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The importance of moving between embodied, symbolic and formal worlds of mathematical thinking: The case of the tree concept

Introduction

Despite the significance of graph theory in mathematics and other disciplines, this field of mathematics has received less focus in undergraduate mathematics education research compared to calculus, differential equations, and linear algebra. To address this gap, this paper focuses on the tree concept, one of the main concepts in the introductory part of graph theory. A tree can be defined as "a connected acyclic graph" (Chartrand et al., 2016, p. 63). A unique path connects every two vertices in trees, making trees the simplest non-trivial type of graph. Trees are often used in graph theory as a starting point for proving theorems, and they are also beneficial for comprehending graphs' structures [START_REF] Chartrand | Graphs & digraphs[END_REF]. In this paper, we explore students' understanding of the tree concept using [START_REF] Tall | Building theories: The three worlds of mathematics[END_REF][START_REF] Tall | The transition to formal thinking in mathematics[END_REF][START_REF] Tall | How humans learn to think mathematically: Exploring the three worlds of mathematics[END_REF] theory of three worlds of mathematical thinking. This theory has been used frequently to explore student understanding of several concepts in linear algebra (e.g., linear combination and linear independence [START_REF] Stewart | Embodied, symbolic and formal thinking in linear algebra[END_REF]; eigenvalues and eigenvectors [START_REF] Stewart | Moving between the embodied, symbolic and formal worlds of mathematical thinking with specific linear algebra tasks[END_REF]). However, it has not been used frequently to explore students' understanding of mathematical topics in other domains of mathematics. Therefore, using this theory could be another contribution of this paper.

Tall's theory of three worlds of mathematical thinking [START_REF] Tall | Building theories: The three worlds of mathematics[END_REF][START_REF] Tall | The transition to formal thinking in mathematics[END_REF][START_REF] Tall | How humans learn to think mathematically: Exploring the three worlds of mathematics[END_REF] theory of three worlds of mathematical thinking (i.e., embodied, symbolic, and formal) discusses how individuals develop mathematics thinking from an early age to adulthood [START_REF] Stewart | Reflection on teaching linear algebra: Examining one instructor's movements between the three worlds of mathematical thinking[END_REF][START_REF] Tall | Evolving a three-world framework for solving algebraic equations in the light of what a student has met before[END_REF]. As a theory influenced by constructivism, here mathematical thinking "occurs within a biological brain" (Tall, 2013, p. 33) and recognition, repetition, and language play significant roles in developing these three worlds. [START_REF] Tall | Evolving a three-world framework for solving algebraic equations in the light of what a student has met before[END_REF] pointed out that the development of mathematical thinking comprises "three distinct ways of making sense of mathematics, each of which develops in sophistication" (Tall et al., 2014, p. 5). Mathematical concepts are initially perceived through recognition and categorization in the embodied world. The symbolic world is developed through the "repetition of sequences of actions to construct mathematical operations either as routine procedures or, through encapsulation, as flexible procepts" (Tall, 2013, p. 134). Finally, the role of language is significant in defining concepts, describing and deducing relationships, and axiomatic mathematics, where set-theoretic language is used to build formal mathematical theory [START_REF] Tall | The transition to formal thinking in mathematics[END_REF][START_REF] Tall | How humans learn to think mathematically: Exploring the three worlds of mathematics[END_REF]. In the following, we provide an overview of these three worlds of mathematical thinking.

The foundations of the (conceptual) embodied world are our actions as biological beings and our sensory perceptions [START_REF] Tall | Building theories: The three worlds of mathematics[END_REF]. [START_REF] Tall | How humans learn to think mathematically: Exploring the three worlds of mathematics[END_REF] further highlighted that sense-making in mathematics refers to "using our human senses to make links between our perceptions and actions" (p. 145).

Understanding the characteristics of the objects we see and sense in the real world and in our mental world enables us to construct mental images that comprise both mental perceptions of real objects (e.g., developing an understanding of Euclidean geometry) and visuospatial imagery (e.g., developing an understanding of spherical geometry) [START_REF] Tall | Building theories: The three worlds of mathematics[END_REF][START_REF] Tall | The transition to formal thinking in mathematics[END_REF]. [START_REF] Tall | Building theories: The three worlds of mathematics[END_REF] highlighted: "By reflection and by the use of increasingly sophisticated language, we can focus on aspects of our sensory experience that enable us to envisage conceptions that no longer exist in the world outside" (p. 30).

An example of such thinking in graph theory is when students draw a graph, such as a tree, during problem-solving to help them with understanding the given problem.

The (proceptual) symbolic world consists of symbols that are used to do calculations and manipulations. Here, we change how we make sense of mathematics. The focus is how symbols operate without paying attention to their earlier meanings [START_REF] Tall | How humans learn to think mathematically: Exploring the three worlds of mathematics[END_REF]. [START_REF] Tall | How humans learn to think mathematically: Exploring the three worlds of mathematics[END_REF] pointed out that we focus "on actions on objects rather than on the objects themselves" (p. 141). An example of such thinking is when students use formulas (e. during problem-solving. These two formulas, for example, can be used to solve T2 in Figure 1. This world is also characterised by developing proceptual thinking, leading to doing operational thinking flexibly [START_REF] Tall | How humans learn to think mathematically: Exploring the three worlds of mathematics[END_REF].

The (axiomatic) formal world has an advantage over the embodied and symbolic worlds because it is not bounded by the context that mathematics is used [START_REF] Tall | How humans learn to think mathematically: Exploring the three worlds of mathematics[END_REF]. In this world, formal definitions are discussed, and theorems are justified by mathematical proofs [START_REF] Tall | The transition to formal thinking in mathematics[END_REF]. Mathematical concepts are developed in the (axiomatic) formal world differently from how they are constructed in the embodied world by engaging with known objects. [START_REF] Tall | The transition to formal thinking in mathematics[END_REF] highlighted that in the formal world, we reverse "the sequence of construction of meaning from definitions based on known objects to formal concepts based on set-theoretic definitions" (p. 7). An example of such thinking in graph theory is using mathematical induction to prove formulas such as [E1].

This conceptualization of mathematical thinking has implications for interpreting how individuals solve mathematical problems. For instance, [START_REF] Tall | Evolving a three-world framework for solving algebraic equations in the light of what a student has met before[END_REF] utilized the theory of the three worlds of mathematics to analyze students' responses to various tasks related to solving quadratic equations.

Another example is Beltrán-Meneu et al.'s (2017) study where this theory was used to investigate how university students solve tasks related to eigen theory after receiving teaching that was based on visualization and physical applications of eigen theory.

Teaching and learning of graph theory

In a survey paper investigating overall perspectives on the teaching and learning of discrete mathematics, [START_REF] Sandefur | Teaching and learning discrete mathematics[END_REF] called for further research on the teaching and learning of graph theory: "More research is necessary in order to identify what and how students … learn … vertexedge graphs, and what are effective methods for teaching and learning this topic" (p. 764). In our search for literature, we identified studies that focused on improving the teaching of graph theory to undergraduate students in mathematics (e.g., [START_REF] Shaw | Harris graphs-A graph theory activity for students and their instructors[END_REF], computer science (e.g., [START_REF] Hansen | Graph magic: A visual graph package for students[END_REF], and liberal art mathematics and bridging courses (e.g., [START_REF] Kasman | Balancing structure and creativity in culminating projects for liberal arts mathematics[END_REF].

Research conducted on students' understanding of graph theory can be categorized into four themes. The first three themes comprise studies that focus on students' understanding of different (a) algorithms (e.g., [START_REF] Medová | Undergraduate students' solutions of modeling problems in algorithmic graph theory[END_REF]; (b) notions (e.g., [START_REF] Kasman | Balancing structure and creativity in culminating projects for liberal arts mathematics[END_REF]; and both algorithms and notions in graph theory [START_REF] Hazzan | Reducing abstraction when learning graph theory[END_REF]. The fourth theme, discussed recently by [START_REF] González | Characterizing levels of reasoning in graph theory[END_REF], examines different levels of reasoning in the context of graph theory. In the following, we review a few of these studies. [START_REF] Hazzan | Reducing abstraction when learning graph theory[END_REF] investigated students' understanding of a number of concepts in graph theory, including trees. They highlighted that students often "overemphasize the visual aspect of Graph theory" (p. 268), reduce the task's abstraction level by "replacing a set of objects with one of its elements" (p. 267), or when they can solve a task by discussing a mathematical object, the chosen object very often is "too complicated for the relevant purpose" (p. 263). More recently, [START_REF] González | Characterizing levels of reasoning in graph theory[END_REF] suggested five processes in learning graph theory, including "recognition, use and formulation of definitions, classification, and proof" (p. 1). They also discussed four levels of reasoning. The first level is visual, where students perceive graphs as a whole. The second level is analytical, where students distinguish different parts and properties of graphs. The third level is pre-formal, where students can interrelate properties. Finally, the fourth level is formal, where graphs are treated as abstract mathematical objects. Within the reviewed studies, Tall's theory of three worlds of mathematical thinking was not used to investigate students' understanding of graph theory concepts. Consequently, in this study, we contribute to the mathematics education literature by exploring the following research question: How do undergraduate mathematics students move between embodied, symbolic, and formal worlds of mathematical thinking to solve tasks related to the tree concept? While the terms movement and moving between the worlds are not explicitly highlighted in Tall's (2013) theory, we agree with [START_REF] Stewart | Navigating through the mathematical world: Uncovering a Geometer's thought processes through his handouts and teaching journals[END_REF] that "Tall's theoretical framework accounts for movement between the worlds of mathematical thinking" (p. 2259). Such attention to movements between these worlds was also studied in the context of teaching and learning linear algebra [START_REF] Stewart | Moving between the embodied, symbolic and formal worlds of mathematical thinking with specific linear algebra tasks[END_REF][START_REF] Stewart | Reflection on teaching linear algebra: Examining one instructor's movements between the three worlds of mathematical thinking[END_REF].

Methods

Through a phenomenological study, we investigated the mathematical thinking of 18 Iranian undergraduate mathematics students. Iranian students majoring in mathematics and physics first encounter graph theory during their upper secondary school education. Later, mathematics majors at the university delve into more advanced topics within graph theory as part of their combinatorics and graph theory courses. In this study, students participated in one-to-one interviews and completed several tasks related to the tree concept as part of a larger project. Seven of these tasks (See Figure 1) were selected for data analysis to conserve space in this paper. The interviews were audio-recorded and transcribed. A think-aloud protocol was used when students engaged with each task. After students solved each question and verbalised their thinking, the interviewer asked a few follow-up questions to explore further their reasoning and problem-solving strategies. 

Results

In this section, we have categorised students' movements across the worlds into three categories. In the entire result section, 𝐺 = (𝑉, 𝐸) is a simple graph; diam and rad refer to the diameter and radius of 𝐺, respectively, and 𝑝 and 𝑘 ∈ ℕ.

Thinking in the embodied world as a guide to thinking in the symbolic and formal worlds

All students used the embodied world to achieve an initial understanding of the given tasks. They were aware that they might not be able to solve the task by thinking only in this world but perceived that drawing a graph could help them realize how to progress on the task by thinking in other worlds.

For instance, in response to T5, all students drew a graph and manipulated it to create a graph with 𝑑𝑖𝑎𝑚 𝐺 = 2𝑟𝑎𝑑 𝐺. Then those who could not find a counterexample tried to use other methods (e.g., mathematical induction) to prove or refute this claim, thinking in the formal world. In response to another task (i.e., T7), five students started by drawing a graph with more edges than vertices. They concluded that this graph must have a cycle. Then they thought about a situation where there is no cycle in the graph. With or without the interviewer's guidance, they recognized that a graph with no cycle might be a tree or a forest (an acyclic graph or, in other words, a graph whose connected components are trees), and then they proved the statement by thinking in the formal and/or symbolic world. For example, one student stated, "… in forests, the number of vertices is more than the number of edges", implicitly referring to |𝐸 (𝐺)| = |𝑉 (𝐺)| -𝑘. In addition, three students paid attention to the definition of the forest, that every component of a forest should be a tree. For example, one of the students said: "If a graph is acyclic, it may be a tree, and we know in trees there are more vertices than edges, and this is also true if we have more than one tree as we have in forests". We also observed that thinking in the embodied world could help students in later problem-solving stages when working in the formal world. In response to T3, six students used mathematical induction to prove [E1]. In the induction step, these students assumed that 𝐺 is a tree with 𝑝 + 1 vertices. Then considered removing a vertex (or edge) from it and examined the properties of this new graph. For this purpose, they used embodied thinking and drew a graph with a certain number of vertices and edges to explore the consequences of such an action. For example, one student stated: "If we draw a tree and remove an edge from two vertices, the resulting graph will be disconnected because there is no path between these two vertices". She pointed out that this new graph has two components, and each component is acyclic. Therefore, she considered this new graph as two trees (i.e., 𝐺 1 & 𝐺 2 ) and stated [E1] for each one. She then added these equations and showed the relationship between the number of vertices and edges for the first graph with 𝑝 + 1 vertices:

|𝐸 (𝐺)| = |𝐸 (𝐺 1 ) | + |𝐸 (𝐺 2 )| + 1 = (|𝑉 (𝐺 1 ) | -1) + (|𝑉 (𝐺 2 ) | -1) + 1 = |𝑉 (𝐺) | -1.

Evaluating thinking in one world by thinking in another world

In some instances, students thought in one world to solve a task and then used another world to evaluate their thinking. In four tasks, such movements were observed. In T1, T2, and T6 half of the students began with solving the task in the embodied world and then used the symbolic and/or the formal world to evaluate their thinking. In T4, four students solved the task in the formal world and then moved to the embodied world to evaluate their thinking. These situations are discussed below.

In response to T1, all students used embodied thinking by checking if the graphs were connected and acyclic. Then six students checked their thinking by moving to the symbolic world, calculating the number of edges and vertices the given graphs and using [E1] to examine whether the graphs were trees. Furthermore, three students went further and used thinking in the formal world to check their thinking; they used a theorem (i.e., every tree has at least two vertices with a degree one) to check if the graphs were trees. In response to T2, three students drew a graph based on the given degree sequence and concluded that this graph is not a tree, indicating thinking in the embodied world. Afterwards, they moved to the symbolic world to evaluate their thinking. Two students examined if [E1] and [E2] were true for the graphs they drew. Also, one student only used [E1] to check whether the difference between the number of edges and vertices in her graph is 1. In response to T4, 12 students focused on the characteristics of isomorphic graphs and thinking in the formal world. Four students concluded that these two trees could not be isomorphic, and moved to the embodied world to check their thinking by drawing two graphs with the same degree sequence that are not isomorphic.

In response to T6, half of the students used embodied thinking and drew a tree whose complement was disconnected. In addition, four students moved beyond embodied thinking and elaborated on the task by thinking in the formal world. They used the formal definition of the tree and complement graph and stated that if a vertex in the tree is connected to all other vertices, in its complement, this vertex becomes isolated and not connected to other vertices, making this graph disconnected.

Moving from one world to another when thinking in one world is unsuccessful

We observed that three students, when unsuccessful in solving mathematical problems by thinking only in one world, moved to another world to approach the problem from a different angle. We observed such movements from the embodied to the symbolic world in T1 and T2, where students struggled with thinking in the embodied world. In response to T1, seven students struggled with evaluating whether the graphs were connected and/or acyclic. Two students moved to the symbolic world, calculated the difference between the number of vertices and edges in the given graphs, and used [E1] to evaluate whether the given graphs were trees. Furthermore, in response to T2, seven students initially used the technique they learned in the proof of Cayley's formula (i.e., for every positive integer 𝑛, the number of trees on 𝑛 labelled vertices is 𝑛 𝑛-2 ). These students could not draw the graph with this approach. Out of these students, one moved to the symbolic world to solve this task. This student calculated the number of edges from the given degree sequences using [E2]. Then considering the number of vertices is clear from the task (i.e., 11), the student used [E1] to check if the relationship between the number of vertices and edges in trees exists for the graph.

Discussion and conclusions

The importance of developing competency to move between embodied, symbolic and formal worlds of mathematical thinking has been well highlighted in the literature for solving tasks in linear algebra (e.g., [START_REF] Hannah | Teaching linear algebra in the embodied, symbolic and formal worlds of mathematical thinking: Is there a preferred order?[END_REF][START_REF] Stewart | Moving between the embodied, symbolic and formal worlds of mathematical thinking with specific linear algebra tasks[END_REF] In this study, we explore the importance of developing these three worlds and moving between them during problem solving in graph theory, an overlooked topic in university mathematics education research. Our findings suggest that developing such competency is also very important to be successful problem solvers in graph theory and should be promoted in its teaching. We observed that students used such movements in three situations: First, using the embodied world to help thinking in the symbolic and formal worlds. The lecturer also often used this movement when proving theorems and solving graph theory problems. Our findings highlight the importance of the embodied world in solving tasks related to the tree concept. [START_REF] Stewart | Embodied, symbolic and formal thinking in linear algebra[END_REF] also pointed out its importance in linear algebra: "the embodied world thinking is valuable because it increases the availability of concept representations, making thinking richer" (p. 936). It "gives deep meaning to the concept allowing us to move towards the formal world" (Stewart & Thomas, 2009, p. 960). The second observed movement was to evaluate thinking in one world (in this study, in the embodied and formal worlds) by moving to another world of mathematical thinking. Such a movement could be promoted more often in teaching mathematics, including graph theory, at the university level because previous studies in other fields (e.g., calculus [START_REF] Radmehr | Students' mathematical performance, metacognitive experiences and metacognitive skills in relation to integral-area relationships[END_REF]) reported that many students do not evaluate their problem-solving/thinking after reaching a solution. Radmehr and Drake (2019, p. 1067) highlighted:

… there is sufficient evidence to conclude that this aspect of metacognitive skills should be included as a key element of teaching, and ways to check solution strategies should be developed with and suggested to students. … [I]f lecturers … overtly used monitoring and checking strategies regularly when solving questions in their classes and required students to do so as part of their own problem solving, this metacognitive skill might be used by students more often.

The third identified movement was when students moved from one world to another after being unsuccessful in problem-solving. In this study, this occurred due to insufficient mathematical knowledge or using an irrelevant concept(s) or procedure(s) when solving a task in the embodied world. Developing the competency to readily move between the three worlds of mathematical thinking is not simple for students [START_REF] Hannah | Teaching linear algebra in the embodied, symbolic and formal worlds of mathematical thinking: Is there a preferred order?[END_REF]. Previous studies (e.g., [START_REF] Stewart | A framework for mathematical thinking: the case of linear algebra[END_REF] reported that students could be trapped in a particular world of mathematical thinking when problem-solving. Mathematics lecturers could provide more opportunities for students to develop such competency. For example, when designing tasks for activities in lectures or assignments, lecturers could design tasks in a way that promote moving between embodied, symbolic and formal worlds of mathematical thinking. [START_REF] Stewart | Moving between the embodied, symbolic and formal worlds of mathematical thinking with specific linear algebra tasks[END_REF] highlighted: "Metaphorically, for novice students the worlds of mathematical thinking can be thought of as isolated islands … [well-defined tasks] can be thought of as boats carrying students between the worlds" (p. 60).

We conclude this paper by acknowledging that the conceptualization and operationalization of the three worlds of mathematics in this study might not align with the perspectives of all mathematics educators. However, as noted earlier, it is consistent with previous studies conducted by Stewart and her colleagues (e.g., Stewart, 2018;[START_REF] Stewart | Reflection on teaching linear algebra: Examining one instructor's movements between the three worlds of mathematical thinking[END_REF]. Furthermore, our interpretation of these three worlds does not seem to contradict how Tall himself illustrates his theory. For instance, in a recent publication, [START_REF] Tall | Significant changes in university mathematics education[END_REF] discussed how the development of digital technology impact teaching and learning of the derivative. He used his theory for this purpose and began by discussing how one could learn about the derivative by interpreting the graphs of function in the embodied world. Then he moved to the symbolic world and pointed to calculating the slope of 𝑦 = 𝑥 2 from 𝑥 to 𝑥 + ℎ. Tall (2019) then moved to the formal world and highlighted that "In analysis, the formal level involves translating the theoretical definition into its set-theoretic epsilon-delta form" (p. 4).

  g., |𝐸 (𝐺)| = |𝑉 (𝐺)| -1 where 𝐺 = (𝑉, 𝐸) 𝐺)| where 𝐺 = (𝑉, 𝐸) is a simple graph [Equation 2])

T1.

  Which of the following graphs are trees? Justify your answer.T2. Is a tree with degree sequence (1,1,1,1,1,2,2,3,3,3,4) exist? Why? T3. Prove the relationship between the number of vertices and edges in trees. T4. Suppose 𝑇 1 and 𝑇 2 are two trees with the same degree sequence. Are 𝑇 1 and 𝑇 2 isomorphic? T5. Suppose 𝐺 is a graph with 𝑑𝑖𝑎𝑚 𝐺 = 2𝑟𝑎𝑑 𝐺. Is 𝐺 a tree? T6. Give an example of a tree (𝑇) with at least eight vertices where 𝑇 ̅ is disconnected. (𝑇 ̅ is the complement of T). T7. If in a simple graph G, |E (G)|≥ |V (G)|, prove that G contains a cycle.
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 1 Figure 1: Selected tasks from the interview