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Mathematics courses constitute one of the important components in the university education of future 

engineers. Many engineering students find them challenging and may even view them as a serious 

obstacle to a successful engineering career. One of the difficulties is related to the efficient connection 

of new material to already acquired knowledge and skills. Using our praxeological analysis of two 

institutional approaches to the concept of exact differential equation in Calculus and Differential 

Equations indicating potential conflict factors, we analyse students’ work on the assignment designed 

for a pilot project. 

Keywords: Exact differential equations, conservative vector fields, anthropological theory of the 

didactic, praxeological analysis, concept image  

Introduction 

Engineering is one of the richest branches of science and technology playing a key role in social and 

economic development of a modern society. As technology advances, the demand for highly qualified 

engineers grows. Goold and Devitt (2012) reported that more than half of engineers use a high level 

of curriculum mathematics at the workplace: “mathematical thinking usage is ‘absolutely critical’ in 

the engineering practice, and it is the ‘value’ one engineer brings to his job” (p. 7). University courses 

in Differential Equations (DEs) constitute an indispensable part of the engineering curriculum. 

Although the subject helps to design mathematical models describing various natural phenomena and 

physical processes, students are often focused on technical details of specific solution methods and 

have difficulties with the conceptual understanding of the underlying mathematical ideas.  

Students may also face difficulties connecting material learned in different mathematics disciplines 

due to the insufficient coordination between university courses which ideally should be arranged 

progressively to optimally support students’ learning. It is especially important to create sustainable 

links between basic courses in the first years of studies (Calculus/Analysis sequence and Linear 

Algebra) and more advanced ones (Differential Equations, Numerical Methods, Partial Differential 

Equations, Applied Mathematics). Rogovchenko and Rogovchenko (2022) combined 

anthropological theory of didactic (ATD) (Chevallard, 2019) with the constructs of concept definition 

and concept image (Tall & Vinner, 1981) to explore potential conflict factors in the learning and 

teaching of exact differential equations (EDEs) to future engineers in Calculus and Differential 

Equations courses. The main concern is that the distinctions between two institutional praxeologies, 

both within the mathematics domain but hosted by different institutions, may create learning 

difficulties. This paper reports the results of a pilot study exploring students’ work on one of the 

problems in a graded assignment designed to test this conjecture. 
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Theoretical framework  

We very briefly present some main ideas of ATD and refer the reader to Chevallard (2019) for more 

details. ATD offers a flexible epistemological framework to describe mathematical knowledge as a 

form of human activity. Its major tenet is that “all ‘knowledge’ can be modelled in terms of 

praxeologies” (Chevallard et al., 2016, pp. 2615-6). Praxeologies are used as building blocks for 

didactic systems understood as “any created reality of which people can be members” (Chevallard & 

Bosch, 2019, p. xxxi). A praxeology consists of a task 𝑇, a technique 𝜏 (tau), a technology 𝜃 (theta), 

and a theory 𝛩 (big theta). It is often viewed as the union of two “blocks,” the praxis part 𝛱 = [𝑇/𝜏] 

and the logos part Λ=[ 𝛩 /θ]. The praxis part is needed for performing the tasks, whereas the logos 

part is important for preserving the activity and sharing it with others thus enabling them to participate 

in the activity (Hardy, 2009). Because didactic systems are rooted in institutions, institutional 

approaches significantly impact students’ inducting into mathematical practices (Hardy, 2009; 

Winsløw et al., 2014). In this paper, praxeologies (praxeological organisations which we term 

mathematical organisation (MO) after the subject area) are used for modeling a human activity aimed 

at learning EDEs. 

The construct of concept image complements ATD in our analysis. A description of the mathematical 

notion accepted by the professional community usually forms the concept definition. However, all 

humans learn concepts differently, and “for each individual a concept definition generates its own 

concept image” (Tall & Vinner, 1981, pp. 152-153), which is “the total cognitive structure that is 

associated with the concept, which includes all the mental pictures and associated properties and 

processes.” Because the concept image is built over years and its distinct parts can be activated at 

certain times under different circumstances, a sense of confusion may appear; a potential conflict 

factor is defined as “a part of the concept image or concept definition which may conflict with another 

part of the concept image or concept definition” (Tall & Vinner, 1981, pp. 152-153). For instance, 

learners may have concept images for function as a graph, “black box,” algebraic expression, diagram 

relating elements of two sets, set of pairs of elements, etc. The role of the concept image is especially 

important because it often replaces the concept definition during informal learning of concepts: “the 

concept image is utilised instead of the concept definition and also when the concept definition has 

been constructed” (Gascón, 2003, p. 47). In our data, students created their own concept images of 

an EDE, associating them with different mathematical objects, ideas, and notions which do not fall 

into a single rubric of technique or technology and cannot be fully analysed within the ATD 

framework. Lack of coherence between a student’s concept images may create difficulties for the 

learner who may correctly comprehend parts of the concept without relating them to each other. 

Methodology  

The authors conducted analysis of two MOs in the courses Mathematics 2 (Calculus, MO1) and 

Mathematics for Mechatronics (DEs, MO2), taught respectively to first-year engineering students and 

master’s students at the University of Agder (summarized in Table 1). We anticipated that potential 

conflict factors stemming from the differences between the two logos blocks 𝛬1 = [𝛩/𝜃1, 𝜃2] and 

𝛬2 = [𝛩/𝜃3] in MO1 and MO2 might lead to significant variations of students’ concept images for 

an EDE, making the connection to a concept of an EDE obscure or invisible. Even though the 



 

 

technique of partial integration 𝜏2 in MO1 and MO2 is the same, technologies 𝜃1 and 𝜃2 furnish 

different justification. Furthermore, the lack of justification for the technology due to the omission of 

the theory 𝛩 in both MOs may lead to learning difficulties because an incomplete logos part makes 

the preservation and communication of the practice difficult (Hardy, 2009).  

Table 1: Praxeologies MO1 and MO2 (adapted from Rogovchenko & Rogovchenko, 2022) 

MO Task, 𝑇 Technique, 𝜏 Technology, 𝜃 Theory, 𝛩 

MO1 Find a potential of a 

conservative vector 

field 𝑇1. 

Test for conservative 

vector fields 𝜏1. 

Partial integration 𝜏2. 

Necessary condition 𝜃1 for conservative fields 

without proof. Partial integration procedure 𝜃2 . 

Theorem 3 

MO2 Solve an exact DE 

𝑇2. 
Exactness test 𝜏3 . 
Partial integration 𝜏2. 

The exactness test and partial integration 

procedure 𝜃3  in the proof of Theorem 1. 
Theorem 4 

We reported the following four potential conflict factors between MO1 and MO2 (Rogovchenko & 

Rogovchenko, 2022). (1) An MO2 praxeology defines EDEs assuming that 𝑦 = 𝑦(𝑥) whereas MO1 

praxeology treats both variables equally. (2) An MO2 praxeology views solutions of an EDE as 

implicitly defined functions represented geometrically by integral curves, whereas MO1 praxeology 

defines them as equipotential curves. (3) An MO2 praxeology considers EDEs in a rectangular 

domain, and it is mentioned that the region should be simply connected. MO1 praxeology stresses 

that the existence of a potential for a vector field depends not only on the topology of the domain of 

the vector field, but also on the structure of the components of the field. (4) An MO2 praxeology 

accounts only for a 2D case, whereas MO1 praxeology allows extension of the notion an EDE to 

higher dimensions. Furthermore, thanks to a differential form used for a DE, the exactness test is easy 

to formulate for a 3D case and even for higher dimensions.  

We conjectured that students may not recognise an EDE they met for the first time in the calculus 

sequence when they meet it once again in a master’s course on DEs. To verify the validity of our 

conjecture, two tasks fitting corresponding descriptions for 𝑇 in the ‘task’ column of Table 1 were 

selected for a pilot study. Because students’ written work did not mention Theory 𝛩 (which is not at 

all unusual for engineering students), we expected to see at least manifestations of conflict factors (1) 

and (4), and we analyse students’ work within the framework in Table 1 focusing on the following 

aspects of Technique 𝜏 and Technology 𝜃.  

For Technique in MO1: a) test 𝜏1 for conservative vector fields - find the corresponding partial 

derivatives and show that they are equal, b) partial integration 𝜏2.: find the required partial integral. 

For Technique in MO2: a) exactness test 𝜏3 - find the corresponding partial derivatives and show that 

they are equal, b) partial integration 𝜏2: find the required partial integral. 

For Technology in MO1: a) necessary condition 𝜃1 for conservative vector fields: explain how to use 

the equality of corresponding partial derivatives in case of 3-dimensional vector field, b) partial 

integration procedure 𝜃2 : apply the partial integration to find the potential function. For Technology 

in MO2 - unpack the procedure 𝜃3  in the constructive proof of Theorem 1: a) the exactness test as a 

necessary and sufficient condition – explain how the equality of the corresponding partial derivatives 

leads to exactness of the DE, b) partial integration procedure – finding the general solution of the DE. 



 

 

Organisation of a pilot study  

The test problem was suggested in a regularly graded assignment to a group of senior students in 

mechatronics enrolled in the course Mathematics for Mechatronics. Students worked in eleven small 

groups of two-three students on the home assignment for one week and could also discuss the 

assignment with their peers from other small groups. The following problem was suggested: 

Problem (a) The vector function 𝐸 = (𝐸𝑥, 𝐸𝑦 , 𝐸𝑧) where 𝐸𝑥 = 6𝑥𝑦, 𝐸𝑦 = 3𝑥² − 3𝑦², 𝐸𝑧 = 0, 

represents possible electrostatic field. Calculate the line integral of E from the point (0,0,0) to the 

point (𝑥₁, 𝑦₁, 0) along the path which runs straight from (0,0,0) to the point (𝑥₁, 0,0) and then to 

(𝑥₁, 𝑦₁, 0). Do a similar calculation for the path which runs along the two other sides of the 

rectangle, via the point (0, 𝑦₁, 0). You get the same answer, if 𝐸 indeed represents the electrostatic 

field. Find the equation describing surfaces of constant potential of this field. 

  (b) Find all solutions to a differential equation 6𝑥𝑦𝑑𝑥 + (3𝑥² − 3𝑦²)𝑑𝑦 = 0. 

  (c) Compare your solutions in parts (a) and (b). What is common and what is different between 

the two solutions? Explain your answer. 

Analysis of students’ work  

First we briefly describe students’ work in ten small groups (Group 6 did not submit the report and 

thus was excluded from the analysis). Group 1 acknowledged that the conservative vector field is 

two-dimensional and deduced the necessary condition for a 2D vector field to be conservative. 

However, their reasoning that if the result is the same for two different paths, the field is conservative 

was wrong. They concluded that “since the answers from 2A and 2B are similar, it can be seen that 

they are two different methods of solving the same problem, one using vector fields, and the other 

using differential equations.”  

Group 2 posed that the equality of two values of the line integral from one point to another along 

different paths is sufficient for a vector field to be conservative. The argued that “the same function 

is calculated as a solution both for the differential equation in problem 2b, as well as the potential 

function of the vector field given in problem 2a. In both methods, partial integration and derivation 

are used interchangeably in order to determine the constants. In 2b, the differential function is 

presented with two variables (𝑥, 𝑦). In problem 2a however, the potential function as well as the 

vector field represent points and vectors in the 3D space, and therefore three coordinates (𝑥, 𝑦, 𝑧) are 

used. The line integrals investigated, however, are two-dimensional as their 𝑧 coordinate is 0 in both 

cases. Therefore, the problem could be investigated as a two-dimensional problem in the 𝑥𝑦-plane, 

as was the case with problem 2b.” Remarkably, students’ attention was focused on the reduced 

dimension of the vector field and its advantages. Group 3 provided no explanations to their solutions, 

just calculations. Their conclusion was “both methods resulted in the exact same answer, but method 

b was a lot easier and faster. In addition, the solution of the first integral in method a) from (0,0,0) 

to (𝑥1, 0,0) or (0,0,0) to (0, 𝑦1, 0), is the same as ∫ 𝑀𝑑𝑥 or ∫ 𝑁𝑑𝑦.”  

Group 4 explained the result of calculations in part a) as follows. One can see by comparing 𝐼1 and 

𝐼2 that they are giving the same answer. Meaning that 𝐸 indeed represents an electrostatic field. The 

equation that describes the surface of constant potential of this field, could be described as “earlier 



 

 

mentioned in Eq. 2.1 known as the negative gradient of phi.” They concluded that “comparing the 

two solutions, the obvious first thing that is noticed is that they are exactly similar. The line integrals 

solved in part a) are equal to the general solution (C) found in b). We can also see that the 

representation of the electrostatic field is similar to the differential equation stated in b). One key 

difference between the two solutions are the calculations done to produce the solution. In a), the line 

integrals were calculated based on definite integrals, whereas in b), the solution was found using 

indefinite integrals. This means that the integrals in a) have an infinite number of antiderivatives that 

give a valid answer. In b) we need to find the value of the antiderivative (C) to find the solution, as 

the DE was proven to be exact with only one solution. This means that the two tasks a) and b) are just 

two diverse ways of obtaining the same answer, where one is by using definite integrals and one using 

an exact differential equation with indefinite integrals.” Group 5 provided accurate calculations 

concluding that “the answers we get in a) and b) are the same. This means that a conservative electric 

field can be seen as an exact differential equation and the general solution of the differential equation 

represents the potential of the electric field.”  

Group 7 argued that “Throughout this assignment two different methods were used for calculating 

the same thing, one easier than the other. The solutions display the exact same outcome, calculated 

with two quite different approaches. The common thing states that from two different approaches, 

one can determine a problem using a significantly more complicated method, here the part a), and get 

the same result by solving a differential equation. In this scenario the same expression outcomes when 

calculating the partial function, compared to solving the DE. Using the approach with DE is a more 

sophisticated way of handling the problem, and throughout this assignment the knowledge about not 

needing the full line integral has emerged.” Group 8 submitted inaccurate calculations with 

MATLAB concluding that “Both methods end up with the same answer. However, B) calculation is 

easier than calculation A). The solution of the first integral in method (from (0,0,0) to (𝑥1, 0,0) or 

(0,0,0) to (0, 𝑦1, 0)), is the same as ∫ 𝑀𝑑𝑥 or ∫ 𝑁𝑑𝑦. Further, in part A) a partial derivation was 

used, where we first moved in 𝑥 and then 𝑦, and the opposite way. In B) we take both ways at the 

same time ending up with the same answer. For this we can conclude that the field is conservative in 

every direction and not just in the edges of the ‘square.’ This improves the validity of calculations 

and also shows how partial derivation in a conservative field is a valid solution.”  

Group 9 concluded that “the given differential equation is in the same form. That means that 6𝑥𝑦𝑑𝑥 +

(3𝑥² − 3𝑦²)𝑑𝑦 = 0 describes all the paths along which the net work done on a particle moving 

through the field is zero. This is the same as finding level curves on the potential function found in 

2a).” Group 10 made the following conclusion: “The two methods give the same result, so in practice, 

solving the differential equation is the same as finding the potential function.” Group 11 concluded 

that “the potential function from the vector field in task (a) is the same function as the function 

representing all solutions to the differential equation in part (b). The computation to find a potential 

function is also the same as the computation to solve exact DE in this case. Meaning, instead of 

parameterising like it is done in part (a), the solution from (b) could have been used to find the work 

done between the two points.” 

Table 2 collects information regarding steps performed by students in MO1 and MO2. We see that in 

MO1 students were most successful in the use of the partial integration technique 𝜏2 (ten groups) and 



 

 

partial integration procedure 𝜃2 in the technology part (ten groups). The most difficult part was the 

use of the necessary condition 𝜃1 in the technology part managed only by five groups. In MO2, 

students were most successful with partial integration technique 𝜏2 (eight groups) and partial 

integration procedure 𝜃3 in the technology part (ten groups). The exactness test in the technology part 

was the most difficult for students (only two groups). Interestingly, the use of the same partial 

integration technique 𝜏2 was successful for eight groups in both MO1 and MO2, and two groups were 

also successful with its application in MO1 but not in MO2. 

Table 2: Students’ work in terms of praxeologies MO1 and MO2  

 Task, 𝑇 Technique, 𝜏  Technology, 𝜃  

MO1 Find a 

potential of a 

conservative 

vector field 

𝑇1. 

Test for conservative 

vector fields 𝜏1.  

 

G1, G2, G4, 

G7, G9-G11 
Necessary condition 𝜃1 for 

conservative fields 

without proof. 

G4, G7,  

G9-G11 

Partial integration 𝜏2. G1-G5,  

G7-G11 

Partial integration 

procedure 𝜃2 introduced in 

Example 1. 

G1-G5, G7-G11 

MO2 Solve an 

exact DE 𝑇2. 
Exactness test 𝜏3 .  

 

G1, G2, 

G4, G5, G11 

The exactness test as a 

necessary and sufficient 

condition. 

G4, G11 

Partial integration 𝜏2. G1-G4,  

G8-G11 

Partial integration 

procedure 𝜃3  in the proof 

of Theorem 1. 

G1-G5, G7-G11 

We classify students’ conclusions in part (c) of the problem into four categories induced by the 

praxeologies MO1 and MO2. Our criteria for defining categories are based on students’ recognition 

of similarities and distinctions between techniques and technologies in two praxeologies. 

Praxeological analysis (Rogovchenko & Rogovchenko, 2022) in Table 1 distinguishes the test for 

conservative vector fields 𝜏1 in MO1 from the exactness test 𝜏3 in MO2 and views partial integration 

𝜏2 in MO1 and MO2 as the same technique but these conclusions were not easy for students. Students’ 

difficulties with the comparison of two distinct formulations of the same task stem from their inability 

to connect relevant (parts of) concept images of an EDE into a coherent full vision of the concept. A 

3D approach to an EDE with equal status of three variables in MO1 does not fit well a 2D approach 

with dependence of 𝑦 on 𝑥 in MO2 and this requires additional cognitive efforts from learners. 

Category 1 (the same answer but different methods): students claimed that they obtained the same 

results by two different methods, first using the vector field and then with differential equations and 

noticed the similarity between the answers. “The answers we get in a) and b) are the same. This means 

that a conservative electric field can be seen as an exact differential equation and the general solution 

of the differential equation represents the potential of the electric field.” However, students failed to 

see different formulations of the same problem and the same method of partial integration used in 

both cases. They did not recognise that the method is the same arguing that “Since the answers from 

2A and 2B are similar, it can be seen that they are two different methods of solving the same problem. 

One using vector fields, and the other using differential equations.” “The same function is calculated 



 

 

as a solution both for the differential equation in problem 2b, as well as the potential function of the 

vector field given in problem 2a” (G1-G5, G7-G11).  

Category 2 (similarities in Technique and Technology) Although some students noticed that “in both 

methods, partial integration and derivation are used interchangeably in order to determine the 

constants,” they did not see the differences in Technology. This is not at all surprising given their 

background and traditional lack of attention of future engineers to theoretical results supporting 

mathematical procedures (G2-G4, G9). 

Category 3 (methods are different but one is easier to implement): students described the DE approach 

as an “easier” one still arguing that these two methods are different. The claim that “both methods 

resulted in the exact same answer, but method b was a lot easier and faster” is also typical for 

engineering students who tend to value much more methods that are “easier and faster” (G3, G7, G8). 

Category 4 (problems are different because the dimensions differ): students noticed that the vector 

field in part a) is two-dimensional: “in 2b, the differential function is presented with two variables 

(𝑥, 𝑦). In problem 2a, however, the potential function as well as the vector field represent points and 

vectors in the 3D space, and therefore three coordinates (𝑥, 𝑦, 𝑧) are used. The line integrals 

investigated, however, are two dimensional as their 𝑧 coordinate is 0 in both cases. Therefore, the 

problem could be investigated as a two-dimensional problem in the 𝑥𝑦-axis, as was the case with 

problem 2b.” Therefore, in this case the problem in 3D was reduced to a 2D problem establishing the 

connection between parts (a) and (b) which otherwise would not have been possible (G1, G2). 

Conclusions 

The analysis of students’ work reveals that the similarity of the techniques used in both parts of the 

problem was described as based on the “same answer,” that is, the same function that was the potential 

function of the vector field in part a) and the general solution of the EDE in b). Engineering students 

often choose solution methods departing from the problem formulation. They felt more comfortable 

with MO1 rooted in Calculus in comparison with a more abstract praxeology MO2 rooted in DEs. 

Consequently, quite distinct concept images for EDEs were formed. For instance, MO1 applies to a 

3D space where certain “symmetry” of the three components of the vector function 𝐸 = (𝐸𝑥, 𝐸𝑦 , 𝐸𝑧) 

is preserved. On the other hand, for most students MO2 induced an unequal relationship between 𝑥 

and 𝑦 (𝑥 is independent and 𝑦 = 𝑦(𝑥) is dependent variable), and thus students perceived them 

differently from 𝑥 and 𝑦 in MO1. Some students pointed out that techniques (partial differentiation 

and partial integration) were the same in both parts, but some claimed they were different. Students 

compared their ‘efficiency’ mentioning that “the method in part b) was easier than in part a)” and 

ignoring the fact that part a) included engineering context. Another important observation regards the 

dimension of the vector field in part a) and the dimension of the EDE in part b). Some students 

addressed the dimension issue but viewed it only as a possibility to simplify calculations of the 

integral reduced to 2D rather than a more complex one in a 3D space. Students did not mention at all 

the properties of the domains prescribed by the technology in MO1 and MO2 to support the 

techniques used in parts a) and b). Both in MO1 and MO2 students experienced troubles with the 

technology 𝜃 and completely missed Theory 𝛩, it was particularly challenging for them to arrive at 

deeper conclusions about similarities and distinctions between the praxeologies MO1 and MO2. In 



 

 

our search for an overarching praxeology, both MO1 and MO2 will be followed up separately in two 

forthcoming papers in accordance with their distinct raison d’être to explore possible connections.  
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