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In this paper, we report aspects of mathematics undergraduate students’ activity when writing a 

mathematical proof in an interactive theorem prover. The participants, two first-year undergraduate 

mathematics students, were invited to a series of interviews and asked to engage with a learning 

resource, the Natural Number Game, designed to introduce and scaffold the use of the interactive 

theorem prover. The students were asked to prove statements in the Natural Number Game, share 

their screens and use the think aloud protocol. We use the instrumental approach to explore the 

schemes that students develop when they write a mathematical proof using the interactive theorem 

prover. Our analysis illustrates the two schemes (“verify step-by-step”, “verify multiple steps”) that 

these students seem to develop while using the interactive theorem prover.  

Keywords: Lean, interactive theorem prover, programming, proof writing. 

Programming in university mathematics and interactive theorem provers 

Modules involving programming in mathematics degrees in the United Kingdom (UK) are now more 

frequent than they were ten years ago (Iannone & Simpson, 2022) especially in the first and second 

year of mathematics undergraduate studies. Sangwin and O’Toole (2017) investigated the 

programming languages that are taught in mathematics departments in UK universities. Their results 

illustrated that the most common languages in use were MATLAB and the statistical package R, 

showing that programming is nearly exclusively used for applied mathematics (computational 

modules) and statistics modules and not pure mathematics modules. In pure mathematics and 

computer science research, interactive theorem provers (ITPs) have been used since de Bruijn’s 

creation of the seminal Automath prover in the late 1960s (de Bruijn, 1980), but it is only very 

recently that ITPs are introduced in undergraduate teaching (Avigad, 2019; Thoma & Iannone, 2022). 

The use of ITPs in teaching, in the UK context at least, is frequently optional and therefore relatively 

small numbers of students opt to use it (Thoma & Iannone, 2022; Iannone & Thoma, 2023). 

There are several ITPs currently in use in mathematics research and they differ in terms of language 

and interaction mode; automation and user interface; proof structure and proof state visualisation 

(Bartzia et al., 2022). One of the ITPs is Lean (https://leanprover-community.github.io). Lean, among 

its other features, provides instant feedback on the logical coherence of the proof and the symbolisms 

used. The interface is divided into two sections (Figure 1 – featuring a screenshot from the Natural 

Number Game and the embedded Lean environment): the coding (left) and feedback section (right). 

The right section, shows at the top the context and goals at the given line of code and at the bottom 

provides feedback regarding the code (e.g., error messages). 

Avigad (2019) discusses Lean’s potential impact on students’ understanding while clearly 

considering the different languages that are involved: natural, mathematical, and programming 
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language. Additionally, Hanna et al., (2023) consider Lean’s features which could potentially support 

students’ difficulties with proof. Such features include the consideration of the proof strategy prior to 

starting to code, its feature of instant feedback, and that students’ need to engage with elementary 

formal logic to be able to code in Lean. The results of these theoretical discussions on Lean indeed 

align with results from empirical studies on students’ use of Lean (e.g., Thoma & Iannone, 2022). 

Our previous work examined mathematics undergraduate students’ pen and paper proofs by focusing 

on the qualitative differences of Lean and non-Lean users’ proofs (Thoma & Iannone, 2022). The 

main differences observed were the precise introduction of the mathematical objects involved in the 

proof, and the often overt breakdown of the proofs in goals and subgoals. However, only a small 

number of students used Lean over the course of that study. Further investigation on students’ 

perceptions of Lean confirmed students’ difficulties with the syntax and illustrated that students saw 

coding in Lean and proving as disconnected activities (Iannone & Thoma, 2023). In this paper, we 

explore students’ activity with the ITP and aim to contribute to the literature which investigates the 

link between programming and mathematics learning for undergraduate students following the call 

by Lockwood & Mørken (2021) stressing the importance of this under-researched area.  

Instrumental approach 

The link between programming and learning mathematics has been explored in recent studies at 

university level using the instrumental approach (Gueudet et al., 2022). The key theoretical 

considerations of this approach are the artefacts (products of human activity designed for goal-

directed activities) which together with schemes (an organization of the coder’s activity for a given 

goal) create an instrument. A scheme comprises of four aspects (Vergnaud, 2009, p. 88): 

- Intentional aspect: the goal(s) of the activity;  

- Generative aspect: the rules-of-action which are “the sequences of actions, information 

gathering, and controls” (ibid, p. 88);  

- Epistemic aspect: the operational invariants which are concepts and theorems-in-action; and  

- Computational aspect: the possibilities of inferences. 

The same artefact (e.g., Lean) can be used for the same goal (e.g., write a proof in Lean) but with 

different schemes which means that users (in our case students coding in Lean) create different 

instruments. Furthermore, there are two aspects of the process of development of the instrument: 

instrumentation and instrumentalisation. Instrumentation “describes the development of knowledge 

by the subject: the features of the artefact influence the subject’s activity and the knowledge 

developed” (Gueudet et al., 2014, p. 140). Whereas if “the user has specific knowledge before 

engaging in the interaction with an artefact and this knowledge shapes the interaction” this is called 

instrumentalisation (Gueudet et al., 2014, p. 140).  

In our analysis, we consider students’ use of the same artefact (Lean) and investigate students’ 

development of schemes as they become apparent from their rules-of-actions when they use Lean to 

write the proof of the same statement. Our research question is: Which are the schemes that students 

develop when using Lean, in the context of the Natural Number Game, to write a mathematical proof? 



 

 

 

Context and methods 

The data we report in this paper are part of a larger study which focuses on student’s activity when 

using Lean. In a first-year undergraduate mathematics module offered at a UK research-intensive 

university, Lean was introduced by the lecturer as a voluntary part of the syllabus. The learning 

materials included lecture notes on the use of Lean, support materials and extra weekly tutorials on 

Lean. A questionnaire was administered to all students asking them to comment on their use of Lean 

and invited them to participate in an interview. Four students replied and were interviewed multiple 

times, on average 6 to 7 one hour interviews per student, after the final examination for the module. 

The interviews were conducted via video conferencing, and students were invited to engage with the 

levels of the Natural Number Game1 (see Figure 1), share their screen and use the think aloud 

technique. In this paper, we discuss the schemes that two (Gemma and Matt) of the four students 

developed while writing a proof of the same statement in Lean. Our analysis focused on identifying 

the components of schemes (descriptions of actions and reasons for actions) in students’ interviews 

using both audio and video data. 

 

Figure 1: Screenshot from the Natural Number Game Level 4 - Advanced Proposition world 

In this level of the Natural Number Game, students were asked to prove the transitive property using 

Lean (Figure 1). The interface contains two main sections. In the first (on the left) the user writes 

Lean code and interacts with the tool by altering the context. On the right, the top window displays 

the goal (to avoid confusion with the goals connected with the schemes we will use the phrase Lean 

goal to refer to this type of goals from now on) as it is altered by the user and the bottom one displays 

error messages. Also, there is further explanation regarding the mathematical task to be proven (in 

our case the transitive property) with instructions on using certain tactics to assist in the coding of the 

proof and features regarding the key symbol use (Figure 1). Furthermore, on the left-hand side there 

 

1 A teaching resource created by Kevin Buzzard and Mohammad Pedramfar at 

https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/ 



 

 

 

is a drop-down menu which contains the key Tactics and Theorem Statements that have been used so 

far in the game.  

Gemma’s and Matt’s proofs of the transitive property 

Gemma and Matt both worked on the level in Figure 1 during the 3rd and 6th interviews respectively. 

At the time of the interview, they had already successfully completed all previous levels of the game 

and by the end of the interview cycle Matt engaged with all 10 worlds of the game while Gemma 

with 7. We chose to discuss Matt and Gemma’s proofs (Figures 4 feature the complete proofs) as 

these illustrate the development of different schemes.  

Gemma started by using intro h aiming to check what she has to deal with first. We interpret this as 

a rule-of-action “explore what is given”. Then, she used initially cases h with p q which, after 

checking that it was making the relevant changes in the context of her proof, she then improved to 

cases h with pq and qp aiming to provide further clarity in the symbolism used, which we interpret 

as a rule-of-action “clarify symbolism”. She then continued by repeating these steps when she 

identified similar instances of either unpacking a statement in her context or proving a similar Lean 

goal. We coded this as “repeat code sequence”. Also, during coding, Gemma found an unexpected 

response from Lean when she wrote apply pq (Figures 2).  

 

 

Figures 2: Screenshots from the Natural Number Game Level 4 - Gemma  

Gemma: And then again, so I have the goal of q and I have the statement that p implies q, so I’m 
going to apply pq. No, I’m not. I’m working towards a random goal. Sorry. I have 
the […] I want to work towards r because that’s what I have. So I will have the goal 
of p […] So I need to apply qp and then I have the goal of q and I have r. So I want 
to apply rq instead of pq. 

We interpret this as a rule-of-action “check Lean goals and adapt code”. Finally, once she has 

completed her proof, she reflected on the length of her proof: 

Gemma: I was very hasty with splitting up the statement, say like p implies q and I had to prove 
that p implies q. Then I could have just done exact that statement instead of splitting 
it up all the way. […] I just kind of saw it and thought oh I know how to split all of 
this up. So maybe just thinking about whether before I split everything up into its 
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individual parts, whether actually some bigger statements could be proven if I 
already have them. 

The rules-of-action we observed in Gemma’s activity are: “explore what is given”, “clarify 

symbolism”, “repeat code sequence” and “check Lean goals and adapt code”. We consider that the 

scheme she has developed in using Lean to write a proof of the transitive property is “verify step-by-

step”. 

We will now turn to describe the rules-of-action in Matt’s activity. He stated that although the 

instructions are saying that the intro tactic should be used, he will use intros instead. We interpret 

this as a rule-of-action “use a tactic which actions multiple steps”. Additionally, he introduces clear 

symbolism from the beginning in terms of the two hypotheses h1 and h2 which we consider as a rule-

of-action “introduce clarifying symbolism”. He then realised that the cases tactic he used did not 

provide him with the expected result, which was to apply split to both Lean goals. In response to this 

feedback from Lean, he went back to his code to explore the order of tactics.  

Matt: Hang on. So, when I […] split it here. The cases is only applied to this first goal. So I wonder 
if […] I were to just move that down here […] that would carry to all the context. 
Yes, it would. Lovely. 

This is a rule-of-action similar to Gemma’s “check Lean goals and adapt code” but is considering 

specifically the order of the tactics which we interpret as “move code for further efficiency” (Figures 

3). Finally, considering what he had to prove after re-arranging his split and cases tactics he shares:  

Matt: So we’ve got to prove p implies r from this. We’ve got p implies q and q implies r, we’ve 
got p implies r and r implies p so I’m wondering if we could just use the cc2 tactic 
and we want to use it twice. So, I wonder if we could do repeat cc. Yes, lovely. 
That all checks out or does what I thought it would do. 

 
  

Figures 3: Screenshots from the Natural Number Game Level 4 - Matt  

 

2 Congruence closure is an operation in ITPs which determines whether the terms of a proof are equal under substitutivity 

of equality given a set of equalities. 

A B 



 

 

 

We interpret what Matt did as a rule-of-action “use a tactic which actions multiple steps” as he 

warrants the use of cc but also considers that instead of writing it twice, he could use the cc tactic 

nested in the repeat tactic. 

The rules-of-action we observed in Matt’s activity are: “use a tactic which actions multiple steps” 

“introduce clarifying symbolism”, “move code for further efficiency”. It is important to note here that 

Matt also had the subgoal to “write an efficient and quick proof”. We consider that the scheme he 

developed in using Lean to prove this statement is “verify multiple steps”.  

 

 

Gemma’s complete proof Matt’s complete proof 

Figures 4: Screenshots from the Natural Number Game Level 4 proofs by Gemma and Matt 

Figures 4 shows the complete proofs by Gemma and Matt. We note that there are differences between 

the two proofs in terms of their length and their use of tactics (e.g., intro, cases __ with __, split, 

apply, exact, repeat and cc). Both students introduced the relevant hypotheses and used the split and 

cases tactic. However, Matt (Figure 4, right) used the congruence closure (cc) tactic to conclude the 

task while Gemma did not. The use of this congruence closure tactic was discussed by both students 

during their interviews.  

Gemma: I would rather write it out because that’s kind of the point of me doing it and it just feels 
like a proper proof. […] cc kind of gets rid of it very quickly without me actually 
proving much. So… But for the point of like these worlds, I would prefer to actually 
write out what I’m doing and what the method is. 

While Matt had a different approach to using cc.  

Matt: cc is nice, it’s just if you’ve got, I guess it means if you’ve got like a path of implications 
that you have to sort of follow, cc just closes them. 

Gemma therefore seems to avoid using the cc tactic aiming to see and check all the steps of her proof, 

which is in line with the earlier discussed scheme “verify step-by-step”. Whereas Matt tended to use 

the cc tactic often in his proof activity during the different levels of the Natural Number Game. Our 

analysis of their activity at other levels shows similar findings, signaling that these students may have 

developed two different instruments.  

In their final interviews Matt and Gemma were asked to reflect on the experience of using Lean.  

Matt: It’s like in Lean you’ve gotta look at what theorems you’ve got and how those could apply 
to, you know, your goal and your other hypotheses. And I think it just sort of builds 



 

 

 

up a good way of thinking when it comes to just proving normal things […] While 
I feel like I’ve gotten sort of an appreciation of like a method of problem solving 
from Lean. […].  

Matt considers the links between Lean and problem solving but shares that he is not sure whether he 

would continue to use Lean. He liked the way that Lean provides clearly what is available for the 

proof, the hypotheses, and the Lean goal. However, he feels that Lean can only provide him the 

problem-solving method but nothing further. On the other hand Gemma shared: 

Gemma: Logically the steps kind of break it down because it’s always the same and it’s like a 
language […] It’s going to mirror what you’re looking at in lectures, and it just kind 
of it’s another way. […] And I would just say it’s a really good tool to check 
whether you’re right or not as well. If you had a handwritten proof and you wanted 
to, you know, check how good your handwritten proof was, is, you can put it in and 
see whether it approves that as a proof kind of thing.  

Gemma considered the links between the Lean proofs with the pen and paper proofs, discussed how 

Lean offers a different view at mathematics and noted the potential of the proof checking ability of 

Lean. Finally, she concluded that she would like to continue using Lean. 

Conclusion 

This paper reports the schemes that two students – Matt and Gemma – developed when writing a 

proof for the same mathematical task using an interactive theorem prover in the context of the Natural 

Number Game. These schemes illustrate the different instruments they developed. Gemma seemed 

to use Lean as she would use pen and paper, by writing proofs that follow a more traditional layout 

without using tactics which solve multiple steps of the proof. Matt on the other hand uses features 

inherent to Lean (e.g., the tactics) to solve multiple proof goals at the same time, a proof strategy that 

is separate from proving with pen and paper. Therefore, the students seem to have developed two 

different schemes while interacting with the same artifact, namely: “verify step by step” and “verify 

multiple steps”. This observation is of interest to those – like us – who study the interaction of students 

with the programming language. The students in our study had the same experiences both in terms of 

teaching (they were in the same university cohort) and in terms of using Lean for the Natural Number 

Game and yet they exhibited different rules-of-action and developed different schemes when using 

the artefact. These considerations are important when introducing ITPs and encourage the researchers 

to think about what is that is learned through this experience and what are the factors that influence 

the difference in students’ activity when using ITPs. 

In the next steps of our work, we aim to analyse the schemes used by the four students while writing 

proofs for the other levels of the Natural Number Game. We are also interested in further exploring 

potential links between students’ epistemologies and their scheme development. Finally, the Natural 

Number Game provides some extra features regarding the tactics and the theorem statements, it 

would be interesting to further examine students’ activity using Lean without this extra support and 

further exploring aspects of the instrumentation. 
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