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Cyber-physical systems

Cyber-physical systems (CPS) are physical systems enhanced with
computation and communication capabilities: smart vehicle, smart grid,
smart building...

CPS characteristics:
@ Evolve in uncertain and highly dynamic environment
@ Are subject to critical safety requirements

@ Achieve complex tasks with a high degree of autonomy
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Formal methods for CPS

@ Computational approaches for verification or synthesis of systems,
based on mathematical formalization and rigorous reasoning, they
require

e Specifications whose semantics is precisely defined mathematically
o Mathematical models of systems (possibly based on data)

@ Suitable for the design of safety critical systems (correctness

guarantees)

@ Personal reflection fed by several projects CODECSYS (2016-2019) /
PROCSYS (2017-2023) / Chair RTE-CentraleSupélec (2017-2027)

cosme
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The symbolic control approach

Symbolic control is a formal method for controller synthesis:

based on symbolic (i.e. finite state) abstractions of systems
applies to nonlinear systems with input/state constraints and bounded
uncertainties

@ mathematical correctness of synthesized controllers
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Outline of the lecture

@ Fundamentals of symbolic control:
o Discrete controller synthesis
Safety, reachability, attractivity and recurrence

e Symbolic control of nonlinear systems
System abstraction, controller concretization, robustness issues

© Recent advances in symbolic control:
e Symbolically-guided model predictive control
High performance controllers with safety guarantees

e Data-driven symbolic control
Towards safe learning approaches for nonlinear systems
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Transition systems

A transition system is a tuple S = (Q, P, F) where

@ Q@ is a set of states

@ P is a set of inputs

@ F:Q@x P = Q is a (set-valued) transition map
S is said to be finite or symbolic if @ and P are finite.

@ The set of enabled inputs at state g € Q is
enabg(q) = {p € P| F(q,p) # 0}

@ The set of non-blocking states is
nbsg = {q € Q| enabp(q) # 0}
@ The transition system is deterministic, if

Vq € nbsg, Vp € enabg(q), card(F(q,p)) =1

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Definition

A trajectory of S is a couple of state and input sequences
({qe}i=g  {pe} =0 1), where T € NU {+o00} and

p: € enabp(q¢) and gry1 € F(qe,pt), VE=0,..., T —1.

@ A trajectory is maximal, if T = 400 or else if g7 ¢ nbsg
@ A trajectory is complete, if T = 400

@ The set of maximal trajectories of S is called the behavior of S,
denoted Bmax(S)
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Symbolic system - example
O
enabg

1 = {a}
enabe(2) = 0
a enabe(3) = {a, b}
enabg(4) = {b}
a b nbsg = {1, 3,4}
S is deterministic
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Symbolic system - example

‘ ¢ 0 enabe(1) = {a}
enabg(2) = 0
enabr(3) = {a, b}
“ ' enabr(4) = {b}
: ’ nbsp = {1,3,4}
°.0' card(F(1,a)) = card(F(4,b)) =2

b = S is non-deterministic
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Symbolic system - example
a
Trajectories:

(1,a),(3,b),4
maximal:

(1,a),(3,b),(4,b),(3,a),(1,a),2

complete:
°‘ ' (1, ap ), (3,b),(4,b),(4,b),(4,b),...
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Controllers for transition systems

Definition

A (static state-feedback) controller for transition system S = (Q, P, F) is
a set-valued map C : Q@ = P such that for all g € Q, C(g) C enabg(q).

The domain of the controller is dom(C) = {q € Q| C(q) # 0}.

Controller
p € C(q)

n

System
qt € F(g,p)

A. Girard (CNRS, L2S)

The controlled dynamics is described by
transition system S¢ = (Q, P, F¢) where

gt € Fc(q,p) —
pe C(q)and g* € F(q,p)
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Safety controllers

Safety: keep the system state in a set Qs C Q forever.

Definition

C : @ = P is a safety controller if for any initial state go € dom(C), all

maximal trajectories of Sc ({q¢}:={, {pe}i=] ') are complete and satisfy:

Vt€N7 ntQS

| N\

Definition

A state g is safety controllable if there exists a safety controller C such
that g € dom(C).

The set of safety controllable states is denoted s-cont(S, Qs).

\
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Safety synthesis

Controllable predecessors of a subset R C Q:

Pre(R) = {gq € nbsg| 3p € enabg(q), F(q,p) C R}.

Safety synthesis

RO - Qs

loop

| Rk+1 = QRsN Pre(Rk)
until Rk+1 = Ry
return R* = Ry

Termination by finiteness of Q.

R* = s-cont(S, Qs).
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Reachability controllers

Reachability: bring the system state in Qs C Q.

Definition

C : @ = P is a reachability controller if for any initial state go € dom(C),

all maximal trajectories of Sc ({q¢}:=d, {pe}i=g 1) satisfy:

dteN, g; € Qs.

Definition

| N\

A state g is reachability controllable if there exists a reachability controller
C such that g € dom(C).

The set of reachability controllable states is denoted r-cont(S, Qs).
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Reachability synthesis

Safety and reachability synthesis algorithms look similar.

Reachability synthesis

Ro = Qs

loop

| Rk+1 = Qs U Pre(Rk)
until Rk+1 = Rk
return R* = Ry

Termination by finiteness of Q.

R* = r-cont(S, Qs).

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Reachability synthesis

Safety and reachability synthesis algorithms look similar.

Reachability synthesis

Ro = Qs

loop

| Rk+1 = Qs U Pre(Rk)
until Rk+1 = Rk
return R* = Ry

Termination by finiteness of Q.

R* = r-cont(S, Qs).

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Reachability synthesis

Safety and reachability synthesis algorithms look similar.

Reachability synthesis

Ro = Qs

loop

| Rk+1 = Qs U Pre(Rk)
until Rk+1 = Rk
return R* = Ry

Termination by finiteness of Q.

R* = r-cont(S, Qs).

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Reachability synthesis

Safety and reachability synthesis algorithms look similar.

Reachability synthesis

Ro = Qs

loop

’ Rk+1 = Qs U Pre(Rk)
until Rk+1 = Rk
return R* = Ry

Termination by finiteness of Q.

R* = r-cont(S, Qs).

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Reachability synthesis

Safety and reachability synthesis algorithms look similar.

Reachability synthesis

Ro = Qs

loop

’ Rk+1 = Qs U Pre(Rk)
until Rk+1 = Rk
return R* = Ry

Termination by finiteness of Q.

R* = r-cont(S, Qs).

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Reachability synthesis

Safety and reachability synthesis algorithms look similar.

Reachability synthesis

Ro = Qs

loop

’ Rk+1 = Qs U Pre(Rk)
until Rk+1 = Rk
return R* = Ry

Termination by finiteness of Q.

R* = r-cont(S, Qs).

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Reachability synthesis

Safety and reachability synthesis algorithms look similar.

Reachability synthesis

Ro = Qs

loop

’ Rk+1 = Qs U Pre(Rk)
until Rk+1 = Rk
return R* = Ry

Termination by finiteness of Q.

R* = r-cont(S, Qs).

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Uniform reachability controllers

Definition

C : Q = P is a uniform reachability controller if for any initial state
qo € dom(C), there exists K € N, such that all maximal trajectories of Sc

({ae}i=g, {Pt}iig_l) satisfy:

EltSK, XtEQS.

Proposition

For symbolic systems, reachability and uniform reachability are equivalent.

Counter-example for infinite systems:
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Attractivity controllers

Attractivity: bring the system state in Qs and then keep it in Qs forever.

Definition

C : Q@ = P is an attractivity controller if for any initial state go € dom(C),
all maximal trajectories of Sc ({q:}:={, {pc}i=4 ') are complete and
satisfy:

dJK eN, Vt > K, g: € Qs.

Definition

C : Q@ = P is an uniform attractivity controller if for any initial state
qo € dom(C), there exists K € N such that all maximal trajectories of S¢
({qe}i=7 , {pe} =4 1) are complete and satisfy:

Vt2K7 Qte QS-
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Attractivity controllers

Definition
A state q is (uniformly) attractivity controllable if there exists an
(uniform) attractivity controller C such that g € dom(C).

The sets of attractivity controllable states and of uniform attractivity
controllable states are denoted a-cont(S, Qs) and ua-cont(S, Qs),
respectively.

Even for symbolic systems, attractivity and uniform attractivity are not
equivalent:

@ o
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Attractivity synthesis

Synthesis through nested fixed point computation:

Attractivity synthesis ' '
Ro = r-cont(S, s-cont(S, Qs)) O o e
loop

’ Rk+1 = r—Cont(S, S—Cont(57 QS U Rk)) RO o ua_cont(s, Qs)

until Rk+1 = Rk

Termination by finiteness of Q.

R; = R* = a~cont(S, Q)

QLoD

e Ry = ua-cont(S, Qs),
e R* = a-cont(S, Qs).
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Recurrence controllers

Recurrence: bring the system state in Qs infinitely often.

Definition

C : Q@ = P is a recurrence controller if for any initial state go € dom(C),
all maximal trajectories of S¢ ({qt}on, {pt}ig—_l) are complete and
satisfy:

VK eN, dt > K, g;: € Qs.

| A

Definition
A state g is recurrence controllable if there exists a recurrence controller C
such that g € dom(C).

The set of recurrence controllable states is denoted rec-cont(S, Qs).
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Recurrence synthesis

Synthesis through nested fixed point computation:

Recurrence synthesis

g

Ry = r-cont(T, Qs)

loop

| Rkt1 = r-cont(S, Qs N Pre(Ry))
until Rxkr1 = Ry

return R* = Ry

Ry = r-cont(S, Qs)

g

Termination by finiteness of Q.

=

1 = R* = rec-cont (S, Qs

~

g

R* = rec-cont(S, Qs).
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Automata-based specifications

Example 1: go to Q1, then go to Q>

7€Q\ Q1
g o Compute the product of system
and specification automaton
geQ\ Qs @ Solve a reachability problem in
the product space:
Reach the green state.
q€ Q2
€@
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Automata-based specifications

Example 2: go to Q1, then go to Q; repeat this task infinitely often

o Compute the product of system
and specification automaton

@ Solve a recurrence problem in
the product space:
Visit the green state infinitely
often.

Wide range of possible specifications
— Linear Temporal Logic
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Automata-based specifications

Example 2: go to Q1, then go to Q; repeat this task infinitely often

Further reading:

Studies in Systems, Decision and Control 89

Calin Belta
Boyan Yordanov
Ebru Aydin Gol

Formal
Methods for

Discrete-Time
Dynamical
Systems
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Outline of the lecture

@ Fundamentals of symbolic control:
o Discrete controller synthesis
Safety, reachability, attractivity and recurrence

e Symbolic control of nonlinear systems
System abstraction, controller concretization, robustness issues

© Recent advances in symbolic control:
e Symbolically-guided model predictive control
High performance controllers with safety guarantees

e Data-driven symbolic control
Towards safe learning approaches for nonlinear systems
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A control problem with safety constraints

We consider a nonlinear system subject to state/input constraints and
bounded disturbances:

Xt+1 = f(Xt, Ug, Wt)7 Xt S X, Us S U, Wt c W
where X CR™, U CR™, W C R™.

Objective: compute a symbolic model that can be used to synthesize
controllers with formal guarantees.

A. Girard (CNRS, L2S)
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Abstraction: from continuous to discrete

Let us consider:
e A finite "partition” (Xg)gecq of R™ such that

Q=QxU {qout} and U Xq cX
q€Qx

e A finite sample (up)pep of U.

[/

(Xq)qu
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Abstraction: from continuous to discrete

We consider a symbolic transition system S = (Q, P, F):

Ge+1 € F(qe,pt), e € Q, pr € P

where
@ @ and P are the finite sets of symbolic states and inputs;
o F: Q@ x P == Q is the transition map defined by

Fla.p)={q" € Q| Xq: NVqp #0}
where Y, , € R™ is an over-approximation of the reachable set:

f(XCh UP,W) - Yq7p, Vq S Q, p € P.
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Abstraction: from continuous to discrete
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Reachability analysis

Assume X, = [x,4,Xq], W = [w, W] and let

Xq — X _wHw W-w
2 2 '

Xg T+ X
c_=q q _
Xg = > , Oxg =

o If f is Lipschitz with respect to x and w:
Yqp =B (f(xg, Up, W), Ly||0xq|| + LWH5WH)
e If f has uniformly bounded derivatives: |%| < D, |ng/| <Dy

Yqp = [f(xg, Up, W) — dyq, F(Xg, Up, W) + 5yq]

where 0y, = Dy 0xq + Dy dw.
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Reachability analysis

Assume X, = [x,,Xq], W = [w, w].

o If f is monotone: af >0, af >0

Yq,p = [f(ﬁcp upvﬂ), f(Yq, upvw)]

SPRINGER BIEF N ELECTRICAL AND COMPUTER

ENGINEERING - CONTROL, AUTOMATION AND ROBOTICS

Pierre-Jean Meyer

Murat Arcak

Interval Reachabililt)ll
Analysis

Bounding Trajectories
of Uncertain Systems
with Boxes for Control
and Verification

) Springer

Further reading
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Controller concretization: from discrete to continuous

Theorem

Given a symbolic controller C : @ = P, and the quantizer? 6 : R" = Q,
consider the closed-loop system

Xt+1 = (Xt7 up,, Wt)
g € 0(xt)
pe € C(qr)

Then, ({q:}:=d, {pe}i=] 1) is a trajectory of Sc.

?q € 0(x) iff x € X,

@ Closed loop trajectories of the continuous system are included in
those of the symbolic model.

@ Extends to more general class of controllers (dynamic, with memory).

A. Girard (CNRS, L2S)
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Controller concretization: from discrete to continuous

Numeric to symbolic
q €0(z)
lq ]
Symbolic controller Symbolic controller
p € C(q) p € C(q)
P P
! c l
Symbolic to numeric Symbolic model
u=up q" € F(q,p)
i |
System
2t = f(z,u,w)
‘x

—> We can use the symbolic model to synthesize a controller that
provides formal guarantees for the original system.
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Stuttering transitions

What are good partitions (Xq)qc@ and samples (up)pcp ?

@ If chosen too coarse, these may produce stuttering transitions, i.e.
artefactual transitions from a symbolic state to itself that do not
correspond to any physical behavior.

XQQ

@ Stuttering transitions may result in uncontrollable symbolic models,
e.g. for reachability specifications.

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Avoiding stuttering transitions

Let xg e R™, w¢ e R™, n, >0, n, >0and r, > 0 such that

Xq - B(X§777x)7 qgc Q \ {QOut}; UC U B(Upanu); W C B(Wca rw)
peP

Proposition

Let us assume that f is Lipschitz with respect to x, u and w and that
there exists b > L, r, such that

Vx € X,3Ju € U, such that ||f(x,u, w®) — x| > b

Let (Xq)qeq and (up)pecp be such that Lyn, + (14 L)ne < b— Lyry.
Then,

Vq € Q \ {qout}a 3p € 'D7 such that q ¢ F(qa P)
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Robustness margins

@ Symbolic control makes it possible to deal with bounded disturbance
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Robustness margins

@ Symbolic control makes it possible to deal with bounded disturbance

Xy |

@ We get additional robustness for free !
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Robustness margins

Theorem

Let us assume that X is a closed set, for all g € Q and let us consider the
symbolic model S computed for

Xt4+1 = f(Xt, Ug, Wt), Xt € X, ug € U, Wy € \W

Then, there exists € > 0 such that all previous results hold for the
perturbed system

Xer1 = F(Xe, Up, We) + W;

where w; € B(0,¢).

Note that the precise value of ¢ can be effectively computed.
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Robustness for free

—

Numeric to symbolic
q € 0(x)

lq

Symbolic controller
p € C(q)

lp

Symbolic to numeric
u=up

lu

System
@t = f(@,u,w)

A. Girard (CNRS, L2S)

P

M

—

Symbolic controller
p€C(q)

lp

Symbolic model
a" € F(q,p)

(R
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Robustness for free

Numeric to symbolic
q€b(x)
lq ]
Symbolic controller Symbolic controller
p€C(q) p € Clq)
I3 P
' C l
Symbolic to numeric Symbolic model
u=up q* € F(q,p)
i |
System
zt = f(z,u,w) +w’
P
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Imperfect measurements

@ Assume that the state x; is only known with a certain accuracy 6 > 0:
[Re — xell <6

The state estimate X; can e.g. be obtained from noisy sensors and/or
from estimation algorithms (e.g. observers, Kalman filters, etc.).

@ Compute a symbolic model where the transition map F: Q x P = Q
is defined by

F(a.p)={a" € Q[ X+ N B(Yq,p,0) # 0}
where Y, , € R™ is an over-approximation of the reachable set:

f(B(Xq,96),up, W) C Yq,, Vg€ Q, pE P.
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Imperfect measurements
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Imperfect measurements

Theorem

Given a symbolic controller C : @ == P, and the quantizer 0 : R" = Q,

consider the closed-loop system

Xt+1
Rt
(e[3
Pt

Mm M M

f(xe, Up,, We)

B(Xt, 5)
0

Then, ({q:}i=d, {pe}i=] 1) is a trajectory of Sc.

A. Girard (CNRS, L2S)
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Imperfect measurements

—

Numeric to symbolic

q € 0(2)
q
Symbolic controller
p € Clq) $
Symbolic controller
P p€Clq)
Symbolic to numeric P
U= Up g
Symbolic model
" q" € F(q,p)
System q
2t = f(z,u,w)
x
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Example: safe navigation in complex environments

Consider a mobile robot modeled as a unicycle:

xi(t+1) = xi(t) + vi(t) cos(x3(t))
x(t+1) = x(t)+ ui(t)sin(x3(t))
X3(t—|—1) :X3(t)—{—U2(t)

and subject to state and input constraints:

2 2
X —x5; <4

_ 3 — _
X_{xelR b2 <16 },U_[O.2,2]><[ 1,1].

Let us remark that for all t € N, uy(t) > 0.2 = the robot cannot stop.
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Safety controllable set

Working environment:

2 2
xX; —Xx3 < 4
X — ]R3 1 2 >
{X € 4x3 — x? < 16
Non-convex, sharp corners. % 0

3

Safety controllable set computed using sym-
bolic control techniques:

@ 109200 symbolic states

@ 40 symbolic inputs
@ CPU time: ~ 2 minutes

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Example: safe navigation in complex environments

e Performance criteria: tracking a constant reference position p, € R?.

@ Time horizon: N = 20.

x1 X1

Reference position in the interior: Reference position in the corner:

pr = (0.5,0.5) pr = (1/32/3,/20/3)

A. Girard (CNRS, L2S) Safety, Optimization & Learning



Outline of the lecture
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© Recent advances in symbolic control:
e Symbolically-guided model predictive control
High performance controllers with safety guarantees

e Data-driven symbolic control
Towards safe learning approaches for nonlinear systems
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Nonlinear model predictive control

Consider a nonlinear system subject to state and input constraints:
Xt4+1 = f(Xt7 ut)a Xt € X, us € U

We want to use a model predictive control scheme to enforce contraints
while optimizing some performance criteria, i.e. ur = ug|; with:

N-1
min Z Okt ukge) + Llx)e)

Uo|ts--UN—-1]¢t pr
X0|t = Xt,

subject to { xpp1)e = F(Xke, Ukpe); k=0,..,N -1
Xk‘t € X, Uk|t € U, k - 0, ceey N
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Recursive feasibility

@ For safety critical systems, one needs to guarantee that the
optimization problem is feasible at all time.

@ One classical solution is to append terminal constraints to the
optimization problem:

N-1
min Z O(Xk|es unle) + Lxnye)

Uo|ts--sUN—1|¢t k—0

X0|t = Xt,

Xk+1|t = f(Xk|t7 uk|t)7 k = 0, ceey N-—-1
Xk|t GX’ Uklt EU, kZO,,N
Xnje € X

subject to

where X; C X 'is a (maximal) controlled invariant set.
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Controlled invariant sets

@ (Maximal) controlled invariant sets for nonlinear systems subject to
non-convex contraints:

e can be hard to compute,
e may not admit simple representations.

@ Controlled invariant sets computed using symbolic control are
typically unions of many intervals

X; = U Xy, where Q) = s-cont(S, Qs)
qgeQ,

— Not suitable for real-time optimization.
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Time-varying terminal constraints

Let us consider the following MPC scheme:

N—1
min Z E(Xk\t, uk|e) + Lxnye)

Ut,Ug|ty--sUN—1|t
I It —o

Xo|t = Xt, Ut = Up|¢

Xie1le = F(Xuqes Ukje), k=0,.., N -1
Xkt € X, Ukt e, k=0,...N
XN/t e X;

subject to

where X; C X is a (simple) time-varying terminal constraint.

Objective: propose a design mechanism for time-varying terminal
constraints guaranteeing recursive feasibility of the optimization problem.
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Symbolically-guided mode predictive control

Let us consider:
@ a controlled invariant set X; C X
@ an invariance controller x, i.e. Vx € X, f(x,k(x)) € X

@ an interval-valued map T such that for all x € X

f(x,k(x)) € T(x) CX,

Consider the following sequence of terminal constraints given by

Xit1 = T(XN|t)a for all t € N

Then, the MPC optimization problem is recursively feasible.
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Symbolically-guided mode predictive control

X, k and T can be computed using
symbolic control:
° X = UqEQI Xq,
where Q; = s-cont(S, Qs)

° Kk(x) = up,
where p € C(6(x))
o T(x)=0"1(F(0(x),p)) !
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Case 1: comparisons

@ Reference position inside the environment: p, = (0.5, 0.5).

@ Prediction horizon: 20.

Optimal symbolic control Model predictive control Symbolically-guided
model predictive control
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Case 1: focus on SgMPC

O =]
R -100 - ]
-200 ‘ ‘ ‘
0 50 100 150 200
t(s)
g8 ' ) ) ]
x | | |
0 50 100 150 200
t(s)
2 F T =
S1 f\ 1
0 T T T
0 50 100 150 200
t(s)
1 T =
S or | ’
1k : : :
0 50 100 150 200
t(s)
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Case 2: comparisons

@ Reference position in the corner: p, = (1/32/3,4/20/3).

@ Prediction horizon: 20.

Optimal symbolic control Model predictive control Symbolically-guided
model predictive control

MPC stopped at t = 13 because optimization problem becomes infeasible.
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Case 2: focus on SgMPC

x3

X1, X2

—
=]
0 50 100 150 200
t(s)
1 T
S o
-1 I |
0 50 100 150 200
t(s)
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Outline of the lecture

@ Fundamentals of symbolic control:
o Discrete controller synthesis
Safety, reachability, attractivity and recurrence

e Symbolic control of nonlinear systems
System abstraction, controller concretization, robustness issues

© Recent advances in symbolic control:
e Symbolically-guided model predictive control
High performance controllers with safety guarantees

e Data-driven symbolic control
Towards safe learning approaches for nonlinear systems
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Data-driven abstraction

We consider an unknown nonlinear system subject to state and input
constraints:

Xt4+1 = f(Xt, Ut), Xt € X, ug € U.

We are given a finite data set

D = {(xi, uk, %) |k € K}, where x,” = f(xx, ux).

Objective: compute directly from D a symbolic model providing formal
guarantees.
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Abstraction: from continuous data to discrete models

We use a similar approach as before based on a finite “partition” (Xg)qc0
of R™ and a finite sample (up)pep of U.

We consider a symbolic transition system S = (Q, P, F) where
@ @ and P are the finite sets of symbolic states and inputs;

o F: Q x P= Q is the transition map defined by

F(a,p) = {q+ € Q’ Xg+ NYqp # (D}
where Y, , € R™ is an over-approximation of the reachable set:
f(Xq,up) CYqp, Vg€ Q, p€P.

= Can we compute Y, , from the data D 7
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The case of monotone systems

A
' 3
2 e Characterization:
) of; of; ..
— >0, — >0, Vi,j, k
U @ Applications: vehicles, energy,
o1 biology...

x1 Rz, u S u =) 2 ah
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The case of monotone systems

@ Characterization:

of; of; .
>0, — >0, Vi, j, k
a)(J — 9 aUk — 9 I7.I7

@ Applications: vehicles, energy,
biology...

»
>

x1 2T, u U =) 2 ah
Then, assuming X, = [x,,Xg], it holds

f(Xq, up) € [f(ﬁqa up), f(Xq; Up)]-
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The case of monotone systems

Computing an upper-bound of f(Xq, up) from data:

UA

(z3,u3)

(xlv ul)

(24, u4)

(Tp, up)

(w2, u2)
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The case of monotone systems

Computing an upper-bound of f(Xq, up) from data:

UA A X
(24, u4) xy
——————————— e ) F - ---- @
[ [
($37.U3) : : x;
| (ms’us) . I .
| |
: ® .4_ f(@”up):
@ | T2 [
. (xpaup)\ |
(zlvul) I I
. | . .+ |
(‘T27u2) : - -:CT T3 : o
VX Ll
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The case of monotone systems

Computing an upper-bound of f(Xq, up) from data:

UA
(1’471!4)
*********** -@
. |
($37U3) :
: (x5, us)
************ zazazax @
| |
o Cho® B
(xlv ul) | |
| |
(902,.“2) : |
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The case of monotone systems

Computing an upper-bound of f(Xq, up) from data:

UA A X
(24,4 mi
*********** -@ Eaesesstsss -0
| |
. I I +
(w3, u3) | 5
GG I S T
------------ r--® ®  f@u) |
| I $+ ] I
@ | | 2 | |
. ($p7up)l | | |
(I1,U1) ] I ] |
° ] | ® .Jr | |
(w2, uz) : : _ wir T3 : : _
VX Ll
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The case of monotone systems

Consider the following set of indices:

Kt (Xq, up) = {k € K| Xq < xx and up =< uy}

K™ (x4, up) = {k € K| x =< xg and ug < up }

Then, f(Xq, up) € Y4, where

Yqp = ﬂ {X+ | xt = le}
KEK+(Rq,up)

N ﬂ {X+ ‘ X;r = X+}
keK—(K[puP)
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The case of general systems

Assume that we know lower bounds on the partial derivatives of the
unknown function f:

of; of; .
— > ij 7Zbi7 ) 7k'
% = 7 Buy = Viig

Consider the matrix A~ and B~ be given by

a; = min(aj;, 0), b,-j- = min(bj;,0).

Then,
f(x,u)=A"x+ B u+g(x,u)

where g(x, u) = f(x,u) — A~x — B~ u is a monotone function.
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The case of general systems

Theorem
We have that f(Xgq, up) C Yq p with

Ygp=[A"Xq+ B up, A x,+ B up| + Y&,

where the over-approximation Y§ ,, of the monotone function g can be
computed from the data set D.

@ Using an efficient implementation, a symbolic model can be
computed from data in O (|D| x log(|Q| x |P|) + |Q]| x |P|).

o If we collect new data, the symbolic model can be updated without
restarting from scratch.

@ The approach can be also extended to systems with bounded
disturbances and/or with partially known dynamics.
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Example: adaptive cruise control

Consider two vehicles (leader and follower):

Relative distance d;

Follower velocity vi;

°
o Leader velocity vp;
°

Unknown monotone dynamics

Data-driven symbolic model com-
puted from 10° data points:

@ 125000 symbolic states
@ 50 symbolic inputs
o CPU time: < 1s
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Conclusion

@ Symbolic control is a powerful computational technique for safety-critical
control of nonlinear systems with state and input constraints, and robustness
guarantees.

@ Performances of symbolic controllers are limited but can be drastically
improved by combining with MPC, while retaining safety guarantees.
= Symbolically-guided Model Predictive Control (SgMPC).

@ Symbolic models can be computed from data, opening the way to safe
learning-based control of nonlinear systems.
@ Current and future work:

e SgMPC for complex navigation problems (e.g. temporal logics, etc.).

e Combine SgMPC and data-driven abstraction to design safe
learning-based MPC for nonlinear systems.
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