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Cyber-physical systems

Cyber-physical systems (CPS) are physical systems enhanced with
computation and communication capabilities: smart vehicle, smart grid,
smart building...

CPS characteristics:

Evolve in uncertain and highly dynamic environment

Are subject to critical safety requirements

Achieve complex tasks with a high degree of autonomy
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Formal methods for CPS

Computational approaches for verification or synthesis of systems,
based on mathematical formalization and rigorous reasoning, they
require

Specifications whose semantics is precisely defined mathematically
Mathematical models of systems (possibly based on data)

Suitable for the design of safety critical systems (correctness
guarantees)

Personal reflection fed by several projects CODECSYS (2016-2019) /
PROCSYS (2017-2023) / Chair RTE-CentraleSupélec (2017-2027)
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The symbolic control approach

Symbolic control is a formal method for controller synthesis:

based on symbolic (i.e. finite state) abstractions of systems

applies to nonlinear systems with input/state constraints and bounded

uncertainties

mathematical correctness of synthesized controllers

Continuous to discrete
abstraction

Discrete to continuous
concretization

Symbolic
model & specs

Continuous/hybrid
controller

x(t) u(t)

u(t) x(t)

Continuous/hybrid
model & specs

p(t) q(t)

Discrete controller
synthesis

Symbolic
controller

q(t) p(t)

Unrealizable
specs
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Outline of the lecture

1 Fundamentals of symbolic control:

Discrete controller synthesis
Safety, reachability, attractivity and recurrence

Symbolic control of nonlinear systems
System abstraction, controller concretization, robustness issues

2 Recent advances in symbolic control:

Symbolically-guided model predictive control
High performance controllers with safety guarantees

Data-driven symbolic control
Towards safe learning approaches for nonlinear systems
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Transition systems

Definition

A transition system is a tuple S = (Q,P,F ) where

Q is a set of states

P is a set of inputs

F : Q × P ⇒ Q is a (set-valued) transition map

S is said to be finite or symbolic if Q and P are finite.

The set of enabled inputs at state q ∈ Q is

enabF (q) = {p ∈ P| F (q, p) 6= ∅}
The set of non-blocking states is

nbsF = {q ∈ Q| enabF (q) 6= ∅}
The transition system is deterministic, if

∀q ∈ nbsF , ∀p ∈ enabF (q), card(F (q, p)) = 1
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Trajectories

Definition

A trajectory of S is a couple of state and input sequences(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
, where T ∈ N ∪ {+∞} and

pt ∈ enabF (qt) and qt+1 ∈ F (qt , pt), ∀t = 0, . . . ,T − 1.

A trajectory is maximal, if T = +∞ or else if qT /∈ nbsF

A trajectory is complete, if T = +∞
The set of maximal trajectories of S is called the behavior of S ,
denoted Bmax(S)
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Symbolic system - example

a

a

b

b

1 2

3 4


enabF (1) = {a}
enabF (2) = ∅
enabF (3) = {a, b}
enabF (4) = {b}

nbsF = {1, 3, 4}
S is deterministic
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Symbolic system - example

a

a a

b

b b

1 2

3 4


enabF (1) = {a}
enabF (2) = ∅
enabF (3) = {a, b}
enabF (4) = {b}

nbsF = {1, 3, 4}
card(F (1, a)) = card(F (4, b)) = 2

=⇒ S is non-deterministic
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Symbolic system - example

a

a a

b

b b

1 2

3 4

Trajectories:

(1, a), (3, b), 4

maximal:
(1, a), (3, b), (4, b), (3, a), (1, a), 2

complete:
(1, a), (3, b), (4, b), (4, b), (4, b), . . .
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Controllers for transition systems

Definition

A (static state-feedback) controller for transition system S = (Q,P,F ) is
a set-valued map C : Q ⇒ P such that for all q ∈ Q, C (q) ⊆ enabF (q).

The domain of the controller is dom(C ) = {q ∈ Q| C (q) 6= ∅}.

System

Controller

q

p

q+ ∈ F (q, p)

p ∈ C(q)
The controlled dynamics is described by
transition system SC = (Q,P,FC ) where

q+ ∈ FC (q, p) ⇐⇒
p ∈ C (q) and q+ ∈ F (q, p)
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Safety controllers

Safety: keep the system state in a set Qs ⊆ Q forever.

Definition

C : Q ⇒ P is a safety controller if for any initial state q0 ∈ dom(C ), all
maximal trajectories of SC

(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
are complete and satisfy:

∀t ∈ N, qt ∈ Qs

Definition

A state q is safety controllable if there exists a safety controller C such
that q ∈ dom(C ).

The set of safety controllable states is denoted s-cont(S ,Qs).
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Safety synthesis

Controllable predecessors of a subset R ⊆ Q:

Pre(R) = {q ∈ nbsF | ∃p ∈ enabF (q), F (q, p) ⊆ R}.

Safety synthesis

R0 = Qs

loop
| Rk+1 = Qs ∩ Pre(Rk)
until Rk+1 = Rk

return R∗ = Rk

Termination by finiteness of Q.

Theorem

R∗ = s-cont(S ,Qs).

a a

a

a

aa

a

a

b a

ba

bb
b
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Reachability controllers

Reachability: bring the system state in Qs ⊆ Q.

Definition

C : Q ⇒ P is a reachability controller if for any initial state q0 ∈ dom(C ),
all maximal trajectories of SC

(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
satisfy:

∃t ∈ N, qt ∈ Qs .

Definition

A state q is reachability controllable if there exists a reachability controller
C such that q ∈ dom(C ).

The set of reachability controllable states is denoted r-cont(S ,Qs).
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Reachability synthesis

Safety and reachability synthesis algorithms look similar.

Reachability synthesis

R0 = Qs

loop
| Rk+1 = Qs ∪ Pre(Rk)
until Rk+1 = Rk

return R∗ = Rk

Termination by finiteness of Q.

Theorem

R∗ = r-cont(S ,Qs).

a a

a

a

aa

a

a

b a

ba

bb
b

0
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Uniform reachability controllers

Definition

C : Q ⇒ P is a uniform reachability controller if for any initial state
q0 ∈ dom(C ), there exists K ∈ N, such that all maximal trajectories of SC(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
satisfy:

∃t ≤ K , xt ∈ Qs .

Proposition

For symbolic systems, reachability and uniform reachability are equivalent.

Counter-example for infinite systems:

0 1 2 . . . . . .q

A. Girard (CNRS, L2S) Safety, Optimization & Learning 17 / 68



Attractivity controllers

Attractivity: bring the system state in Qs and then keep it in Qs forever.

Definition

C : Q ⇒ P is an attractivity controller if for any initial state q0 ∈ dom(C ),
all maximal trajectories of SC

(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
are complete and

satisfy:
∃K ∈ N, ∀t ≥ K , qt ∈ Qs .

Definition

C : Q ⇒ P is an uniform attractivity controller if for any initial state
q0 ∈ dom(C ), there exists K ∈ N such that all maximal trajectories of SC(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
are complete and satisfy:

∀t ≥ K , qt ∈ Qs .
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Attractivity controllers

Definition

A state q is (uniformly) attractivity controllable if there exists an
(uniform) attractivity controller C such that q ∈ dom(C ).

The sets of attractivity controllable states and of uniform attractivity
controllable states are denoted a-cont(S ,Qs) and ua-cont(S ,Qs),
respectively.

Even for symbolic systems, attractivity and uniform attractivity are not
equivalent:

0 1 2

A. Girard (CNRS, L2S) Safety, Optimization & Learning 19 / 68



Attractivity synthesis

Synthesis through nested fixed point computation:

Attractivity synthesis

R0 = r-cont(S , s-cont(S ,Qs))
loop
| Rk+1 = r-cont(S , s-cont(S ,Qs ∪ Rk))
until Rk+1 = Rk

return R∗ = Rk

Termination by finiteness of Q.

Theorem

R0 = ua-cont(S ,Qs),

R∗ = a-cont(S ,Qs).

0 1 2

0 1 2

0 1 2

R0 = ua-cont(S,Qs)

R1 = R∗ = a-cont(S,Qs)
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Recurrence controllers

Recurrence: bring the system state in Qs infinitely often.

Definition

C : Q ⇒ P is a recurrence controller if for any initial state q0 ∈ dom(C ),
all maximal trajectories of SC

(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
are complete and

satisfy:
∀K ∈ N, ∃t ≥ K , qt ∈ Qs .

Definition

A state q is recurrence controllable if there exists a recurrence controller C
such that q ∈ dom(C ).

The set of recurrence controllable states is denoted rec-cont(S ,Qs).
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Recurrence synthesis

Synthesis through nested fixed point computation:

Recurrence synthesis

R0 = r-cont(T ,Qs)
loop
| Rk+1 = r-cont(S ,Qs ∩ Pre(Rk))
until Rk+1 = Rk

return R∗ = Rk

Termination by finiteness of Q.

Theorem

R∗ = rec-cont(S ,Qs).

0 1 2

R0 = r-cont(S,Qs)

R1 = R∗ = rec-cont(S,Qs)

3

0 1 2 3

0 1 2 3
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Automata-based specifications

Example 1: go to Q1, then go to Q2

q ∈ Q \Q1

q ∈ Q \Q2

q ∈ Q1

q ∈ Q2

q ∈ Q

Compute the product of system
and specification automaton

Solve a reachability problem in
the product space:
Reach the green state.
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Automata-based specifications

Example 2: go to Q1, then go to Q2; repeat this task infinitely often

q ∈ Q \Q1

q ∈ Q \Q2

q ∈ Q1

q ∈ Q1 q ∈ Q2

q ∈ Q \Q1

Compute the product of system
and specification automaton

Solve a recurrence problem in
the product space:
Visit the green state infinitely
often.

Wide range of possible specifications
→ Linear Temporal Logic
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Automata-based specifications

Example 2: go to Q1, then go to Q2; repeat this task infinitely often

q ∈ Q \Q1

q ∈ Q \Q2

q ∈ Q1

q ∈ Q1 q ∈ Q2

q ∈ Q \Q1

Further reading:

A. Girard (CNRS, L2S) Safety, Optimization & Learning 25 / 68



Outline of the lecture

1 Fundamentals of symbolic control:

Discrete controller synthesis
Safety, reachability, attractivity and recurrence

Symbolic control of nonlinear systems
System abstraction, controller concretization, robustness issues

2 Recent advances in symbolic control:

Symbolically-guided model predictive control
High performance controllers with safety guarantees

Data-driven symbolic control
Towards safe learning approaches for nonlinear systems

A. Girard (CNRS, L2S) Safety, Optimization & Learning 26 / 68



A control problem with safety constraints

We consider a nonlinear system subject to state/input constraints and
bounded disturbances:

xt+1 = f (xt , ut ,wt), xt ∈ X, ut ∈ U, wt ∈W

where X ⊆ Rnx , U ⊆ Rnu , W ⊆ Rnw .

X

U

Objective: compute a symbolic model that can be used to synthesize
controllers with formal guarantees.
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Abstraction: from continuous to discrete

Let us consider:

A finite “partition” (Xq)q∈Q of Rnx such that

Q = QX ∪ {qout} and
⋃

q∈QX

Xq ⊆ X;

A finite sample (up)p∈P of U.

(Xq)q∈Q (up)p∈P
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Abstraction: from continuous to discrete

We consider a symbolic transition system S = (Q,P,F ):

qt+1 ∈ F (qt , pt), qt ∈ Q, pt ∈ P

where

Q and P are the finite sets of symbolic states and inputs;

F : Q × P ⇒ Q is the transition map defined by

F (q, p) =
{
q+ ∈ Q

∣∣ Xq+ ∩ Yq,p 6= ∅
}

where Yq,p ⊆ Rnx is an over-approximation of the reachable set:

f (Xq, up,W) ⊆ Yq,p, ∀q ∈ Q, p ∈ P.
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Abstraction: from continuous to discrete

Xq q

p

p
p

p

q1 q2

q3 q4

Xq1 Xq2

Xq3 Xq4

F (q, p)

f(Xq, up,W)

Yq,p
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Reachability analysis

Assume Xq = [xq, xq], W = [w ,w ] and let

xcq =
xq + xq

2
, δxq =

xq − xq
2

, w c =
w + w

2
, δw =

w − w

2
.

If f is Lipschitz with respect to x and w :

Yq,p = B
(
f (xcq , up,w

c), Lx‖δxq‖+ Lw‖δw‖
)

If f has uniformly bounded derivatives: |∂f∂x | ≤ Dx , | ∂f∂w | ≤ Dw

Yq,p =
[
f (xcq , up,w

c)− δyq, f (xcq , up,w
c) + δyq

]
where δyq = Dxδxq + Dwδw .
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Reachability analysis

Assume Xq = [xq, xq], W = [w ,w ].

If f is monotone: ∂f
∂x ≥ 0, ∂f

∂w ≥ 0

Yq,p =
[
f (xq, up,w), f (xq, up,w)

]

123

S PR I N G E R  B R I E FS  I N  E L E C T R I C A L  A N D  CO M P U T E R
ENG INEER ING   CO N T R O L ,  AU TO M AT I O N  A N D  R O B OT I C S

Pierre-Jean Meyer
Alex Devonport
Murat Arcak

Interval Reachability 
Analysis
Bounding Trajectories 
of Uncertain Systems 
with Boxes for Control 
and Verification

Further reading
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Controller concretization: from discrete to continuous

Theorem

Given a symbolic controller C : Q ⇒ P, and the quantizer a θ : Rn ⇒ Q,
consider the closed-loop system

xt+1 = f (xt , upt ,wt)
qt ∈ θ(xt)
pt ∈ C (qt)

Then,
(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
is a trajectory of SC .

aq ∈ θ(x) iff x ∈ Xq

Closed loop trajectories of the continuous system are included in
those of the symbolic model.

Extends to more general class of controllers (dynamic, with memory).
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Controller concretization: from discrete to continuous

Symbolic to numeric
u = up

Numeric to symbolic

q ∈ θ(x)

Symbolic controller

p ∈ C(q)

System

x+ = f(x, u, w)

Symbolic controller

p ∈ C(q)

Symbolic model

q+ ∈ F (q, p)

q

p

u

x

p

q

⊆

=⇒ We can use the symbolic model to synthesize a controller that
provides formal guarantees for the original system.
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Stuttering transitions

What are good partitions (Xq)q∈Q and samples (up)p∈P ?

If chosen too coarse, these may produce stuttering transitions, i.e.
artefactual transitions from a symbolic state to itself that do not
correspond to any physical behavior.

p

p p

p

q2 q3

q q1

Xq2 Xq3

Xq Xq1

f(Xq, up,W)

Yq,p

Stuttering transitions may result in uncontrollable symbolic models,
e.g. for reachability specifications.
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Avoiding stuttering transitions

Let xcq ∈ Rnx , w c ∈ Rnw , ηx > 0, ηu > 0 and rw ≥ 0 such that

Xq ⊆ B(xcq , ηx), q ∈ Q \ {qout}; U ⊆
⋃
p∈P
B(up, ηu); W ⊆ B(w c , rw )

Proposition

Let us assume that f is Lipschitz with respect to x , u and w and that
there exists b > Lw rw such that

∀x ∈ X,∃u ∈ U, such that ‖f (x , u,w c)− x‖ ≥ b

Let (Xq)q∈Q and (up)p∈P be such that Luηu + (1 + Lx)ηx ≤ b − Lw rw .
Then,

∀q ∈ Q \ {qout}, ∃p ∈ P, such that q /∈ F (q, p).
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Robustness margins

Symbolic control makes it possible to deal with bounded disturbance

Xq q

p

p
p

p

q1 q2

q3 q4

Xq1 Xq2

Xq3 Xq4

F (q, p)

f(Xq, up,W)

Yq,p
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Robustness margins

Symbolic control makes it possible to deal with bounded disturbance

Xq q

p

p
p

p

q1 q2

q3 q4

Xq1 Xq2

Xq3 Xq4

F (q, p)

f(Xq, up,W)

Yq,p

We get additional robustness for free !
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Robustness margins

Theorem

Let us assume that Xq is a closed set, for all q ∈ Q and let us consider the
symbolic model S computed for

xt+1 = f (xt , ut ,wt), xt ∈ X, ut ∈ U, wt ∈W

Then, there exists ε > 0 such that all previous results hold for the
perturbed system

xt+1 = f (xt , ut ,wt) + w ′t

where w ′t ∈ B(0, ε).

Note that the precise value of ε can be effectively computed.
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Robustness for free

Symbolic to numeric
u = up

Numeric to symbolic

q ∈ θ(x)

Symbolic controller

p ∈ C(q)

System

x+ = f(x, u, w)

Symbolic controller

p ∈ C(q)

Symbolic model

q+ ∈ F (q, p)

q

p

u

x

p

q

⊆
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Imperfect measurements

Assume that the state xt is only known with a certain accuracy δ > 0:

‖x̂t − xt‖ ≤ δ

The state estimate x̂t can e.g. be obtained from noisy sensors and/or
from estimation algorithms (e.g. observers, Kalman filters, etc.).

Compute a symbolic model where the transition map F : Q × P ⇒ Q
is defined by

F (q, p) =
{
q+ ∈ Q

∣∣ Xq+ ∩ B(Yq,p, δ) 6= ∅
}

where Yq,p ⊆ Rnx is an over-approximation of the reachable set:

f (B(Xq, δ), up,W) ⊆ Yq,p, ∀q ∈ Q, p ∈ P.
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Imperfect measurements

Xq q

p

p p

p

q1 q2

q4 q5

Xq1 Xq2

Xq4 Xq5

F (q, p)

f(B(Xq, δ), up,W)

Yq,p

Xq3

Xq6

q3

q6

p

p
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Imperfect measurements

Theorem

Given a symbolic controller C : Q ⇒ P, and the quantizer θ : Rn ⇒ Q,
consider the closed-loop system

xt+1 = f (xt , upt ,wt)
x̂t ∈ B(xt , δ)
qt ∈ θ(x̂t)
pt ∈ C (qt)

Then,
(
{qt}t=T

t=0 , {pt}t=T−1
t=0

)
is a trajectory of SC .
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Imperfect measurements

Symbolic to numeric
u = up

Numeric to symbolic

q ∈ θ(x̂)

Symbolic controller

p ∈ C(q)

System

x+ = f(x, u, w)

Symbolic controller

p ∈ C(q)

Symbolic model

q+ ∈ F (q, p)

q

p

u

x

p

q

⊆

x̂

Sensor
x̂ ∈ B(x, δ)
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Example: safe navigation in complex environments

Consider a mobile robot modeled as a unicycle:
x1(t + 1) = x1(t) + u1(t) cos(x3(t))
x2(t + 1) = x2(t) + u1(t) sin(x3(t))
x3(t + 1) = x3(t) + u2(t)

and subject to state and input constraints:

X =

{
x ∈ R3

∣∣∣∣ x2
1 − x2

2 ≤ 4
4x2

2 − x2
1 ≤ 16

}
, U = [0.2, 2]× [−1, 1].

Let us remark that for all t ∈ N, u1(t) ≥ 0.2 =⇒ the robot cannot stop.
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Safety controllable set

Working environment:

X =

{
x ∈ R3

∣∣∣∣ x2
1 − x2

2 ≤ 4
4x2

2 − x2
1 ≤ 16

}
Non-convex, sharp corners.

-4 -3 -2 -1 0 1 2 3 4

x1

-3

-2

-1

0

1

2

3

x2

Safety controllable set computed using sym-
bolic control techniques:

109200 symbolic states

40 symbolic inputs

CPU time: ∼ 2 minutes
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Example: safe navigation in complex environments

Performance criteria: tracking a constant reference position pr ∈ R2.

Time horizon: N = 20.

-4 -3 -2 -1 0 1 2 3 4

x1

-3

-2

-1

0

1

2

3

x2

trajectory
reference point

Reference position in the interior:

pr = (0.5, 0.5)

-4 -3 -2 -1 0 1 2 3 4

x1

-3

-2

-1

0

1

2

3

x2

trajectory
reference point

Reference position in the corner:

pr = (
√

32/3,
√

20/3)
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Outline of the lecture

1 Fundamentals of symbolic control:

Discrete controller synthesis
Safety, reachability, attractivity and recurrence

Symbolic control of nonlinear systems
System abstraction, controller concretization, robustness issues

2 Recent advances in symbolic control:

Symbolically-guided model predictive control
High performance controllers with safety guarantees

Data-driven symbolic control
Towards safe learning approaches for nonlinear systems
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Nonlinear model predictive control

Consider a nonlinear system subject to state and input constraints:

xt+1 = f (xt , ut), xt ∈ X, ut ∈ U

We want to use a model predictive control scheme to enforce contraints
while optimizing some performance criteria, i.e. ut = u0|t with:

min
u0|t ,...,uN−1|t

N−1∑
k=0

`(xk|t , uk|t) + L(xN|t)

subject to


x0|t = xt ,

xk+1|t = f (xk|t , uk|t), k = 0, ...,N − 1

xk|t ∈ X, uk|t ∈ U, k = 0, ...,N
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Recursive feasibility

For safety critical systems, one needs to guarantee that the
optimization problem is feasible at all time.

One classical solution is to append terminal constraints to the
optimization problem:

min
u0|t ,...,uN−1|t

N−1∑
k=0

`(xk|t , uk|t) + L(xN|t)

subject to


x0|t = xt ,

xk+1|t = f (xk|t , uk|t), k = 0, ...,N − 1

xk|t ∈ X, uk|t ∈ U, k = 0, ...,N

xN|t ∈ XI

where XI ⊆ X is a (maximal) controlled invariant set.
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Controlled invariant sets

(Maximal) controlled invariant sets for nonlinear systems subject to
non-convex contraints:

can be hard to compute,
may not admit simple representations.

Controlled invariant sets computed using symbolic control are
typically unions of many intervals

XI =
⋃
q∈QI

Xq, where QI = s-cont(S ,Qs)

=⇒ Not suitable for real-time optimization.
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Time-varying terminal constraints

Let us consider the following MPC scheme:

min
ut ,u0|t ,...,uN−1|t

N−1∑
k=0

`(xk|t , uk|t) + L(xN|t)

subject to


x0|t = xt , ut = u0|t

xk+1|t = f (xk|t , uk|t), k = 0, ...,N − 1

xk|t ∈ X, uk|t ∈ U, k = 0, ...,N

xN|t ∈ Xt

where Xt ⊆ X is a (simple) time-varying terminal constraint.

Objective: propose a design mechanism for time-varying terminal
constraints guaranteeing recursive feasibility of the optimization problem.
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Symbolically-guided mode predictive control

Let us consider:

a controlled invariant set XI ⊆ X
an invariance controller κ, i.e. ∀x ∈ XI , f (x , κ(x)) ∈ XI

an interval-valued map T such that for all x ∈ XI

f (x , κ(x)) ∈ T (x) ⊆ XI

Theorem

Consider the following sequence of terminal constraints given by

Xt+1 = T (xN|t), for all t ∈ N

Then, the MPC optimization problem is recursively feasible.
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Symbolically-guided mode predictive control

XI , κ and T can be computed using
symbolic control:

XI =
⋃

q∈QI
Xq,

where QI = s-cont(S ,Qs)

κ(x) = up,
where p ∈ C (θ(x))

T (x) = θ−1 (F (θ(x), p))
Xq

Xq1 Xq2

Xq3 Xq4

f(Xq, up,W)

Yq,p

T (x)

x
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Case 1: comparisons

Reference position inside the environment: pr = (0.5, 0.5).

Prediction horizon: 20.
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Model predictive control
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Case 1: focus on SgMPC
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Case 2: comparisons

Reference position in the corner: pr = (
√

32/3,
√

20/3).

Prediction horizon: 20.
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MPC stopped at t = 13 because optimization problem becomes infeasible.
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Case 2: focus on SgMPC
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Outline of the lecture

1 Fundamentals of symbolic control:

Discrete controller synthesis
Safety, reachability, attractivity and recurrence

Symbolic control of nonlinear systems
System abstraction, controller concretization, robustness issues

2 Recent advances in symbolic control:

Symbolically-guided model predictive control
High performance controllers with safety guarantees

Data-driven symbolic control
Towards safe learning approaches for nonlinear systems
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Data-driven abstraction

We consider an unknown nonlinear system subject to state and input
constraints:

xt+1 = f (xt , ut), xt ∈ X, ut ∈ U.

We are given a finite data set

D =
{

(xk , uk , x
+
k ) |k ∈ K

}
, where x+

k = f (xk , uk).

Objective: compute directly from D a symbolic model providing formal
guarantees.
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Abstraction: from continuous data to discrete models

We use a similar approach as before based on a finite “partition” (Xq)q∈Q
of Rnx and a finite sample (up)p∈P of U.

We consider a symbolic transition system S = (Q,P,F ) where

Q and P are the finite sets of symbolic states and inputs;

F : Q × P ⇒ Q is the transition map defined by

F (q, p) =
{
q+ ∈ Q

∣∣ Xq+ ∩ Yq,p 6= ∅
}

where Yq,p ⊆ Rnx is an over-approximation of the reachable set:

f (Xq, up) ⊆ Yq,p, ∀q ∈ Q, p ∈ P.

=⇒ Can we compute Yq,p from the data D ?
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The case of monotone systems

x1

x2

x′
2

x′
1

u′

u

x1 � x2, u � u′ ⇒ x′
1 � x′

2

Characterization:

∂fi
∂xj
≥ 0,

∂fi
∂uk
≥ 0, ∀i , j , k

Applications: vehicles, energy,
biology...

Then, assuming Xq = [xq, xq], it holds

f (Xq, up) ⊆ [f (xq, up), f (xq, up)].
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The case of monotone systems

xq

xq
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up
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The case of monotone systems

Computing an upper-bound of f (xq, up) from data:

X

(x1, u1)

(x2, u2)

(x3, u3)

(x4, u4)

(x5, u5)

x+
1

x+
2

x+
3

x+
4

x+
5

(xp, up)

X

U

f(xp, up)
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The case of monotone systems

Theorem

Consider the following set of indices:

K+(xq, up) = {k ∈ K | xq � xk and up � uk }

K−(xq, up) =
{
k ∈ K

∣∣ xk � xq and uk � up
}

Then, f (Xq, up) ⊆ Yq,p where

Yq,p =

 ⋂
k∈K+(xq ,up)

{
x+
∣∣ x+ � x+

k

}
∩

 ⋂
k∈K−(xq ,up)

{
x+
∣∣ x+

k � x+
} .
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The case of general systems

Assume that we know lower bounds on the partial derivatives of the
unknown function f :

∂fi
∂xj
≥ aij ,

∂fi
∂uk
≥ bik , ∀i , j , k.

Consider the matrix A− and B− be given by

a−ij = min(aij , 0), b−ij = min(bij , 0).

Then,
f (x , u) = A−x + B−u + g(x , u)

where g(x , u) = f (x , u)− A−x − B−u is a monotone function.
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The case of general systems

Theorem

We have that f (Xq, up) ⊆ Yq,p with

Yq,p =
[
A−xq + B−up,A

−xq + B−up
]

+ Yg
q,p

where the over-approximation Yg
q,p of the monotone function g can be

computed from the data set D.

Using an efficient implementation, a symbolic model can be
computed from data in O (|D| × log(|Q| × |P|) + |Q| × |P|).

If we collect new data, the symbolic model can be updated without
restarting from scratch.

The approach can be also extended to systems with bounded
disturbances and/or with partially known dynamics.
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Example: adaptive cruise control

Consider two vehicles (leader and follower):

Relative distance d ;

Follower velocity v1;

Leader velocity v2;

Unknown monotone dynamics

Data-driven symbolic model com-
puted from 106 data points:

125000 symbolic states

50 symbolic inputs

CPU time: < 1s
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Conclusion

Symbolic control is a powerful computational technique for safety-critical
control of nonlinear systems with state and input constraints, and robustness
guarantees.

Performances of symbolic controllers are limited but can be drastically
improved by combining with MPC, while retaining safety guarantees.
=⇒ Symbolically-guided Model Predictive Control (SgMPC).

Symbolic models can be computed from data, opening the way to safe
learning-based control of nonlinear systems.

Current and future work:

SgMPC for complex navigation problems (e.g. temporal logics, etc.).

Combine SgMPC and data-driven abstraction to design safe
learning-based MPC for nonlinear systems.
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