) , φ * (X, 0) = (Y, cr ∂ ρ (rr ), Y , c r ∂ ρ (r r )) , for X = (Y, c∂ ρ (r), Y , c ∂ ρ (r )) ∈ T pN . Hence ∂ ρ (p) 2 g = 1 , (4) 
φ * (∂ ρ (p)) 2 g+g = r 2 + r 2 , ( 5 
) (X, 0) 2 g = r 2u X 2 g+g = r 2u Y 2 g + c 2 + Y 2 g + c 2 , (6) 
φ * (X, 0) 2 g+g = r 2u Y 2 g + c 2 r 2 + r 2u Y 2 g + c 2 r 2 = r 2u Y 2 g + c 2 r 2(1-u) + Y 2 g + c 2 r 2(1-u) , (7) 
where every metric is added as subindex of the corresponding norm.

Observe that

C 0 := min N (ρ 2 + ρ 2 ) > 0 and C 1 := max N (ρ 2 + ρ 2 )
< ∞ by the properties of h. So, by ( 4) and ( 5),

C 0 ∂ ρ (p) 2 g ≤ φ * (∂ ρ (p)) 2 g+g ≤ C 1 ∂ ρ (p) 2 g .
Moreover, if u = 1, then φ * (X, 0) 2 g+g = (X, 0) 2 g by ( 6) and ( 7), obtaining (i). Now, suppose that u < 1. With the above notation, by the conditions satisfied by h, we can take p = (x, r, x , 1) ∈ N and X = (0, ∂ ρ (r), 0, 0) ∈ T pN for all r small enough. By ( 6) and [START_REF] Brasselet | Théorème de De Rham pour les variétés stratifiées[END_REF], it follows that

φ * (X, 0) 2 g+g (X, 0) 2 g = r 2(1-u) → 0 as r → 0, giving (ii).
Similar observations apply to the product of any finite number of cones.

2.2. General adapted metrics. Consider the notation of Section 1.3.

Remark 1. For every m ∈ Z + , there is a canonical homeomorphism c(S m-1 ) ≈ R m , [x, ρ] → ρx, so that the radial function ρ corresponds to the norm on R m [4, Example 3.7]
. This is not an isomorphism of stratifications: c(S m-1 ) has two strata and R m only one; the stratum S m-1 × R + of c(S m-1 ) corresponds to R m {0}. If g denotes the standard metric on S m-1 , then ρ 2 g + (dρ) 2 on S m-1 × R + corresponds to the Euclidean metric on R m {0}. Thus, with the notation of Section 1, the factors R m X or R m± could be also described as cones, or as strata of cones after removing one point.

Remark 2. By taking charts and using induction on the depth, we get the following (cf. [START_REF]Witten's perturbation on strata[END_REF]Remark 7]):

(i) If two general adapted metrics on M have the same type with respect to the same general tubes, then they are rel-locally quasi-isometric. In particular, they are quasi-isometric if M is compact. Then there is a C ∞ partition of unity {λ a } on M subordinated to {M ∩ O a } such that |dλ a | is rel-locally bounded for all general adapted metrics on M of any fixed general type. (v) Suppose that {λ a } and {g a } satisfy the conditions of Remark 3 and (iv). Let f ∈ C ∞ (M ) such that every f | M ∩Oa is rel-admissible with respect to g a . Then

f is rel-admissible with respect to the general adapted metric g = a λ a g a on M . (vi) Let F ⊂ C ∞ (M ) denote the subset of functions with continuous extensions to M that restrict to rel-Morse functions with respect to all general adapted metrics of all possible general types on all strata ≤ M . Then F is dense in C ∞ (M ) with the weak C ∞ topology.

2.4. Hilbert and elliptic complexes. Consider the notation of Section 1.1.

2.4.1.

Hilbert complexes with a discrete positive spectrum. Let (D, d) be a Hilbert complex in a graded separable Hilbert space H, defining self-adjoint operators D and ∆ according to Section 1.1. The direct sum of homogeneous subspaces of even/odd degree are denoted with the subindex "ev/odd". The same subindex is used to denote the restriction of homogeneous operators to such subspaces.

Lemma 2.2. The positive spectrum of ∆ ev is discrete 2 and bounded away from zero if and only if the positive spectrum of ∆ odd is discrete and bounded away from zero. In this case, both operators have the same positive eigenvalues, with the same multiplicity.

Proof. For instance, suppose that the positive spectrum of ∆ ev is discrete and bounded away from zero. It follows from the spectral theorem that

D ∞ (∆ ev/odd ) = ker ∆ ev/odd ⊕ ∆(D ∞ (∆ ev/odd )) ,
and

D ev : ∆(D ∞ (∆ ev )) → ∆(D ∞ (∆ odd ))
is a linear isomorphism satisfying D ev ∆ ev = ∆ odd D ev .

2.4.2. Elliptic complexes with a term that is a direct sum. Let E = r E r be a graded Riemannian or Hermitian vector bundle over a Riemannian manifold M . The space of its smooth sections is denoted by C ∞ (E), its subspace of compactly supported smooth sections is denoted by C ∞ 0 (E), and the Hilbert space of square integrable sections of E is denoted by L 2 (E). All of these are graded spaces. Consider differential operators of the same order, d r :

C ∞ (E r ) → C ∞ (E r+1 ), such that (C ∞ (E), d = r d r
) is an elliptic 3 complex. The simpler notation (E, d) (or even d) will be preferred. Elliptic complexes with nonzero terms of negative degrees or homogeneous differential operators of degree -1 may be also considered without any essential change. For instance, we have the formal adjoint elliptic complex (E, δ).

Suppose that there is an orthogonal decomposition

E r+1 = E r+1,1 ⊕ E r+1,2 for some degree r + 1. Thus C ∞ (E r+1 ) ≡ C ∞ (E r+1,1 ) ⊕ C ∞ (E r+1,2 ) , C ∞ 0 (E r+1 ) ≡ C ∞ 0 (E r+1,1 ) ⊕ C ∞ 0 (E r+1,2 ) , L 2 (E r+1 ) ≡ L 2 (E r+1,1 ) ⊕ L 2 (E r+1,2 ) ,
2 Recall that a complex number is in the discrete spectrum of a normal operator in a Hilbert space when it is an eigenvalue of finite multiplicity. 3 Recall that ellipticity means that the sequence of principal symbols of the operators dr is exact over every nonzero cotangent vector.

and we can write

d r = d r,1 d r,2 , δ r = δ r,1 δ r,2 , d r+1 = d r+1,1 d r+1,2 , δ r+1 = δ r+1,1 δ r+1,2 .
The operators d r,i and δ r,i can be also considered as elliptic complexes of length one, and therefore they have a maximum/minimum i.b.c., d r,i,max/min and δ r,i,max/min .

Lemma 2.3 ([4, Lemma 8.2]
). We have:

D(d max,r ) = D(d r,1,max ) ∩ D(d r,2,max ) , d max,r = d r,1,max | D(dmax,r) d r,2,max | D(dmax,r) .
Lemma 2.4. We have:

D(d r+1,1,max/min ) ⊕ D(d r+1,2,max/min ) ⊂ D(d max/min,r+1 ) . (8) 
Proof. Take any ( u v ) ∈ D(d r+1,1,min ) ⊕ D(d r+1,2,min ), and let u = d r+1,1,min u and v = d r+1,2,min v. This means that there are sequences,

u i in C ∞ 0 (E r+1,1 ) and v i in C ∞ 0 (E r+1,2 ), such that u i → u in L 2 (E r+1,1 ), v i → v in L 2 (E r+1,2 ), d r+1,1 u i → u and d r+1,2 v i → v in L 2 (E r+2 ). So ( ui vi ) ∈ C ∞ 0 (E r+1,1 ) ⊕ C ∞ 0 (E r+1,2 ) ≡ C ∞ 0 (E r+1 ), ( ui vi ) → ( u v ) in L 2 (E r+1 ) and d r+1 ( ui vi ) → u + v in L 2 (E r+2 ), obtaining ( u v ) ∈ D(d min,r+1 ). Now, take any ( u v ) ∈ D(d r+1,1,max ) ⊕ D(d r+1,2,max ), and let u = d r+1,1,max u and v = d r+1,2,max v. This means that u, δ r+1,1 w = u , w and v, δ r+1,2 w = v , w for all w ∈ C ∞ 0 (E r+2 ). Thus ( u v ) , δ r+1 w = u + v , w for all w ∈ C ∞ 0 (E r+2 ), obtaining that ( u v ) ∈ D(d max,r+1 ).

A perturbation of the Dunkl harmonic oscillator

This section is devoted to recall the study of self-adjoint operators on R + induced by the Dunkl harmonic oscillator on R [START_REF] Álvarez López | Embedding theorems for the Dunkl harmonic oscillator[END_REF], and also by certain perturbation of the Dunkl harmonic oscillator on R [START_REF] Álvarez López | A perturbation of the Dunkl harmonic oscillator on the line[END_REF]. This is the main analytic tool of the paper.

Let S = S(R) be the real-/complex-valued Schwartz space on R, with its Fréchet topology. It decomposes as direct sum of subspaces of even and odd functions, S = S ev ⊕ S odd . For σ > - 1 2 , the sequence of generalized Hermite polynomials, p k = p s,σ,k (x), consists of the orthogonal polynomials associated with the measure e -sx 2 |x| 2σ dx on R [40, p. 380, Problem 25]. It is assumed that every p k is normalized and has positive leading coefficient. They give rise to the general Hermite functions φ k = φ s,σ,k (x) = p k e -sx 2 /2 ∈ S. If k is odd, then p s,τ,k and φ s,τ,k also make sense for τ > - 3 2 . Now, let ρ denote the canonical coordinate of R + . Consider the spaces of real-/complex-valued functions,

C ∞ = C ∞ (R), C ∞ + = C ∞ (R + ) and C ∞ +,0 = C ∞ 0 (R + )
, where the subindex 0 is used for compactly supported functions or sections. For every a ∈ R, the operator of multiplication by the function ρ a on C ∞ + will be also denoted by ρ a . We have

[ d dρ , ρ a ] = aρ a-1 , [ d 2 dρ 2 , ρ a ] = 2aρ a-1 d dρ + a(a -1)ρ a-2 . ( 9 
)
For every φ ∈ C ∞ , let φ + = φ| R+ , and let S ev/odd,

+ = { φ + | φ ∈ S ev/odd }. For c, d > -1 2 , let L 2 c,+ = L 2 (R + , ρ 2c dρ) and L 2 c,d,+ = L 2 c,+ ⊕ L 2 d,+
, whose scalar products are denoted by , c and , c,d , and the corresponding norms by c and c,d , respectively. The simpler notation L 2 + , , and is used when c = 0. Recall that the harmonic oscillator on C ∞ + is the operator

H = -d 2 dρ 2 +s 2 ρ 2 (s > 0). For c 1 , c 2 , d 1 , d 2 ∈ R, let P 0 = H -2c 1 ρ -1 d dρ + c 2 ρ -2 , Q 0 = H -2d 1 d dρ ρ -1 + d 2 ρ -2 . ( 10 
) Proposition 3.1 ([3, Theorem 1.4]). If a ∈ R satisfies a 2 + (2c 1 -1)a -c 2 = 0 , (11) 
σ := a + c 1 > -1 2 , ( 12 
)
then the following holds:

(i ) P 0 , with D(P 0 ) = ρ a S ev,+ , is essentially self-adjoint in L 2 c1,+ . (ii ) The spectrum of P 0 := P 0 consists of the eigenvalues

λ k = (2k + 1 + 2σ)s , (13) 
for k ∈ 2N, with multiplicity one and corresponding normalized eigenfunctions

χ k = χ s,σ,a,k := √ 2 ρ a φ s,σ,k,+ . (iii ) D ∞ (P 0 ) = ρ a S ev,+ . Proposition 3.2 (See [3, Section 5]). If b ∈ R satisfies b 2 + (2d 1 + 1)b -d 2 = 0 , (14) 
τ := b + d 1 > -3 2 , (15) 
then the following holds:

(i ) Q 0 , with D(Q 0 ) = ρ b S odd,+ , is essentially self-adjoint in L 2 d1,+ . (ii )
The spectrum of Q 0 := Q 0 consists of the eigenvalues given by the expression (13), for k ∈ 2N + 1 and using τ instead of σ, with multiplicity one and corresponding normalized eigenfunctions

χ k = χ s,τ,b,k := √ 2 ρ b φ s,τ,k,+ . (iii ) D ∞ (Q 0 ) = ρ b S odd,+ . Proposition 3.3 ([5, Corollary 8.1]). Let ξ > 0 and 0 < u < 1 . ( 16 
)
If a ∈ R satisfies [START_REF] Brylinski | Equivariant intersection cohomology, Kazhdan-Lusztig theory and related topics[END_REF] and

σ := a + c 1 > u -1 2 , ( 17 
)
then there is a positive self-adjoint operator P in L 2 c1,+ satisfying the following: (i ) ρ a S ev,+ is a core of P 1/2 and, for all φ, ψ ∈ ρ a S ev,+ ,

P 1/2 φ, P 1/2 ψ c1 = P 0 φ, ψ c1 + ξ ρ -u φ, ρ -u ψ c1 . (18) 
(ii ) P has a discrete spectrum. Let λ 0 ≤ λ 2 ≤ • • • be its eigenvalues, repeated according to their multiplicity. There is some D = D(σ, u) > 0 and, for any > 0, there is some C = C( , σ, u) > 0 so that, for all k ∈ 2N, 

λ k ≥ (2k + 1 + 2σ)s + ξDs u (k + 1) -u , (19) 
λ k ≤ (2k + 1 + 2σ)(s + ξ s u ) + ξCs u . ( 20 
:= b + d 1 > u -3 2 , ( 21 
)
then there is a positive self-adjoint operator Q in L 2 d1,+ satisfying the following:

(i ) ρ b S odd,+ is a core of Q 1/2
and, for all φ, ψ ∈ ρ b S odd,+ ,

Q 1/2 φ, Q 1/2 ψ d1 = Q 0 φ, ψ d1 + ξ ρ -u φ, ρ -u ψ d1 . (22) 
(ii ) Q has a discrete spectrum. Let λ 1 ≤ λ 3 ≤ • • • be its eigenvalues, repeated according to their multiplicity. There is some D = D(τ, u) > 0 and, for any > 0, there is some C = C( , τ, u) > 0 so that [START_REF] Goresky | Intersection homology theory[END_REF] and (20) are satisfied, for k ∈ 2N + 1 and with τ instead of σ. 

θ > -1 2 . ( 23 
)
Moreover suppose that the following properties hold:

(a) If σ = θ = τ and τ -σ ∈ -N, then σ -1 < τ < σ + 1, 2σ + 1 2 . ( 24 
) (b) If σ = θ = τ and σ -τ ∈ -N, then -τ, τ -1 < σ < 3τ + 1, 11τ + 2, τ + 1 . ( 25 
) (c) If σ = θ = τ + 1 and σ -τ -1 ∈ -N, then τ + 1 < σ < τ + 3, 2τ + 7 2 . ( 26 
) (d ) If σ = θ = τ and σ -θ, τ -θ ∈ -N, then σ-τ 2 -1, τ -σ 2 , σ+τ -1 4 , σ+3τ -2 14 , 3σ+τ -4 14 , σ+τ -1 2 < θ < σ+τ +1 2 , τ -1 < σ < τ + 3 . ( 27 
)
Then there is a positive self-adjoint operator W in L 2 c1,d1,+ satisfying the following: (i ) ρ a S ev,+ ⊕ ρ b S odd,+ is a core of W 1/2 , and, for φ = (φ 1 , φ 2 ) and ψ = (ψ 1 , ψ 2 ) in ρ a S ev,+ ⊕ ρ b S odd,+ ,

W 1/2 φ, W 1/2 ψ c1,d1 = (P 0 ⊕ Q 0 )φ, ψ c1,d1 + ξ ρ -u φ, ρ -u ψ c1,d1 + η ρ -a-b-1 φ 2 , ψ 1 θ + φ 1 , ρ -a-b-1 ψ 2 θ . (28) 
(ii ) W has a discrete spectrum. Its eigenvalues form two groups,

λ 0 ≤ λ 2 ≤ • • • and λ 1 ≤ λ 3 ≤ • • •
, repeated according to their multiplicity, such that there is some D = D(σ, τ, u) > 0 and, for every > 0, there are some C = C( , σ, τ, u) > 0 and E = E( , σ, τ, θ) > 0 so that, for all k ∈ N,

λ k ≥ (2k + 1 + 2ς k ) s -2|η| s v+1 2 + ξDs u (k + 1) -u -2|η|Es v+1 2 , ( 29 
)
λ k ≤ (2k + 1 + 2ς k ) s + ξs u + 2|η|s v+1 2 + ξCs u + 2|η|Es v+1 2 , ( 30 
)
where v = σ + τ -2θ, ς k = σ if k is even, and ς k = τ if k is odd. (iii ) Let ũ ∈ R such that 0, v, τ -2θ + 1 2 , σ -2θ -1 2 < ũ < 1, v + 1, σ + 1 2 , τ + 3 2 , (31) 
and let û = max{ũ, v + 1 -ũ}. There is some D = D(σ, τ, u) > 0 and, for any > 0, there is some C = C( , σ, τ, u) > 0 so that, for all k ∈ N,

λ k ≥ (2k + 1 + 2ς k ) s -|η| s û + ξDs u (k + 1) -u -|η| Cs û . (32) 
(iv ) If u = v+1 2 and ξ ≥ |η|, then there is some D = D(σ, τ, u) > 0 so that, for all k ∈ N,

λ k ≥ (2k + 1 + 2ς k )s + (ξ -|η|) Ds u (k + 1) -u . ( 33 
) (v ) If we add the term ξ φ 1 , ψ 1 c1 + ξ φ 2 , ψ 2 d1 to the right-hand side of (28), for some ξ , ξ ∈ R, then the result holds as well with the additional term max{ξ , ξ } in the right-hand side of (30), and the additional term, ξ for k ∈ 2N and ξ for k ∈ 2N + 1, in the right-hand sides of (29), ( 32) and (33). [START_REF] Brylinski | Equivariant intersection cohomology, Kazhdan-Lusztig theory and related topics[END_REF] means that a ∈ {1, -2c 1 }. (iii) The existence of b ∈ R satisfying ( 14) is characterized by the condition (2d 

Remark 7. (i) If h is a bounded measurable function on R + with h(ρ) → 1 as ρ → 0, then hχ 0 , χ 0 c1 → 1 as s → ∞ [4, Lemma 7.3]. (ii) The existence of a ∈ R satisfying (11) is characterized by the condition (2c 1 - 1) 2 + 4c 2 ≥ 0, which holds if c 2 ≥ min{0, 2c 1 }. If c 2 = 0, then (11) means that a ∈ {0, 1 -2c 1 }. If c 2 = 2c 1 , then
1 + 1) 2 + 4d 2 ≥ 0, which holds if d 2 ≥ min{0, -2d 1 }. If d 2 = 0, then (14) means that b ∈ {0, -1 -2d 1 }. If d 2 = -2d 1 , then (14 
P = P 0 + ξρ -2u , Q = Q 0 + ξρ -2u , (34) 
W = P ηρ 2(θ-c1)-a-b-1 ηρ 2(θ-d1)-a-b-1 Q , (35) 
D(P 1/2 ) = D(P 1/2 0 ) , D(Q 1/2 ) = D(Q 1/2 0 ) , D(W 1/2 ) = D((P 0 ⊕ Q 0 ) 1/2 ) .
Thus the expressions (18), ( 22) and ( 28) can be extended to φ and ψ in D(P 1/2 ), D(Q 1/2 ) and D(W 1/2 ), respectively, using

P 1/2 0 φ, P 1/2 0 ψ c1 , Q 1/2 0 φ, Q 1/2 0 ψ d1 , (P 0 ⊕ Q 0 ) 1/2 φ, (P 0 ⊕ Q 0 ) 1/2 ψ c1,d1
instead of

P 0 φ, ψ c1 , Q 0 φ, ψ d1 , (P 0 ⊕ Q 0 )φ, ψ c1,d1 ,
respectively [5, Remark 3.21 and Section 8]. (vii) In Proposition 3.5 (iii), the condition [START_REF] Mather | Notes on topological stability[END_REF] means that ( 16), ( 17) and ( 21) also hold with ũ and v + 1 -ũ instead of u. There exists ũ satisfying (31

) just when 0, v, τ -2θ + 1 2 , σ -2θ -1 2 < 1, v + 1, σ + 1 2 , τ + 3 2 . ( 36 
)
This property is satisfied in the cases (b) and (d) by ( 16), ( 17), ( 21), ( 23), ( 25) and [START_REF]A proof of stratified Morse inequalities for singular complex algebraic curves using Witten deformation[END_REF]; in particular, we can take ũ = v+1 2 . By ( 16), ( 17), ( 21), ( 23) and (24) (respectively, [START_REF] Ludwig | The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions[END_REF]), in the case (a) (respectively, in the case (c)), we have [START_REF] Roe | Elliptic operators, topology and asymptotic methods[END_REF] if and only if τ < 3σ (respectively, σ < 3τ + 4).

Consider the conditions and notation of Proposition 3.3, and the notation of Proposition 3.1. Take a complete orthonormal system

{ χk = χP,k | k ∈ 2N } of L 2
c1,+ so that every χk is a λ k -eigenfunction of P. Let χ k = χ P,k and χ k = χ P,k denote the orthogonal projections of every χk to the subspaces spanned by χ k and

{ χ i | k > i ∈ 2N }, respectively; in particular, χ 0 = 0. Let also χ k = χ P,k = χk -χ k -χ k .
Lemma 3.6. χ P,k c1 → 1 as s → ∞ for every k ∈ 2N.

Proof. We proceed by induction on k. For k = 0, take some > 0 and C > 0 satisfying [START_REF]Intersection homology II[END_REF]. By Propositions 3.1 (ii) and 3.3 (ii), and Remark 7 (vi),

(1 + 2σ)(s + ξ s u ) + ξCs u ≥ λ 0 = P 1/2 χ0 , P 1/2 χ0 c1 > P 1/2 0 χ0 , P 1/2 0 χ0 c1 = P 1/2 0 χ 0 , P 1/2 0 χ 0 c1 + P 1/2 0 χ 0 , P 1/2 0 χ 0 c1 ≥ (1 + 2σ)s χ 0 2 c1 + (5 + 2σ)s χ 0 2 c1 = (1 + 2σ)s + 4s χ 0 2 c1 , giving χ 0 2 c1 < ((1 + 2σ) + C)ξ 4s 1-u → 0
as s → ∞, and therefore χ 0 2 c1 → 1. Now, take any even integer k > 0 and suppose that the result holds for all even indices < k. This yields χ k c1 → 0 as s → ∞. Thus, given any δ > 0, we have χ k 2 c1 < δ/k for s large enough. Take some > 0 and C > 0 satisfying [START_REF]Intersection homology II[END_REF]. By Propositions 3.1 (ii) and 3.3 (ii), and Remark 7 (vi),

(2k + 1 + 2σ)(s + ξ s u ) + ξCs u ≥ λ k = P 1/2 χk , P 1/2 χk c1 > P 1/2 0 χk , P 1/2 0 χk c1 = P 1/2 0 χ k , P 1/2 0 χ k c1 + P 1/2 0 χ k , P 1/2 0 χ k c1 + P 1/2 0 χ k , P 1/2 0 χ k c1 ≥ (2k + 1 + 2σ)s χ k 2 c1 + (1 + 2σ)s χ k 2 c1 + (2k + 5 + 2σ)s χ k 2 c1 = (1 + 2σ)s + 2ks( χ k 2 c1 + χ k 2 c1 ) + 4s χ k 2 c1 > (1 + 2σ)s + 2ks(1 -δ/k) + 4s χ k 2 c1 , giving χ k 2 c1 < ((2k + 1 + 2σ) + C)ξ 4s 1-u + δ 2 < δ
for s large enough. Thus χ k 2 c1 → 0 as s → ∞, and the result follows.

Corollary 3.7. If h is a bounded measurable function on R + such that h(ρ) → 1 as ρ → 0, then h χP,0 , χP,0 c1 → 1 as s → ∞.

Proof. This follows from Lemma 3.6 and Remark 7 (i).

Similar results hold for Q and W, but they are omitted because they are not used.

Two simple types of elliptic complexes

Here, we study two simple elliptic complexes on R + , which will show up in a direct sum splitting of the rel-local model of Witten's perturbation (Section 6). 4.1. An elliptic complex of length one. Consider the standard metric on R + . Let E be the graded Riemannian/Hermitian vector bundle over R + whose nonzero terms are E 0 and E 1 , which are real/complex trivial line bundles equipped with the standard Riemannian/Hemitian metrics. Thus

C ∞ (E 0 ) ≡ C ∞ + ≡ C ∞ (E 1 ) , L 2 (E 0 ) ≡ L 2 + ≡ L 2 (E 1 )
, where real-/complex-valued functions are considered in C ∞ + and L 2 + . For any fixed s > 0 and κ ∈ R, let

C ∞ (E 0 ) C ∞ (E 1 ) d δ -
be the differential operators defined by

d = d dρ -κρ -1 ± sρ , δ = -d dρ -κρ -1 ± sρ .
It is easy to check that (E, d) is an elliptic complex, and that 4 δ = d † .

4.1.1. Self-adjoint operators defined by the Laplacian. By ( 9), the homogeneous components of ∆ (or ∆ ± ) are:

∆ 0 = H + κ(κ -1)ρ -2 ∓ s(1 + 2κ) , (37) 
∆ 1 = H + κ(κ + 1)ρ -2 ± s(1 -2κ) , (38) 
where H is the harmonic oscillator on C ∞ + defined with the constant s. Then ∆ 0 and ∆ 1 are like P 0 and Q 0 in [START_REF]Kähler-Hodge theory for conformal complex cones[END_REF], with c 1 = 0 = d 1 , plus a constant. Then, by Propositions 3.1 and 3.2, ∆ 0 and ∆ 1 define the self-adjoint operators A i and B i in L 2 + indicated in Table 1, where the conditions come from ( 12) and ( 15). The notation A ± i and B ± i may be used as well to specify that these operators are defined by ∆ ± 0 and ∆ ± 1 . In these cases, we have c 1 = d 1 = 0, and therefore σ = a and τ = b, which are given by ( 11) and [START_REF] Cheeger | L 2 -cohomology and intersection homology of singular varieties[END_REF].

σ τ Condition ∆ 0 A 1 κ κ > -1 2 A 2 1 -κ κ < 3 2 ∆ 1 B 1 κ κ > -3 2 B 2 -1 -κ κ < 1 2
Table 1. Self-adjoint operators defined by ∆ 0 and ∆ 1

There are the following overlaps in Table 1:

• Both A 1 and A 2 are defined if -1 2 < κ < 3 2
, and they are equal just when κ = 1 2 . • Both B 1 and B 2 are defined if -3 2 < κ < 1 2 , and they are equal just when κ = -1 2 . The cores of A i and B i , given by Propositions 3.1 and 3.2, will be denoted by E 0 i and E 1 i , respectively. Note that the graded subspace

E i = E 0 i ⊕ E 1 i of C ∞ (E) ∩ L 2 (E)
, whenever defined, is preserved by D = d + δ. Propositions 3.1 and 3.2 also describe the spectra of A i and B i :

• The spectrum of A 1 consists of the eigenvalues

(2k + (1 ∓ 1)(1 + 2κ))s (k ∈ 2N) (39) 
of multiplicity one. • The spectrum of A 2 consists of the eigenvalues

(2k + 4 -(1 ± 1)(1 + 2κ))s (k ∈ 2N) (40) 
of multiplicity one. • The spectrum of B 1 consists of the eigenvalues

(2k + 2 + (1 ∓ 1)(-1 + 2κ))s (k ∈ 2N + 1) (41) 
of multiplicity one. • The spectrum of B 2 consists of the eigenvalues

(2k -2 -(1 ± 1)(-1 + 2κ))s (k ∈ 2N + 1) (42) 
of multiplicity one.

These eigenvalues have normalized eigenfunctions χ k , defined for the corresponding values of a = σ and b = τ . For A + 1 , (39) becomes 2ks. For A - 1 , (39) is 2(k+1+2κ)s.

For A + 2 , ( 40 
) becomes 2(k + 1 -2κ)s. For A - 2 , ( 40 
) is 2(k + 2)s. For B + 1 , (41) is 2(k + 1)s. For B - 1 , (41) becomes 2(k + 2κ)s. For B + 2 , ( 42 
) is 2(k -2κ)s. For B -
2 , (42) becomes 2(k -1)s. Using this, we get the information about the sign of the eigenvalues of A i and B i given in Table 2. In the tables, grey color is used for cases that will be disregarded later (for instance, if there may exist some negative eigenvalue), and a question mark is used for unknown information. , or θ = 1 2 = κ (respectively, θ = 1 2 = -κ). Then, for every ξ ∈ ρ θ S ev,+ , considered as subspace of

Sign of eigenvalues Sign of eigenvalues

A + 1 0 if k = 0 B + 1 + ∀k ∈ 2N + 1 + if k ≥ 2 even B - 1 κ > -1 2 + ∀k ∈ 2N + 1 A - 1 + ∀k ∈ 2N κ = -1 2 0 if k = 1 A + 2 κ > 1 2 -if k < 2κ -1 + if k ≥ 3 odd 0 if k = 2κ -1 κ < -1 2 -if k < -2κ + if k > 2κ -1 0 if k = -2κ κ = 1 2 0 if k = 0 + if k > -2κ + if k ≥ 2 even B + 2 + ∀k ∈ 2N + 1 κ < 1 2 + ∀k ∈ 2N B - 2 0 if k = 1 A - 2 + ∀k ∈ 2N + if k ≥ 3 odd
∆ max,0 ∆ min,0 ∆ max,1 ∆ min,1 κ ≥ 1 2 A 1 B 1 |κ| < 1 2 A 1 A 2 B 1 B 2 κ ≤ -1 2 A 2 B 2
C ∞ (E 0 ) (respectively, C ∞ (E 1 )), there is a sequence (ξ n ) in C ∞ 0 (E 0 ) (respectively, C ∞ 0 (E 1 )), independent of κ, such that lim n ξ n = ξ in L 2 (E 0 ) (respectively, L 2 (E 1 )) and lim n dξ n = dξ in L 2 (E 1 ) (respectively, lim n δξ n = δξ in L 2 (E 0 )).
In particular, ρ θ S ev,+ is contained in D(d min ) (respectively, D(δ min )). Moreover, according to the proof of [4, Lemma 8.5], given 0 < a < b, we can take

ξ n = α n ξ for some α n ∈ C ∞ + satisfying χ [ b n ,na] ≤ α n ≤ χ [ a n ,nb]
, where χ S denotes the characteristic function of every subset S ⊂ R + . (ii) E 0 i (respectively, E 1 i ) is also a core of d max/min (respectively, δ min/max ) when ∆ max/min,0 = A i (respectively, ∆ max/min,1 = B i ). 4.2. An elliptic complex of length two. Consider again the standard metric on R + . Let F be the graded Riemannian/Hermitian vector bundle over R + whose nonzero terms are F 0 , F 1 and F 2 , which are trivial real/complex vector bundles of ranks 1, 2 and 1, respectively, equipped with the standard Riemannian/Hermitian metrics. Thus

C ∞ (F 0 ) ≡ C ∞ + ≡ C ∞ (F 2 ) , C ∞ (F 1 ) ≡ C ∞ + ⊕ C ∞ + , L 2 (F 0 ) ≡ L 2 + ≡ L 2 (F 2 ) , L 2 (F 1 ) ≡ L 2 + ⊕ L 2 + , where real-/complex-valued functions are considered in C ∞ + and L 2 + . Fix s, µ > 0, 0 < u < 1 and κ ∈ R. Let C ∞ (F 0 ) C ∞ (F 1 ) C ∞ (F 2 ) d 0 ≡ d 0,1 d 0,2 δ 0 ≡ δ 0,1 δ 0,2 d 1 ≡ d 1,1 d 1,2 δ 1 ≡ δ 1,1 δ 1,2
-be the differential operators defined by

d 0,1 = µρ -u , d 0,2 = d dρ -(κ + u)ρ -1 ± sρ , d 1,1 = d dρ -κρ -1 ± sρ , d 1,2 = -µρ -u , δ 0,1 = µρ -u , δ 0,2 = -d dρ -(κ + u)ρ -1 ± sρ , δ 1,1 = -d dρ -κρ -1 ± sρ , δ 1,2 = -µρ -u .
Observe that δ 0 = d † 0 and δ 1 = d † 1 . We may also use the more explicit notation d ± r , δ ± r , d ± r,i and δ ± r,i . A direct computation shows that d 0 and d 1 define an elliptic complex (F, d) of length two. Note that, by [START_REF] Brüning | Hilbert complexes[END_REF],

d 1,1 = ρ -u d 0,2 ρ u , δ 0,2 = ρ -u δ 1,1 ρ u . (43) 
4.2.1. Self-adjoint operators defined by the Laplacian. By (9), the homogeneous components of the corresponding Laplacian ∆ (or ∆ ± ) are given by

∆ 0 = H + (κ + u)(κ + u -1)ρ -2 + µ 2 ρ -2u ∓ s(1 + 2(κ + u)) , ∆ 2 = H + κ(κ + 1)ρ -2 + µ 2 ρ -2u ± s(1 -2κ) , ∆ 1 = ∆ 1,1 -2µuρ -u-1 -2µuρ -u-1 ∆ 1,2 , ∆ 1,1 = H + κ(κ -1)ρ -2 + µ 2 ρ -2u ∓ s(1 + 2κ) , ∆ 1,2 = H + (κ + u)(κ + u + 1)ρ -2 + µ 2 ρ -2u ± s(1 -2(κ + u)) .
(We may also use [START_REF] Saralegi | Homological properties of stratified spaces[END_REF] and [START_REF]de Rham intersection cohomology for general perversities[END_REF] to compute easily some parts of the above components of ∆.) The operators ∆ 0 , ∆ 2 , ∆ 1,1 and ∆ 1,2 are like P and Q in [START_REF]Sheaf theoretic L 2 -cohomology[END_REF], with c 1 = 0 = d 1 , plus a constant term. Write ∆ 1 = U ∓ sV , where

V = 1 + 2κ 0 0 -1 + 2(κ + u) . ( 44 
)
Then, by Propositions 3.3, 3.4 and 3.5, and Remark 7 (v), ∆ 0 , ∆ 2 and ∆ 1 define the self-adjoint operators P i and Q j in L 2 + , and W i,j in L 2 + ⊕ L 2 + , indicated in Table 4, where the conditions come from ( 17), ( 21), ( 23), ( 24), ( 25), ( 26) and ( 27). The notation P ± i , Q ± j and W ± i,j may be used as well to specify that these operators are defined by ∆ ± 0 , ∆ ± 2 and ∆ ± 1 . Note that v = u for all W i,j . The cores of P

1/2 i , Q 1/2 j and W 1/2
i,j , given by Propositions 3.3, 3.4 and 3.5, will be denoted by

F 0 i , F 2 j and F 1 i,j = F 1,1 i ⊕ F 1,2 j
, respectively. Remark 9. In contrast to E i in Section 4.1.1, note that the graded subspace

F 0 i ⊕ F 1 i,j ⊕ F 2 j of C ∞ (F ) ∩ L 2 (F )
, whenever defined, is not preserved by D = d + δ. For instance, it is preserved by d but not by δ when i = j = 1, and it is preserved by δ but not by d when i = j = 2.

σ τ θ Condition ∆ 0 P 1 κ + u κ > -1 2 P 2 1 -κ -u κ < 3 2 -2u ∆ 2 Q 1 κ κ > u -3 2 Q 2 -1 -κ κ < 1 2 -u ∆ 1 W 1,1 κ κ + u κ κ > u -1 2 W 2,2 1 -κ -1 -κ -u -κ -u κ < 1 2 -2u ∃ W 1,2 κ -1 -κ -u -1 2 -u Impossible W 2,1 1 -κ κ + u 1 2 -1 -u 2 < κ < 1 -u 2 Table 4.
Self-adjoint operators defined by ∆ 0 , ∆ 2 and ∆ 1

Let us explain the contents of Table 4. Since c 1 = d 1 = 0, we have σ = a and τ = b, which are given by ( 11) and [START_REF] Cheeger | L 2 -cohomology and intersection homology of singular varieties[END_REF]. Moreover σ, τ and u determine θ in Table 4 so that U is of the form (35) because 2θ -σ -τ = -u. Let us check the conditions written in this table, which are given by the hypothesis of Propositions 3.3-3.5. For P i and Q j , only [START_REF] Friedman | Intersection homology Künneth theorems[END_REF] and ( 21) are required. For W i,j , we also require [START_REF] Hunsicker | Harmonic forms on manifolds with edges[END_REF], and the hypothesis (a)-(d) of Proposition 3.5, obtaining the following:

• For W 1,1 , we have σ = θ = τ and τ -σ = u ∈ -N. Thus (a) applies in this case. Note that ( 17), ( 21) and ( 23) mean κ > u -1 2 . Then ( 24) holds because 0 < u < 1 and κ > u - 1 2 . So (a) is satisfied.

• For W 2,2 , we have σ = θ = τ + 1 and σ -τ -1 = 1 + u ∈ -N. Thus (c)
applies in this case. Now, ( 17), ( 21) and ( 23) 17), ( 21) and ( 23) mean -3 2 < κ < 3 2 -u, and we have the following possibilities:

mean κ < 1 2 -2u. Then (26) holds because 0 < u < 1 and κ < 1 2 -2u. So (c) is satisfied. • There is no W 1,2 because θ < -1 2 in that case. • For W 2,1 , (
-The case σ = θ = τ is not possible because u = 0.

-The case σ = θ = τ happens when κ = 1 2 . Then σ = 1 2 and τ = 1 2 + u, obtaining τ -σ = u ∈ -N. Thus (a) applies in this case. Moreover [START_REF] Kato | Perturbation theory for linear operators[END_REF] holds because 0 < u < 1. So (a) is satisfied.

-The case σ = θ = τ happens when κ = 1 2 -u. Then σ = 1 2 + u and τ = 1 2 , obtaining σ -τ = u ∈ -N. Thus (b) applies in this case. Moreover [START_REF] Lesch | Differential operators of Fuchs type, conical singularities, and asymptotic methods[END_REF] 

holds because 0 < u < 1. Hence (b) is satisfied. -The case σ = θ = τ + 1 happens when κ = -1 2 -u. Then σ = 3 2 + u and τ = -1 2 , obtaining σ -τ -1 = 1+u ∈ -N. Thus (c) applies in this case. Moreover (26) holds because 0 < u < 1. Hence (c) is satisfied. -Finally, assume that σ = θ = τ . The condition σ -θ, τ -θ ∈ -N means that κ ∈ ( 1 2 + N) ∪ ( 1 2 -u -N), which in turn means that κ = 1 2 , 1 2 -u, -1 2 -u because -3 2 < κ < 3 2 -u. But σ = θ if κ = 1 2 , τ = θ if κ = 1
2 -u, and θ = τ + 1 if κ = -1 2 -u, as we have seen in the previous cases. So σ -θ, τ -θ ∈ -N, and (d) applies in this case. Moreover, since 0 < u < 1, ( 27) holds just when -1 -u 2 < κ < 1 -u 2 . Thus (d) is satisfied assuming the stated conditions on κ. Therefore W 2,1 is defined in one of the above ways if

-1 -u 2 < κ < 1 -u 2 .
There are the following overlaps of the conditions in Table 4:

• Both P 1 and P 2 are defined for -1 2 < κ < 3 2 -2u, and

P 1 = P 2 just when κ = 1 2 -u. • Both Q 1 and Q 2 are defined for u -3 2 < κ < 1 2 -u, and Q 1 = Q 2 just when κ = -1 2 . • Both W 1,1 and W 2,2 are defined for u -1 2 < κ < 1 2 -2u (if u < 1 3 ), but W 1,1 = W 2,2 for all such κ. • Both W 1,1 and W 2,1 are defined for u -1 2 < κ < 1 -u 2 , and W 1,1 = W 2,1 just when κ = 1 2 . • Both W 2,2 and W 2,1 are defined for -1 -u 2 < κ < 1 2 -2u, and W 2,2 = W 2,1 just when κ = -1 2 -u.
Propositions 3.3, 3.4 and 3.5 also give the following spectral estimates, for all > 0:

• The spectrum of P 1 consists of eigenvalues λ 0 ≤ λ 2 ≤ • • • , taking multiplicity into account, such that there are some D = D(κ, u) > 0 and C = C( , κ, u) > 0 so that, for all k ∈ 2N,

λ k ≥ (2k + (1 ∓ 1)(1 + 2(κ + u)))s + µ 2 Ds u (k + 1) -u , ( 45 
)
λ k ≤ (2k + (1 ∓ 1)(1 + 2(κ + u)))s + (2k + 1 + 2(κ + u))µ 2 s u + µ 2 Cs u . ( 46 
)
The first term of the right-hand side of ( 45) and ( 46) for P + 1 and P - 1 is 2ks and 2(k + 1 + 2(κ + u))s, respectively.

• The spectrum of P 2 consists of eigenvalues λ 0 ≤ λ 2 ≤ • • • , taking multiplicity into account, such that there are some D = D(κ, u) > 0 and C = C( , κ, u) > 0 so that, for all k ∈ 2N,

λ k ≥ (2k + 4 -(1 ± 1)(1 + 2(κ + u)))s + µ 2 Ds u (k + 1) -u , ( 47 
)
λ k ≤ (2k + 4 -(1 ± 1)(1 + 2(κ + u)))s + (2k + 3 -2(κ + u))µ 2 s u + µ 2 Cs u . ( 48 
)
The first term of the right-hand side of ( 47) and ( 48) for P + 2 and P -

2 becomes 2(k + 1 -2(κ + u))s and 2(k + 2)s, respectively. • The spectrum of Q 1 consists of eigenvalues λ 1 ≤ λ 3 ≤ • • • , taking mul-
tiplicity into account, such that there are some D = D(κ, u) > 0 and C = C( , κ, u) > 0 so that, for all k ∈ 2N + 1,

λ k ≥ (2k + 2 -(1 ∓ 1)(1 -2κ))s + µ 2 Ds u (k + 1) -u , (49) 
λ k ≤ (2k + 2 -(1 ∓ 1)(1 -2κ))s + (2k + 1 + 2κ)µ 2 s u + µ 2 Cs u . ( 50 
)
The first term of the right-hand side of (49) and (50) for Q + 1 and Q - 1 is 2(k + 1)s and 2(k + 2κ)s, respectively.

• The spectrum of Q 2 consists of eigenvalues λ 1 ≤ λ 3 ≤ • • • , taking multiplicity into account, such that there are some D = D(κ, u) > 0 and C = C( , κ, u) > 0 so that, for all k ∈ 2N + 1,

λ k ≥ (2k -2 + (1 ± 1)(1 -2κ))s + µ 2 Ds u (k + 1) -u , (51) 
λ k ≤ (2k -2 + (1 ± 1)(1 -2κ))s + (2k -1 -2κ)µ 2 s u + µ 2 Cs u . ( 52 
)
The first term of the right-hand side of (51) and (52) for Q + 2 and Q - 2 is 2(k -2κ)s and 2(k -1)s, respectively.

• For W 2,1 , we can take ũ = u+1 2 satisfying [START_REF] Mather | Notes on topological stability[END_REF]. Moreover the maximum eigenvalue of ∓sV is s(1∓(2κ+u)-u). Thus the spectrum of W 2,1 consists of two groups of eigenvalues,

λ 0 ≤ λ 2 ≤ • • • and λ 1 ≤ λ 3 ≤ • • • , repeated according to multiplicity, such that there are some D = D(κ, u) > 0, C = C( , κ, u) > 0, C = C( , κ, u) > 0 and E = E( , κ) > 0 so that, for all k ∈ 2N, λ k ≥ 1 -2µu s u-1 2 (2k + 3 -2κ)s + µ 2 Ds u (k + 1) -u -2µu Cs u+1 2 ∓ (1 + 2κ)s , (53) 
λ k ≤ (2k + 4 -(1 ± 1)(2κ + u))s + (2k + 3 -2κ) (µ 2 s u + 4µus u+1 2 ) + µ 2 Cs u + 4µuEs u+1 2 , ( 54 
)
and, for all k ∈ 2N + 1,

λ k ≥ 1 -2µu s u-1 2 (2k + 1 + 2(κ + u))s + µ 2 Ds u (k + 1) -u -2µu Cs u+1 2 ± (1 + 2(κ + u))s , (55) 
λ k ≤ (2k + 2 + (1 ∓ 1)(2κ + u))s + (2k + 1 + 2(κ + u)) (µ 2 s u + 4µus u+1 2 ) + µ 2 Cs u + 4µuEs u+1 2 . ( 56 
)
• W 1,1 and W 2,2 also have a discrete spectrum, which has the lower bound given by ( 29) and Proposition 3.5 (v). We omit its explicit expression because it will not be used. The lower estimate of Proposition 3.5 (iii) may not be possible for W 1,1 and W 2,2 in general. In fact, according to Remark 7 (vii), the existence of ũ for W 1,1 (respectively, W 2,2 ) is characterized by the additional condition 2κ > u (respectively, 2κ < -3u), which is an additional restriction.

Table 5 contains the information about the sign of the eigenvalues of P i , Q j and W i,j given by the above spectral estimates. 

Sign of eigenvalues

P 1 + ∀k ∈ 2N P + 2 κ > 1 2 -u ? if k < 2(κ + u) -1 even + if k ≥ 2(κ + u) -1 even κ ≤ 1 2 -u + ∀k ∈ 2N P - 2 + ∀k ∈ 2N Q + 1 + ∀k ∈ 2N + 1 Q - 1 κ ≥ -1 2 + ∀k ∈ 2N + 1 κ < -1 2 ? if k < -2κ odd + if k ≥ -2κ odd Q 2 + ∀k ∈ 2N + 1 W i,j + if k 0 Table 5.
∆ max,0 ∆ min,0 κ > -1 2 P 1 κ ≥ 1 2 -u P 1 -1 2 -u < κ ≤ -1 2 ? κ < 1 2 -u P 2 κ ≤ -1 2 -u P 2 Table 6. Description of ∆ max/min,0 ∆ max,2 ∆ min,2 κ > -1 2 Q 1 κ ≥ 1 2 Q 1 κ ≤ -1 2 Q 2 1 2 -u ≤ κ < 1 2 ? κ < 1 2 -u Q 2 Table 7. Description of ∆ max/min,2 ∆ max,1 ∆ min,1 κ > u -1 2 W 1,1 κ ≥ 1 2 W 1,1 -1 2 < κ ≤ u -1 2 ? 1 2 -u ≤ κ < 1 2 W 2,1 -1 2 -u < κ ≤ -1 2 W 2,1 1 2 -2u ≤ κ < 1 2 -u ? κ ≤ -1 2 -u W 2,2 κ < 1 2 -2u W 2,2
Table 8. Description of ∆ max/min,1 notation d 0,2 , δ 1,1 , δ 0,2 and ∆ 0 is used for d 0,2,max/min , δ 1,1,max/min , δ 0,2,max/min and ∆ max/min,0 , respectively. It also follows from [START_REF] Witten | Supersymmetry and Morse theory[END_REF] that

d max/min,0 (φ) + δ max/min,1 (ψ) = µρ -u φ + δ 1,1 ψ d 0,2 φ -µρ -u ψ = µρ -u φ + 1 µ δ 1,1 ρ u d 0,2 φ 0 = µρ -u φ + 1 µ ρ u δ 0,2 d 0,2 φ 0 = 1 µ ρ u ∆ 0 φ 0 . Since R(∆ max/min,0 ) = L 2 + , we get R(ρ u ) ⊕ 0 ⊂ R(d max/min,0 ) + R(δ max/min,1 ) .
With an analogous argument, using Lemma 2.3 instead of (70), we get

0 ⊕ R(ρ u ) ⊂ R(d max/min,0 ) + R(δ max/min,1 ) . Therefore R(ρ u ) ⊕ R(ρ u ) ⊂ R(d max/min,0 ) + R(δ max/min,1 ) , obtaining that R(d max/min,0 ) + R(δ max/min,1 ) is dense in L 2 + ⊕ L 2 + because R(ρ u ) is dense in L 2
+ . Thus ker ∆ max/min,1 = 0 [9, Lemma 2.1]. Corollary 4.4. ∆ max/min,ev and ∆ max/min,1 have the same eigenvalues, with the same multiplicity.

Proof. This is a direct consequence of Proposition 4.3 and Lemma 2.2.

Remark 10. Some generalities about this complex of length two hold for all u > 0, like (57)-( 70), Proposition 4.3 and Corollary 4.4. But the main results require 0 < u < 1.

Concerning the spectrum, the following corollary fills the gaps in Tables 678.

Corollary 4.5. Tables 9 and10 describe the spectra of ∆ max/min,ev and ∆ max/min,1 in terms of the spectra of P i , Q j and W i,j for the stated values of κ.

σ(∆ max,ev ) σ(∆ min,ev ) κ > -1 2 σ(P 1 ⊕ Q 1 ) κ ≥ 1 2 σ(P 1 ⊕ Q 1 ) -1 2 -u < κ ≤ -1 2 σ(W 2,1 ) 1 2 -u ≤ κ < 1 2 σ(W 2,1 ) κ ≤ -1 2 -u σ(P 2 ⊕ Q 2 ) κ < 1 2 -u σ(P 2 ⊕ Q 2 )
Table 9. Spectrum of ∆ max/min,ev

σ(∆ max,1 ) σ(∆ min,1 ) κ > u -1 2 σ(W 1,1 ) κ ≥ 1 2 σ(W 1,1 ) -1 2 < κ ≤ u -1 2 σ(P 1 ⊕ Q 1 ) 1 2 -u ≤ κ < 1 2 σ(W 2,1 ) -1 2 -u < κ ≤ -1 2 σ(W 2,1 ) 1 2 -2u ≤ κ < 1 2 -u σ(P 2 ⊕ Q 2 ) κ ≤ -1 2 -u σ(W 2,2 ) κ < 1 2 -2u σ(W 2,2 )
Table 10. Spectrum of ∆ max/min,1

Proof. This is a direct consequence of Proposition 4.2 and Corollary 4.4.

4.3.

The wave operator. For the Hermitian bundle versions of E and F , consider the wave operator exp(itD max/min ) (i = √ -1) on L 2 (E) or L 2 (F ), which is bounded.

Proposition 4.6. For φ in L 2 (E) or L 2 (F ), let φ t = exp(itD max/min )φ. If supp φ ⊂ (0, a] for some a > 0, then supp φ t ⊂ (0, a + |t|] for all t ∈ R.

Proof. The case of E is given by [START_REF]Witten's perturbation on strata[END_REF]Proposition 8.7 (ii)]. Then consider the case of F , where the proof needs a slight change because the needed description of

D ∞ (∆ max/min ) is not available. Since exp(itD max/min ) is bounded, we can assume that φ ∈ D ∞ (∆ max/min ). Write φ t = φ t,0 + φ t,1 + φ t,2 with φ t,r ∈ C ∞ (F r ) ≡ C ∞ + (r = 0, 2), and φ t,1 ≡ φt,1,1 φt,1,2 ∈ C ∞ (F 1 ) ≡ C ∞ + ⊕ C ∞ + .
Suppose that t ≥ 0, the other case being analogous. For any c > a,

d dt c a+t |φ t (ρ)| 2 dρ = c a+t ((iDφ t , φ t ) + (φ t , iDφ t ))(ρ) dρ -|φ t (a + t)| 2 = i c a+t ((Dφ t , φ t ) -(φ t , Dφ t ))(ρ) dρ -|φ t (a + t)| 2 .
Now, d 0,1 ≡ δ 0,1 and d 1,2 ≡ δ 1,2 are multiplication operators by real valued functions. Moreover d 0,2 and δ 0,2 are equal to d dρ and -d dρ , respectively, up to the sum of multiplication operators by the same real valued functions, and the same is true for d 1,1 and δ 1,1 . Thus 

(Dφ t , φ t ) -(φ t , Dφ t ) = (δ 0,1 φ t,1,1 + δ 0,2 φ t,1,2 , φ t,0 ) + (d 1,1 φ t,1,1 + d 1,2 φ t,1,2 , φ t,2 ) + (d 0,1 φ t,0 + δ 1,1 φ t,2 , φ t,1,1 ) + (d 0,2 φ t,0 + δ 1,2 φ t,2 , φ t,1,2 ) -(φ t,0 , δ 0,1 φ t,1,1 + δ 0,2 φ t,1,2 ) -(φ t,2 , d 1,1 φ t,1,1 + d 1,2 φ t,1,2 ) -(φ t,1,1 , d 0,1 φ t,0 + δ 1,1 φ t,2 ) -(φ t,1,2 , d 0,2 φ t,0 + δ 1,2 φ t,2 ) = -φ t,1,2 φ t,0 + φ t,1,1 φ t,2 -φ t,2 φ t,1,1 + φ t,0 φ t,1,2 + φ t,0 φ t,1,2 -φ t,2 φ t,1,1 + φ t,1,1 φ t,2 -φ t,1,2 φ t,0 = 2i (φ t,0 φ t,1,2 + φ t,1,1 φ t,2 + φ t,1,1 φ t,2 + φ t,0 φ t,1,2 ) = 2i (φ t,1,1 φ t,2 + φ t,0 φ t,1,2 ) . Therefore i c a+t ((Dφ t , φ t ) -(φ t , Dφ t ))(ρ) dρ ∈ R ,
((Dφ t , φ t ) -(φ t , Dφ t ))(ρ) dρ ≤ 2|(φ t,1,1 φ t,2 + φ t,0 φ t,1,2 )(c) -(φ t,1,1 φ t,2 + φ t,0 φ t,1,2 )(a + t)| ≤ |φ t,1,1 (c)| 2 + |φ t,2 (c)| 2 + |φ t,1,2 (c)| 2 + |φ t,0 (c)| 2 + |φ t,1,1 (a + t)| 2 + |φ t,2 (a + t)| 2 + |φ t,1,2 (a + t)| 2 + |φ t,0 (a + t)| 2 = |φ t (c)| 2 + |φ t (a + t)| 2 .
Since t → φ t defines a differentiable map with values in L 2 (F ), it follows that there is a sequence a < c i ↑ ∞ such that φ t (c i ) → 0, and

d dt ∞ a+t |φ t (ρ)| 2 dρ = lim i d dt ci a+t |φ t (ρ)| 2 dρ ≤ lim i |φ t (c i )| 2 = 0 . So ∞ a+t |φ t (ρ)| 2 dρ ≤ ∞ a |φ 0 (ρ)| 2 dρ = ∞ a |φ(ρ)| 2 dρ = 0 .

Witten's perturbation on a cone

For rel-Morse functions, the rel-local analysis of the Witten's perturbed Laplacian will be reduced to the case of the functions ± 1 2 ρ 2 on a stratum of a cone with a model adapted metric, where ρ denotes the radial function. This kind of rel-local analysis begins in this section. 5.1. Witten's perturbation. To begin with, recall the following generalities about the Witten's perturbation. Let M ≡ (M, g) be a Riemannian n-manifold. For all x ∈ M and α ∈ T x M * , let

α = (-1) nr+n+1 α∧ = -ι α on r T x M * ,
involving the Hodge star operator on T x M * defined by any choice of orientation of T x M . For any f ∈ C ∞ (M ), E. Witten [START_REF] Witten | Supersymmetry and Morse theory[END_REF] has introduced the following perturbations of d, δ, D and ∆, depending on s ≥ 0:

d s = e -sf d e sf = d + s df∧ , (71) 
δ s = e sf δ e -sf = δ -s df , (72) 
D s = d s + δ s = D + sR , ∆ s = D 2 s = d s δ s + δ s d s = ∆ + s(RD + DR) + s 2 R 2 , (73) 
where R = df∧-df . Notice that δ s = d † s ; thus D s and ∆ s are formally self-adjoint. By analyzing the terms RD + DR and R 2 , the expression (73) becomes

∆ s = ∆ + s Hessf + s 2 |df | 2 , ( 74 
)
where Hessf is an endomorphism defined by Hess f [36, Lemma 9.17 

From T M * = T N * T R * + , we get a canonical identity r T M * ≡ π * r T N * ⊕ dρ ∧ π * r-1 T N * ≡ π * r T N * ⊕ π * r-1 T N * (75) 
for every degree r.

So Ω r (M ) ≡ C ∞ (R + , Ω r (N )) ⊕ dρ ∧ C ∞ (R + , Ω r-1 (N )) (76) 
≡ C ∞ (R + , Ω r (N )) ⊕ C ∞ (R + , Ω r-1 (N )) . (77) 
Here, smooth functions R + → Ω(N ) are defined by considering Ω(N ) as Fréchet space with the weak C ∞ topology. In this section, all matrix expressions of vector bundle homomorphisms on r T M * or differential operators on Ω r (M ) will be considered with respect to the decompositions (75) and (77).

Let d and d denote the exterior derivatives on Ω(M ) and Ω(N ), respectively. We have [START_REF]Witten's perturbation on strata[END_REF]Lemma 10.1]

d ≡ d 0 d dρ -d . (78) 
Fix a general adapted metric g on N . For u > 0, the metric g = ρ 2u g + dρ 2 is a general adapted metric on M . The induced metrics on T M * and T N * are also denoted by g and g, respectively. Fix some degree r ∈ {0, 1, . . . , n}, and, to simplify the expressions, let

κ = (n -2r -1) u 2 . (79) 
According to (75), g ≡ ρ -2ru g ⊕ ρ -2(r-1)u g (80) on r T M * . Choose an orientation on an open subset W ⊂ N , and let ω denote the corresponding g-volume form on W . Consider the orientation on W × R + ⊂ M so that the corresponding g-volume form is

ω = ρ (n-1)u dρ ∧ ω . (81) 
The corresponding Hodge star operators on T (W × R + ) * and T W * will be denoted by and ˜ , respectively. Like in [4, Lemma 10.2], from (80) and (81), it follows that

≡ 0 ρ 2(κ+u) ˜ (-1) r ρ 2κ ˜ 0 (82) on r T (W × R + ) * . Let L 2 Ω r (M ) = L 2 Ω r (M, g
) and L 2 Ω r (N ) = L 2 Ω r (N, g). From (80) and (81), we also get that (77) induces the identity of Hilbert spaces 6

L 2 Ω r (M ) ≡ L 2 κ,+ ⊗ L 2 Ω r (N ) ⊕ L 2 κ+u,+ ⊗ L 2 Ω r-1 (N ) . (83) 
Let δ and δ denote the exterior coderivatives on Ω(M ) and Ω(N ), respectively. Like in [4, Lemma 10.3], using (78), ( 82) and ( 9), we get

δ ≡ ρ -2u δ -d dρ -2(κ + u)ρ -1 0 -ρ -2u δ (84)
on Ω r (M ). Let ∆ and ∆ denote the Laplacians on Ω(M ) and Ω(N ), respectively. Like in [START_REF]Witten's perturbation on strata[END_REF]Corollary 10.4], from (78), ( 84) and ( 9), it follows that

∆ ≡ P -2uρ -1 d -2uρ -2u-1 δ Q (85)
on Ω r (M ), where

P = ρ -2u ∆ -d 2 dρ 2 -2κρ -1 d dρ , (86) 
Q = ρ -2u ∆ -d 2 dρ 2 -2(κ + u) d dρ ρ -1 . ( 87 
)
6 Recall that, for Hilbert spaces H and H , with scalar products , and , , the notation H ⊗ H is used for the Hilbert space tensor product. This is the Hilbert space completion of the algebraic tensor product H ⊗ H with respect to the scalar product defined by u ⊗ u , v ⊗ v = u , v u , v . So, by ( 78), ( 84), ( 71) and (72),

d s ≡ d 0 d dρ ± sρ -d , (88) 
δ s ≡ ρ -2u δ -d dρ -2(κ + u)ρ -1 ± sρ 0 -ρ -2u δ , (89) 
on Ω r (M ). Now,

R = ±ρ(dρ∧ -dρ ) ≡ ± 0 ρ ρ 0 ,
and therefore

R 2 ≡ ρ 2 0 0 ρ 2 ≡ ρ 2 . (90) 
Like in [START_REF]Witten's perturbation on strata[END_REF]Lemma 10.6], we get

RD + DR = ∓V (91) 
on Ω r (M ), where V is given by [START_REF] Yosida | Functional analysis[END_REF]. As a consequence of (73), ( 85) and (91), we obtain

∆ s ≡ P s -2uρ -1 d -2uρ -2u-1 δ Q s ( 92 
)
on Ω r (M ), where

P s = ρ -2u ∆ + H -2κρ -1 d dρ ∓ s(1 + 2κ) , (93) 
Q s = ρ -2u ∆ + H -2(κ + u) d dρ ρ -1 ∓ s(-1 + 2(κ + u)) . (94) 
6. Splitting of the Witten's complex on a cone 6.1. Spectral decomposition on the link of the cone. Theorem 1.1 is proved by induction on the depth. Thus, with the notation of Section 5, suppose that g is good, and ∆ max/min satisfies the statement of Theorem 1.1. Moreover suppose that g is also good; that is, u ≤ 1.

Let H max/min = ker D max/min = ker ∆ max/min , which is a graded subspace of Ω(N ) ∩ L 2 Ω(N ). For every degree r, let R max/min,r-1 , R * max/min,r ⊂ L 2 Ω r (N ) be the images of dmax/min,r-1 and δmax/min,r , respectively, which are closed subspaces. By restriction, ∆ max/min defines self-adjoint operators in R max/min,r-1 and R * max/min,r-1 , with the same eigenvalues [4, Section 5.1]. For any eigenvalue λ of the restriction of ∆ max/min to R max/min,r-1 , let R max/min,r-1, λ and R * max/min,r-1, λ denote the corresponding λ-eigenspaces. We have 7

L 2 Ω r (N ) = H r max/min ⊕ λ, λ R max/min,r-1, λ ⊕ R * max/min,r, λ , (95) 
where λ and λ run in the spectrum of the restrictions of ∆ max/min to R max/min,r-1 and R * max/min,r , respectively.

6.2. Subcomplexes of length one. Given 0 = γ ∈ H r max/min , consider the canonical identities

C ∞ + ≡ C ∞ + γ ⊂ Ω r (M ) , C ∞ + ≡ C ∞ + dρ ∧ γ ⊂ Ω r+1 (M ) . (96) 
The following result follows from ( 88) and (89).

Lemma 6.1. For s ≥ 0, d s and δ s define maps

0 C ∞ + γ C ∞ + dρ ∧ γ 0 . . d s,r-1 δ s,r-1 ds,r δs,r d s,r+1 δ s,r+1 - - -
Moreover, using (96),

d s,r = d dρ ± sρ , δ s,r = -d dρ -2κρ -1 ± sρ .
Let E γ,0 denote the subcomplex of length one of (Ω(M ), d s ) defined by

E r γ,0 = C ∞ +,0 γ ≡ C ∞ +,0 , E r+1 γ,0 = C ∞ +,0 dρ ∧ γ ≡ C ∞ +,0 .
The closure of E γ,0 in L 2 Ω(M ) is denoted by L 2 E γ . By (83), 

L 2 E r γ = L 2 κ,+ γ ≡ L 2 κ,+ , L 2 E r+1 γ = L 2 κ,+ dρ ∧ γ ≡ L 2 κ,
H +,r+1 s,γ H -,r s,γ H -,r+1 s,γ H +,r s,γ H +,r+1 s,γ H -,r s,γ H -,r+1 s,γ κ ≥ 1 2 1 0 0 1 0 0 |κ| < 1 2 0 1 κ ≤ -1 2 0 1
α ∈ R max/min,r-1, λ ⊂ Ω r (N ) , β ∈ R * max/min,r-1, λ ⊂ Ω r-1 (N ) ,
such that dβ = µα and δα = µβ. Consider the canonical identities

C ∞ + ≡ C ∞ + β ⊂ Ω r-1 (M ) , C ∞ + ≡ C ∞ + dρ ∧ α ⊂ Ω r+1 (M ) , (97) 
C ∞ + ⊕ C ∞ + ≡ C ∞ + α + C ∞ + dρ ∧ β ⊂ Ω r (M ) . (98) 
The following result follows from (88) and (89).

Lemma 6.4. For s ≥ 0, d s and δ s define maps 

0 C ∞ + β C ∞ + α + C ∞ + dρ ∧ β C ∞ + dρ ∧ α 0 .
d s,r-1 = µ d dρ ± sρ , δ s,r-1 = µρ -2u -d dρ -2(κ + u)ρ -1 ± sρ , d s,r = d dρ ± sρ -µ , δ s,r = -d dρ -2κρ -1 ± sρ -µρ -2u .
7 Consider a family of Hilbert spaces, Ha with scalar product , a. Recall that the Hilbert space direct sum, a H a , is the Hilbert space completion of the algebraic direct sum, a H a , with respect to the scalar product (u a ), (v a ) = a u a , v a a. Thus a H a = a H a if and only if the family is finite.

Let F α,β,0 = F r-1 α,β,0 ⊕ F r α,β,0 ⊕ F r+1 α,β,0 denote the subcomplex of length two of (Ω(M ), d s ) defined by

F r-1 α,β,0 = C ∞ +,0 β ≡ C ∞ +,0 , F r+1 α,β,0 = C ∞ +,0 dρ ∧ α ≡ C ∞ +,0 , F r α,β,0 = C ∞ +,0 α + C ∞ +,0 dρ ∧ β ≡ C ∞ +,0 ⊕ C ∞ +,0 .
The closure of F α,β,0 in L 2 Ω(M ) is denoted by L 2 F α,β . By (83),

L 2 F r-1 α,β = L 2 κ+u,+ β ≡ L 2 κ+u,+ , L 2 F r+1 α,β = L 2 κ,+ dρ ∧ α ≡ L 2 κ,+ , L 2 F r α,β = L 2 κ,+ α + L 2 κ+u,+ dρ ∧ β ≡ L 2 κ,+ ⊕ L 2 κ+u,+ .
Assume now that s > 0. With the notation of Section 4.2, consider the real version of the elliptic complex (F, d) determined by s and κ (given by ( 79)). Using Lemma 6.4 and ( 9), we get the following (cf. [4, Proposition 12.9]). Proof. In the case u < 1, this follows from Proposition 6.5 and Corollary 4.5. In the case u = 1, this is the content of [START_REF]Witten's perturbation on strata[END_REF]Proposition 12.11].

Remark 11. According to (91)-(94), we have

∆ s ≡ H -2κρ -1 d dρ ∓ s(1 + 2κ) on C ∞ + ≡ C ∞ + γ , ∆ s ≡ H -2κ d dρ ρ -1 ∓ s(-1 + 2κ) on C ∞ + ≡ C ∞ + dρ ∧ γ , ∆ s ≡ H -2(κ + u)ρ -1 d dρ + µ 2 ρ -2u ∓ s(1 + 2(κ + u)) on C ∞ + ≡ C ∞ + β , ∆ s ≡ H -2κ d dρ ρ -1 + µ 2 ρ -2u ∓ s(-1 + 2κ) on C ∞ + ≡ C ∞ + dρ ∧ α , and 
∆ s ≡ P µ,s -2µuρ -1 -2µuρ -2u-1 Q µ,s on C ∞ + ⊕ C ∞ + ≡ C ∞ + α + C ∞ + dρ ∧ β, where P µ,s = H -2κρ -1 d dρ + µ 2 ρ -2u ∓ s(1 + 2κ) , Q µ,s = H -2(κ + u) d dρ ρ -1 + µ 2 ρ -2u ∓ s(-1 + 2(κ + u))
. So the results of Section 3 could be applied to these expressions. We opted for analyzing first the complexes of Section 4 for the sake of simplicity because we have a = b = 0, L (ii ) Table 12 describes the isomorphism class of H ±, * s,max/min . (iii ) If e s ∈ H s,max/min has norm one for every s, and h is a bounded measurable function on R + with h(ρ) → 1 as ρ → 0, then he s , e s → 1 as s → ∞. (iv ) Let 0 ≤ λ s,max/min,0 ≤ λ s,max/min,1 ≤ • • • be the eigenvalues of ∆ s,max/min , repeated according to their multiplicities. Given k ∈ N, if λ s,max/min,k > 0 for some s, then λ s,max/min,k > 0 for all s, and λ s,max/min,k ∈ O(s) as s → ∞. (v ) There is some θ > 0 such that lim inf k λ s,max/min,k k -θ > 0. Proof. In the case u = 1, this result was already shown in [START_REF]Witten's perturbation on strata[END_REF]Corollary 12.13]. So we consider only the case 0 < u < 1. For all γ, µ and α + β as above, ∆ s,γ and ∆ s,α,β have a discrete spectrum by Corollaries 6.3 (i) and 6.6 (i). Moreover the union of their spectra has no accumulation points according to Section 4 and since ∆ max/min is discrete. Then (i) follows by Proposition 6.7. Now, properties (ii)-(iv) follow directly from Corollaries 6.3 and 6.6, and Proposition 6.7.

H +,r s,max H -,r+1 s,max H +,r s,min H -,r+1 s,min κ ≥ 1 2 H r max (N ) 0 H r min (N ) 0 |κ| < 1 2 0 H r min (N ) κ ≤ -1 2 0 H r max (N )
To prove (v), let 0 ≤ λmax/min,0 ≤ λmax/min,1 ≤ • • • denote the eigenvalues of ∆ max/min , repeated according to their multiplicities. Since N satisfies Theorem 1.1 (ii) with g, there is some C 0 , θ 0 > 0 such that λmax/min, ≥ C 0 θ0

for all large enough. Consider the counting function

N ± s,max/min (λ) = # k ∈ N | λ ± s,max/min,k < λ (λ > 0) .
From Proposition 4.3, Corollary 4.5, ( 39)-( 42), ( 45), ( 47), ( 49), ( 51), ( 53), ( 55) and (99), and the choices made to define d γ and d α,β (Sections 6.2 and 6.3), it follows that there are some C 1 , C 2 > 0 and C 3 , C 3 ∈ R such that

N ± s,max/min (λ) ≤ # (k, ) ∈ N 2 | C 1 k + C 2 λmax/min, (k + 1) -u + C 3 ≤ λ ≤ #{ (k, ) ∈ N 2 | C 1 k + C 2 C 0 θ0 (k + 1) -u + C 3 ≤ λ } ≤ # (k, ) ∈ N 2 0 ≤ λ -C 3 C 1 , ≤ λ -C 3 -C 1 k C 2 C 0 1 θ 0 (k + 1) u θ 0 . Consider the function f : -1, a := λ -C 3 C 1 → [0, ∞) , f (x) = λ -C 3 -C 1 x C 2 C 0 1 θ 0 (x + 1) u θ 0 .
Elementary calculus shows that f vanishes at x = -1, a, it reaches its maximum at

x = b := λu -C 3 u -C 1 C 1 (1 + u) ,
and it is strictly increasing (respectively, decreasing) on [-1, b] (respectively, [b, a]).

It follows that 8

N ± s,max/min (λ) ≤ a 0 f (x) dx + 2f (b) + a + 1 . But f (b) = λ -C 3 + C 1 (1 + u)C 2 C 0 1 θ 0 u(λ -C 3 + C 1 ) (1 + u)C 1 u θ 0 , and a 0 f (x) dx ≤ λ-C 3 C 1 0 λ -C 3 -C 1 x C 2 C 0 2 θ 0 dx 1 2 λ-C 3 C 1 0 (x + 1) 2u θ 0 dx 1 2 ≤ θ 0 (λ -C 3 ) 2 θ 0 +1 (2 + θ 0 )(C 2 C 0 ) 2 θ 0 C 1 1 2   θ 0 (λ -C 3 + C 1 ) 2u θ 0 +1 (2u + θ 0 )C 2u θ 0 +1 1   1 2 = θ 0 (λ -C 3 ) 1 θ 0 + 1 2 (λ -C 3 + C 1 ) u θ 0 + 1 2 (2 + θ 0 ) 1 2 (2u + θ 0 ) 1 2 (C 2 C 0 ) 1 θ 0 C 1+ u θ 0 1 .
8 A similar argument is made in the proof of [START_REF]Witten's perturbation on strata[END_REF]]. In that case, the authors use a strictly decreasing function f : (-∞, a] → [0, ∞). The resulting estimate should be

N ± s,max/min (λ) ≤ a 0 f (x) dx + f (0) + a + 1 ,
but the terms f (0) + a + 1 were missing in that publication. This correction does not affect the final estimate of N ± s,max/min (λ) obtained there.

So N ± s,max/min (λ) ≤ Cλ 1+u θ 0
+1 for some C > 0 and all large enough λ, giving (v) with θ = 1+u θ0 + 1.

Table 13 describes the above conditions on κ in terms of r.

κ ≥ 1 2 r ≤ n-1 2 -1 2u |κ| < 1 2 |r -n-1 2 | < 1 2u κ ≤ -1 2 r ≥ n-1 2 + 1 2u
Table 13. Correspondence between conditions on κ and r

Relatively local model of the Witten's perturbation

Let m ∈ N, and let L 1 , . . . , L a be compact stratifications. For each i = 1, . . . , a, let N i be a dense stratum of L i , let k i = dim N i + 1, and let * i and ρ i be the vertex and radial function of c(L i ). Then 

M := R m × a i=1 (N i × R + ) is a dense stratum of A := R m × a i=1 c(L i ).
= g 0 + a i=1 ρ 2ui i gi + (dρ i ) 2
, where g 0 is the Euclidean metric on R m , every gi is a general adapted metric on N i , and u i > 0. Suppose that g is good; i.e., the metrics gi are good, and u i ≤ 1. We can assume that every N i is connected, which means that the fiber of lim : M → M over x consists of a unique point, which can be identified to x (see [START_REF]Witten's perturbation on strata[END_REF]Proof of Proposition 3.20]). According to Section 1.4, the rel-local model of a rel-Morse function around a relcritical point is of the form f = 1 2 (ρ 2 + -ρ 2 -), where ρ ± is the radial function of R m± × i∈I± c(L i ), for some decomposition m = m + + m -(m ± ∈ N), and some partition of {1, . . . , a} into sets I ± . The rel-critical set of f consists only of x. Let d s , δ s , D s and ∆ s be the Witten's perturbations of d, δ, D and ∆ on Ω(M ) induced by f . Let H s,max/min = r H r s,max/min = ker ∆ s,max/min , with the induced grading. The following result is a direct consequence of Corollary 6.8 and [4, Example 9.1 and Lemma 5.1], taking also into account Table 13.

Corollary 7.1. (i ) ∆ s,max/min has a discrete spectrum.

(ii ) We have

H r s,max/min ∼ = (r1,...,ra) a i=1 H ri max/min (N i ) ,
where (r 1 , . . . , r a ) runs in the subset of N a defined by the conditions

r = m -+ a i=1 r i + |I -| , r i < ki-1 2 + 1 2ui if i ∈ I + r i ≥ ki-1 2 + 1 2ui if i ∈ I - for H r s,max , r i ≤ ki-1 2 -1 2ui if i ∈ I + r i > ki-1 2 -1 2ui if i ∈ I - for H r s,min .
(iii ) If e s ∈ H s,max/min with norm one for every s, and h is a bounded measurable function on R + with h(ρ) → 1 as ρ → 0, then he s , e s → 1 as s → ∞. (iv ) Let 0 ≤ λ s,max/min,0 ≤ λ s,max/min,1 ≤ • • • be the eigenvalues of ∆ s,max/min , repeated according to their multiplicities. Given k ∈ N, if λ s,max/min,k > 0 for some s, then λ s,max/min,k > 0 for all s and λ s,max/min,k ∈ O(s) as s → ∞. (v ) There is some θ > 0 such that lim inf k λ s,max/min,k k -θ > 0.

For every ρ > 0, let B ρ be the open ball of center 0 and radius ρ in R m , and let

U x,ρ = B ρ × a i=1 (N i × (0, ρ)) ⊂ M .
Taking complex coefficients, by Propositions 6.2, 6.5 and 6.7, the following result clearly boils down to the case of Proposition 4.6. Proposition 7.2. For α ∈ L 2 Ω(M ), let α t = exp(itD s,max/min )α. If supp α ⊂ U x,a for some a > 0, then supp α t ⊂ U x,a+|t| for all t ∈ R. ) is used to show that the properties of the statement are invariant by taking Witten's perturbation defined by rel-admissible functions, and Remark 6 (iii),(iv) is used to produce rel-admissible cutoff functions and partitions of unity with bounded differential. These functions are needed for the Witten's perturbation and to apply [4, Propositions 14.2 and 14.3].

Functional calculus

Let M be a stratum of a compact stratification, equipped with a good general adapted metric g. Let f be any rel-admissible function on M , and let d s , δ s , D s and ∆ s be the corresponding Witten's perturbations of d, δ, D and ∆. Since f is reladmissible, for every s, ∆ s -∆ is a homomorphism with uniformly bounded norm by (74). From (74) and the min-max principle (see e.g. [START_REF] Reed | Methods of modern mathematical physics IV: Analysis of operators[END_REF]Theorem XIII.1]), it also follows that D(∆ s,max/min ) = D(∆ max/min ), D ∞ (∆ s,max/min ) = D ∞ (∆ max/min ), and that the properties stated in Theorem 1.1 can be extended to the perturbation ∆ s,max/min .

For any rapidly decaying function φ on R, φ(∆ s,max/min ) is a Hilbert-Schmidt operator on L 2 Ω(M ) by the version of Theorem 1.1 (ii) for ∆ s,max/min . In fact, φ(∆ s,max/min ) is a trace class operator because φ can be given as the product of two rapidly decaying functions, |φ| 1/2 and sign(φ) |φ| 1/2 , where sign(φ)(x) = sign(φ(x)) ∈ {±1} if φ(x) = 0.

Like in the case of closed manifolds (see e.g. [START_REF] Roe | Elliptic operators, topology and asymptotic methods[END_REF]Chapters 5 and 8]), φ(∆ s,max/min ) is given by a Schwartz kernel K s , and Tr φ(∆ s,max/min ) equals the integral of the pointwise trace of K s on the diagonal. But we do not know whether K s is uniformly bounded because a "rel-Sobolev embedding theorem" is missing [START_REF]Witten's perturbation on strata[END_REF]Section 19]. Theorem 1.1 (ii) becomes important in our arguments to make up for this lack.

The wave operator

With the notation of Section 9, suppose that f is a rel-Morse function. Take a general chart O ≡ O around every x ∈ Crit rel (f ), like in Section 1.4. Let us add the subindex "x" to the notation of M , N i , m ± and I ± in this case. Take a good adapted metric g x on M x of the form used in Section 7. Consider the Witten's perturbed operators d x,s , δ x,s , D x,s and ∆ x,s on Ω(M x ) defined by the function f := 1 2 (ρ 2 + -ρ 2 -) (a prime and the subindex x is added to their notation). Add also a prime to the notation of the sets U x,ρ of Section 7, considered in M x . Let ρ 0 > 0 such that U x,ρ0 ⊂ O . Then, for 0 < ρ ≤ ρ 0 , there is some open U x,ρ ⊂ M so that U x,ρ ≡ U x,ρ . Moreover, according to Remark 3, we can assume g| Ux,ρ 0 ≡ g x | U x,ρ 0 .

Consider the wave equation

dα t dt -iD s α t = 0 , (100) 
where α t ∈ Ω(M ) depends smoothly on t. Given any α ∈ D ∞ (∆ s,max/min ), its solution with the initial condition α 0 = α is given by α t = exp(itD s,max/min )α. Moreover a usual energy estimate shows that such a solution is unique (see e. Proof. First, let us prove (ii). We can assume that α ∈ D ∞ (∆ s,max/min ) because exp(itD s,max/min ) is bounded. Since supp α ⊂ U x,a , we have α| Ux,ρ 0 ≡ α | U x,ρ 0 for a unique α ∈ Ω(M x ) supported in U x,a . We get α ∈ D ∞ (∆ x,s,max/min ) because α ∈ D ∞ (∆ s,max/min ). Let α t = exp(itD x,s,max/min )α . By Proposition 7.2, we have supp α t ⊂ U x,a+|t| for 0 < |t| ≤ b -a. Then α t | U x,ρ 0 ≡ β t | Ux,ρ 0 for a unique β t ∈ Ω(M ) supported in U x,a+|t| . Now, β t ∈ D ∞ (∆ s,max/min ) because α t ∈ D ∞ (∆ x,s,max/min ). Moreover β t satisfies (100) for |t| ≤ b -a with initial condition β 0 = α. So β t = α t by the uniqueness of the solution of (100), obtaining supp α t ⊂ U x,a+|t| . Finally, (i) follows from (ii) in the following way. For any β ∈ Ω 0 (M ) with supp β ⊂ U x,a-|t| , let β τ = exp(iτ D s,max/min )β for τ ∈ R. By (ii), we get supp β -t ⊂ U x,a , and therefore α t , β = α, β -t = 0. This shows that supp α t ⊂ M U x,a-|t| .

Remark 12. The steps given to achieve Proposition 10.1 are simpler here than in [START_REF]Witten's perturbation on strata[END_REF]. In fact, it would be difficult to adapt the arguments of [START_REF]Witten's perturbation on strata[END_REF] since an expression of D ∞ (∆ max/min ) is missing in Section 4.2.2. For ρ ≤ ρ 0 , let U ρ = x U x,ρ , with x running in Crit rel (f ). Fix some ρ 1 > 0 such that 4ρ 1 < ρ 0 . Let G and H be the Hilbert subspaces of L 2 Ω(M ) consisting of forms essentially supported in M U ρ1 and M U 3ρ1 , respectively. Since ∆ s,max/min = ∆ max/min + s Hessf + s 2 |df | 2 on D(∆ s,max/min ) = D(∆ max/min ) for all s ≥ 0 by (74), it follows that there is some C > 0 so that, if s is large enough, ∆ s,max/min ≥ ∆ max/min + Cs 2 on G ∩ D(∆ max/min ) .

(101)

Let h be a rel-admissible function on M such that h ≥ 0, h ≡ 1 on U ρ1 and h ≡ 0 on M U 2ρ1 (Remark 6 (iii)). Then T s,max/min = ∆ s,max/min + hCs 2 , with domain D(∆ max/min ), is self-adjoint in L 2 Ω(M ) with a discrete spectrum. Moreover T s,max/min ≥ ∆ max/min + Cs 2 (102) for s large enough by (101). Take some φ ∈ S ev such that φ ≥ 0, φ(0) = 1, supp φ ⊂ [-ρ 1 , ρ 1 ], and φ| [0,∞) is monotone [START_REF]Witten's perturbation on strata[END_REF]Section 18.2], where φ denotes its Fourier transform. Write φ(x) = ψ(x 2 ) for some ψ ∈ S. Using Proposition 10.1 (i), the argument of the first part of the proof of [START_REF] Roe | Elliptic operators, topology and asymptotic methods[END_REF]Lemma 14.6] gives the following. Lemma 11.2. ψ(∆ s,max/min ) = ψ(T s,max/min ) on H.

Let Π : L 2 Ω(M ) → H denote the orthogonal projection. According to Section 9, ψ(∆ s,max/min ) is of trace class for all s ≥ 0. Then the self-adjoint operator Π ψ(∆ s,max/min ) Π is also of trace class (see e.g. [START_REF] Roe | Elliptic operators, topology and asymptotic methods[END_REF]Proposition 8.8]).

Lemma 11.3. Tr(Π ψ(∆ s,max/min ) Π) → 0 as s → ∞.

Proof. This follows like [4, Lemma 18.3], using (102), the min-max principle and Lemma 11.2, and expressing the trace as sum of eigenvalues.

The following is a direct consequence of Corollary 7.1 (i)-(iv).

Corollary 11.4. If h is a bounded measurable function on R + such that h(ρ) → 1 as ρ → 0, then Tr(h(ρ) φ(∆ x,s,max/min,r )) → ν r

x,max/min as s → ∞.

For every x ∈ Crit rel (f ), let H x ⊂ L 2 Ω(M ) and H x ⊂ L 2 Ω(M x ) be the Hilbert subspaces of differential forms supported in U x,3ρ1 and U x,3ρ1 , respectively. We have H x ≡ H x because g ≡ g x on U x,ρ0 ≡ U x,ρ0 . Moreover ∆ s ≡ ∆ x,s on differential forms supported in U x,ρ0 ≡ U x,ρ0 . By using Proposition 10.1 (ii), the argument of the first part of the proof of [START_REF] Roe | Elliptic operators, topology and asymptotic methods[END_REF]Lemma 14.6] can be adapted to show the following. 

  a X i=1 c(L X,i ) [4, Example 3.6 and Proof of Lemma 3.8]. A collection of general charts covering A is called a general atlas. We can suppose that the strata of A are connected [4, Remark 1 (v)]. Fix a stratum M of dimension n in A. Since the stratified structure of A can be restricted to M [4, Section 3.1.1], we can also assume without loss of generality that M = A (any other stratum is < M ); in particular, depth A = depth M and dim A = n. With the above notation, for a chart O ≡ O centered at x, we get M ∩ O ≡ M ∩ O , where M = R m X × N × R + for some dense stratum N on L X . In the case of a general chart O ≡ O centered at x, we have M
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 1 Figure 1. The stratified space M .
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 221 Products of cones. Let L and L be compact stratifications, and let * and ρ, and * and ρ be the vertices and radial functions of c(L) and c(L ). Any morphism ψ : c(L) → c(L ) is of the form c(φ) around * for some morphism φ : L → L . In particular, ψ( * ) = * , and ψ * ρ = ρ around * .

(

  ii) Any point in M has a countable base { O m | m ∈ N } of open neighborhoods such that, with respect to any general adapted metric, vol(M ∩ O m ) → 0 and max{ diam P | P ∈ π 0 (M ∩ O m ) } → 0 as m → ∞. Thus, if M is compact, then vol M < ∞ and diam P < ∞ for all P ∈ π 0 (M ).Remark 3. The argument of[START_REF]L 2 -cohomologie des espaces stratifiés[END_REF] Appendix] also shows the following. Let {O a } be a locally finite open covering of M , let {λ a } be a smooth partition of unity of M subordinated to the open covering {M ∩O a }, and let g a be a general adapted metric on every M ∩ O a . Suppose that the metrics g a have the same general type with respect to restrictions to the sets O a of the same general tubes. Then the metric a λ a g a is general adapted on M and has the same general type with respect to those general tubes.When M is not connected, M is defined as the disjoint union of the rel-local completion of the connected components of M (Section 1.3), using [4, Remark 1 (v)]. Remark 4. (i) By Remark 2 (i), M is independent of the choice of the general adapted metric of a given general type. In fact, by Remark 2 (ii) and [4, Example 3.19], M is also independent of the general type. (ii) For any open O ⊂ A, we have M ∩ O ≡ lim -1 (M ∩ O) ⊂ M . Remark 5. The following is a direct consequence of Remark 4 (i) and [4, Remark 9 (i),(ii) and Proposition 3.20 (iii)]: (i) lim : M → M is surjective with finite fibers. (ii) M is rel-locally connected with respect to M . (iii) Let M be a connected stratum of another stratification A equipped with a general adapted metric, and let φ : A → A be a morphism with φ(M ) ⊂ M . Then the restriction φ : M → M extends to a morphism φ : M → M . Moreover φ is an isomorphism if φ is an isomorphism. 2.3. Relatively Morse functions. Consider the notation of Section 1.4. Besides the observations given in that section, the following holds like in the case of adapted metrics of conic type [4, Section 4]. Remark 6. (i) The rel-local boundedness of |df | is invariant by rel-local quasiisometries, and therefore it depends only on the general type of g. Similarly, the definition of rel-critical point depends only on the general type of g. But the rel-local boundedness of | Hess f | depends on the choice of g. However it follows from (iv) and (v) below that the existence of g so that f is reladmissible with respect to g is a rel-local property. (ii) If depth M = 0, then any smooth function is admissible, and its rel-critical points are its critical points. (iii) With the notation of Section 2.1, let h ∈ C ∞ (R + ) with h ∈ C ∞ 0 (R + ). Then the function h(ρ) is rel-admissible on the stratum M of c(L) with respect to any general adapted metric. (iv) Let { O a | a ∈ A } be a locally finite covering of M by open subsets of A.

) Proposition 3 . 4 ([ 5 ,

 345 Corollary 8.2]). For ξ and u like in Proposition 3.3, if b ∈ R satisfies[START_REF] Cheeger | L 2 -cohomology and intersection homology of singular varieties[END_REF] and τ

Proposition 3 . 5 ([ 5 ,

 355 Corollary 8.3]). Consider the notation and conditions of Propositions 3.3 and 3.4. Fix also some η ∈ R, and let

  ) means that b ∈ {-1, -2d 1 }. (iv) Propositions 3.1 and 3.2 are indeed equivalent, as well as Propositions 3.3 and 3.4, because, if c 1 = d 1 + 1 and c 2 = d 2 , then Q 0 = ρP 0 ρ -1 by (9), and ρ : L 2 c1,+ → L 2 d1,+ is a unitary isomorphism. (v) We have P = P , Q = Q and W = W , where

  with D(P ) = D ∞ (P), D(Q) = D ∞ (Q) and D(W ) = D ∞ (W) [5, Remark 1.4 (i) and Section 8]. (vi) We have

  and

5 . 2 .

 52 ], satisfying |Hessf | = | Hess f | [4, Section 9]. De Rham operators on a cone. Let L be a non-empty compact stratification. Consider a stratum N of L, and the corresponding stratum M = N × R + of c(L). We use the notation ñ = dim N and n = dim M = ñ + 1. Let π : M → N be the first factor projection, and ρ the radial function on c(L).

5. 3 .

 3 Witten's perturbation on a cone. Let d s , δ s , D s and ∆ s (s ≥ 0) denote the Witten's perturbations of d, δ, D and ∆ induced by the function f = ± 1 2 ρ 2 on M . The more explicit notation d ± s , δ ± s , D ± s and ∆ ± s may be used if needed. In this case, df = ±ρ dρ. According to (77),

  to (97) and (98),

Proposition 6 . 5 . 2 +

 652 If u < 1, then ρ κ : L 2 κ,+ → L 2+ and ρ κ+u :L 2 κ+u,+ → L define a unitary isomorphism L 2 F α,β → L 2 (F ), which restricts to an isomorphism of complexes, (F α,β,0 , d s ) → (C ∞ 0 (F ), d), up to a shift of degree.By Proposition 6.5, (F α,β,0 , d s ) has a maximum/minimum Hilbert complex extension in L 2 F α,β . Let (D α,β , d s,α,β ) be the maximum/minimum Hilbert complex extension of (F α,β,0 , d s ) if α ∈ R max/min,r-1, λ and β ∈ R * max/min,r-1, λ. Let ∆ s,α,β denote the corresponding Laplacian. The more explicit notation d ± s,α,β and ∆ ± s,α,β may be used.Corollary 6.6. (i ) ∆ s,α,β has a discrete spectrum.(ii ) The eigenvalues of ∆ s,α,β are positive and in O(s) as s → ∞.

  For any relatively compact open neighborhood O of x := (0, * 1 , . . . , * a ), all general adapted metrics on M are quasi-isometric on M ∩ O to a metric of the form g

8 .

 8 Proof of Theorem 1.1 This theorem follows from Corollary 7.1 (i),(v) with the same arguments as [4, Theorem 1.1]. More precisely, [4, Propositions 14.2 and 14.3] are used to globalize the properties of the rel-local model, the min-max principle (see e.g. [35, Theorem XIII.1]

Proposition 10 . 1 .

 101 g.[START_REF] Roe | Elliptic operators, topology and asymptotic methods[END_REF] Proposition 7.4]); in fact, given any c > 0, it is also unique for |t| ≤ c. Let 0 < a < b < ρ 0 and α ∈ L 2 Ω(M ). The following properties hold for α t = exp(itD s,max/min )α:(i ) If supp α ⊂ M U x,a , then supp α t ⊂ M U x,a-|t| for 0 < |t| ≤ a. (ii ) If supp α ⊂ U x,a , then supp α t ⊂ U x,a+|t| for 0 < |t| ≤ b -a.

11 .(- 1 )

 111 Proof of Theorem 1.2 This theorem now follows like [4, Theorem 1.2]. Thus the details are omitted. Consider the notation of Section 10. By (71), the numbers β r max/min are also given by the cohomology of d s,max/min = d max/min + s df ∧ on D(d s,max/min ) = e -sf D(d max/min ) = D(d max/min ).Let φ be a smooth rapidly decaying function on R with φ(0) = 1. Then φ(∆ s,max/min ) is of trace class (Section 9), and let µ r s,max/min = Tr(φ(∆ s,max/min,r )). Then the following result follows formally like[START_REF] Roe | Elliptic operators, topology and asymptotic methods[END_REF] Proposition 14.3]. r µ r s,max/min .

  Ideal boundary conditions of the de Rham complex.
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 2 Sign of the eigenvalues of A i and B

i 4.1.2. Laplacians of the maximum/minimum i.b.c.

Proposition 4.1 ([4, Proposition 8.4]).

Table 3 describes ∆ max/min .
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 3 Description of ∆ max/min

	Remark 8. (i) In [4], the proof of Proposition 4.1 uses the following property
	[4, Lemma 8.5]. Suppose that either θ > 1 2

  Sign of the eigenvalues of P i , Q i and W i,j 4.2.2. Laplacians of the maximum/minimum i.b.c.

Proposition 4.2. Tables 6, 7 and 8 describe ∆ max/min for the stated values of κ.

Table 11 .

 11 + . Assume now that s > 0. With the notation of Section 4.1, consider the real version of the elliptic complex (E, d) determined by s and κ (given by (79)). Using Lemma 6.1 and (9), like in [4, Proposition 12.3], we get the following. Proposition 6.2. The operatorρ κ : L 2 κ,+ → L 2 + defines a unitary isomorphism L 2 E γ → L 2 (E), which restricts to an isomorphism of complexes, (E γ,0 , d s ) → (C ∞ 0 (E), d), up to a shift of degree.By Proposition 6.2, (E γ,0 , d s ) has a maximum/minimum Hilbert complex extension in L 2 E γ . Let (D γ , d s,γ ) be the maximum/minimum Hilbert complex extension of (E γ,0 , d s ) if γ ∈ H r max/min , and ∆ s,γ the corresponding Laplacian. Let (iii ) If e s ∈ H s,γ with norm one for every s, and h is a bounded measurable function on R + with h(ρ) → 1 as ρ → 0, then he s , e s → 1 as s → ∞. (iv ) All nonzero eigenvalues of ∆ s,γ are positive and in O(s) as s → ∞.

	H s,γ = H r s,γ ⊕ H r+1 s,γ = ker ∆ s,γ , with the induced grading. The more explicit
	notation d ± s,γ , ∆ ± s,γ and H ± s,γ = H ±,r s,γ ⊕ H ±,r+1 s,γ	may be also used.
	Corollary 6.3. (i ) ∆ s,γ has a discrete spectrum.
	(ii ) The dimensions of H ±,r s,γ and H ±,r+1 s,γ	are given in
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 11 Dimensions of H ±,r s,γ and H ±,r+1Proof. This follows from Propositions 6.2 and 4.1, Corollary 3.7, Section 4.1.1, and the choice made to define d s,γ . 6.3. Subomplexes of length two. Let µ = λ for an eigenvalue λ of the restriction of ∆ max/min to R max/min,r-1 . According to [4, Section 5.1], there are nonzero differential forms,

	s,γ

  Splitting into subcomplexes. Let C max/min,0 denote an orthonormal frame of H max/min consisting of homogeneous differential forms. For every positive eigenvalue µ of D max/min , let C max/min,µ be an orthonormal frame of the µ-eigenspace of D max/min consisting of differential forms α + β like in Section 6.3. Then let where γ runs in C max/min,0 , µ runs in the positive spectrum of D max/min , and α + β runs in C max/min,µ . The notation d ± s,max/min may be also used when d ± s,γ and d ± We have d s,max/min = d s,max/min . H r s,max/min = ker ∆ s,max/min , with the induced grading. The superindex "±" may be added to this notation to indicate that we are referring to ∆ ± s,max/min . Corollary 6.8. (i ) ∆ s,max/min has a discrete spectrum.

	d s,max/min =	d s,γ ⊕	d s,α,β ,
	γ	µ α+β	
			s,α,β
	are considered.		
	Proposition 6.7. Proof. This follows like [4, Proposition 12.12], using [4, Lemma 5.2], [9, Lemma 3.6
	and (2.38b)], (76) and (95).		
	Let H s,max/min =		

2 + is used instead of L 2 κ,+ or L 2 κ+u,+ , and Remark 8 is directly applied. 6.4. r
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Kronecker's delta symbol is used.

We may also use Table5and Proposition 4.2 for some values of κ (Tables

and
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Proof. The operators d 0,2 , δ 0,2 , d 1,1 and δ 1,1 are like d and δ in Section 4.1. So Proposition 4.1 and Remark 8 (ii) give the following:

On the other hand, since d 0,1 , δ 0,1 , d 1,2 and δ 1,2 are multiplication operators, we have

These are maximal multiplication operators [24, Examples III-2.2 and V-3.22]. They satisfy the following:

By Remark 8 (i), we also get 

Since F 0 i , F 2 j and F 1 i,j are cores of P

i,j , respectively, and taking into account Table 4, it follows that

if κ < 1 2 -2u . But these inclusions are equalities because they involve self-adjoint operators. Proposition 4.3. We have ker ∆ max/min = 0.

Proof. We have ker ∆ max/min,ev = 0 because ker d max/min,0 = 0 and ker δ max/min,1 = 0 by Lemma 2.3, (69) and (70), since d 0,1,max/min and δ 1,2,max/min are maximal multiplication operators in L 2 + by continuous non-vanishing functions. 5 Since σ(∆ max/min,ev ) is bounded away from 0, we get R(∆ max/min,0 ) = L 2 + = R(∆ max/min,2 ) by the spectral theorem. The maximal multiplication operator by ρ ±u in L 2 + will be also denoted by ρ ±u . Let φ ∈ D(∆ max/min,0 ) such that ∆ max/min,0 φ ∈ D(ρ u ). By [START_REF] Witten | Supersymmetry and Morse theory[END_REF],

Then ψ ∈ D(δ max/min,1 ) by (70) since ρ -u ψ ∈ L 2 + and δ 1,2,max/min is the maximal multiplication operator by -µρ -u . In the following, for the sake of simplicity, the Lemma 11.5. φ(∆ s,max/min ) ≡ φ(∆ x,s,max/min ) on H x ≡ H x for all x ∈ Crit rel (f ).

For every x ∈ Crit rel (f ), let Π x : L 2 Ω(M ) → H x and Π x : L 2 Ω(M x ) → H x denote the orthogonal projections. Since the subspaces H x are orthogonal to each other, Π := x Π x : L 2 Ω(M ) → H := x H x is the orthogonal projection.