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In this paper, we consider an unconventional doping effect of strongly correlated cerium 4 f electrons in
layered intermetallic systems. The conduction electron part of the model is taken to reproduce the hole and
electron pockets of iron-based superconductors (FeSCs), and the cerium contribution is studied through an
effective tight-binding Hamiltonian arising from the slave-boson mean-field theory of the periodic Anderson
model. We show how the consideration of the nonlocal Kondo coupling naturally present in real materials
can lead to a pocket-selective doping effect from cerium f electrons. The model is designed for paramagnetic
materials of the ZrCuSiAs-type structure such as CeFeSiH, CeFePO, or the high-pressure phase of CeFeAsO. In
certain conditions, the model shows a Lifshitz transition which can be induced by either doping or change in the
hybridization strength between iron and cerium orbitals. We present some signatures of both pocket-selective
doping and Lifshitz transition by means of the density of states at the Fermi level, the static spin susceptibility,
the optical conductivity, and Raman spectroscopy.

DOI: 10.1103/PhysRevB.109.045117

I. INTRODUCTION

Cerium-containing materials represent an active part of
the modern research in quantum matter. They display a huge
amount of exotic behaviors, such as unconventional supercon-
ductivity in CeCu2Si2 [1], magnetic field-induced quantum
critical point in CeRhIn5 [2], non-Fermi liquids [3], or pos-
sible quadrupole-density wave in CeRh2As2 [4], for example.

Out of those very peculiar properties, the heavy-fermion
state has gathered an important number of studies. It cor-
responds to a collective phenomenon where the magnetic
moments originating from Ce3+ 4 f 1 orbitals form a quantum
coherent state with the conduction sea at low temperature,
leading to Fermi liquid with strongly renormalized quasi-
particles [5,6]. This Fermi liquid state shows an enlarged
Fermi surface due to the contribution of cerium 4 f 1 electrons
[6], what has been observed in angle-resolved photoemis-
sion spectroscopy (ARPES) experiments on CeFePO, for
example [7].

On the other hand, the variation of the number of charge
carriers is a central point in the study of strongly correlated
d-electron materials, and in particular doping induced uncon-
ventional superconductivity in the high-Tc cuprates [8] and
iron-based superconductors [9].

In this paper, we address the question of the combined
effect of f - and d-electron physics in the paramagnetic
regime and propose a study of the possible Fermi-surface
reconstruction arising from heavy-fermion state in iron-based
superconductors of the ZrCuSiAs structure. Some clues for
nontrivial cerium f -electron effects have been predicted by
dynamical mean-field theory calculations [10] and observed
experimentally. For example, CeFePO is a paramagnetic
Kondo lattice at low temperature [11], as well as CeFeAsO
above 5 GPa [12]. In these two cases, no magnetic order

is observed on iron sites. Furthermore, to explain the super-
conductivity induced with pressure on CeFeAsO, the authors
of [12] have pointed out the possible relevance of electron
doping from cerium atoms. Another case of interest is the
iron-based superconductor LaFeSiH [13], in which no mag-
netic order on the iron atom has been observed down to low
temperatures.

One peculiarity of iron-based superconductors is their
multipocket physics at the Fermi level [14]. Interorbital cor-
relations have been shown to explain both magnetic order in
the underdoped side and superconductivity as weak coupling
instabilities of the d-electron Fermi liquid. The former is a
spin density wave arising from the nesting of the electron and
hole Fermi surfaces, and for the latter the superconducting s±
pairing mechanism is associated to interpocket scattering [15].
Thus, through the nesting condition between electron and hole
pockets, the shapes and topologies of the Fermi surfaces have
a major role in this family of materials.

We will consider the Fermi-surface reconstruction arising
from cerium heavy-fermion state by means of a periodic
Anderson model. This model has been extensively studied
and reproduces heavy-fermion behavior through the appari-
tion of an effective hybridization between the conduction
electrons and the cerium orbitals, responsible for Kondo co-
herence [16,17]. This hybridization creates a pseudogap close
to the Fermi energy, or even at the Fermi energy in the
case of Kondo insulators. In usual treatments of the periodic
Anderson model, only one conduction band and a local hy-
bridization between the conduction electrons and the cerium
sites are generally assumed, as for example in [18].

However, in ZrCuSiAs compounds containing iron and
cerium, the iron atoms that hold the conduction electrons
and the cerium atoms that hold the f orbitals are separated
in space. This implies a nonlocal hybridization between the
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Bloch electrons and the Kondo ions. This nonlocal hybridiza-
tion leads to a Kondo gap that varies in the Brillouin zone
and, in particular, can show hybridization nodes imposed by
symmetry [19].

Momentum-dependent Kondo hybridization is reported ex-
perimentally, for example, in optical conductivity [20], in
Raman spectroscopy [21], and in ARPES [22–25]. They are
also used in theoretical models, for example, to explain the
intensity variations observed in the photoemission spectrum
of CePd3 [26] or to reproduce optical conductivity measure-
ments performed on CeT In5 (T = Co, Rh, Ir) [20]. On the
periodic Anderson model, it has been shown that the com-
petition between a local hybridization term and a nonlocal
hybridization term can lead to unconventional superconduc-
tivity mediated by magnetic fluctuations, without inducing ad
hoc magnetic interactions between cerium atoms [27]. We
mention also the case of the Kondo insulators CeRhSb and
CeNiSn, where nodes in the Kondo pseudogap are observed
in thermal conductivity [28], and are studied theoretically in
[29,30].

Following the work of [19], we will consider the possibility
of hybridization nodes induced by a nonlocal Kondo coupling.
We will extend the method of [19] to a prototype of multiband
system for the conduction electrons, adapted for iron-based
superconductors physics. We will show how the anisotropic
features of the cerium orbitals and of the cerium-iron hy-
bridization can affect the Fermi-surface reconstruction, and
the doping through cerium heavy-fermion state. Such model
is devoted to paramagnetic systems such as CeFeAsO above
5 GPa or CeFePO in which doping effect of cerium has been
observed [7,12], or to CeFeSiH, the heavy-fermion cerium
compound associated to the iron-based superconductor
LaFeSiH [13].

In the first section, we present the tight-binding model
adapted for FeSCs physics at low energy and the slave-boson
method we used to treat the strong correlations of the cerium
f orbitals. In the second section, we present the results on the
electronic structure, and propose some physical observables
for the pocket-selective doping effect. Finally, we discuss the
results considering the existing measurements on materials
that might undergo a related behavior.

II. MODEL AND METHOD

A. Model and slave-boson approach

This work is motivated by the ZrCuSiAs family of FeSCs
such as LaFeAsO, LaFePO, and LaFeSiH, and in particular
their cerium counterparts CeFeAsO, CeFePO, and CeFeSiH.
We will thus focus on one iron plane surrounded by cerium
atoms, presented in Fig. 1. The unit cell contains two iron
and two cerium atoms because of the alternated positions of
cerium atoms with respect to the iron plane.

The two iron atoms’ unit cell has been shown to be an
important ingredient of the electronic structure of FeSCs, in
particular due to the presence of spin-orbit coupling for the
iron d orbitals [31]. However, in order to investigate more
precisely the pocket-selective doping of cerium f electrons,
we will consider the simpler model of a unit cell with only one
iron atom. This approximation preserves the principal aspect

(a) (b)

FIG. 1. (a) Crystal structure of LaFeAsO, LaFePO, LaFeSiH,
CeFeAsO, CeFePO, and CeFeSiH, representing the ZrCuSiAs fam-
ily of FeSCs. (b) Square lattice of the iron plane. The alternated
(above and under) blue squares represent the cerium positions with
respect to the iron square lattice.

of the electronic structure for the iron d electrons which is the
multipocket physics at the Fermi level. Furthermore, it permits
a simpler understanding of the pocket-selective doping due to
a smaller number of electronic bands.

In order to separate the d-electron physics from the f -
electron physics, we will also consider LaFeSiH, which is
isostructural to CeFeSiH and without any f electron.

The Hamiltonian contains the effects of iron d electrons,
cerium f electrons, and a f d hybridization term. It is written
as

H = Hd + H f + H f d . (1)

The precise content of each term will be described hereafter.

1. d-electron physics Hd

For the d-electron physics, we take the two-band model of
Raghu et al. [32], represented in Fig. 2. This model consists of
the two iron dxz and dyz orbitals, and the associated hopping
parameters are shown in Fig. 2(a).

Denoting dα
kσ as the destruction of an iron d electron of

orbital index α = xz, yz, spin σ = ↑,↓, and momentum k, the
d-electron Hamiltonian is written as

Hd =
∑

kσαα′

(
εαα′

k − μδαα′)
dα†

kσ
dα′

kσ . (2)

We write N the number of iron sites, equal to the number of
cerium sites. The creation operators in real space are written
as dα

iσ = 1√
N

∑
k dα

kσ eik·ri , and the energies εαα′
k are obtained as

the Fourier transform of the hopping parameters tαα′
i j defined

in Fig. 2(a), εαα′
k = ∑

i j eik·(ri−r j )tαα′
i j :

εxx
k = −2t1 cos(kx ) − 2t2 cos(ky) − 4t3 cos(kx ) cos(ky),

ε
yy
k = −2t1 cos(ky) − 2t2 cos(kx ) − 4t3 cos(kx ) cos(ky),

ε
xy
k = 4t4 sin(kx ) sin(ky). (3)

The chemical potential term μ permits to vary the number of
conduction electrons nd .

2. f -electron physics H f

For the cerium 4 f 1 physics, we focus on the low-energy
Kramers doublet resulting from spin-orbit and crystal-field
splittings, and responsible for Kondo effect. While it has been
possible to neglect spin-orbit coupling for the iron 3d orbitals
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FIG. 2. (a) Tight-binding model of Ref. [32]. (b) Band structure
on the high-symmetry path of the Brillouin zone. E is the energy
of the two conduction bands defined by 2E±(k) = εxx

k + ε
yy
k − 2μ ±√

(εxx
k − ε

yy
k )2 + 4(εxy

k )2. The content of dxz or dyz electrons in each
band is represented in color from violet to red. (c) Associated Fermi
surfaces, typical of iron-based superconductors. The two hole pock-
ets are located around � and M, and the two electron pockets are
located around X and its second equivalent position. The solid red
line indicates the high-symmetry path � → M → X → �.

and preserve the multiband structure at the Fermi level, such
spin-orbit interaction cannot be neglected for the cerium 4 f
orbitals. Considering only the low-energy Kramers doublet,
we are indeed in the opposite regime, in which the spin-orbit
coupling is much larger than the other energy scales of the
system. This is justified since spin-orbit coupling is much
more important for 4 f orbitals than 3d orbitals.

In a tetragonal system such as FeSCs, the Kramers doublet
arising from J = 5

2 low-energy spin-orbit multiplet is either
�6, �+

7 , or �−
7 depending on the ionic environment [33].

Their symmetry properties with respect to square plane group
transformations are represented in Fig. 3.

We will consider the three cases of �6, �7+, or �7−
separately. The localized low-energy doublet is represented
through an atomic level of energy ε f , with Hubbard repulsion
U , denoting fδσ the destruction of a cerium f electron of

(a) (b)

FIG. 3. (a) Spin-orbit and crystal-field splittings of the cerium 4 f
orbital in the tetragonal environment. (b) Symmetry properties under
square plane group operations D4 for the low-energy doublets �6,
�7+, and �7−.

pseudospin σ = ↑,↓ at site δ:

H f = ε f

∑
δσ

f †
δσ fδσ + U

∑
δ

f †
δ↑ fδ↑ f †

δ↓ fδ↓. (4)

We assume a strong Coulomb repulsion on the f orbital
which corresponds to the limit U → ∞. In order to look at
the low-energy physics and discard the high-energy part of
the Hilbert space where there are two electrons on at least
one cerium site, we use the slave-boson technique [16,34–
36]. It permits to avoid the interaction term U , at the price of
replacing the fermionic operator by a composite one fδσ →
b†

δ f̃δσ where bδ and f̃δσ annihilate, respectively, an auxiliary
boson and fermion. This transformation is valid with the local
constraint on each site to ensure the closure of the Hilbert
space:

∑
σ f̃ †

δσ f̃δσ + b†
δbδ = 1.

Here, the physical doublet states 4 f 1 are identified with
f̃ †
δσ |0̃〉δ , where |0̃〉δ denotes an auxiliary vacuum. The 4 f 0

state is identified with b†
δ|0̃〉δ . Since the boson-number oper-

ator b†
δbδ is always positive, states for which

∑
σ f̃ †

δσ f̃δσ > 1
are automatically forbidden on each site, and then the explicit
interaction term U in Eq. (4) can be suppressed. The constraint
is achieved through the introduction of a local Lagrange mul-
tiplier λδ , which has to be fixed self-consistently. Thanks to
the operator identity f †

δσ fδσ = f̃ †
δσ f̃δσ , the Hamiltonian for f

electrons is mapped onto

H f → ε f

∑
δσ

f̃ †
δσ f̃δσ +

∑
δ

λδ

(∑
σ

f̃ †
δσ f̃δσ + b†

δbδ − 1

)
.

(5)

3. f d hybridization H f d

Given the crystal structure of CeFeAsO, CeFePO, or Ce-
FeSiH represented in Fig. 1(b), one can formally write the
hybridization between cerium f orbital at site δ and iron dα

orbitals at site i as

H f d = v
∑
iδασ

(
γ α

iδ f †
δσ dα

iσ + H.c.
)
. (6)

The sign of the structure factor γ α
iδ depends on the symme-

try of the low-energy cerium Kramers doublet �6, �+
7 , or

�−
7 , as represented in Fig. 4. Using Fourier transform γ α

k =∑
iδ eik(ri−rδ )γ α

iδ , we have

�6 : γ x
k = −4i sin

kx

2
cos

ky

2
, γ

y
k = −4i sin

ky

2
cos

kx

2
,

�7+ : γ x
k = 4i sin

ky

2
cos

kx

2
, γ

y
k = 4i sin

kx

2
cos

ky

2
,

�7− : γ x
k = −4i sin

kx

2
cos

ky

2
, γ

y
k = 4i sin

ky

2
cos

kx

2
. (7)

In this model, we assume the same magnitude for the
hybridization v between the cerium and the two iron orbitals.
This is required by symmetry since the isolated dxz or dyz do
not form a representation of the square plane group alone, but
constitute a doublet {dxz, dyz}.

After the slave-boson mapping, the hybridization term be-
comes

H f d → v
∑
iδασ

(
γ α

iδ bδ f̃ †
δσ dα

iσ + H.c.
)
, (8)
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(a)

(b)

(c)

FIG. 4. Nearest-neighbor hybridization between the f orbital of
cerium and the dyz and dxz orbitals of iron, for the �6 symmetry (a),
�7+ symmetry (b), or �7− symmetry (c).

where the hybridization strength between d electrons and
f̃ pseudofermions has been dressed by the slave-boson
field bδ .

B. Mean-field approximation

We perform a static and homogeneous mean-field approxi-
mation on both boson field b and Lagrange multiplier λ. Using
Eqs. (2), (5), and (8) for Hd , H f , and H f d , we get an effective
tight-binding model, written in k space:

H =Hd + H f + H f d

≈
∑

kσαα′

(
εαα′

k − μδαα′
)
dα†

kσ
dα′

kσ + (λ − μ)
∑
kσ

f̃ †
kσ

f̃kσ

+ vb
∑
kσα

(
γ α

k f̃ †
kσ

dα
kσ + H.c.

)+ ε0,

ε0 = N (λ − ε f )(b2 − 1) + Nμ(1 − b2 + nd ). (9)

Following the standard slave-boson mean-field procedure,
the mean-field parameters are fixed from the saddle-point
equations of the free energy F = − 1

β
exp(−βH) with respect

to b, λ, and μ:

v

N

∑
kσα

γ α
k

〈(
f̃ †
kσ

dα
kσ + H.c.

)〉+ 2b(λ − μ − ε f ) = 0,

1

N

∑
kσ

〈
f̃ †
kσ

f̃kσ

〉+ b2 − 1 = 0,

1

N

∑
kσα

〈
dα†

kσ
dα

kσ

〉+ 1

N

∑
kσ

〈 f̃ †
kσ

f̃kσ 〉 + b2 − 1 − nd = 0,

(10)

where 〈. . . 〉 denotes thermodynamical average with re-
spect to H. For the following, we write the mean-field

Hamiltonian (9) as

H ≈
∑
kσ

(
dx†

kσ
, dy†

kσ
, f̃ †

kσ

)
Mk

⎛
⎜⎝

dx
kσ

dy
kσ

f̃kσ

⎞
⎟⎠+ ε0,

Mk =

⎛
⎜⎝

εxx
k − μ ε

xy
k vbγ x

k

ε
xy
k − μ ε

yy
k − μ vbγ y

k(
vbγ x

k

)∗ (
vbγ y

k

)∗
λ − μ

⎞
⎟⎠. (11)

For fixed d-electron band-structure parameters εαα′
k and filling

nd , the model displays two free parameters: the number of
doping f electrons n f = 2

N

∑
k〈 f̃ †

kσ
f̃kσ 〉, and the strength of

the effective hybridization vb.
The mean-field equations (10) have a trivial solution b =

0, which is realized at high temperature. It corresponds to
decoupled d and f electrons. A second solution b �= 0 can
be realized under a typical temperature TK called the Kondo
temperature. Below TK , the appearance of an effective hy-
bridization between f̃ pseudofermions and d electrons is
associated with the Fermi-surface reconstruction and the dop-
ing effect of cerium.

Within the phenomenological model presented here, we
will study the physics of the ground state at T = 0. In order to
adapt qualitatively our discussion to real materials, we define
an energy scale

T0 = (4vb)2/W, (12)

where W ≈ 12|t1| is the bandwidth for the conduction elec-
trons. In usual slave-boson treatments of the Kondo lattice
with local f d hybridization, we may identify T0 ≈ TK . The
cases where T0  TK or T0 � TK that might be realized in
some specific situations [35,37] are not discussed here. We
suppose for this work that the relation T0 ≈ TK is still valid in
the nonlocal f d hybridization case.

III. RESULTS AND DISCUSSION

For the numerical calculations, we fix the energy scale of
the model |t1| from ARPES experiments in FeSCs [38] which
shows that the bandwidth of the hole pocket centered at �

(that consists of iron dxz and dyz orbitals) has a depth around
150 meV. The top of the hole band at � is around 2|t1|,
which gives |t1| = 825 K, and W = 12|t1| ≈ 9900 K. Thus,
we take as lowest hybridization vb = 0.2|t1| that corresponds
to T0 ≈ 4(vb)2/W ≈ 10 K. This is typical for those systems,
e.g., CeFePO [11] or CeFeAsO at 5 GPa [12].

Thus, given an undoped band structure, an amount of dop-
ing f electrons and a given Kondo temperature, the model
is fixed. The control parameter can be either the number
of f electrons n f at fixed f d hybridization vb, or the f d
hybridization vb at fixed number of f electrons n f . Varying
n f can be viewed as tuning the cerium concentration x in a
La1−xCexFeSiH system, for example, assuming that x is not
too small such that the cerium 4 f electrons contribute to the
coherent Fermi-liquid state [39,40]. We suppose for this work
that the Kondo coherent state is achieved even at small number
of f electrons n f . Varying the f d hybridization strength vb
corresponds to the increase of overlap between the cerium
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orbital and the conduction electrons, which can be achieved
through the application of external pressure.

A. Electronic structure

In this section, we analyze the band structure, the Fermi-
surface reconstruction, as well as the density of states at
the Fermi level for different symmetries for the low-energy
cerium orbital.

1. Band crossing

The principal effect induced by the nonlocal f d hybridiza-
tion in real space is k-dependent hybridization in reciprocal
space and in particular hybridization nodes. To represent this
result, we fix the number of f electrons n f = 0.2 and take
vb = 0.2|t1|. The results are shown in Fig. 5.

We obtain different results depending on the cerium orbital
symmetry. In the case of �6 cerium, the f band hybridizes
with the lower d band around � and M which corresponds
to the hole pockets (the gap is denoted 
1), and not with the
upper d band around X , which corresponds to the electron
pockets [see Fig. 5(a)]. For the �7+ cerium, the situation is
reversed and the f level does not hybridize with the lower
band in M → X → � and hybridize with the upper band in
this region (the gap is denoted 
2) [see Fig. 5(b)]. In this case,
the hybridization gap 
1 that is visible in � → M lies too
much above the Fermi level in this case to generate a Fermi-
surface reconstruction. Finally in the case of �7−, the cerium
f band does not hybridize nor with the lower band in � → M,
nor with the upper band in M → X → � [see Fig. 5(c)].

In this last case of symmetry �7−, the cerium 4 f band
does not hybridize enough with the iron dxz and dyz bands,
and the added f electrons create a new pocket in the path
� → M, which is quite artificial [see Fig. 5(c)]. However,
different results might be obtained considering iron dxy and
dz2

bands, which are not considered here. All the allowed or
forbidden crossings can be obtained directly from symmetry
considerations on the band structure (see Appendix A).

2. Variation of f -electron number and pocket-selective doping

The study of the band crossing showed that we can dis-
card the case �7− cerium in the following since it does
not lead to a strong enough f d hybridization. We analyze
the Fermi-surface reconstruction upon adding f electrons to
the system. The Fermi surfaces correspond to the solutions
of the equation E ν

k = 0, ν = 1, 2, 3, where E ν
k are the eigen-

values of the matrix Mk defined in Eq. (11).
In the case of �6 cerium [see Fig. 6(a)], the added elec-

trons fill the hole pockets, in agreement with the results of
band crossing. For vb/|t1| = 0.2, the complete filling of the
hole pockets leads to their extinction around n f = 0.3, what
constitutes a Lifshitz transition [41]. Continuing to add f
electrons to the system, they populate the electron pockets
until a second Lifshitz transition occurs at n f = 0.5, where
the two electron pockets merge and form two hole pockets
centered at � and M.

In the case of �7+ cerium symmetry [see Fig. 6(b)], the
added electrons populate almost only the electron pockets
in accordance with the results of the previous section [see

E/
t 1

(a)

(b)

kx

ky

M

XΓ
e- f

E/
t 1

(a)

(b)

kx

kykk

M

XΓ
e- f

100 %

0 %
+

+
+

Γ6 cerium

Γ7+ cerium

(c)

+

+Γ7- cerium

E/
t 1

Δ1

→→ →→

Δ1

→→ →

Δ2

→

E/
t 1

→

Δ2

Δ1

→→ →E/
t 1

E/
t 1

Δ1

→ → → →

Δ1

→E/
t 1

→

Δ1

→→

FIG. 5. Band structure corresponding to the eigenvalues of the
matrix Mk defined in Eq. (11), on the high-symmetry contour � →
M → X → �, in the case of �6 cerium (a), �7+ cerium (b), and
�7− cerium (c), for nf = 0.2 and vb = 0.2|t1|. The proportion of
f electrons in each band is represented in color from dark blue to
yellow. 
1 refers to the hybridization gap between the cerium f band
and the lower d band, whereas 
2 refers to the hybridization gap
between the cerium f band and the upper d band.

Fig. 5(b)]. For vb/|t1| = 0.2, no Lifshitz transition is observed
up to n f = 1.

Thus, the model predicts that depending on the cerium
orbital symmetry, the added f electrons will populate either
the hole or the electron pockets in priority, what we refer as the
pocket-selective doping of cerium f electrons in iron-based
superconductors.

We can discuss the pocket-selective doping in the frame-
work of ARPES experiments in CeFePO [7] and CeRuPO
[42], and by comparing with their lanthanum-based counter-
parts that will correspond to the n f = 0 case of this model. In
CeFePO, the two hole pockets around � are observed to be
smaller than the one of LaFePO [7]. We thus expect that these
hole pockets are partially filled by the cerium f electrons,
which correspond to the �6 cerium case of this model.
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FIG. 6. Evolution of Fermi surfaces upon adding f electrons to
the system for vb/|t1| = 0.2, in the case of �6 cerium symmetry (a),
and �7+ cerium symmetry (b). For more clarity, electron pockets
are represented in blue, and hole pockets are represented in red.
Two Lifshitz transitions are observed for the �6 cerium at nf = 0.3
and 0.5.

Furthermore, a hybridization with the dz2−r2
band is ob-

served, that we did not consider here. CeRuPO is known to be
a ferromagnetic Kondo lattice compared to the paramagnetic
compound CeFePO. Nevertheless, the same hybridization
with the dxz, dyz, and dz2−r2

bands has been reported [42].
Apart from the case of the dz2−r2

orbital, the model pre-
sented here agrees with the �6 cerium ground state observed
in CeRuPO from magnetic susceptibility measurements on
single crystals [43].

Finally, we expect that these results could extend to para-
magnetic heavy-fermion regime induced above 5 GPa in
CeFeAsO [12], where the possible doping from cerium atoms
has been pointed out. Magnetic susceptibility measurements
on CeFeAsO single crystals indicate a �6 cerium ground state
[44]. The model presented here predicts that this �6 doublet
leads to doping of the hole pockets. In order to describe the
low-pressure phase of CeFeAsO, one should take into account
both magnetic order on the cerium atom, and also magnetic
order on the iron atom like in [45], which is beyond the scope
of the present discussion.

3. The Lifshitz transition of �6 cerium

Among the two Lifshitz transitions identified in the pre-
vious section, we will now study in detail only the one
corresponding to the complete filling of the hole pockets.
The associated Fermi surfaces are represented in Fig. 7(a)
for different values of the hybridization strength vb. We first
remark that in all cases both hole pockets disappear at the
same time. This can be understood by observing that the f d
structure factors γ x

k and γ
y
k are equal to zero at the � and M

points [see Fig. 5(a)]. Thus, the disappearance of the hole
pockets corresponds to the crossing of the f level through
the Fermi energy, which occur at the same time for both hole
pockets and corresponds to our model parameters λ − μ = 0
[see Fig. 7(b)].

This transition is strongly affected by the f d hybridization
strength vb, contrary to the case of �7+ cerium where the

0.22 0.26 0.30=

(a)

kx

ky

M

X

vb/|t1|=0.2

vb/|t1|=0.3

vb/|t1|=0.4

nf

(b)

FIG. 7. (a) Lifshitz transition of �6 cerium where the hole pock-
ets disappear, for different hybridization strength vb. (b) Lifshitz
transition of �6 cerium identified as the crossing of the flat level
through the Fermi energy λ − μ = 0.

reconstruction of Fermi surfaces is independent of vb (not
shown). The hole pockets disappear towards higher doping
as the f d hybridization strength vb increases. This can be
explained as follows: the self-consistency equations (10) fix λ

and μ in order to satisfy the physical constraints of the number
of d electrons per site nd and the total number of electrons per
site nd + n f . When λ − μ > 0, in order to increase vb at fixed
nd + n f , one has to put the effective f level higher in energy,
and increase λ. However, as there is a mixing between the f
and the d bands, a higher f band also implies less d electrons.
So one has to correct this also by increasing μ. Since there is
no hybridization between the f band and the electron pockets,
these two combined effects lead to a transfer of d electrons
from the hole pockets to the electron pockets. Finally, since
there are fewer electrons occupying the hole pockets, a larger
number of f electrons are needed to reach the complete filling.

Also, let us notice that at the precise point of the transition,
there is no more contribution of the f electrons to the Fermi
surfaces, which then contain only the “light” electrons.

We are aware that the multiorbital interactions in the d
manifold should also have a role [46,47]. However, here, we
neglect their effect and we use a slave-boson mean field that
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FIG. 8. Density of states at the Fermi level n(εF ) variation versus
the hybridization strength vb at different number of doping f elec-
trons nf , for �6 cerium (a) and �7+ cerium symmetry (b).

focuses onto the f -electron interaction. This minimal con-
tent permits to focus on the pocket-selective doping effect of
cerium more transparently.

4. Density of states at the Fermi level

The density of states at the Fermi level is a central quantity
to discuss heavy-fermion behavior. In a Fermi-liquid picture
of a given material, it corresponds to the effective mass of the
quasiparticles and can directly be probed through several mea-
surements: specific heat, electrical resistivity, thermopower
coefficient, and static spin susceptibility [48,49].

For a multiband system of band index ν = 1, 2, 3 and ener-
gies E ν

k defined as the eigenvalues of the matrix Mk , the total
density of states at the Fermi level is expressed as the sum
over the band index: n(ω + εF ) = ∑

kν δ(ω − E ν
k ), where εF

is the Fermi energy. In Fig. 8 we show the evolution of the
density of states at the Fermi level for the �6 and �7+ cerium,
varying the numbers of doping f electrons n f , for different f d
hybridization strength vb.

For �6 cerium [see Fig. 8(a)], we observe a very strong
increase of the density of states at the Fermi level. Moreover,
the evolution of this density of states as a function of the num-
ber of f electrons or hybridization is not smooth, and shows a
singular behavior at the first Lifshitz transition, where the hole
pockets are completely filled. As we noticed when studying
the reconstruction of the Fermi surfaces, at the transition point
the f electrons no longer contribute to the conduction, and
thus the density of states at the Fermi level reaches a local
minimum.

For �7+ cerium [see Fig. 8(b)], the density of states at
the Fermi level increases smoothly with the number of f
electrons n f , and decreases smoothly with the hybridization

vb. This result is consistent with the reconstruction of the
Fermi surfaces which is independent of the vb hybridization.

While a quantitative prediction of the effective mass for
a given material is beyond the scope of this paper, we ex-
pect qualitative signatures depending on the cerium orbital
symmetry. In particular, we remark a qualitative agreement
with CeFePO, at least in order of magnitude. For a �6 cerium
with vb/t1 = 0.2, corresponding to a Kondo temperature T0 ≈
TK ≈ 10 K, we obtain an increase of the density of states at
the Fermi level by a factor 37. In CeFePO, the Kondo temper-
ature has been estimated from the entropy to TK ≈ 10 K [11],
and comparing the Sommerfeld coefficient γCeFePO = 700
mJ/mol K2 to the one of LaFePO γLaFePO = 12.5 mJ/mol K2

[50], we obtain a factor 56.

B. Physical observables

In this section, we propose additional observables to dis-
tinguish signatures of the different symmetries for the cerium
orbital. We will first study the static spin susceptibility, which
can be compared with the density of states at the Fermi level
determined in the previous section. Second, we will study the
optical conductivity and the Raman spectra, which will be
discussed with the help of the results obtained for the band
crossing.

1. Static spin susceptibility

In FeSCs, it is generally assumed that the nesting between
the hole pocket at the center of the Brillouin zone and the
electron pockets at the edge leads to enhanced (0, π ) mag-
netic response that tends to destabilize the Fermi liquid in
favor to either spin density wave state or s± superconductivity
[51,52]. Those (0, π ) fluctuations arise naturally in the static
spin susceptibility. Thus, we expect that the Fermi-surface
reconstruction should be associated with changes in nesting
conditions and might be visible on static spin susceptibility.

Writing the spin operators as Sa+
i = ca†

i↑ ca
i↓, Sa−

i = ca†
i↓ ca

i↑,

a = x, y, f , with cx
i↑ = dxz

i↑ , cy
i↑ = dyz

i↑ , and c f
δ↑ = f̃δ↑, the spin

susceptibility as a function of imaginary time τ can be ex-
pressed as a spin-spin correlation function:

χi j (τ ) =
∑
aa′

〈
Sa+

j (τ )Sa′−
i (0)

〉
, (13)

where 〈. . . 〉 stands for thermodynamical average. Within the
slave-boson mean-field approximation, the effective dressed
electrons are noninteracting and the susceptibility can be
replaced by a Lindhard-type term:

χi j (τ ) = −
∑
aa′

Ga′a
i j (τ )Gaa′

ji (−τ ), (14)

where Ga′a
i j (τ ) = 〈Tτ ca

j↑(τ )ca′†
i↑ (0)〉 = 〈Tτ ca

j↓(τ )ca′†
i↓ (0)〉 is the

Green’s function, and Tτ , the chronological order operator.
After Fourier transform, the spin susceptibility χ (q, i�) is
obtained in the reciprocal space k, q and with the Matsubara
frequencies iωn:

χ (q, i�) = − 1

βN

∑
k,iωnaa′

Ga′a(k + q, iωn + i�)Gaa′
(k, iωn).

(15)
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FIG. 9. Static spin susceptibility for �6 cerium with different nf

and vb/|t1| = 0.2.

We will study here the static response χ (q) = χ (q, i� =
0). While in [32] or [53] the T → 0 limit is taken by calcu-
lating the sum over the iω with the residue theorem, we had
to adopt here a different strategy. Indeed, the description of
an effective f level that crosses the Fermi level required us
to sample the Brillouin zone very finely to avoid numerical
noise (at least 512 × 512 close to the Lifshitz transition at
vb/|t1| = 0.2 and n f = 0.25), which makes it impossible to
perform a sum over four loops with 5124 points to probe k
and k + q. Instead, we used the convolution properties of χ (q)
to use the fast Fourier transform (FFT), and then perform the
sum over the Matsubara frequencies. This procedure allows
us to avoid numerical noise in a controlled way, by progres-
sively increasing the number of Matsubara frequencies, which
is equivalent to progressively lowering the temperature. We
went up to a maximum of 500 000 Matsubara frequencies with
an energy cutoff at twice the bandwidth 2W ≈ 25|t1|, which
gives us results at a temperature of T ≈ 10−4|t1| ≈ 10−3vb,
of the order of 0.1 K.

The results can be understood as arising from two contri-
butions: a constant contribution coming from the density of
states at the Fermi level n(εF ) ∝ χ (�), and a k-dependent
modulation that depends on the nesting conditions between
the different pockets.

For �6 cerium we have two regimes. For n f < 0.2 [see
Fig. 9(a)], the static spin susceptibility shows an increase in
the constant contribution and the formation of a peak at the
M point, which corresponds to the nesting between the hole
pockets. Moreover, we observe a decrease of χ (�) between
n f = 0.2 and 0.25, in agreement with the decrease of density
of states at the Fermi level [see Fig. 8(a)]. In contrast, at n f >

0.25 [see Fig. 9(b)], the contribution χ (�) to the spin sus-
ceptibility saturates and only the modulation in the Brillouin
zone corresponding to the nesting varies, in agreement with
the density of states at the Fermi level which is approximately
constant [see Fig. 8(b)].

M

+
+

Γ7+ cerium

FIG. 10. Static spin susceptibility for �7+ cerium with different
nf and vb/|t1| = 0.2.

For �7+ cerium (see Fig. 10), we observe a small increase
in the constant contribution, in agreement with the increase in
density of states at the Fermi level. At n f = 0, the peak at the
X point is associated with (0, π ) fluctuations of iron-based su-
perconductors. This peak splits into two distinct contributions,
which is associated with the growing size difference between
the electron and hole pockets.

Thus, the presented model presents several features. First,
the peak at the X point associated to the (0, π ) fluctua-
tions typical of iron-based superconductors disappears in both
cases, indicating a lower nesting between the holes and the
electrons pockets due to cerium doping. Associated to this
effect, we observe a general increase of the spin susceptibility
upon adding f electrons, corresponding to the heavy-fermion
behavior. Furthermore, the susceptibility profile in momen-
tum space is different between the two cerium symmetries,
for example, with the peak at the M point indicating (π, π )
fluctuations in the case of the �6 cerium, which is absent in the
case of �7+ cerium. This effect corresponds to the difference
of the Fermi-surface reconstruction.

2. Optical conductivity

Optical conductivity measurements are very useful to char-
acterize heavy-fermion compounds. They permit a direct
identification of the Kondo pseudogap vb, and also the density
of states at the Fermi level [54]. Using the compact notation
with cx

kσ = dxz
kσ

, cy
kσ

= dyz
kσ

, and c f
kσ

= f̃kσ , the Hamiltonian
(9) is written as

H =
∑
kaa′σ

εaa′
k ca†

kσ
ca′

kσ + ε0 =
∑
kνσ

E ν
k cν†

kσ
cν

kσ + ε0. (16)

From the calculation available in Appendix B, the real part
of the optical conductivity σ (ω) = σ ′(ω) + iσ ′′(ω) at T = 0
is written as

σ ′xx(ω) = Re

{
2i

ω + i�el

[∑
kν

(∂2ε)νν
k �

(−E ν
k

)

+
∑

kν ′ �=ν

∣∣(∂ε)νν ′
k

∣∣2 �
(
E ν ′

k

)− �
(
E ν

k

)
ω + i�el + E ν

k − E ν ′
k

⎤
⎦
⎫⎬
⎭. (17)
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FIG. 11. (a) Optical conductivity for �6 cerium with vb/|t1| =
0.2. (b) Band structure for �6 cerium with vb/|t1| = 0.2 and nf =
0.2, which shows the gap 
1 and the band crossing with green circle.

With �(x), the Heaviside function and

(∂2ε)νν ′
k =

∑
aa′

∂2εaa′
k

∂k2
x

aνa
k

(
aa′ν ′

k

)∗
,

(∂ε)νν ′
k =

∑
aa′

∂εaa′
k

∂kx
aνa

k

(
aa′ν ′

k

)∗
,

(18)

where aa′ν
k stands for the coefficients between the orbital basis

a′ = x, y, f and the band basis ν = 1, 2, 3 which diagonalizes
the matrix Mk . Equation (17) is equivalent to the expressions
of [55,56] with the use of the Cauchy principal value P:
1/(ω + i�el ) = P(1/ω) + iπδ(ω) in the limit �el  1. �el

is associated with the time of flight between two collisions
in the formulation of the kinetic equation, and thus with
the temperature. In [56], the authors set �el = 20 meV to
study the optical conductivity of iron-based superconductors.
Since heavy-fermion physics is generally at low temperature,
and since the theoretical Kondo temperature for the effec-
tive model parameters we study here vb/|t1| = 0.2 is T0 =
4(vb)2/W ≈ 10 K ≈1 meV, we fix �el = 1 meV.

For the case of �6 cerium [see Fig. 11(a)], we observe
two different features. First, the apparition of a double peak
incy

kσ
= dyz

kσ
dependent of the cerium concentration, that cor-

responds to the hybridization gap between the f band and
the lower d band 
1 [see Fig. 11(b)]. This double peak
is characteristic of heavy-fermion compounds and is called
“mid-infrared peaks” in the literature [57]. Second, a big
contribution appears at very low frequency between n f = 0.2
and 0.4, associated to the complete filling of the hole pockets.
One can show that this contribution does not correspond to
the Drude peak because it does not vary upon decreasing

Δ1
Δ2

+
+(a)

Γ7+ cerium

Δ2

Δ1

→→E/
t 1 kx

ky

M

XΓ

(b)

FIG. 12. (a) Optical conductivity for �7+ cerium with vb/|t1| =
0.2. (b) Band structure for �7+ cerium with vb/|t1| = 0.2 and nf =
0.2, which shows the two gaps 
1 and 
2.

the scattering rate �el (not shown). A similar situation is
reported in [19], where the crossing between the f band and
the conduction band above the Fermi level leads to a peak in
optical conductivity. For the model studied here, the crossing
between the f level and the lower d band comes closer to
the Fermi energy as n f increases, and in particular shows
this big contribution for n f > 0.25, which corresponds to the
condition λ − μ < 0 [see Fig. 7(b)].

For the case of �7+ [see in Fig. 12(a)], we remark several
peaks at low frequency, corresponding to different hybridiza-
tion gaps [see Fig. 12(b)]. The first double peak at 
1 is
similar to the case of �6 cerium and corresponds to the hy-
bridization between the f band and the lower d band. The
second one, 
2, corresponds to the hybridization between the
f band and the upper d band.

Thus, the model presents a clear distinction between the
�6 cerium symmetry with a double peak at 
1, and the �7+
cerium with the same double peak at 
1 and a supplemen-
tary peak at 
2. We remark that considerations of nonlocal
Kondo coupling leads naturally to different hybridization gaps
in multiband systems, as observed experimentally in CeT In5

(T = Co, Rh, Ir) compounds [20,58].

3. Raman spectroscopy

The Raman spectrum has the property of being experimen-
tally decomposable on the basis of irreducible representations
of the point symmetry group of the crystal. Moreover, these
irreducible representations are associated with intensity ex-
tinctions in certain regions of reciprocal space, enabling
Raman measurements to probe specific parts of the Bril-
louin zone, unlike optical conductivity. Raman spectroscopy
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is widely used to characterize iron-based superconducting
compounds [56], and permits the electronic fluctuations of
these systems to be probed directly [59].

The Raman response associated to different light polariza-
tions and measurement settings is expressed in the simplest
case of effective mass approximation with the so-called
Raman vertices, that has been derived of FeSCs for example
in [56]. For the square lattice symmetry considered here, we
have three different vertices to study:

γ
A1g

k = ∂2Mk

∂k2
x

+ ∂2Mk

∂k2
y

,

γ
B1g

k = ∂2Mk

∂k2
x

− ∂2Mk

∂k2
y

,

γ
B2g

k = ∂2Mk

∂kx∂ky
+ ∂2Mk

∂ky∂kx
,

(19)

where Mk refers to the Hamiltonian matrix elements in the
orbital basis of Eq. (11). Whereas the Raman vertices are
easily derived in the orbital basis, the physical information
is clearer in the band basis where each vertex is associated
to an interband transition. Denoting (γ X

k )νν ′
the Raman vertex

of symmetry X ∈ {A1g, B1g, B2g} between the band ν and the
band ν ′, we have(

γ X
k

)νν ′ =
∑
aa′

(
γ X

k

)aa′
aνa

k

(
aa′ν ′

k

)∗
, (20)

where aa′ν
k stands for the coefficient from the orbital basis a′ =

x, y, f and the band basis ν = 1, 2, 3.
In the effective mass approximation, the Raman spectrum

χ ′′
X (ω) at T = 0 is obtained from the imaginary part of the

density-density correlation function [56]:

χ ′′
X (ω) = Im[χX (q = 0, i�)i�→ω+i�el ],

X = {A1g, B1g, B2g},

χX (q = 0, i�) =
∫ β

0
dτ e−i�τ

∑
aa′bb′k

〈(
γ X

k

)aa′(
γ X

k

)bb′

× ca†
k (τ )ca′

k (τ )cb†
k (0)cb′

k (0)
〉

=
∑

kν �=ν ′

∣∣(γ X
k

)νν ′ ∣∣2 �
(
E ν ′

k

)− �
(
E ν

k

)
i� + E ν

k − E ν ′
k

. (21)

One can remark a similarity between the expression of
χ ′′

X (ω) at Eq. (21) and the second term of the optical con-
ductivity σ ′(ω) in Eq. (17). This correspondence between the
spectrum of optical conductivity and the Raman spectrum
ωσ ′(ω) ∝ χ ′′(ω) is discussed in [60], and is valid for isotropic
systems. We thus expect to find some similar features between
the results for those two probes, and in particular the peaks
associated to Kondo hybridization gaps.

As for the optical conductivity, we fix �el = 1 meV. On
top of the Raman spectra, we analyze the interband Raman
vertices (γ X

k )μμ′
. From the symmetry considerations avail-

able in Appendix A, one can determine the symmetry of the
bands on the high-symmetry path � → M → X → �, and
thus fix the interband transition rules. Combined to the analy-
sis of Raman vertices, this permits us to discuss in detail the

B2gB1gA1g

kx

ky

M

XΓ

FIG. 13. Raman vertices in the Brillouin zone for each symme-
try, normalized by the maximum of the three vertices, for the model
without cerium.

Raman spectra. We will consider Raman shifts at low energy
ω � 2000 cm−1 ≈ 3|t1| for our model parameters. First and
foremost, we consider the undoped model without cerium.

We observe that the A1g Raman vertex is the weakest (see
Fig. 13), that the B1g vertex contributes mostly in the � → M
region, in contrary to the B2g vertex that contributes mostly in
the M → X → � path. This can be understood directly from
symmetry considerations on the interband transitions in the
high-symmetry contour, as discussed in Appendix A. Thus,
we expect the A1g response to be the weakest (see Fig. 14).

For the �6 cerium, we will first consider the double peak
associated to 
1 ≈ 500 cm−1. As this double peak involves
interband transitions between the lower d band and the f
band, we plot the associated interband Raman vertices (γ X

k )01

(see Fig. 15). Furthermore, we can restrict ourselves to parts
of the Brillouin zone corresponding to excitations of energy

kx

ky

M

XΓ

E/
t 1

B2g

B1g

(a)
without cerium

Raman shift (cm-1)

(b)

FIG. 14. (a) Raman spectrum χ ′′ for the three symmetries
{A1g, B1g, B2g}. (b) Band structure on the high-symmetry contour
where the symmetry of interband transitions are indicated.
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kx

ky

M

XΓ

FIG. 15. Interband Raman vertices (γ X
k )01 in the Brillouin zone

for each symmetry, normalized by the maximum of the three vertices,
for a �6 cerium and vb/|t1| = 0.2, nf = 0.8. For the regions in
which there is band crossing and thus change in the order of the band,
the vertex intensity is set to zero. The selected part of the Brillouin
zone corresponds to energies 
1 − 200 cm−1 � 
E = E1 − E0 �

1 + 200 cm−1.


1 ± 200 cm−1. In Fig. 15 we remark a similar contribution
for the three Raman vertices in this region. Thus, we expect a
similar contribution in the Raman spectra for A1g, B1g, and B2g

channels.
The Raman spectra for 0 � ω � 2000 cm−1 are shown

in Fig. 16. For the double peak around 
1 ≈ 500 cm−1, we
observe the strongest response in the B2g channel, but the
intensity is quite comparable with the other ones, in accor-
dance with the Raman vertices. Furthermore, we observe a
peak at very low Raman shift ω ≈ 30 cm−1, mostly of the
B2g type. As discussed from the optical conductivity, this peak

E/
t 11

B1g B2g

A1g+B2g

A1g+B1g

kx

ky

M

XΓ

(b)

(a)

+

Raman shift (cm-1)
Raman shift (cm-1)

Γ6 cerium

FIG. 16. (a) Raman spectra χ ′′ for the three symmetries
{A1g, B1g, B2g}, in the case of a �6 cerium with vb/|t1| = 0.2, nf =
0.8. (b) Band structure for a �6 cerium with vb/|t1| = 0.2, nf = 0.8,
and symmetry of the interband transitions.

kx

ky

M

XΓ

B2gB1gA1g

FIG. 17. Raman vertices (γ X
k )21 in the Brillouin zone for each

symmetry, normalized by the maximum of the three vertices, for a
�7+ cerium and vb/|t1| = 0.2 nf = 0.8. For the regions in which
there is band crossing and thus change in the order of the band,
the vertex intensity is set to zero. The selected part of the Brillouin
zone corresponds to energies 
2 − 200 cm−1 � 
E = E2 − E1 �

2 + 200 cm−1.

corresponds to the crossing points between the f band and the
upper d band in M → X → �, associated to a B2g transition
[see Fig. 16(b)].

For �7+ cerium (see Figs. 17 and 18), we will mostly look
at the second peak associated to 
2 and observed in optical
conductivity. As this peak involves interband transitions be-
tween the upper d band and the f band, we plot the associated
interband Raman vertices (γ X

k )21 (see Fig. 17). Furthermore,

E/
t 1

A1g+B1g

B2g

A1g+B2g B2g kx

ky

M

XΓ

(a)

(b)

 

Γ7+ cerium

Raman shift (cm-1)

+
+

FIG. 18. (a) Raman spectra χ ′′ for the three symmetries
{A1g, B1g, B2g}, in the case of a �7+ cerium with vb/|t1| = 0.2, nf =
0.8. (b) Band structure for a �7+ cerium with vb/|t1| = 0.2, nf = 0.8,
and symmetry of the interband transitions.
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we can restrict ourselves to parts of the Brillouin zone corre-
sponding to excitations of energy 
2 ± 200 cm−1 as shown in
Fig. 17. This time we remark a strong contribution of the A1g

and B2g vertices compared to the B1g one, even if the B2g vertex
intensity is zero on the M → X → � line, which is imposed
by symmetry.

The Raman spectra for 0 � ω � 2000 cm−1 are shown
in Fig. 18. We remark that the B2g contribution dominates
strongly. The smallest contribution comes from the B1g chan-
nel in accordance with the Raman vertices.

In their study of the Raman spectra of the 5 f -electron
heavy-fermion compound URu2Si2, the authors of [21] as-
sociate the maxima of the Eg interband Raman vertex to
the d-wave symmetry of the Kondo pseudogap. The study
presented here shows that the association of the vertex sym-
metry and the Kondo pseudogap symmetry can be complex in
multiband systems. Nevertheless, we showed that the Raman
spectra strongly differ upon the symmetry chosen for the
cerium orbital. In particular, for the �7+ cerium symmetry
the B2g contribution dominates (see Fig. 18), whereas for the
�6 cerium symmetry all A1g, B1g, and B2g have comparable
intensities (see Fig. 16).

Furthermore, the low-frequency peak for the cerium case
�6 gives an additional indication of the Lifshitz transition
associated to the complete filling of the hole pockets. The
study of the Raman spectrum is already known to be able to
signal the presence of a Lifshitz transition, for example, on
BaFe2−xCoxAs2 [61].

IV. CONCLUSION

In this work, motivated by iron-based superconductors of
ZrCuSiAs structure containing cerium atoms, we have consid-
ered Kondo coherence effects with nonlocal f d hybridization,
arising in a two-dimensional square lattice model with cerium
ions located at the center of iron plaquettes. This nonlocal
hybridization leads to a k dependence of the Kondo gap in
reciprocal space, which leads to an unconventional Fermi
liquid at low temperatures as discussed in [19].

One of our principal results is stated as the pocket-selective
doping from cerium f electrons. It arises from nonlocal f d
hybridization in a multiband system, and its relation to the
orbital and symmetry contents of a given material has been
clarified (see Appendix A). The band crossings and Fermi-
surface reconstruction proposed here should be measurable in
any measurement sensitive to Fermi surfaces: ARPES, quan-
tum oscillations, Compton scattering [62]. In particular, we
showed for a �7+ symmetry that the cerium f electrons will
populate the electron pockets, whereas for a �6 symmetry the
cerium f electrons will populate the hole pockets. We propose
the �6 cerium symmetry for the ground state of CeFePO, as it
reproduces the hybridization with the hole pockets observed
in [7]. Furthermore, we expect that these results could apply
to the high-pressure paramagnetic phase of CeFeAsO above
5 GPa, for which a doping from cerium f electrons has been
proposed in [12].

Second, we have identified a Lifshitz transition corre-
sponding to the complete filling of the hole pockets in the
case of �6 cerium symmetry. This transition can be induced
either by doping or by an increase of the f d hybridization. The

Lifshitz transition induced by increase of the f d hybridization
could be achieved through the application of pressure on the
compound. We expect that this transition could be observed in
magnetoresistance [63] and thermopower measurements [64]
at low temperature.

Third, we proposed several other experimental probes that
could be sensitive to the cerium orbital symmetry in the non-
local f d hybridization scenario. On one hand, we studied
thermodynamic probes such as the density of states at the
Fermi level and the static spin susceptibility. We showed that
the density of states greatly differs between doping with a �7+
and �6 cerium symmetry, what we attributed to the Lifshitz
transition predicted for the �6 cerium. The static spin sus-
ceptibility permits also to distinguish the two cases, with a
peak at the M = (π, π ) point of the Brillouin zone for the
�6 cerium which is absent for the �7+ indicating different
nesting conditions and thus being related to the difference of
Fermi-surface reconstruction. On the other hand, we studied
spectroscopic probes such as the optical conductivity and the
Raman spectra. The optical conductivity results lead to a clear
distinction between the two cases, namely, the presence of
a mid-IR double peak at 
1 for the �6 cerium symmetry,
whereas the case of �7+ cerium shows the same double peak at

1 with an additional third peak at higher energy 
2. Finally,
the Raman spectra showed some complementary results to
the optical conductivity with the presence of the same peaks
and a supplementary information associated to the symmetry
of the interband transitions. For the �6 cerium symmetry,
the interband transitions involve the three A1g, B1g, and B2g

channels, whereas in the case of �7+ cerium symmetry they
are mostly of the B2g character.

The results can be extended to other families of compounds
with similar structures, with the addition of three-dimensional
effects for compounds of ThCr2Si2 structure, as studied
in [65] for the iron-based superconductor BaFe2As2. For
compounds of ThCr2Si2 structure in collapsed phase like
CeCu2Si2 [66] or CeRu2Si2 [67], one has to consider com-
pletely different Fermi surfaces in the absence of f electrons
because of the silicon-silicon bond along the c axis. The
same nonlocal Kondo coupling from a cerium in the center of
indium plaquettes is adapted to discuss CeT In5 compounds
(T = Co, Rh, Ir) [68], where the symmetry of the cerium
orbital has been recently proposed to be associated with the
appearance of the superconducting regime [69]. The focus
on cerium atom as the f -electron carrier can easily be gen-
eralized. The square plane group has four representations of
dimension 1: {A1g, A2g, B1g, B2g}. Only the A2g representation
has not been studied here, and could be useful to discuss
compounds containing ytterbium atoms, where the J = 7

2
multiplet splits into four Kramers doublets under a tetrago-
nal crystal field. With this last case, the model would apply
equally well for cerium, ytterbium, uranium, or neptunium
atoms as long as the physics is dominated by a Kramers
doublet well separated from the others in energy.

In a slightly broader context, nonlocal Kondo coupling
considerations also deserve to be applied to compounds of
skutterudite structure, such as CeOs4Sb12 [70] or PrOs4Sb12

[71], where the rare-earth atom is located in the center of an
antimony cage. In CeOs4Sb12, the hybridization gap between
the f level of cerium and the conduction bands is observed to
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vary in the Brillouin zone from 24 meV with the α pocket to
56 meV with the β pocket [72], in agreement with the non-
local Kondo coupling scenario. We therefore expect that the
difference in symmetry between the f levels of praseodymium
and cerium could be taken into account to explain the differ-
ence in behavior between the Kondo insulator CeOs4Sb12 and
the heavy-fermion superconductor PrOs4Sb12, in addition to
the differences between the 4 f 1 and 4 f 2 configuration already
discussed in [72], for example.

Finally, a symmetry change for the low-energy doublet of
cerium has been evoked to explain the ferromagnetic to anti-
ferromagnetic transition observed in CeRuPO under pressure
[73]. Our approach proposes a clear mechanism to under-
stand how a change in cerium orbital symmetry can lead to
significant effects on the hybridization between cerium and
conduction electrons.

APPENDIX A: SYMMETRY ASPECTS OF THE MODEL

We analyze the k dependence of the cerium-iron hybridiza-
tion in the high-symmetry contour of the Brillouin zone � →
R → X → � defined in Fig. 2. To do so we use standards of
k · p theory [74,75], which relies on associating a symmetry
quantum number to each band in order to invoke the Wigner-
Eckart theorem. To translate symmetry operations g of the
symmetry group G in real space to symmetry operations in
k space, we use the preservation of the identity that defines
the reciprocal lattice vector under symmetry operations, for �r
a Bravais vector and �k a reciprocal lattice vector [74]:

�k · �r = 2π ⇒ �k · (g�r) = (g−1g�k) · (g�r) = (g−1�k) · �r
∀ g ∈ G. (A1)

Thus, the set of all symmetry operations is the same in
real space and in k space. Let us take two examples. At the
� point, all symmetry operations of the square space group
D4 leave the k vector (0,0) invariant. But the dxz orbital is
not a representation of D4 since it is transformed in dyz under
the action of the diagonal mirror σ+. However, the doublet
{dxz, dyz} is a representation of D4, of dimension 2. We thus
deduce that the two Fe d bands are degenerate in �.

Between � and M (let us call this region �), the only
operations that leave a vector k ∈ � ⇔ kx = ky invariant are
the identity E and the diagonal mirror σ+, forming a group
Z2. In order to know how the two degenerate bands in �, that
are an irreducible representation of D4, evolve into irreducible
representations of the symmetry group in �, we have to look
on the character tables. We obtain the compatibility relations
by imposing that the characters should be equal to each other
(see Table I).

Thus, the representation of dimension 2 at the � point
becomes two representations of dimension 1 of Z2: C →
e ⊕ e′, having different eigenvalues under the symmetry op-
eration σ+. Since we know that σ+|dxz〉 = |dyz〉, we can build
linear combinations having different eigenvalues like e =
|dxz〉 + |dyz〉 → σ+e = +e and e′ = |dxz〉 − |dyz〉 → σ+e′ =
−e′, which are the bonding and antibonding combinations.
Finally, since the �6 and �7+ cerium orbitals are both sym-
metric under σ+, so the f band will hybridize with the bonding
combination and not with the antibonding one. The situation

TABLE I. Compatibility relations between D4 and Z2. Irreps is
the short notation for irreducible representations.

irreps of D4 (�) E σ+ irreps of Z2 (�)

e 1 1
e′ 1 −1
A1 1 1 e
A2 1 −1 e′

B1 1 −1 e′

B2 1 1 e
C 2 0 e ⊕ e′

is reversed for the �7− case. The same reasoning applies to
the paths M → X and X → � that also admit a symmetry
Z2 = {E , σx} and Z2 = {E , σy}, as shown in Fig. 19.

Interband transition symmetry and Raman spectra

In order to obtain the allowed interband transitions, one has
to look at the character table of the square plane group D4 (see
Table II).

For example, for the two-band model (without cerium), we
have two different regions to study. In the � → M region,
since the two bands have a different symmetry according
to the σ+ symmetry operation, then the associated Raman
transition has to be of character −1 for the σ+,− equivalence
class, so B1g. In the M → X → � region, the two bands have
a different symmetry according to σx,y and the associated
Raman transition will thus also be of character −1 for this
equivalence class, which is B2g. The same reasoning is easily
applicable for the models with cerium, where one has to take
into account Raman transitions of +1 character when the
two bands have the same symmetry, i.e., when hybridization
between the flat level and the conduction band is allowed.
The four one-dimensional representations of D4 are shown in
Fig. 20.

(a)

(b)

FIG. 19. Allowed hybridization with the bonding and antibond-
ing combination in the � → R line close to the � point (a), and
allowed hybridization around the X point (b).
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TABLE II. Character table of D4.

D4 nc c A1 A2 B1 B2 C

1 E 1 1 1 1 2
1 C2 1 1 1 1 −2
2 C1,3

4 1 1 −1 −1 0
2 σx,y 1 −1 1 −1 0
2 σ+,− 1 −1 −1 1 0

APPENDIX B: OPTICAL CONDUCTIVITY CALCULATION

We consider a gauge in which the scalar potential is zero
φ = 0, so that electric �E = iω �A and magnetic �B = �∇ × �A
fields are determined from the vector potential �A. In order to
express the interaction between the quasiparticles of the effec-
tive Hamiltonian (9) and light, we take the compact notation,
with cx

iσ = dxz
iσ , cy

iσ = dyz
iσ , and c f

iσ = fiσ . The Hamiltonian (9)
is written as

Heff =
∑

i jaa′σ

t aa′
i j ca†

iσ ca′
jσ + ε0 =

∑
kaa′σ

εaa′
k ca†

kσ
ca′

kσ + ε0

=
∑
kμσ

Eμ

k cμ†
kσ

cμ

kσ
+ ε0, (B1)

H =
∑

i jαα′σ

(
tαα′
i j − μδi jδ

αα′)
dα†

iσ dα′
jσ . (B2)

It has been shown recently that dipolar effects might be
important when dealing with external electromagnetic field
on tight-binding models with a limited number of bands [76].
In our case, we used the simpler formulation in which the
effect of external electric field is weak and homogeneous in
space associated to a vector potential directed along the x axis,
�A = Ax�ex is done with Peierls substitution for the transfer

FIG. 20. The four one-dimensional representations of the square
plane group, showed with iron d orbitals and rare-earth f orbital.

integrals [56] (with e = c = h̄ = 1):

t aa′
i j → t aa′

i j exp

(
−i
∫ �r j

�ri

�A · d�r
)

≈ t aa′
i j exp(−i �A · (�ri − �r j ))

≈ t aa′
i j

(
1 − i �A · (�ri − �r j ) − 1

2
( �A · (�ri − �r j ))

2 + · · ·
)

.

(B3)

Thus, the current operator is obtained by identifying the
correction to the kinetic energy induced by the field

jx
q=0 = −∂Heff(Ax )

∂Ax

= −i
∑
kσaa′

∂εaa′
k

∂kx
ca†

kσ
ca′

kσ − Ax
∑
kσaa′

∂2εaa′
k

∂k2
x

ca†
kσ

ca′
kσ + · · · .

(B4)

And the conductivity defined by the linear response coef-
ficient for the induced current 〈 jx

q=0〉 = σ xx(ω)Ex
q=0(ω), with

the electric field Ex(ω) = Ax(ω) × (iω − �el ). Up to first or-
der in Ax, the mean value of the current operator is taken from
Kubo formula, and the optical conductivity is written as [77]

σ xx(ω) = i

ω + i�el
[D + �(i�)]i�→ω+i�el

,

D =
∑
kσaa′

∂2εaa′
k

∂k2
x

〈
ca†

kσ
ca′

kσ

〉 = 1

β

∑
kaa′σ iω

∂2εaa′
k

∂k2
x

Gaa′
(k, iω),

�(i�) = −
∫ β

0
dτ e−i�τ

〈
Tτ jx

q=0(τ ) jx
q=0(0)

〉

= 1

β

∑
kaa′σ iω

∂εaa′
k

∂kx

∂εa′a
k

∂kx
Gaa′

(k, iω)Ga′a(k, iω + i�),

(B5)

where Tτ is the time ordering. We are interested in the real
part of the conductivity σ (ω) = σ ′(ω) + iσ ′′(ω). At T = 0,
we have

σ ′xx(ω) = Re

⎧⎨
⎩ 2i

ω + i�el

⎡
⎣∑

kμ

(∂2ε)μμ

k �
(−Eμ

k

)

+
∑

kμ′ �=μ

∣∣(∂ε)μμ′
k

∣∣2 �
(
Eμ′

k

)− �
(
Eμ

k

)
ω + i� + Eμ

k − Eμ′
k

⎤
⎦
⎫⎬
⎭. (B6)

With �(x) the Heaviside function and

(∂2ε)μμ′
k =

∑
aa′

∂2εaa′
k

∂k2
x

aμa
k

(
aa′μ′

k

)∗
,

(∂ε)μμ′
k =

∑
aa′

∂εaa′
k

∂kx
aμa

k

(
aa′μ′

k

)∗
,

(B7)

where aa′μ
k are the coefficient between the orbital basis a′ =

x, y, f and the band basis μ = 1, 2, 3 which diagonalizes Mk .
Equation (B6) is equivalent to the expressions of [55,56] with
1/(ω + i�el ) = P(1/ω) + iπδ(ω), in the limit �el  1.

045117-14



NONLOCAL KONDO COUPLING AND SELECTIVE … PHYSICAL REVIEW B 109, 045117 (2024)

[1] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W.
Franz, and H. Schäfer, Superconductivity in the presence of
strong Pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43,
1892 (1979).

[2] T. Park, F. Ronning, H. Yuan, M. Salamon, R. Movshovich, J.
Sarrao, and J. Thompson, Hidden magnetism and quantum crit-
icality in the heavy fermion superconductor CeRhIn5, Nature
(London) 440, 65 (2006).

[3] G. Stewart, Non-Fermi-liquid behavior in d-and f-electron
metals, Rev. Mod. Phys. 73, 797 (2001).

[4] D. Hafner, P. Khanenko, E.-O. Eljaouhari, R. Küchler, J.
Banda, N. Bannor, T. Lühmann, J. F. Landaeta, S. Mishra, I.
Sheikin, E. Hassinger, S. Khim, C. Geibel, G. Zwicknagl, and
M. Brando, Possible quadrupole density wave in the super-
conducting Kondo lattice CeRh2As2, Phys. Rev. X 12, 011023
(2022).

[5] S. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56, 755
(1984).

[6] G. Zwicknagl, Quasi-particles in heavy fermion systems, Adv.
Phys. 41, 203 (1992).

[7] M. G. Holder, A. Jesche, P. Lombardo, R. Hayn, D. V.
Vyalikh, S. Danzenbächer, K. Kummer, C. Krellner, C. Geibel,
Y. Kucherenko, T. K. Kim, R. Follath, S. L. Molodtsov,
and C. Laubschat, CeFePO: f-d hybridization and quench-
ing of superconductivity, Phys. Rev. Lett. 104, 096402
(2010).

[8] P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insula-
tor: Physics of high-temperature superconductivity, Rev. Mod.
Phys. 78, 17 (2006).

[9] P. Hirschfeld, M. Korshunov, and I. Mazin, Gap symmetry and
structure of Fe-based superconductors, Rep. Prog. Phys. 74,
124508 (2011).

[10] L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges,
Local moment vs. Kondo behavior of the 4f-electrons in rare-
earth iron oxypnictides, Europhys. Lett. 84, 37006 (2008).

[11] E. M. Brüning, C. Krellner, M. Baenitz, A. Jesche, F. Steglich,
and C. Geibel, CeFePO: A heavy fermion metal with ferromag-
netic correlations, Phys. Rev. Lett. 101, 117206 (2008).

[12] K. Mydeen, A. Jesche, K. Meier-Kirchner, U. Schwarz, C.
Geibel, H. Rosner, and M. Nicklas, Electron doping of the iron-
arsenide superconductor CeFeAsO controlled by hydrostatic
pressure, Phys. Rev. Lett. 125, 207001 (2020).

[13] F. Bernardini, G. Garbarino, A. Sulpice, M. Núñez-Regueiro,
E. Gaudin, B. Chevalier, M. A. Méasson, A. Cano, and S.
Tencé, Iron-based superconductivity extended to the novel sili-
cide LaFeSiH, Phys. Rev. B 97, 100504(R) (2018).

[14] D. Lu, M. Yi, S. Mo, A. Erickson, J. Analytis, J. Chu, D. Singh,
Z. Hussain, T. Geballe, I. Fisher et al., Electronic structure of
the iron-based superconductor LaOFeP, Nature (London) 455,
81 (2008).

[15] S. Maiti and A. Chubukov, Superconductivity from repulsive
interaction, in AIP Conference Proceedings (American Institute
of Physics, Melville, NY, 2013), Vol. 1550, pp. 3–73.

[16] S. Barnes, New method for the Anderson model, J. Phys. F:
Met. Phys. 6, 1375 (1976).

[17] P. Coleman, New approach to the mixed-valence problem, Phys.
Rev. B 29, 3035 (1984).

[18] A. Wugalter, Y. Komijani, and P. Coleman, Large-N approach
to the two-channel Kondo lattice, Phys. Rev. B 101, 075133
(2020).

[19] H. Weber and M. Vojta, Heavy-fermion metals with hy-
bridization nodes: Unconventional Fermi liquids and competing
phases, Phys. Rev. B 77, 125118 (2008).

[20] K. S. Burch, S. V. Dordevic, F. P. Mena, A. B. Kuzmenko,
D. Van Der Marel, J. L. Sarrao, J. R. Jeffries, E. D.
Bauer, M. B. Maple, and D. N. Basov, Optical signatures of
momentum-dependent hybridization of the local moments and
conduction electrons in Kondo lattices, Phys. Rev. B 75, 054523
(2007).

[21] J. Buhot, X. Montiel, Y. Gallais, M. Cazayous, A. Sacuto, G.
Lapertot, D. Aoki, N. E. Hussey, C. Lacroix, C. Pépin, S.
Burdin, and M.-A. Méasson, Anisotropic Kondo pseudogap in
URu2Si2, Phys. Rev. B 101, 245103 (2020).

[22] H. Miyazaki, T. Hajiri, T. Ito, S. Kunii, and S. I. Kimura,
Momentum-dependent hybridization gap and dispersive in-gap
state of the Kondo semiconductor SmB6, Phys. Rev. B 86,
075105 (2012).

[23] P. Starowicz, R. Kurleto, J. Goraus, H. Schwab, M. Szlawska,
F. Forster, A. Szytuła, I. Vobornik, D. Kaczorowski, and F.
Reinert, Evidence of momentum-dependent hybridization in
Ce2Co0.8Si3.2, Phys. Rev. B 89, 115122 (2014).

[24] Y. Nakatani, H. Aratani, H. Fujiwara, T. Mori, A. Tsuruta,
S. Tachibana, T. Yamaguchi, T. Kiss, A. Yamasaki, A.
Yasui, H. Yamagami, J. Miyawaki, T. Ebihara, Y. Saitoh,
and A. Sekiyama, Evidence for momentum-dependent heavy-
fermionic electronic structures: Soft X-ray ARPES for the
superconductor CeNi2Ge2 in the normal state, Phys. Rev. B 97,
115160 (2018).

[25] Y. Wu, Y. Zhang, F. Du, B. Shen, H. Zheng, Y. Fang, M.
Smidman, C. Cao, F. Steglich, H. Yuan et al., Anisotropic
c-f hybridization in the ferromagnetic quantum critical metal
CeRh6 Ge4, Phys. Rev. Lett. 126, 216406 (2021).

[26] S. Danzenbächer, Y. Kucherenko, M. Heber, D. V. Vyalikh,
S. L. Molodtsov, V. D. P. Servedio, and C. Laubschat,
Wave-vector dependent intensity variations of the Kondo peak
in photoemission from CePd3, Phys. Rev. B 72, 033104
(2005).

[27] W. Wu and A.-M.-S. Tremblay, d-wave superconductivity in
the frustrated two-dimensional periodic Anderson model, Phys.
Rev. X 5, 011019 (2015).

[28] M. Sera, N. Kobayashi, T. Yoshino, K. Kobayashi, T.
Takabatake, G. Nakamoto, and H. Fujii, Anisotropic pseudo-
gap in CeNiSn and CeRhSb studied by a thermal-conductivity
measurement, Phys. Rev. B 55, 6421 (1997).

[29] H. Ikeda and K. Miyake, A theory of anisotropic semiconductor
of heavy fermions, J. Phys. Soc. Jpn. 65, 1769 (1996).

[30] J. Moreno and P. Coleman, Gap-anisotropic model for the
narrow-gap Kondo insulators, Phys. Rev. Lett. 84, 342 (2000).

[31] V. Cvetkovic and O. Vafek, Space group symmetry, spin-orbit
coupling, and the low-energy effective Hamiltonian for iron-
based superconductors, Phys. Rev. B 88, 134510 (2013).

[32] S. Raghu, X. L. Qi, C. X. Liu, D. J. Scalapino, and S. C.
Zhang, Minimal two-band model of the superconducting iron
oxypnictides, Phys. Rev. B 77, 220503(R) (2008).

[33] A. Amorese, A. Marino, M. Sundermann, K. Chen, Z. Hu,
T. Willers, F. Choueikani, P. Ohresser, J. Herrero-Martin, S.
Agrestini et al., Possible multiorbital ground state in CeCu2Si2,
Phys. Rev. B 102, 245146 (2020).

[34] P. Coleman, Mixed valence as an almost broken symmetry,
Phys. Rev. B 35, 5072 (1987).

045117-15

https://doi.org/10.1103/PhysRevLett.43.1892
https://doi.org/10.1038/nature04571
https://doi.org/10.1103/RevModPhys.73.797
https://doi.org/10.1103/PhysRevX.12.011023
https://doi.org/10.1103/RevModPhys.56.755
https://doi.org/10.1080/00018739200101503
https://doi.org/10.1103/PhysRevLett.104.096402
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1088/0034-4885/74/12/124508
https://doi.org/10.1209/0295-5075/84/37006
https://doi.org/10.1103/PhysRevLett.101.117206
https://doi.org/10.1103/PhysRevLett.125.207001
https://doi.org/10.1103/PhysRevB.97.100504
https://doi.org/10.1038/nature07263
https://doi.org/10.1088/0305-4608/6/7/018
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.101.075133
https://doi.org/10.1103/PhysRevB.77.125118
https://doi.org/10.1103/PhysRevB.75.054523
https://doi.org/10.1103/PhysRevB.101.245103
https://doi.org/10.1103/PhysRevB.86.075105
https://doi.org/10.1103/PhysRevB.89.115122
https://doi.org/10.1103/PhysRevB.97.115160
https://doi.org/10.1103/PhysRevLett.126.216406
https://doi.org/10.1103/PhysRevB.72.033104
https://doi.org/10.1103/PhysRevX.5.011019
https://doi.org/10.1103/PhysRevB.55.6421
https://doi.org/10.1143/JPSJ.65.1769
https://doi.org/10.1103/PhysRevLett.84.342
https://doi.org/10.1103/PhysRevB.88.134510
https://doi.org/10.1103/PhysRevB.77.220503
https://doi.org/10.1103/PhysRevB.102.245146
https://doi.org/10.1103/PhysRevB.35.5072


SOURD, TENCÉ, GAUDIN, AND BURDIN PHYSICAL REVIEW B 109, 045117 (2024)

[35] S. Burdin and V. Zlatić, Multiple temperature scales of the
periodic Anderson model: Slave boson approach, Phys. Rev. B
79, 115139 (2009).

[36] P. Riseborough and J. Lawrence, Mixed valent metals, Rep.
Prog. Phys. 79, 084501 (2016).

[37] S. Burdin, A. Georges, and D. R. Grempel, Coherence scale of
the Kondo lattice, Phys. Rev. Lett. 85, 1048 (2000).

[38] Z. R. Ye, Y. Zhang, F. Chen, M. Xu, J. Jiang, X. H. Niu, C. H. P.
Wen, L. Y. Xing, X. C. Wang, C. Q. Jin, B. P. Xie, and D. L.
Feng, Extraordinary doping effects on quasiparticle scattering
and bandwidth in iron-based superconductors, Phys. Rev. X 4,
031041 (2014).

[39] S. Burdin and C. Lacroix, Lifshitz transition in Kondo alloys,
Phys. Rev. Lett. 110, 226403 (2013).

[40] B. Poudel, C. Lacroix, G. Zwicknagl, and S. Burdin, Photo-
emission signatures of coherence breakdown in Kondo alloys:
dynamical mean-field theory approach, New J. Phys. 23,
063073 (2021).

[41] I. M. Lifshitz, Anomalies of electron characteristics of a metal
in the high pressure region, J. Expt. Theoor. Phys. (USSR) 38,
1569 (1960) [Sov. Phys. JETP 11, 1130 (1960)].

[42] M. Takahashi, D. Ootsuki, M. Horio, M. Arita, H. Namatame,
M. Taniguchi, N. Saini, H. Sugawara, and T. Mizokawa, Multi-
band electronic structure of ferromagnetic CeRuPO, J. Phys.
Soc. Jpn. 87, 043703 (2018).

[43] C. Krellner and C. Geibel, Single crystal growth and anisotropy
of CeRuPO, J. Cryst. Growth 310, 1875 (2008).

[44] A. Jesche, C. Krellner, M. de Souza, M. Lang, and C. Geibel,
Rare earth magnetism in CeFeAsO: A single crystal study, New
J. Phys. 11, 103050 (2009).

[45] J. Dai, J. X. Zhu, and Q. Si, f-spin physics of rare-earth iron
pnictides: Influence of d-electron antiferromagnetic order on
the heavy-fermion phase diagram, Phys. Rev. B 80, 020505(R)
(2009).

[46] Y. Yamaji, T. Misawa, and M. Imada, Quantum and topological
criticalities of Lifshitz transition in two-dimensional correlated
electron systems, J. Phys. Soc. Jpn. 75, 094719 (2006).

[47] G. Mazza, M. Rösner, L. Windgätter, S. Latini, H. Hübener,
A. J. Millis, A. Rubio, and A. Georges, Nature of symmetry
breaking at the excitonic insulator transition: Ta2NiSe5, Phys.
Rev. Lett. 124, 197601 (2020).

[48] D. Pines and P. Nozières, The Theory of Quantum Liquids
(Benjamin, New York, 1966).

[49] A. o. Abrikosov, Introduction to the Theory of Normal Metals
(Academic, New York, 1972).

[50] T. M. McQueen, M. Regulacio, A. J. Williams, Q. Huang, J. W.
Lynn, Y. S. Hor, D. V. West, M. A. Green, and R. J. Cava,
Intrinsic properties of stoichiometric LaFePo, Phys. Rev. B 78,
024521 (2008).

[51] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du,
Unconventional superconductivity with a sign reversal in the or-
der parameter of LaFeAsO1−xFx , Phys. Rev. Lett. 101, 057003
(2008).

[52] A. V. Chubukov, D. V. Efremov, and I. Eremin, Magnetism,
superconductivity, and pairing symmetry in iron-based super-
conductors, Phys. Rev. B 78, 134512 (2008).

[53] S. Graser, T. Maier, P. Hirschfeld, and D. Scalapino, Near-
degeneracy of several pairing channels in multiorbital models
for the Fe pnictides, New J. Phys. 11, 025016 (2009).

[54] L. Degiorgi, The electrodynamic response of heavy-electron
compounds, Rev. Mod. Phys. 71, 687 (1999).

[55] E. Dagotto, Correlated electrons in high-temperature supercon-
ductors, Rev. Mod. Phys. 66, 763 (1994).

[56] B. Valenzuela, M. J. Calderón, G. León, and E. Bascones, Opti-
cal conductivity and Raman scattering of iron superconductors,
Phys. Rev. B 87, 075136 (2013).

[57] D. N. Basov, R. D. Averitt, D. van Der Marel, M. Dressel,
and K. Haule, Electrodynamics of correlated electron materials,
Rev. Mod. Phys. 83, 471 (2011).

[58] J. Shim, K. Haule, and G. Kotliar, Modeling the localized-
to-itinerant electronic transition in the heavy fermion system
CeIrIn5, Science 318, 1615 (2007).

[59] Y. Gallais and I. Paul, Charge nematicity and electronic Raman
scattering in iron-based superconductors, C. R. Phys. 17, 113
(2016).

[60] T. P. Devereaux and R. Hackl, Inelastic light scattering from
correlated electrons, Rev. Mod. Phys. 79, 175 (2007).

[61] P. Marsik, C. N. Wang, M. Rössle, M. Yazdi-Rizi, R. Schuster,
K. W. Kim, A. Dubroka, D. Munzar, T. Wolf, X. H. Chen, and
C. Bernhard, Low-energy interband transitions in the infrared
response of Ba(Fe1−xCox )2As2, Phys. Rev. B 88, 180508(R)
(2013).

[62] M. Güttler, K. Kummer, K. Kliemt, C. Krellner, S. Seiro, C.
Geibel, C. Laubschat, Y. Kubo, Y. Sakurai, D. V. Vyalikh,
and A. Koizumi, Visualizing the Kondo lattice crossover in
YbRh2Si2 with Compton scattering, Phys. Rev. B 103, 115126
(2021).

[63] H. Naren, S. Friedemann, G. Zwicknagl, C. Krellner, C. Geibel,
F. Steglich, and S. Wirth, Lifshitz transitions and quasiparti-
cle de-renormalization in YbRh2Si2, New J. Phys. 15, 093032
(2013).

[64] A. Pourret, S. Sharapov, T. D. Matsuda, G. Knebel, G.
Zwicknagl, and A. Varlamov, Transport spectroscopy of the
field induced cascade of lifshitz transitions in YbRh2Si2,
J. Phys. Soc. Jpn. 88, 104702 (2019).

[65] S. Graser, A. F. Kemper, T. A. Maier, H.-P. Cheng, P. J.
Hirschfeld, and D. J. Scalapino, Spin fluctuations and super-
conductivity in a three-dimensional tight-binding model for
BaFe2As2, Phys. Rev. B 81, 214503 (2010).

[66] G. Zwicknagl and U. Pulst, CeCu2Si2: Renormalized band
structure, quasiparticles and co-operative phenomena, Phys. B
(Amsterdam) 186-188, 895 (1993).

[67] E. K. R. Runge, R. C. Albers, N. E. Christensen, and G. E.
Zwicknagl, Electronic structure of CeRu2Si2, Phys. Rev. B 51,
10375 (1995).

[68] T. Maehira, T. Hotta, K. Ueda, and A. Hasegawa,
Relativistic band-structure calculations for CeTIn5

(T = Ir and Co) and analysis of the energy bands by
using tight-binding method, J. Phys. Soc. Jpn. 72, 854 (2003).

[69] T. Willers, F. Strigari, Z. Hu, V. Sessi, N. Brookes, E. Bauer,
J. Sarrao, J. Thompson, A. Tanaka, S. Wirth et al., Correlation
between ground state and orbital anisotropy in heavy fermion
materials, Proc. Natl. Acad. Sci. USA 112, 2384 (2015).

[70] E. Bauer, A. Slebarski, E. Freeman, C. Sirvent, and M. Maple,
Kondo insulating behaviour in the filled skutterudite compound
CeOs4Sb12, J. Phys.: Condens. Matter 13, 4495 (2001).

[71] M. Maple, P. Ho, V. Zapf, N. Frederick, E. Bauer, W. Yuhasz,
F. Woodward, and J. Lynn, Heavy fermion superconductivity in

045117-16

https://doi.org/10.1103/PhysRevB.79.115139
https://doi.org/10.1088/0034-4885/79/8/084501
https://doi.org/10.1103/PhysRevLett.85.1048
https://doi.org/10.1103/PhysRevX.4.031041
https://doi.org/10.1103/PhysRevLett.110.226403
https://doi.org/10.1088/1367-2630/ac06e8
http://www.jetp.ras.ru/cgi-bin/e/index/e/11/5/p1130?a=list
https://doi.org/10.7566/JPSJ.87.043703
https://doi.org/10.1016/j.jcrysgro.2007.10.045
https://doi.org/10.1088/1367-2630/11/10/103050
https://doi.org/10.1103/PhysRevB.80.020505
https://doi.org/10.1143/JPSJ.75.094719
https://doi.org/10.1103/PhysRevLett.124.197601
https://doi.org/10.1103/PhysRevB.78.024521
https://doi.org/10.1103/PhysRevLett.101.057003
https://doi.org/10.1103/PhysRevB.78.134512
https://doi.org/10.1088/1367-2630/11/2/025016
https://doi.org/10.1103/RevModPhys.71.687
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevB.87.075136
https://doi.org/10.1103/RevModPhys.83.471
https://doi.org/10.1126/science.1149064
https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1103/RevModPhys.79.175
https://doi.org/10.1103/PhysRevB.88.180508
https://doi.org/10.1103/PhysRevB.103.115126
https://doi.org/10.1088/1367-2630/15/9/093032
https://doi.org/10.7566/JPSJ.88.104702
https://doi.org/10.1103/PhysRevB.81.214503
https://doi.org/10.1016/0921-4526(93)90736-P
https://doi.org/10.1103/PhysRevB.51.10375
https://doi.org/10.1143/JPSJ.72.854
https://doi.org/10.1073/pnas.1415657112
https://doi.org/10.1088/0953-8984/13/20/310


NONLOCAL KONDO COUPLING AND SELECTIVE … PHYSICAL REVIEW B 109, 045117 (2024)

the filled skutterudite compound PrOs4Sb12, J. Phys. Soc. Jpn.
71, 23 (2002).

[72] X. Lou, T. L. Yu, Y. H. Song, C. H. P. Wen, W. Z. Wei, A.
Leithe-Jasper, Z. F. Ding, L. Shu, S. Kirchner, H. C. Xu, R.
Peng, and D. L. Feng, Distinct Kondo screening behaviors in
heavy fermion filled skutterudites with 4 f 1 and 4 f 2 configura-
tions, Phys. Rev. Lett. 126, 136402 (2021).

[73] E. Lengyel, M. E. Macovei, A. Jesche, C. Krellner, C. Geibel,
and M. Nicklas, Avoided ferromagnetic quantum critical point
in CeRuPO, Phys. Rev. B 91, 035130 (2015).

[74] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory:
Application to the Physics of Condensed Matter (Springer, New
York, 2007).

[75] M. Tinkham, Group Theory and Quantum Mechanics (Dover,
New York, 2003).

[76] J. Li, D. Golez, G. Mazza, A. J. Millis, A. Georges, and M.
Eckstein, Electromagnetic coupling in tight-binding models for
strongly correlated light and matter, Phys. Rev. B 101, 205140
(2020).

[77] G. Mahan, Many-Particle Physics (Springer, New York, 2000).

045117-17

https://doi.org/10.1143/JPSJS.71S.23
https://doi.org/10.1103/PhysRevLett.126.136402
https://doi.org/10.1103/PhysRevB.91.035130
https://doi.org/10.1103/PhysRevB.101.205140

