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Abstract

We study the gap processes in a degenerate system of three particles interacting through
their ranks. We obtain the Laplace transform of the invariant measure of these gaps, and
an explicit expression for the corresponding invariant density. To derive these results, we
start from the basic adjoint relationship characterizing the invariant measure, and apply a
combination of two approaches: first, the invariance methodology of W. Tutte, thanks to
which we compute the Laplace transform in closed form; second, a recursive compensation
approach which leads to the density of the invariant measure as an infinite convolution
of exponential functions. As in the case of Brownian motion with reflection or killing
at the endpoints of an interval, certain Jacobi theta functions play a crucial role in our
computations.

1 Introduction and main results

1.1 Degenerate competing three-particle systems
The paper [16] studies degenerate three-particle systems of Brownian particles, in which
local characteristics are assigned by rank. Among these is the system

Xi(·) = xi +
3∑

k=1

δk

∫ ·

0
1Xi(t)=RX

k (t)dt+

∫ ·

0
1Xi(t)=RX

2 (t)dBt, i = 1, 2, 3,

with the notation max1⩽i⩽3Xi(t) =: RX
1 ⩾ RX

2 (t) ⩾ RX
3 (t) := min1⩽i⩽3Xi(t) for the ranks

(order statistics) in descending order; with “lexicographic” resolution of ties, i.e., always in
favor of the lowest index i; with xi and δi given real numbers; and with B1(·), B2(·), B3(·)
independent scalar Brownian motions.

It is shown in [16] that this system admits a pathwise unique, strong solution, which
is free of triple collisions as well as “non-sticky”, in the sense∫ ∞

0
1RX

k (t)=RX
ℓ (t)dt = 0 for k < ℓ.



It is also shown that the two-dimensional process(
G(·), H(·)

) ∆
=
(
RX

1 (·)−RX
2 (·), RX

2 (·)−RX
3 (·)

)
(1)

is a degenerate Brownian motion in the nonnegative orthant [0,∞)2 with oblique reflection
on its boundaries:{

G(t) = x1 − x2 + (δ1 − δ2)t−W (t)− 1
2L

H(t) + LG(t),

H(t) = x2 − x3 + (δ2 − δ3)t+W (t)− 1
2L

G(t) + LH(t),
(2)

for 0 ⩽ t < ∞. We denote here by W (·) a suitable standard, scalar Brownian motion, and
by LZ(·) =

∫ ·
0 1Z(t)=0dZ(t) the local time at the origin of a semimartingale Z(·) ⩾ 0 with

continuous paths.
It is shown in [16, Thm 2.3] that, under the Hobson and Rogers [13] conditions

2(δ3 − δ2) + (δ1 − δ2)
− > 0 and 2(δ2 − δ1) + (δ2 − δ3)

− > 0, (3)

the process
(
G(·), H(·)

)
of (1)–(2) is positive recurrent and has a unique invariant measure

π with π
(
(0,∞)2

)
= 1, to which its time-marginal distributions converge, and exponen-

tially fast, as t → ∞.
This invariant probability measure π satisfies, in fact is characterized by, the so-called

“Basic Adjoint Relationship” (BAR) of [12, 18]. This involves also the “lateral measures”

ν1(A)
∆
= Eπ

∫ 2

0
1A(H(t))dLG(t) and ν2(A)

∆
= Eπ

∫ 2

0
1A(G(t))dLH(t) (4)

for A ∈ B
(
(0,∞)

)
, and is cast most concisely as[

(x− y)2 + 2(δ2 − δ1)x+ 2(δ3 − δ2)y
]
π̂(x, y) =

(
x− y

2

)
ν̂1(y) +

(
y − x

2

)
ν̂2(x) (5)

for (x, y) ∈ [0,∞)2, in terms of the Laplace transforms

π̂(x, y)
∆
= Eπ

(
e−xG(t)−yH(t)

)
=

∫∫
(0,∞)2

e−xg−yhπ(dg,dh), (6)

ν̂1(y)
∆
=

∫ ∞

0
e−yuν1(du) = lim

x→∞
xπ̂(x, y), (7)

ν̂2(x)
∆
=

∫ ∞

0
e−xuν2(du) = lim

y→∞
yπ̂(x, y). (8)

Conversely, a probability measure π on B((0,∞)2) is invariant for the process (G(·), H(·))
of gaps if it, together with two finite measures ν1,ν2 on B((0,∞)), satisfies the BAR of (5).

In the arXiv version [15] of the paper [16], the following question was raised: Can
the invariant probability measure π of the two-dimensional process

(
G(·), H(·)

)
of gaps be

computed explicitly? See [15, Sec. 2.4]. The goal of the present paper is to answer this
question.

1.2 Main results
In what follows, we set

λ1 := 2(δ2 − δ1) and λ2 := 2(δ3 − δ2). (9)

We will impose the ergodicity conditions introduced in (3); in terms of the quantities λ1

and λ2 defined in (9), they can be cast as λ2 >
1
2λ

+
1 and λ1 >

1
2λ

+
2 . Again as in [16], and

in order to restrict the number of cases to handle, we will impose the stronger condition

δ1 < δ2 < δ3,
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which is equivalent to
λ1 > 0 and λ2 > 0. (10)

The symmetric case refers to the assumption

λ1 = λ2 = 2(δ2 − δ1) = 2(δ3 − δ2) =: λ > 0. (11)

A): The first main result of this paper gives a simple explicit expression for the Laplace
transform of the invariant distribution.

Theorem 1 (Laplace transform, general case). The Laplace transform (7) of the lateral
measure ν1 in (4) is given by

ν̂1(y) =
4π

3λ1λ2
sin

(
π

λ1

λ1 + λ2

)
y(y + λ2)(y + 2λ1 + λ2)

cos

(
π
√

λ2
1

(λ1+λ2)2
− 4y

λ1+λ2

)
− cos

(
π λ1
λ1+λ2

) . (12)

Exchanging the variables x ↔ y and the parameters λ1 ↔ λ2, we derive a similar
expression for the Laplace transform ν̂2(x) in (8). The bivariate Laplace transform π̂(x, y)
in (6) is then obtained via the main equation (5).

As a Laplace transform, the function ν̂1 is analytic in the half-plane with negative real
part. Since the function cos

√
z =

∑
n⩾0

(−z)n

(2n)! is analytic on C, an immediate consequence
of Theorem 1 is that ν̂1 of (12) admits a meromorphic continuation to the whole of C.
A globally meromorphic infinite product representation of ν̂1 will be given in Section 5,
see (54).

In the symmetric case, the above result simplifies as follows:

Corollary 1 (Laplace transform, symmetric case). Assuming (11), the Laplace transform
(7) of the lateral measure ν1 in (4) is given by

ν̂1(y) =
4π

3λ2

y(y + λ)(y + 3λ)

cos

(
π
2

√
1− 8y

λ

) . (13)

While the above results provide fairly simple expressions for the Laplace transforms
ν̂1(y), ν̂2(x) and π̂(x, y) of the marginal and the joint distributions, they do not address
the question of finding the associated density functions in closed form. This is the topic
of our subsequent results; we shall actually propose two ways to compute these densities.

B): The first method appears as a consequence of Theorem 1 and Corollary 1: classical
Mittag-Leffler expansions allow us to express the trigonometric Laplace transforms (12)
and (13) as infinite sums, each term of which may be interpreted as the Laplace transform
of an exponential term.

Introduce the parameters

µ1 =
λ1

λ1 + λ2
and µ2 =

λ2

λ1 + λ2
= 1− µ1, (14)

which belong to (0, 1) due to our hypothesis (10).

Theorem 2 (Density on the boundary, general case). For i ∈ {1, 2}, the density function
νi of the measure νi in (4) is equal to

νi(u) =

−4(λ1 + λ2)
4

3λ1λ2

∑
n∈Z

(n−1)n(n+1)(n−1+µi)(n+µi)(n+1+µi)(n+µi/2)e
−(n2+µin)(λ1+λ2)u.

(15)
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See Figure 1 for an example of graph of νi.
Theorem 2 has an interesting reformulation in terms of a certain Jacobi theta-type

function, namely
θµi(q) :=

∑
n∈Z

(
n+

µi

2

)
qn(n+µi), |q| < 1, (16)

which is intimately related to our model and has a direct probabilistic interpretation in
terms of Brownian motion conditioned to stay in an interval, see (82) in Appendix B. More
precisely, introducing the differential operator

D1[f ] = f ′′′ + 2(λ1 + λ2)f
′′ + λ2(λ2 + 2λ1)f

′, (17)

we shall show that

ν1(u) =
4(λ1 + λ2)

3λ1λ2
D1

[
θµ1

(
e−(λ1+λ2)·

)]
(u). (18)

A similar expression holds for ν2. Notice that the differential operator (17) corresponds
to the polynomial y(y+ λ2)(y+2λ1 + λ2) appearing in the formula (12) of Theorem 1, in
the sense that

D1 =
d

du

(
d

du
+ λ2

)(
d

du
+ 2λ1 + λ2

)
.

We will elaborate on this connection in Section 4.
Theorem 2 also contains the case of equal parameters λ1 = λ2, corresponding to µ1 =

µ2 = 1
2 . However, in this symmetric case, it is natural to reformulate the bi-infinite

summation (15) as a sum over the positive integers, using natural symmetries. More
precisely, one has:

Corollary 2 (Density on the boundary, symmetric case). If λ1 = λ2 = λ, for i ∈ {1, 2}
the density function νi of the measure νi in (4) is equal to

νi(u)

λ2
=
∑
n⩾3

(−1)n−1

12
(n− 2)(n− 1)n(n+ 1)(n+ 2)(n+ 3)(2n+ 1) exp

(
−n(n+ 1)

2
λu

)
(19)

= 420
(
e−6λu − 9e−10λu + 44e−15λu − 156e−21λu + 450e−28λu − . . .

)
, i = 1, 2 .

In the context of a two-queue fluid polling model and the corresponding two-dimensional
degenerate Brownian motion reflected normally on the boundary of the nonnegative or-
thant [0,∞)2, the recent paper [17] analyses a functional equation quite similar to ours.
The main equation (see [17, Eq. (14)]) of that paper corresponds to (5), if the prefactors
(x − y

2 ) and (y − x
2 ) are replaced by x and y, respectively. The authors obtain various

results, such as the Laplace transform of the total workload (their Theorem 2, which is
close to our Corollary 1, assuming symmetry of the parameters), and the heavy-traffic
stationary workload distribution (their Lemma 4, which resembles our Corollary 2).

C): The second approach allowing us to calculate the densities is called the “compensation
approach”; it is very different and brings two advantages. The first advantage is that it does
not require a bivariate Laplace inversion. The second advantage is that it works directly
for the bivariate density function, without recourse to the univariate boundary density
functions. This approach is inspired by the paper [1], which proposed a compensation
methodology for computing the stationary distribution of certain singular random walks
in the positive quarter-plane. While this technique has been applied to a variety of contexts
in discrete probability, our paper contains its first application to diffusions, to the best of
our knowledge.
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Figure 1: Left: graph of the function ν2(u) for the parameters (λ1, λ2) = (1
6
, 5
6
). Right: graph

of the function θµ(q) in the case µ = 1
2
.

Theorem 3 (Density of the invariant measure, general case). The density π(u, v) of the
invariant measure π satisfies for (u, v) ∈ [0,∞)2

π(u, v) =

∞∑
n=0

(
Ccne

−anu−bnv + C ′c′ne
−a′nu−b′nv

)
, (20)

where

• the sequences (an, bn)n⩾0 and (a′n, b
′
n)n⩾0 are given in (65) and (71),

• the constants C and C ′ are computed in (73),

• the (cn)n⩾0 are defined in (67)–(68), and the (c′n)n⩾0 are obtained from the (cn)n⩾0

after interchanging λ1 and λ2.

Figure 2: Example of graph of the density π(u, v), on the left for the parameters (λ1, λ2) =
(1
2
, 1
2
), on the right for (1

6
, 5
6
).

See Figure 2 for two illustrations of Theorem 3. The compensation method used to
show Theorem 3 is independent of the other techniques developed in our paper; however,
to obtain the constants C and C ′ in (20), we make use of Theorem 1.

In the symmetric case, the above result can be simplified as follows:

Corollary 3 (Density of the invariant measure, symmetric case). Introduce three sequences
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(an)n⩾0, (bn)n⩾0 and (cn)n⩾0 as follows:1

a2n = (n+ 2)(2n+ 5),
a2n+1 = a2n,

b2n = (n+ 2)(2n+ 3),
b2n+1 = b2n+2,

cn = (−1)n
(
n+ 7

7

)
n+ 4

4
= (−1)n

(n+ 1)(n+ 2)(n+ 3)(n+ 4)2(n+ 5)(n+ 6)(n+ 7)

20160
.

If λ1 = λ2 = λ, one has
π(u, v) = 420

(
p(u, v) + p(v, u)

)
, (21)

where
p(u, v)

λ2
=
∑
n⩾0

cn exp
(
−λ(anu+ bnv)

)
. (22)

Here are the first few terms in the expansion of p(u, v) in (22):

p(u, v)

λ2
= e−λ(10u+6v) − 10e−λ(10u+15v) + 54e−λ(21u+15v) − 210e−λ(21u+28v)

+ 660e−λ(36u+28v) − 1782e−λ(36u+45v) + 4290e−λ(55u+45v) − . . .

D): In our last result, we show that in the stationary regime, the distribution of the sum
G +H of gaps (in the symmetric case) and the density function νi (in the general case)
can be written as an infinite convolution of exponential distributions.

Theorem 4. (i) Assume (11). Under the stationary distribution π, the probability den-
sity function σ of the sum G + H of gaps for the degenerate reflected Brownian
motion in (1)–(2), is that of the infinite sum

∑∞
k=1 εk of independent exponential

random variables {εk}k∈N with respective parameters ℓk given by

ℓk :=
λ

8

(
(2k + 5)2 − 1

)
=

λ

2
(k + 2)(k + 3), k ∈ N, (23)

namely,

Pπ(G(T ) +H(T ) ∈ dz) = σ(z)dz = Pπ

( ∞∑
k=1

εk ∈ dz

)
; z ∈ [0,∞) . (24)

(ii) The density function νi of the measure νi is proportional to an infinite convolution
of exponential densities with parameters k(k+µi)(λ1+λ2), for k ∈ Z \ {−1, 0, 1} for
i = 1, 2.

Preview: Our paper is organized as follows. In Section 2, we introduce various tools
and state some preliminary results. We use here an analytical method inspired from [8],
initially developed for studying discrete random walks in the quadrant. This method has
been recently useful for finding an explicit expression for the Laplace transform of the
invariant measure of (non-degenerate) reflected Browian motion in the quadrant, see [10].
In Section 3, we use the invariant approach, developed by William Tutte in the 90’s to
enumerate colored triangulations [21] and applied recently to (non-degenerate) reflected
Brownian motion in a quadrant in [9, 6]; this approach allows us to solve a boundary
value problem (BVP) stated in Section 2, and thus prove Theorem 1 and Corollary 1.
In Section 4 we establish Theorem 2 and Corollary 2, using computations based on the
Jacobi-type function θµ introduced in (16). Theorem 4 (together with various extensions)
is proved in Section 5. Finally, in Section 6 we prove Theorem 3 and Corollary 3, using
the compensation approach.

1The first few values of a2n are 10, 21, 36, 55; those of b2n are 6, 15, 28, 45; finally, those of cn are
1,−10, 54,−210, 660,−1782, see the entry A053347 in the OEIS (Online Encyclopedia of Integer Sequences).
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2 Preliminary analytical results

2.1 Study of the kernel
We recall the condition (10) and denote by K the kernel

K(x, y) := (x− y)2 + 2(δ2 − δ1)x+ 2(δ3 − δ2)y = (x− y)2 + λ1x+ λ2y, (25)

which appears on the left-hand side of the functional equation (5). The set of real zeros
of the kernel, namely

P := {(x, y) ∈ R2 : K(x, y) = 0}, (26)

turns out to be a parabola, see Figure 3. The straight lines

2x− y = 0 and 2y − x = 0,

which appear on the right-hand side of the functional equation (5), are also represented
on Figure 3.

Figure 3: The parabola P and its two branches A+
2 and A−

2 , together with the lines of equation
2y − x = 0 and 2x− y = 0.

We define a bivalued function A2 with two branches

A±
2 (x) := −λ2

2
+ x±

√
λ2
2

4
− (λ1 + λ2)x (27)

which satisfy K
(
x,A±

2 (x)
)
= 0. Similarly, the functions

A±
1 (y) := −λ1

2
+ y ±

√
λ2
1

4
− (λ1 + λ2)y (28)

satisfy K
(
A±

1 (y), y
)
= 0. The branch points of these functions, namely

x+ :=
λ2
2

4(λ1 + λ2)
and y+ :=

λ2
1

4(λ1 + λ2)
,

cancel the monomials under the square roots in (27) and (28).
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In the previous definitions, we use the principal determination of the square root.
Then, the functions A+

2 and A−
2 (resp. A+

1 and A−
1 ) are defined and analytic on the slit

complex plane C \ [x+,∞) (resp. C \ [y+,∞)). These branches admit limits on both sides
of their respective cut and are complex conjugates on their cut. With a slight abuse of
notation, for y ∈ [y+,∞) we shall write A+

1 (y) = A−
1 (y); similarly, for x ∈ [x+,∞), we

have A+
2 (x) = A−

2 (x).

2.2 Analytic continuation
In Proposition 7 below, we will show that the function ν̂1 of (7) (and ν̂2 of (8)) satisfies a
certain boundary value problem, which will eventually allow us to compute this function
explicitly. To that end, we shall need some preliminary results, which we now develop.

First, we extend ν̂1 meromorphically from its initial domain of definition (the half-
plane with non-negative real parts) to a larger domain, using the functional equation (5)
together with a standard analytic continuation procedure inspired from [8, 10, 6].

Lemma 4 (Analytic continuation). The Laplace transform ν̂1 can be continued analytically
to the open connected set

S := {y ∈ C : ℜy ⩾ 0 or ℜA+
1 (y) > 0}. (29)

Proof. Notice that similar continuation results have been proved in [10, 6], see in particular
[10, Lem. 3] and the proof of [6, Prop. 4.1]. We briefly recall here the main details.

Initially, ν̂1 is defined on the set {y ∈ C : ℜy ⩾ 0} and analytic on the interior of this
set. Similarly, the Laplace transform ν̂2 is defined on the set {x ∈ C : ℜx ⩾ 0} and is
analytic on its interior. Let us take y in the domain

{y ∈ C : ℜA+
1 (y) > 0} ∩ {y ∈ C : ℜy > 0}.

Observe that this intersection is non-empty (for example, take y real and large enough),
see Figure 4. We then evaluate the functional equation (5) at the point (A+

1 (y), y), where
the kernel vanishes. We thus obtain the formula

ν̂1(y) = −2y −A+
1 (y)

2A+
1 (y)− y

ν̂2
(
A+

1 (y)
)
, (30)

which allows us to continue ν̂1 analytically to the set {y ∈ C : ℜA+
1 (y) > 0}. Indeed, the

denominator A+
1 (y)−

y
2 cannot vanish on this set (since the equation A+

1 (y)−
y
2 = 0 has

only two solutions, y = 0 and y = −λ1 − 2λ2 < 0 by (10)). We immediately deduce that
ν̂1 is analytic on the set S in (29).

2.3 An important parabola
We now introduce a new parabola, namely P2, which will be used to formulate the BVP
in Proposition 7:

P2 := A±
2

(
[x+,∞)

)
=
{
y ∈ C : K(x, y) = 0 for some x ∈ [x+,∞)

}
, (31)

see Figure 4.

Lemma 5 (Parabola P2). The curve P2 in (31) is a parabola described by the equation{
y ∈ C : (ℑy)2 = (λ1 + λ2)(ℜy) +

1

4
λ2(2λ1 + λ2)

}
. (32)

8



Figure 4: The y-complex plane; the parabola P2 is drawn in blue; the domain D2 inside the
parabola is represented by the blue dotted area; the domain {y ∈ C : ℜA+

1 (y) > 0} is orange
and is bounded by the curves of equation ℜA+

1 (y) = 0; the curve ℜA−
1 (y) = 0 is also represented

by the orange dotted curve.

Proof. On the cut [x+,∞), the quantities A±
2 (x) take complex conjugate values, denoted

by ℜy ± iℑy. By (27), they satisfy{
A+

2 (x) +A−
2 (x) = 2ℜy = −λ2 + 2x,

A+
2 (x)A

−
2 (x) = (ℜy)2 + (ℑy)2 = (−λ2

2 + x)2 + (λ1 + λ2)x− λ2
2
4 .

Eliminating x from these two equations readily gives (32).

We denote D2 the domain inside the parabola P2, see Figure 4; it is defined by

D2 :=
{
y ∈ C : (ℑy)2 < (λ1 + λ2)(ℜy) +

1

4
λ2(2λ1 + λ2)

}
. (33)

Lemma 6 (Analyticity inside the parabola P2). The domain D2 is included in the open,
connected set S of (29). As a consequence of Lemma 4, the Laplace transform ν̂1 is
analytic in D2.

The inclusion D2 ⊂ S can be visualized on Figure 4.

Proof. By the definition of S in (29), it is obvious that D2 ∩ {y ∈ C : ℜy ⩾ 0} ⊂ S. It
remains to show that

D2 ∩ {y ∈ C : ℜy < 0} ⊂ {y ∈ C : ℜA+
1 (y) > 0} ⊂ S.

First, observe that P2 ⊂ {y ∈ C : ℜA+
1 (y) > 0}. Indeed, if y ∈ P2, by definition (31)

there exists x ∈ [x+,∞) such that K(x, y) = 0 and then x = A+
1 (y) > 0. For y such that

ℜy = 0, we also have ℜA+
1 (y) ⩾ 0 by (28). Then, D2 ∩ {y ∈ C : ℜy ⩽ 0} is a bounded

domain, and for y on its boundary we have ℜA+
1 (y) ⩾ 0. The maximum principle applied

to ℜA+
1 implies ℜA+

1 (y) > 0 for all y in this (open) domain. The proof is complete.

2.4 Carleman boundary value problem
Define

G(y) :=
2A+

1 (y)− y

2y −A+
1 (y)

· 2y −A+
1 (y)

2A+
1 (y)− y

. (34)

9



Proposition 7 (Carleman BVP). The Laplace transform ν̂1 satisfies the following Car-
leman boundary value problem:

• ν̂1 is analytic on the region D2 of (33);

• ν̂1 satisfies the boundary condition

ν̂1(y) = G(y)ν̂1(y), ∀ y ∈ P2. (35)

The reader may refer to [8, Sec. 5] for a brief summary of the theory of (Carleman)
boundary value problems; the term “Carleman” refers to the fact that a shift function (in
our case complex conjugation) is needed to state the BVP.

Proof. The first point has been seen in Lemma 6. The second point comes from the
functional equation (5) evaluated at (A+

1 (y), y) and (A+
1 (y), y) for y ∈ P2. Noticing that

A+
1 (y) = A+

1 (y) ∈ [x+,∞) and that at these points the kernel vanishes, we obtain the two
equations {(

2A+
1 (y)− y

)
ν̂1(y) +

(
2y −A+

1 (y)
)
ν̂2(A

+
1 (y)) = 0,(

2A+
1 (y)− y

)
ν̂1(y) +

(
2y −A+

1 (y)
)
ν̂2(A

+
1 (y)) = 0.

We already encountered the first of these equations in (30). We eliminate now ν̂2(A
+
1 (y))

from these two equations, and obtain the boundary condition (35).

3 Tutte’s invariant approach
The goal of this section is to provide an explicit solution of the boundary value problem
of Proposition 7 via Tutte’s invariant approach, which was developed in [21] and has been
applied recently to similar problems in non-degenerate settings; cf. the works [6, 9].

This method aims to find a decoupling function D, which is analytic (or even rational)
in some domain, and such that the function G of (34) can be expressed as

G(y) =
D(y)

D(y)
, ∀ y ∈ P2. (36)

The above condition is equivalent to(
2x−A−

2 (x)
)(
2A+

2 (x)− x
)(

2x−A+
2 (x)

)(
2A−

2 (x)− x
) =

D(A+
2 (x))

D(A−
2 (x))

. (37)

Such a decoupling function D will be found in Section 3.2. Then, Equation (35) may be
rewritten as

D(y)ν̂1(y) = D(y)ν̂1(y), ∀ y ∈ P2,

which is equivalent to

D(A+
2 (x))ν̂1(A

+
2 (x)) = D(A−

2 (x))ν̂1(A
−
2 (x)).

The function Dν̂1 is then called an invariant, because we have for it (Dν̂1)(A
+
2 (x)) =

(Dν̂1)(A
−
2 (x)).

The goal of Tutte’s invariant method is to express the unknown invariant (here Dν̂1)
in terms of a canonical invariant. This is done in Section 3.3 in the general case. The
canonical invariant of our problem is denoted by W and introduced in Section 3.1; it
happens to be a certain conformal gluing function.
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3.1 Conformal gluing function
To solve the Carleman boundary value problem of Proposition 7, we need to introduce a
canonical conformal gluing function on the domain D2, which glues together the upper and
the lower parts of the parabola P2. In the following lemma, the principal determinations of
the square root

√
· and of the logarithm ln(·) are considered on the slit plane C \ (−∞, 0].

Lemma 8 (Conformal gluing function). The function

W (y) = cosh2

(
π

√
y

λ1 + λ2
− λ2

1

4(λ1 + λ2)2

)
(38)

and its inverse

W−1(z) =
λ2
1

4(λ1 + λ2)
+

λ1 + λ2

π2
ln2
(√

z −
√
z − 1

)
satisfy the following properties:

1. W is conformal (i.e., W is bijective, analytic, and W−1 is also analytic) from D2 to
the slit plane C \ (−∞, 0];

2. W glues the parabola P of (26) onto (−∞, 0], i.e.,

W (y) = W (y) ∈ (−∞, 0], ∀ y ∈ P,

and W is 2-to-1 from P \ {A±
2 (x

+)} to (−∞, 0) (which means that W−1 is bivalued
on (−∞, 0)).

Proof. Conformal mappings associated with (interior domains of) parabolas are well known
in the literature, see for example [2, p. 113] or [17, Lem. 5.1]. For a > 0 define

z = w(y) := i cosh
(
π
√
ay − 1

4

)
and its inverse function

y = w−1(z) :=
1

4a
+

1

aπ2
ln2
(
−iz −

√
−z2 − 1

)
.

The function w above maps the interior of a parabola to the upper half-plane. More
precisely, w is conformal from{

y ∈ C : ℜy > a(ℑy)2
}
−→

{
z ∈ C : ℑz > 0

}
.

The equation of the parabola P2 is ay2 = x + b, in accordance with (32), where a and b
are chosen as

a :=
1

λ1 + λ2
and b :=

λ2(2λ1 + λ2)

4(λ1 + λ2)
.

Then, noticing that z 7→ i
√
z maps C \ (−∞, 0] onto the upper half-plane, we define the

functions W−1 and W by

y = W−1(z) := w−1(i
√
z)− b =

1

4a
− b+

1

aπ2
ln2
(√

z −
√
z − 1

)
and

z = W (y) := −w2(y + b) = cosh2
(
π
√
ay + ab− 1

4

)
,

completing the proof.
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3.2 Decoupling function
We recall our notation (9), as well as the expression of the kernel (25), namely

K(x, y) = (x− y)2 + λ1x+ λ2y.

We introduce the decoupling polynomials

D1(y) := y(y + λ2)(y + 2λ1 + λ2) and D2(x) := x(x+ λ1)(x+ 2λ2 + λ1). (39)

This terminology is justified by the following two lemmas. The identity (40) right below is
crucial: it provides the key step that makes Tutte’s invariant method work in our context.

Lemma 9 (Decoupling identity). We have

(
x− y

2

) D1(y)︷ ︸︸ ︷
y(y + λ2)(y + 2λ1 + λ2)−

(
y − x

2

) D2(x)︷ ︸︸ ︷
x(x+ λ1)(x+ 2λ2 + λ1)

=
1

2

(
x2 − y2 + (λ1 + 2λ2)x− (2λ1 + λ2)y

) (
(x− y)2 + λ1x+ λ2y

)︸ ︷︷ ︸
K(x,y)

. (40)

This implies that

2x− y

2y − x
=

x(x+ λ1)(x+ 2λ2 + λ1)

y(y + λ2)(y + 2λ1 + λ2)
=

D2(x)

D1(y)
, as long as K(x, y) = 0. (41)

Lemma 10 (Decoupling lemma). The following decoupling relation holds:(
2x−A−

2 (x)
)(
2A+

2 (x)− x
)(

2x−A+
2 (x)

)(
2A−

2 (x)− x
) =

A+
2 (x)

(
A+

2 (x) + λ2

)(
A+

2 (x) + 2λ1 + λ2

)
A−

2 (x)
(
A−

2 (x) + λ2

)(
A−

2 (x) + 2λ1 + λ2

) . (42)

Accordingly, the function G defined in (34) may be written in the form (36) with D = 1/D1;
namely, as

G(y) =
y(y + λ2)(y + 2λ1 + λ2)

y(y + λ2)(y + 2λ1 + λ2)
=

D1(y)

D1(y)
, ∀y ∈ P2. (43)

Proof. Evaluating (41) at (x,A+
2 (x)), then at (x,A−

2 (x)), then dividing, we arrive at (42).
Recalling (37), and noticing that for y ∈ D2 we have y = A−

2 (A
+
1 (y)) and y = A+

2 (A
+
1 (y)),

we re-cast (42) in the form (36), (37) with the function G given as in (43), by continuity
on P2, the boundary of the domain D2 in (33).

3.3 Explicit expression of the Laplace transform
Thanks to the decoupling Lemma 10 and the Carleman boundary value problem of Propo-
sition 7, we obtain a new invariant relationship for ν̂1.

Lemma 11 (Invariance). The Laplace transform ν̂1 satisfies the following invariance re-
lation on the parabola P2:

ν̂1(y)

y(y + λ2)(y + 2λ1 + λ2)
=

ν̂1(y)

y(y + λ2)(y + 2λ1 + λ2)
, ∀ y ∈ P2.

Proof. This follows directly from Proposition 7 and Lemma 10.

Proof of Theorem 1 and Corollary 1. The key point of Tutte’s invariant method consists
in expressing the invariant of Lemma 11 in terms of the canonical conformal gluing function
W studied in Section 3.1. Let us denote

f(y) =
ν̂1(y)

y(y + λ2)(y + 2λ1 + λ2)
− ν̂1(0)

λ2(2λ1 + λ2)

W ′(0)

W (y)−W (0)
, (44)
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and remark that the function f has no pole at 0: by construction, the residue of f at 0 is
zero. Furthermore, we observe that the points −λ2 and −2λ1 − λ2 are not in D2.

We want to show that f ≡ 0. Lemma 8 and Lemma 11 imply that f satisfies the
following boundary value problem:

• f is analytic in D2 and continuous on its boundary P2;
• f satisfies the boundary condition f(y) = f(y), for all y ∈ P2;
• f(y) → 0 when |y| → ∞.

These three properties together imply that f ≡ 0, as can be deduced from Lem. 2 in [19,
Sec. 10.2].

To provide some more concrete arguments leading to the conclusion f ≡ 0, we notice
that f ◦W−1 is analytic on the whole of C and goes to 0 at infinity, and is therefore equal
to 0 using the classical Liouville theorem.

Thanks to the functional equation (5) and using π̂(0, 0) = 1 since π is a probability
measure, we can show that

ν̂1(0) =
2

3
(2λ1 + λ2). (45)

Using formula (38), the properties of the cosine, as well as

W (0) = cosh2
(
iπ

λ1

2(λ1 + λ2)

)
,

we obtain

W (y)−W (0) = cos2

(
π

√
λ2
1

4(λ1 + λ2)2
− y

λ1 + λ2

)
− cos2

(
π

λ1

2(λ1 + λ2)

)

=
1

2
cos

(
π

√
λ2
1

(λ1 + λ2)2
− 4y

λ1 + λ2

)
− 1

2
cos

(
π

λ1

λ1 + λ2

)
,

and compute

W ′(0) =
π

λ1
sin
( πλ1

λ1 + λ2

)
.

Substituting these last three computations into (44), and recalling f ≡ 0, we see that the
proof of Theorem 1 is now complete. Corollary 1 follows as an immediate consequence,
upon taking λ = λ1 = λ2.

4 Boundary densities

4.1 Relation with the bivariate density
For further use, it is convenient to interpret the densities ν1(v) and ν2(u) of the “lateral
measures” in (4) as the specialisations of the bivariate density π(u, v) at u = 0 and v = 0,
respectively. This will be used in particular to compute the constants C and C ′ appearing
in Theorem 3.

Proposition 12 (Specialisations of π). We have π(u, 0) = ν2(u) and π(0, v) = ν1(v).

Proof. The initial value formula gives

lim
x→∞

xπ̂(x, y) =

∫
R+

e−yvπ(0, v)dv.

By dividing the functional equation (5) by x and letting x → ∞, we obtain

lim
x→∞

xπ̂(x, y) = ν̂1(y) =

∫
R+

e−yvν1(v)dv.

Comparing the two limits, we conclude that π(0, v) = ν1(v). A similar argument shows
that π(u, 0) = ν2(u).
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4.2 Proof of Theorem 2 via Mittag-Leffler expansions
We summon now from Theorem 1, in order to provide a proof of Theorem 2. Recall the
Jacobi theta-type function

θµ1(q) =
∑
n∈Z

(
n+

µ1

2

)
qn(n+µ1), q ∈ (0, 1)

introduced in (16), with µ1 = λ1
λ1+λ2

defined in (14). The reason for introducing this
function appears in the following important technical result, which shows that θµ1 is
naturally and intrinsically connected to the Laplace transform of the lateral measures
ν1 in (12), and thus also to its density function ν1 as in (18).

Lemma 13 (Laplace transform of θµ). The Laplace transform of the function u 7→
θµ1

(
e−(λ1+λ2)u

)
is given for any x ⩾ 0, by∫ ∞

0
θµ1(e

−(λ1+λ2)u)e−uxdu =
1

λ1 + λ2

π sin(πµ1)

cos
(
π
√

µ2
1 − 4x

λ1+λ2

)
− cos

(
πµ1

) .
Before proving Lemma 13, we first show how it implies Theorem 2. Let us recall the

decoupling polynomial D1 introduced in (39), and the differential operator D1 introduced
in (17) for a smooth function f as

D1[f ] := D1

(
d

du

)
[f ] = f ′′′ + 2(λ1 + λ2)f

′′ + λ2(λ2 + 2λ1)f
′.

We also introduce its dual operator

D∗
1[f ] := −f ′′′ + 2(λ1 + λ2)f

′′ − λ2(λ2 + 2λ1)f
′.

Using Theorem 1 and Lemma 13 together, we write the expression (12) as

ν̂1(y) =
4(λ1 + λ2)

3λ1λ2
D1(y)

∫ ∞

0
θµ1

(
e−(λ1+λ2)u

)
e−uydu (46)

=
4(λ1 + λ2)

3λ1λ2

∫ ∞

0
θµ1

(
e−(λ1+λ2)u

)
D∗

1[e
−·y](u)du

=
4(λ1 + λ2)

3λ1λ2

∫ ∞

0
D1

[
θµ1

(
e−(λ1+λ2)·

)]
(u)e−uydu. (47)

To prove the last equality, we simply integrate by parts in (46) on the dual operator. In
that step, we crucially use the fact that θµ1 and all its derivatives tend to 0 as q → 1,
q < 1. While this property is not clear at all from the definition (16) of θµ1 , it appears
as a direct consequence of the crucial Lemma 15 below, which establishes a Jacobi-type
modular identity for θµ1 .

Thanks to Equation (47) and using classical results on the injectivity of the Laplace
transform, we deduce that

ν1(u) =
4(λ1 + λ2)

3λ1λ2
D1

[
θµ1

(
e−(λ1+λ2)·

)]
(u) ,

that is, the claim (18). After some computations and simplifications, one easily finds

D1

[
θµ1

(
e−(λ1+λ2)·

)]
(u) =

∑
n∈Z

(n+µ1/2)D1

(
−(λ1+λ2)n(n+µ1)

)
e−(λ1+λ2)u = −(λ1+λ2)

3×∑
n∈Z

(n− 1)n(n+ 1)(n− 1 + µ1)(n+ µ1)(n+ 1 + µ1)(n+ µ1/2)e
−(n2+µ1n)(λ1+λ2)u.

We thus have proved Theorem 2. What remains is to prove Lemma 13.
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Proof of Lemma 13. Integrating term by term, one finds∫ ∞

0
θµ1(e

−(λ1+λ2)u)e−uxddu =
∑
n∈Z

n+ µ1

2

x+ (λ1 + λ2)n2 + λ1n

= − 2

µ1(λ1 + λ2)

∑
n∈Z

1 + 2
µ1
n

s2 −
(
1 + 2

µ1
n
)2 ,

where we have set s2 = 1 − 4
µ2
1

x
λ1+λ2

. The right-hand side of the above identity is then
computed from the following classical result, the proof of which is omitted:

Lemma 14 (Mittag-Leffler expansion of shifted cosine). Let µ ∈ (0, 1). One has for s ∈ C

π

cos(πµs)− cos(πµ)
= − 2

µ sin(πµ)

∑
n∈Z

1 + 2
µn

s2 −
(
1 + 2

µn
)2 .

The proof of Lemma 13 is complete.

Lemma 15 (Jacobi transformation for θµ). For any u ⩾ 0,

θµ(e
−u) =

∑
n∈Z

(
n+

µ

2

)
exp
(
−n(n+ µ)u

)
=

π3/2

u3/2

∑
n∈Z

n sin(πµn) exp
(
−π2n2

u
+

µ2u

4

)
.

Proof. Consider the function f(x) = (x + µ
2 )e

−ux(x+µ) and its Fourier transform f̂(y) =∫∞
−∞ f(x)e−2iπyxdx. The classical Poisson summation formula expresses now the function

of (16) as
θµ(e

−u) =
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n),

where a direct computation gives

f̂(y) =

∫ ∞

−∞

(
x+

µ

2

)
e−ux(x+µ)−2iπyxdx

= e
µ2u
4

+iπyµ

∫ ∞

−∞

(
x+

µ

2

)
e−u(x+µ

2
)2−2iπy(x+µ

2
)dx

= e
µ2u
4

+iπyµ (−1)

2iπ

d

dy

∫ ∞

−∞
e−u(x+µ

2
)2−2iπy(x+µ

2
)dx︸ ︷︷ ︸

√
π
u
e−

π2y2
u

= e
µ2u
4

+iπyµ 1

2iπ

√
π

u

π2

u
2ye−

π2y2

u

= y
π3/2

u3/2
(
sin(πµy)− i cos(πµy)

)
exp
(
−π2y2

u
+

µ2u

4

)
.

The result of Lemma 15 follows directly from this last expression and the Poisson summa-
tion formula, noting that the imaginary parts disappear for parity reasons, when summing
over Z.

Remark 16. The Jacobi theta-like function θµ of (16) is positive for q ∈ [0, 1). This is
not fully clear when looking at the definition (16), but follows easily from the probabilistic
interpretation of θµ provided in Appendix B.

Let us mention the paper [20] by Salminen and Vignat, which interprets the four mod-
ular identities for “classical” theta functions in terms of Brownian motion either reflected
or killed at the endpoints of an interval. Here, we introduce a “novel” theta-like function
θµ as in (16), derive for it the modular identity of Lemma 15, and connect it with Brow-
nian motion conditioned to live forever inside a given interval; see Appendix B for this
interpretation and connection.
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4.3 Further comments on the symmetric case of Corollary 2
Specializing Theorem 2 to the symmetric case λ = λ1 = λ2 = λ (thus µi =

1
2 in (14)), one

finds

ν2(u) =

− 64

3
λ2
∑
n∈Z

(n− 1)n(n+ 1)(n− 1/2)(n+ 1/2)(n+ 3/2)(n+ 1/4) exp(−n(2n+ 1)λu).

Looking at the exponents appearing in the above exponential terms, a simplification occurs
due to the fact that {

n(2n+ 1) : n ∈ Z
}
=
{
1
2n(n+ 1) : n ⩾ 0

}
. (48)

More precisely, the n(n+1)
2 for even (resp. odd) values of n ⩾ 0 correspond to the n(2n+1)

for non-negative (resp. negative) values of n. Performing a straightforward change of index,
one gets

ν2(u) =

64λ2

3× 256

∑
n⩾0

(−1)n−1 (n− 2)(n− 1)n(n+ 1)(n+ 2)(n+ 3)(2n+ 1)

256
exp
(
−n(n+ 1)

2
λu
)
,

which proves Corollary 2 since 3× 256/64 = 12.

Remark 17 (Relation with the Jacobi theta function). Although not crucial for our pur-
pose, it is interesting to observe that the function θµ in (16) simplifies to a classical Jacobi
theta function (sometimes called Jacobi constant) in the symmetric case µ = 1

2 :

4θ 1
2
(q4) = θ1,1(q) =

∞∑
n=−∞

(−1)nnqn(n+1).

This function, and its generalizations

θm,k(q) =

∞∑
n=−∞

(−1)nn(n− 1) · · · (n− k + 1)qn
2+mn,

are studied by Huber in [14].

5 Sum of gaps as an infinite sum of independent
exponential variables

5.1 The symmetric case
Let us recall the notation of (1)–(3) for the degenerate reflected Brownian motion (G(·), H(·)) .
The basic adjoint relation of (5) describes the stationary distribution π of this process.
We prove the first part of Theorem 4.

Proof of Theorem 4 (i). When λ1 = λ2 = λ , the Laplace transform (13) in Corollary 1
has the product form

Eπ[e−y(G(T )+H(T ))] = π̂(y, y) =
ν̂1(y)

2λ
=

ν̂2(y)

2λ
=

∞∏
k=1

ℓk
y + ℓk

; y ∈ [0,∞) (49)

of those of exponential random variables with parameters (23).
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To verify (49), first let us apply the infinite product formula

cos(
√
−1z) = cosh(z) =

∞∏
k=1

(
1 +

4z2

π2(2k − 1)2

)
; z ∈ C (50)

of the hyperbolic cosine function to the expression (13), and obtain for y ∈ [0,∞)

ν̂1(y)

2λ
=

2πy(y + λ)(y + 3λ)

3λ3 cos((π/2)
√
1− (8y/λ))

=
2π

3λ3
y(y+λ)(y+3λ)

∞∏
k=1

(
1+

(8y/λ)− 1

(2k − 1)2

)−1
.

Note that the first three terms λ/8y , 9λ/(8(y+λ)) and 25λ/(8(y+3λ)) with k = 1, 2, 3
in the infinite product may be cancelled with the constant multiple of y(y + λ)(y + 3λ) .
Also, note that after the cancellation, the term in the infinite product is rewritten as(
1+

(8y/λ)− 1

(2k − 1)2

)−1
=

(2k − 1)2

(8y/λ) + (2k − 1)2 − 1
=
(
1+

1

4k(k − 1)

)
· ℓk−3

y + ℓk−3
; k ⩾ 4 ,

where ℓk is defined in (23) for k ∈ N . Thus, with these considerations, we obtain

ν̂1(y)

2λ
=

2π

3
· 9 · 25

83
·

∞∏
k=4

(
1 +

1

4k(k − 1)

)
·

∞∏
k=4

ℓk−3

y + ℓk−3
=

∞∏
k=1

ℓk
y + ℓk

,

i.e., (49), because of the infinite product
∏∞

k=4(1 +
1

4k(k−1) ) = 256
75π .

Each exponential random variable εk with parameter ℓk has expectation Eπ[εk] =
1/ℓk , k ∈ N , and hence, the infinite series

∑∞
k=1 εk has the (finite) expectation

Eπ
∞∑
k=1

εk =

∞∑
k=1

1

ℓk
=

2

λ

∞∑
k=1

1

(k + 2)(k + 3)
=

2

3λ
,

in accordance with (2.76) of [15]. This implies
∑∞

k=1 εk < ∞ almost surely, and hence,
the corresponding stationary density σ in (24) is well defined.

The stationary distribution of the sum G(T )+H(T ) is given by the infinite convolution
of exponential distributions with parameters {ℓk}k∈N . It is infinitely divisible with Lévy
density

∑∞
k=1 e

−ℓkz/z, z > 0, that is,

Eπ[e−y(G(T )+H(T ))] = exp
(
−
∫ ∞

0
(1− e−yz)

1

z

∞∑
k=1

e−ℓkz dz
)
; y ∈ [0,∞) .

The convolution of finitely many exponential distributions is known to be the Coxian
(or “hypoexponential” or “phase-type”) distribution, and is used in queueing theory. The
connection between infinite sums of exponential random variables and infinitely divisible
distributions is discussed in [3] and [17].

Moreover, the stationary density function σ of G(T ) + H(T ) provides the marginal
stationary density function of G(T ). It follows from (24) that it has an exponential moment∫ ∞

0
eλzσ(z)dz = Eπ[eλ(G(T )+H(T ))] = Eπ[eλ

∑∞
k=1 εk ]

= Eπ[
∞∏
k=1

eλεk ] =
∞∏
k=1

Eπ[eλεk ] =
∞∏
k=1

ℓk
ℓk − λ

=
∞∏
k=1

(
1 +

λ

ℓk − λ

)
=

∞∏
k=1

(
1 +

1

(k(k + 5)/2) + 1

)
= 2 .

(51)
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Observe now that the Laplace transform π̂(x, 0) of the marginal stationary distribution
of G(T ) (and hence of H(T ) , because of the symmetry) is determined from (5) by the
Laplace transform π̂(x, x) along the diagonal, i.e.,

Eπ[e−xG(T )] = π̂(x, 0) = π̂(0, x) =
λ

x+ λ
[2− π̂(x, x)] ; x ⩾ 0 ;

cf. (2.73) in [15]. It follows from the exponential moment (51) that G(T ) has positive
stationary density

Pπ(G(T ) ∈ du) = λe−λu
(
2−

∫ u

0
eλzσ(z)dz

)
du = λe−λu

(∫ ∞

u
eλzσ(z)dz

)
du (52)

for u ⩾ 0. In particular, the stationary “survival function” of G(T ) is

Pπ(G(T ) ⩾ u) =

∫ ∞

u

(
λe−λv

∫ ∞

v
eλzσ(z)dz

)
dv =

∫ ∞

u
(e−λ(u−z) − 1)σ(z)dz

= Eπ
[
(eλ(G(T )+H(T )−u) − 1) · 1{G(T )+H(T )>u}

]
; u ⩾ 0 .

As will be proved in the following result, the distributions of G(T )+H(T ) and 2G(T )+
H(T ) are both given by those of infinite sums

∑
εk of exponential variables, the only

difference being that in the first case the sum runs over k ∈ N, while in the second case
the index 0 should be added.

Proposition 18. Assume (11). Under the stationary distribution π, the probability den-
sity function of the sum 2G(T ) +H(T ) (and of G(T ) + 2H(T ) by symmetry reasons) is
that of the infinite sum

∑∞
k=0 εk of independent exponential random variables {εk}k∈N

with respective parameters ℓk given by (23).

Proof. Evaluating the functional equation (5) at (2y, y), we immediately obtain

Eπ
(
e−y(2G(T )+H(T ))

)
= π̂(2y, y) =

3

2

ν̂1(y)

y + 3λ
. (53)

Using (49) and noticing with (23) that ℓ0 = 3λ, we obtain the announced result.

5.2 The non-symmetric case
Results involving infinite sums of random variables are also shown in the non-symmetric
case. We prove the second part of Theorem 4.

Observe that Theorem 4 (ii) is an extension of (49) to the non-symmetric case. Indeed,
specializing λ1 = λ2 and thus µi =

1
2 , we immediately obtain via (48) and (23) and that

the parameters k(k + µi)(λ1 + λ2), for k ∈ Z \ {−1, 0, 1}, reduce to the ℓk, for k ⩾ 1.

Proof of Theorem 4(ii). We prove that

ν̂1(y) =
2

3
(2λ1 + λ2)

∏
k∈Z\{−1,0,1}

k(k + µ1)(λ1 + λ2)

y + k(k + µ1)(λ1 + λ2)
; y ∈ [0,∞). (54)

(Note that the prefactor 2
3(2λ1 + λ2) simply corresponds to the value of ν̂1(0) already

obtained in (45).)
Let us start from the identity (12) proved in Theorem 1. We have the Weierstrass

factorization
cos z − cos z0 = (1− cos z0)

∏
k∈Z

(
1−

( z

z0 + 2kπ

)2)
,
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which extends (50). In particular,

cos
(
π
√
µ2
1 − 4y

)
− cos(πµ1) = (1− cos(πµ1))

∏
k∈Z

y + k(k + µ1)

(k + µ1

2 )2
.

This implies that the quantity appearing in (12) (after replacing y by (λ1 + λ2)y) is equal
to

y(y + 1 + µ1)(y + 1− µ1)

cos
(
π
√

µ2
1 − 4y

)
− cos(πµ1)

=

(
(µ1

2 − 1)µ1

2 (µ1

2 + 1)
)2

1− cos(πµ1)

∏
k∈Z\{−1,0,1}

(k + µ1

2 )2

y + k(k + µ1)
.

Using the fact that∏
k∈Z\{−1,0,1}

(k + µ1

2 )2

k(k + µ1)
=

1− cos(πµ1)

π sin(πµ1)

2(1− µ2
1)

(µ1

2 − 1)2µ1(
µ1

2 + 1)2
,

we obtain that

y(y + 1 + µ1)(y + 1− µ1)

cos
(
π
√
µ2
1 − 4y

)
− cos(πµ1)

=
µ1

2 (1− µ2
1)

π sin(πµ1)

∏
k∈Z\{−1,0,1}

k(k + µ1)

y + k(k + µ1)
.

Plugging the above identity in (12), we obtain

ν̂1(y) =
4π

3λ1λ2
sin(πµ1)(λ1 + λ2)

3
µ1

2 (1− µ2
1)

π sin(πµ1)

∏
k∈Z\{−1,0,1}

k(k + µ1)(λ1 + λ2)

y + k(k + µ1)(λ1 + λ2)
,

which after simplification coincides exactly with (54).

As a direct consequence of Theorem 4 (ii), one has a generalization of Proposition 18
to the non-symmetric case:

Eπ
(
e−y(2G+H)

)
= π̂(2y, y) =

3

2

ν̂1(y)

y + 2λ1 + λ2
=

∏
k∈Z\{−1,0}

k(k + µ1)(λ1 + λ2)

y + k(k + µ1)(λ1 + λ2)
.

It is also possible to deduce a result like (52) in the non-symmetric case. Indeed, it
follows from the Laplace transforms

Eπ[e−xG(T )] = π̂(x, 0) =
2
3(2λ1 + λ2)− ν̂2(x)

2

x+ λ1
; x ⩾ 0 ,

Eπ[e−yH(T )] = π̂(0, y) =
2
3(λ1 + 2λ2)− ν̂1(y)

2

y + λ2
; y ⩾ 0 ,

that we can obtain the marginal density functions by the inverse Laplace transforms

Pπ(G(T ) ∈ du) =
1

3
(λ1 + λ2)e

−λ1u
(
2(1 + µ1)− (1 + µ2)

∫ u

0
eλ1z ν̃2(z)dz

)
du ,

Pπ(H(T ) ∈ du) =
1

3
(λ1 + λ2)e

−λ2u
(
2(1 + µ2)− (1 + µ1)

∫ u

0
eλ2z ν̃1(z)dz

)
du

(55)

for u ⩾ 0 , with µi = λi/(λ1 + λ2) , i = 1, 2 as in (14). Here, ν̃i is the probability density
function of the probability measure (2(λ1 + λ2)(1 + µi)/3)νi(·) on the positive real line
for i = 1, 2 in Theorem 4 (ii). Note that the right-hand formulas in (55) are positive for
u ⩾ 0, because for the first formula in (55), as in (51), we have∫ ∞

0
eλ1z ν̃2(z)dz =

∏
k∈Z\{−1,0,1}

k(k + µ2)(λ1 + λ2)

k(k + µ2)(λ1 + λ2)− λ1

=
∏

k∈Z\{−1,0,1}

k(k + µ2)

k(k + µ2)− µ1
=

2(1 + µ1)

1 + µ2
.

19



We used here the relation µ1 + µ2 = 1, and the telescopic structure

k(k + µ2)

k(k + µ2)− µ1
=

k

k + 1

k + 1− µ1

k − µ1
; k ∈ Z \ {−1, 0, 1}

in the last equality.

6 Bivariate density via the compensation approach

6.1 A PDE satisfied by the stationary distribution
Let us denote by π(u, v) the density of the invariant measure, and recall the parameters
λ1, λ2 introduced in (9). In the manner of [11, (8.5)], we may state the following partial
differential equation (PDE) satisfied by this probability density function:

G∗π(u, v) = 0 for (u, v) ∈ R2
+,

∂R∗
1
π(0, v) + 2λ1π(0, v) = 0 for v ∈ R+,

∂R∗
2
π(u, 0) + 2λ2π(u, 0) = 0 for u ∈ R+,

(56)

where we denote 

G∗ =

(
∂

∂x
− ∂

∂y

)2

+ λ1
∂

∂x
+ λ2

∂

∂y
,

R =

(
1 −1

2
−1

2 1

)
,

R∗ = 2Σ−Rdiag(R)−1diag(Σ) =
(

2 −3
−3 2

)
,

Σ =

(
2 −2
−2 2

)
.

(57)

6.2 The Compensation Approach: Basic Principle, Ques-
tions
Using our notations (56)–(57), let us introduce the sets of functions

H0 = {f ∈ C2(R2
+) : G∗f = 0},

H1 = H0 ∩ {f ∈ C2(R2
+) : ∂R∗

1
f(0, ·) + 2λ1f(0, ·) = 0},

H2 = H0 ∩ {f ∈ C2(R2
+) : ∂R∗

2
f(·, 0) + 2λ2f(·, 0) = 0},

and observe that the requirement π ∈ H1 ∩H2 is equivalent to the system (56).
We look now for exponential functions in H0, H1 and H2. We have

e−au−bv ∈ H0 ⇐⇒ K∗(a, b) := (a− b)2 − λ1a− λ2b = 0 (58)

⇐⇒ (a, b) ∈ P∗ := {(x, y) ∈ R2 : (x− y)2 − λ1x− λ2y = 0}. (59)

Similarly,

e−au−bv ∈ H1 ⇐⇒ (a− b)2 − λ1a− λ2b = 0 and 2a− 3b− 2λ1 = 0

⇐⇒ (a, b) ∈ P∗ ∩ L1, where L1 := {(x, y) ∈ R2 : 2x− 3y − 2λ1 = 0}
⇐⇒ (a, b) = (λ1, 0) or (a, b) = (a0, b0) := (4λ1 + 6λ2, 2λ1 + 4λ2), (60)
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and symmetrically

e−a′u−b′v ∈ H2 ⇐⇒ (a′ − b′)2 − λ1a
′ − λ2b

′ = 0 and 2b′ − 3a′ − 2λ2 = 0

⇐⇒ (a′, b′) ∈ P∗ ∩ L2, with L2 := {(x, y) ∈ R2 : 2y − 3x− 2λ2 = 0}
(61)

⇐⇒ (a′, b′) = (0, λ2) or (a′, b′) = (a′0, b
′
0) := (4λ1 + 2λ2, 6λ1 + 4λ2).

The parabola P∗ in (59), the lines L1 and L2 in (60)–(61), the points (a0, b0) and (a′0, b
′
0)

defined above, can be visualized on Figure 5.
The main idea of the compensation approach [1] is to start with an exponential function

in H1 (resp. H2) and to add another exponential, so that the sum of the two terms belongs
to H2 (resp. H1). This step is the first compensation, but this sum of two functions is still
not in H1 (resp. H2). Therefore, we have to compensate again with another exponential
term, and so on. We eventually compensate with an infinite sum of exponential functions
in such a way that the final sum be in H1 ∩H2. The following equation is a visualization
of this approach:

p(u, v) :=

∈H1 ∈H1 ∈H1︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
c0e

−a0u−b0v + c1e
−a1u−b1v + c2e

−a2u−b2v + c3e
−a3u−b3v + c4e

−a4u−b4v + · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸
∈H2 ∈H2

.

(62)
A symmetric construction holds for a first term in H2:

p′(u, v) :=

∈H1 ∈H1︷ ︸︸ ︷ ︷ ︸︸ ︷
c′0e

−a′0u−b′0v + c′1e
−a′1u−b′1v + c′2e

−a′2u−b′2v + c′3e
−a′3u−b′3v + c′4e

−a′4u−b′4v + · · ·︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
∈H2 ∈H2 ∈H2

.

(63)
This approach raises several questions, which we will answer in the remainder of the paper:

• What are the explicit values of the constants an, bn and cn in (62)? (And a symmetric
question for (63).) We will answer this question in Section 6.3.

• For any values of C and C ′, the linear combination

Cp(u, v) + C ′p′(u, v) (64)

is a solution to the PDE (56). Is it possible to find the invariant distribution among
these infinitely-many solutions? If yes, how to adjust the constants C and C ′ so as to
find the unique invariant distribution? We will answer this question in Section 6.4.

Remark 19 (Starting points of the sequences (an)n⩾0 and (bn)n⩾0 of the compensation
procedure). Although the point (λ1, 0) ∈ P∗ ∩ L1 is formally a solution to (60), it is
not possible to choose it as a starting point of the compensation approach. Indeed, the
exponential eλ1u does not converge to 0 when v → ∞ and u = 0. The procedure must thus
be initialized at (a0, b0) ∈ P∗ ∩ L1, see again (60). A similar remark applies to the point
(0, λ2).

Remark 20 (Skew symmetry). The intersection P∗ ∩ L1 ∩ L2 of the sets introduced in
(59), (60) and (61) is empty most of the time, except in the so-called skew symmetric case.
For example, when

R =

(
1 −1

2
−3

2 1

)
,

we have P∗ ∩ L1 ∩ L2 = {(3λ2 + 2λ1, 2λ2 + λ1)} and we find again [16, Eq. (A.22)]

π(u, v) = (3λ2 + 2λ1)(2λ2 + λ1)e
−(3λ2+2λ1)u−(2λ2+λ1)v.
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6.3 Computation of the compensation constants
We now obtain explicit formulas for the sequences (an)n⩾0, (bn)n⩾0 and (cn)n⩾0 appearing
in (62) (and Theorem 3). We will prove the following:

Proposition 21. With (a0, b0) determined in (60) the sequence defined by, for all n ⩾ 0,{
a2n = a0 + 2n(a0 − b0) + n2λ1 + n(n+ 1)λ2,

b2n = b0 + 2n(a0 − b0) + n(n− 1)λ1 + n2λ2,
and (a2n+1, b2n+1) = (a2n, b2n+2)

(65)
satisfies the following statement:

e−anu−bnv ∈ H0, ∀ n ∈ N.

Proof. As explained in (58), e−anu−bnv ∈ H0 if and only if K∗(a, b) = 0. With a few simple
but tedious computation, we can verify that for all n ∈ N we have K∗(an, bn) = 0 which
concludes the proof.

We also give a more constructive procedure that enabled us to determine these se-
quences. We need to introduce ζ and η two automorphisms of the parabola P∗ in (59),
defined by

ζ(x, y) = (x, 2x− y + λ2) and η(x, y) = (2y − x+ λ1, y).

By construction, these satisfy, for (x, y) ∈ P∗ such that K∗(x, y) = 0, that ζ(x, y) ∈ P∗

and η(x, y) ∈ P∗, i.e.
K∗(ζ(x, y)) = K∗(η(x, y)) = 0.

These automorphisms can be visualized on Figure 5. They allow us to define recursively
the sequences (an)n⩾0 and (bn)n⩾0:{

(a2n, b2n) = (ηζ)n(a0, b0),
(a2n+1, b2n+1) = ζ(ηζ)n(a0, b0) = (a2n, b2n+2).

We have ηζ(x, y) = (3x− 2y + 2λ2 + λ1, 2x− y + λ2); and a straightforward computation
allows us to verify the recurrence relation

ηζ(a2n, b2n) = (3a2n − 2b2n + 2λ2 + λ1, 2a2n − b2n + λ2) = (a2n+2, b2n+2),

which proves (65).

Proposition 22. The sequence (cn)n⩾0 defined by induction as follows: c0 = 1 and for
n ⩾ 0, 

c2n+1 = −c2n
3a2n − 2b2n + 2λ2

3a2n+1 − 2b2n+1 + 2λ2
,

c2n+2 = −c2n+1
−2a2n+1 + 3b2n+1 + 2λ1

−2a2n+2 + 3b2n+2 + 2λ1
,

(66)

satisfies the compensation approach of (62), i.e. for all n ∈ N we have{
c2ne

−a2nu−b2nv + c2n+1e
−a2n+1u−b2n+1v ∈ H2,

c2n+1e
−a2n+1u−b2n+1v + c2n+2e

−a2n+2u−b2n+2v ∈ H1.

Proof. For all n ∈ N let us define

f2n(u, v) := c2ne
−a2nu−b2nv + c2n+1e

−a2n+1u−b2n+1v.

Let us recall that

H2 = H0 ∩ {f ∈ C2(R2
+) : ∂R∗

2
f(·, 0) + 2λ2f(·, 0) = 0}.
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Proposition 21 implies that f2n ∈ H0. We also have

∂R∗
2
f2n(u, 0) + 2λ2f2n(u, 0) =

c2n(3a2n − 2b2n + 2λ2)e
a2nu + c2n+1(3a2n+1 − 2b2n+1 + 2λ2)e

a2n+1u = 0,

remembering that a2n = a2n+1 and the relation (66). Then f2n ∈ H2 and a similar
reasoning shows that f2n+1(u, v) := c2n+1e

−a2n+1u−b2n+1v + c2n+2e
−a2n+2u−b2n+2v ∈ H1

and thus completes the proof.

Corollary 23. The sequence (cn)n⩾0 is piecewise polynomial: if n is even, then

cn = (n+2)(n+4)2(n+6)
(n+ 2µ2)(n+ 2 + 2µ2)(n+ 4 + 2µ2)(n+ 6 + 2µ2)

3072µ2(1 + µ2)(2 + µ2)(3 + µ2)
, (67)

and if n is odd

cn = −(n+ 1)(n+ 3)(n+ 5)(n+ 7)
(n+ 1 + 2µ2)(n+ 3 + 2µ2)

2(n+ 5 + 2µ2)

3072µ2(1 + µ2)(2 + µ2)(3 + µ2)
. (68)

As n → ∞,

cn ∼ 1

3072µ2(1 + µ2)(2 + µ2)(3 + µ2)
(−1)nn8. (69)

If λ1 = λ2, then both (67) and (68) reduce to

cn = (−1)n
(n+ 1)(n+ 2)(n+ 3)(n+ 4)2(n+ 5)(n+ 6)(n+ 7)

20160
= (−1)n

(
n+ 7

7

)
n+ 4

4
.

Figure 5: The parabola P∗ is represented in red, the line L1 in blue, L2 in green, the starting
point (a0, b0) in blue and (a′0, b

′
0) in green. The automorphisms ζ and η on the parabola allow

us to define the sequences (an, bn)n⩾0 and (a′n, b
′
n)n⩾0.
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Proof. We start by reformulating the recurrence relation (66). We have

3a2n − 2b2n + 2λ2

3a2n+1 − 2b2n+1 + 2λ2
=

(n+ 4)(n+ 2 + 3µ2)

(n+ 2)(n+ µ2)
.

Similarly, we have

−2a2n+1 + 3b2n+1 + 2λ1

−2a2n+2 + 3b2n+2 + 2λ1
=

(n+ 3)(n+ 4 + µ2)

(n+ 1)(n+ 2 + µ)
.

We immediately obtain via (66) that

c2n+2 = c2n
(n+ 3)(n+ 4)(n+ 4 + µ2)

(n+ 1)(n+ 2)(n+ µ2)
, (70)

which shows that c2n admits a telescopic structure. More precisely, denoting Tn = (n +
1)(n+ 2) and Un = n+ µ2, (70) can be rewritten as

c2n+2 = c2n
Tn+2

Tn

Un+4

Un
.

We conclude that c2n = TnTn+1

T0T1

UnUn+1Un+2Un+3

U0U1U2U3
. Replacing n by n

2 , this coincides with the
value of cn announced in (67). The proof of (68) would be similar.

Symmetric formulas hold for the sequences (a′n)n⩾0, (b′n)n⩾0 and (c′n)n⩾0 in (63):

(a′2n, b
′
2n) =

(
a′0+2n(b′0−a′0)+n2λ1+n(n−1)λ2, b

′
0+2n(b′0−a′0)+n(n+1)λ1+n2λ2

)
, (71)

and (a′2n+1, b
′
2n+1) = (a′2n+2, b

′
2n). We finally introduce c′0 = 1 and we have

c′2n+1 = −c′2n
3b′2n − 2a′2n + 2λ1

3b′2n − 2a′2n+1 + 2λ1
,

c′2n+2 = −c′2n+1

−2b′2n+1 + 3a′2n+1 + 2λ2

−2b′2n+2 + 3a′2n+2 + 2λ2
.

(72)

The sequence (c′n)n⩾0 admits the same exact and asymptotic expressions as (cn)n⩾0, pro-
vided λ1 and λ2 are interchanged.

6.4 Computation of the convex combination
Proposition 24. The function p(u, v) in (62) evaluated at v = 0 is equal to

p(u, 0) = − 1

3µ2(1 + µ2)(2 + µ2)(3 + µ2)
×∑

n⩾2

(n− 1)n(n+ 1)(n− 1 + µ)(n+ µ)(n+ 1 + µ)(n+ µ/2) exp(−(n2 + µn)(λ1 + λ2)u).

Proof. We start from the expression of p(u, v) given in (62). Since a2n = a2n+1 (see
Proposition 21), we can group the terms as follows:

p(u, 0) =
∑
n⩾0

(c2n − c2n+1)e
−a2nu.

Using the expression of c2n and c2n+1 given in Proposition 23 and after some simplification,
we obtain

c2n − c2n+1 = − 1

3µ2(1 + µ2)(2 + µ2)(3 + µ2)
×

(n+ 1)(n+ 2)(n+ 3)(n+ 1 + µ)(n+ 2 + µ)(n+ 2 + µ)(n+ 2 + µ/2).

Moreover, one can reformulate a2n =
(
(n+2)2+µ(n+2)

)
(λ1+λ2). We then immediately

deduce Proposition 24.
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Similarly, we have:

Proposition 25. The function p′(u, v) in (63) evaluated at v = 0 is equal to

p′(u, 0) = − 1

3µ1(1 + µ1)(2 + µ1)(3 + µ1)
×∑

n⩽−2

(n− 1)n(n+1)(n− 1+ µ)(n+ µ)(n+1+ µ)(n+ µ/2) exp(−(n2 + µn)(λ1 + λ2)u).

As a consequence of Propositions 24 and 25, we obtain that there exists a unique
choice of constants C and C ′, namely formula (73) of Corollary 26, such that the convex
combination Cp(u, 0) + C ′p′(u, 0) in (64) is equal to the formula (15) for the density
function νi(u) given in Theorem 2.

We furthermore conjecture that it must be the unique choice of C and C ′ such that
Cp(u, v) +C ′p′(u, v) is a positive function. This should follow from a result of uniqueness
of positive solutions of the PDE (56).

Corollary 26 (Values of the constants C and C ′). Taking

C :=
4(λ1 + 2λ2)(2λ1 + 3λ2)(3λ1 + 4λ2)

λ1
and C ′ :=

4(λ2 + 2λ1)(2λ2 + 3λ1)(3λ2 + 4λ1)

λ2
,

(73)

we have

ν2(u) = Cp(u, 0) + C ′p′(u, 0) and ν1(v) = Cp(0, v) + C ′p′(0, v).

Proof. This follows directly from the Propositions 24 and 25 and Theorem 2.

It is interesting to note that by construction, remembering (69), C and C ′ are such
that

cn/c
′
n −→

n→∞
C ′/C.

Statement 27 (Statement equivalent to Theorem 3). The bivariate density π(u, v) is
given by Cp(u, v) + C ′p′(u, v), with C and C ′ as in (73).

Proof of Statement 27 and Theorem 3. Let f(u, v) = Cp(u, v)+C ′p′(u, v), which satisfies
the PDE (56) by construction of p and p′ with the principle of the compensation approach.
We also define f1(v) = f(0, v) and f2(u) = f(u, 0). By simple integration by parts,
the PDE implies that the Laplace transforms f̂ , f̂1 and f̂2 satisfy the same functional
equation (5) satisfied by π̂, i.e.[

(x− y)2 + 2(δ2 − δ1)x+ 2(δ3 − δ2)y
]
f̂(x, y) =

(
x− y

2

)
f̂1(y) +

(
y − x

2

)
f̂2(x).

Corollary 26 implies that ν̂1(y) = f̂1(y) and ν̂2(x) = f̂2(x). Therefore, the functional
equations satisfied by π̂ and f̂ imply that π̂(x, y) = f̂(x, y) and we conclude that the
density π(u, v) = f(u, v). See [7, Thm 5.1] for the classical result on the injectivity of the
Laplace transform.

A Appendix: Homogeneity relations

A.1 Homogeneity relations in the general case
Lemma 28 (Homogeneity relations, general case). Denote by π̂(x, y;λ1, λ2), ν̂1(y;λ1, λ2)
and ν̂2(x;λ1, λ2) the Laplace transforms associated to the parameters λ1 and λ2. Let us
recall that

µ1 =
λ1

λ1 + λ2
and µ2 =

λ2

λ1 + λ2
.
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We have the homogeneity relations
π̂((λ1 + λ2)x, (λ1 + λ2)y;λ1, λ2) = π̂(x, y;µ1, µ2),

ν̂1((λ1 + λ2)y;λ1, λ2) = (λ1 + λ2)ν̂1(y;µ1, µ2),
ν̂2((λ1 + λ2)x;λ1, λ2) = (λ1 + λ2)ν̂2(x;µ1, µ2).

At the level of densities, it reads
π(x, y;λ1, λ2) = (λ1 + λ2)

2π((λ1 + λ2)x, (λ1 + λ2)y;µ1, µ2),
ν1(y;λ1, λ2) = (λ1 + λ2)

2ν1((λ1 + λ2)y;µ1, µ2),
ν2(x;λ1, λ2) = (λ1 + λ2)

2ν2((λ1 + λ2)x;µ1, µ2).

Proof. An immediate computation starting from the functional equation yields

(
(x− y)2 +

λ1

λ1 + λ2
x+

λ2

λ1 + λ2
y
)
π̂((λ1 + λ2)x, (λ1 + λ2)y;λ1, λ2)

=
(
x− y

2

) ν̂1((λ1 + λ2)y;λ1, λ2)

(λ1 + λ2)
+
(
y − x

2

) ν̂2((λ1 + λ2)x;λ1, λ2)

(λ1 + λ2)
. (74)

On the other hand,(
(x−y)2+µ1x+µ2y

)
π̂(x, y;µ1, µ2) =

(
x− y

2

)
ν̂1(y;µ1, µ2)+

(
y − x

2

)
ν̂2(x;µ1, µ2). (75)

Comparing (74) and (75), noting that π̂(0, 0;λ1, λ2) = π̂(0, 0;µ1, µ2) = 1 and recalling the
uniqueness property for the main functional equation (5) corresponding to a probability
measure, stated at the end of Section 1.1, we deduce the first statement of the lemma
concerning the Laplace transforms. The relations at the level of densities follow directly.

A.2 Homogeneity relations in the symmetric case
In the symmetric case λ1 = λ2 = λ, we explain how to reduce to the case λ = 1. This
may help reduce to the number of parameters.

Lemma 29 (Homogeneity relations, symmetric case). In the symmetric case, denote by
π̂(x, y;λ), ν̂1(y;λ) and ν̂2(x;λ) the Laplace transforms associated to the parameter λ. We
have the homogeneity relations

π̂(λx, λy;λ) = π̂(x, y; 1),
ν̂1(λy;λ) = λν̂1(y; 1),
ν̂2(λx;λ) = λν̂2(x; 1).

(76)

At the level of densities, it reads
π(x, y;λ) = λ2π(λx, λy; 1),
ν1(y;λ) = λ2ν1(λy; 1),
ν2(x;λ) = λ2ν2(λx; 1).

Proof. First of all, the homogeneity relations on the densities are immediate consequences
of the identities (76) on the Laplace transforms, on which we therefore focus. A first direct
proof of (76) is obtained using the explicit formulas given in Corollary 1 and the main
functional equation (5), which in the symmetric case reads(

(x− y)2 + λx+ λy
)
π̂(x, y;λ) =

(
x− y

2

)
ν̂1(y;λ) +

(
y − x

2

)
ν̂2(x;λ),

where we added λ in our notation to emphasize the dependence on this parameter.
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We may now give a second approach for proving (76). An immediate computation
starting from the above functional equation yields(

(x− y)2 + x+ y
)
π̂(λx, λy;λ) =

(
x− y

2

) ν̂1(λy;λ)

λ
+
(
y − x

2

) ν̂2(λx;λ)

λ
. (77)

On the other hand,(
(x− y)2 + x+ y

)
π̂(x, y; 1) =

(
x− y

2

)
ν̂1(y; 1) +

(
y − x

2

)
ν̂2(x; 1). (78)

Comparing (77) and (78), and recalling the uniqueness property for the main functional
equation (5), stated at the end of Section 1.1, we deduce that there exists a constant α > 0
such that 

π̂(λx, λy;λ) = απ̂(x, y; 1),
ν̂1(λy;λ) = αλν̂1(y; 1),
ν̂2(λx;λ) = αλν̂2(x; 1).

(79)

Evaluating (79) at x = y = 0 and using the normalization π̂(0, 0;λ) = π̂(0, 0; 1) = 1, one
finds that α should be equal to 1.

B Some remarks on the function θµ of (16)

B.1 A probabilistic interpretation of the function θµ

Not surprisingly, the Jacobi theta-like function θµ in (16) admits a direct probabilistic
interpretation (see (82) below) in terms of Brownian motion conditioned to stay forever in
the interval [0, 1]. More specifically, for t > 0 and x, y ∈ (0, 1), let qt(x, y) be the associated
transition probability density. Using the recent results by Bougerol and Defosseux [5,
Eq. (2.1)], one has

qt(x, y) =
sin(πy)

sin(πx)
eπ

2t/2pt(x, y),

where pt(x, y) is the transition probability density function of the killed Brownian motion
in [0, 1], namely,

pt(x, y) =
1

2
√
2πt

∑
n∈Z

(
exp
(
−(x− y + 2n)2

2t

)
− exp

(
−(x+ y − 2 + 2n)2

2t

))
, (80)

see Section 6 in Appendix A.1 of [4]. As explained in [5, Sec. 2.1], it is actually possible
to start the process at x = 0 (using the idea of entrance density measure), and obtain the
density function

qt(0, y) = lim
x→0

qt(x, y) = sin(πy)
∑
n∈Z

n sin(nπy) exp
(
−π2(n2 − 1)

t

2

)
, (81)

see [5, Eq. (2.5)]. The Jacobi transformation of our Lemma 15 leads directly to

θµ(e
−2/t) =

1

sin(πµ)

(
πt

2

)3/2

exp

(
µ2

2t
− π2t

2

)
qt(0, µ). (82)

As a conclusion, up to a simple prefactor function, the theta function θµ exactly describes
the entrance density measure of the killed Brownian motion in [0, 1] starting from 0.

The paper [5] by Bougerol and Defosseux contains a further interpretation of qt(0, µ)
(and thus of θµ via (82)) as a space-time non-negative harmonic function for a killed
Brownian motion in a certain affine cone. We shall not elaborate on this connection here,
except to say that it is natural to expect a strong link between our model and space-
time Brownian motion, as suggested by our Equation (2), the starting point of this entire
investigation.
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B.2 Connection with the Ramanujan theta function
The Ramanujan theta function is classically defined for a, b ∈ C such that |ab| < 1 by

f(a, b) =
∑
n∈Z

a
n(n+1)

2 b
n(n−1)

2 .

If we introduce

g(a, b) =
∑
n∈Z

na
n(n+1)

2 b
n(n−1)

2 =
(
a
∂

∂a
− b

∂

∂b

)
f(a, b),

then the function of (16) can be expressed as

θµ(q) = g
(
q1+µ, q1−µ

)
+

µ

2
f
(
q1+µ, q1−µ

)
.

This connection is not central for our purpose, but is nevertheless interesting to observe.

Acknowledgments
This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under the Grant
Agreement No. 759702, from the ANR RESYST (ANR-22-CE40-0002), from the National
Science Foundation under Grant DMS-20-04997 and DMS-20-08427, and from Centre
Henri Lebesgue, programme ANR-11-LABX-0020-0. SF and KR would like to thank
Manon Defosseux, Andrew Elvey Price and Timothy Huber for interesting discussions
related to theta-functions.

References
[1] Adan, I. J.-B. F., Wessels, J., and Zijm, W. H. M. (1993). A compensation approach

for two-dimensional Markov processes. Adv. in Appl. Probab., 25(4):783–817

[2] Bieberbach, L. (1953). Conformal mapping. Chelsea Publishing Co., New York

[3] Biane, P., Pitman, J., and Yor, M. (2001). Probability laws related to the Jacobi theta
and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.),
38:435–465

[4] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion–Facts and
Formulae. Probab. Appl. Birkhäuser Verlag, Basel.

[5] Bougerol, P. and Defosseux, M. (2022). Pitman transforms and Brownian motion in
the interval viewed as an affine alcove. Ann. Sci. Éc. Norm. Supér., 55:429–472

[6] Bousquet-Mélou, M., Elvey Price, A., Franceschi, S., Hardouin, C., and Raschel, K.
(2021). On the stationary distribution of reflected Brownian motion in a wedge: differ-
ential properties. arXiv, 2101.01562

[7] Doetsch, G. (1974). Introduction to the Theory and Application of the Laplace Trans-
formation. Springer Berlin Heidelberg

[8] Fayolle, G., Iasnogorodski, R., and Malyshev, V. (2017). Random walks in the quarter
plane, volume 40 of Probability Theory and Stochastic Modelling. Springer, Cham,
second edition

[9] Franceschi, S. and Raschel, K. (2017). Tutte’s invariant approach for Brownian motion
reflected in the quadrant. ESAIM Probab. Stat., 21:220–234

28



[10] Franceschi, S. and Raschel, K. (2019). Integral expression for the stationary distri-
bution of reflected Brownian motion in a wedge. Bernoulli, 25(4B):3673–3713

[11] Harrison, J. and Reiman, M. (1981). On the distribution of multidimensional reflected
Brownian motion. SIAM J. Appl. Math., 41(2):345–361

[12] Harrison, J. and Williams, R. (1987). Brownian models of open queueing networks
with homogeneous customer populations Stochastics, 22(2):77–115

[13] Hobson, D. G. and Rogers, L. C. G. (1993). Recurrence and transience of reflecting
Brownian motion in the quadrant. Math. Proc. Camb. Philos. Soc., 113(2):387–399

[14] Huber, T. (2008). Hadamard products for generalized Rogers-Ramanujan series. J.
Approx. Theory, 151(2):126–154

[15] Ichiba, T. and Karatzas, I. (2021). Degenerate competing three-particle systems.
arXiv, 2006.04970v2

[16] Ichiba, T. and Karatzas, I. (2022). Degenerate competing three-particle systems.
Bernoulli, 28(3):2067–2094

[17] Kapodistria, S., Saxena, M., Boxma, O. J., and Kella, O. (2023). Workload analysis
of a two-queue fluid polling model. J. Appl. Probab., 60(3), 1003–1030

[18] Kurtz, T. and Stockbridge, R. (2003). Stationary solutions and forward equations for
controlled and singular martingale problems. Electron. J. Probab., 6:17–52

[19] Litvinchuk, G. S. (2000). Solvability theory of boundary value problems and singular
integral equations with shift, volume 523 of Mathematics and its Applications. Kluwer
Academic Publishers, Dordrecht

[20] Salminen, P. and Vignat, C. (2023). Probabilistic aspects of Jacobi theta functions.
arXiv, 2303.05942

[21] Tutte, W. T. (1995). Chromatic sums revisited. Aequationes Math., 50(1-2):95–134

29


	Introduction and main results
	Degenerate competing three-particle systems
	Main results

	Preliminary analytical results
	Study of the kernel
	Analytic continuation
	An important parabola
	Carleman boundary value problem

	Tutte's invariant approach
	Conformal gluing function
	Decoupling function
	Explicit expression of the Laplace transform

	Boundary densities
	Relation with the bivariate density
	Proof of Theorem 2 via Mittag-Leffler expansions
	Further comments on the symmetric case of Corollary 2

	Sum of gaps as an infinite sum of independent exponential variables
	The symmetric case
	The non-symmetric case

	Bivariate density via the compensation approach
	A PDE satisfied by the stationary distribution
	The Compensation Approach: Basic Principle, Questions
	Computation of the compensation constants
	Computation of the convex combination

	Appendix: Homogeneity relations
	Homogeneity relations in the general case
	Homogeneity relations in the symmetric case

	Some remarks on the function theta_mu of (16)
	A probabilistic interpretation of the function theta_mu
	Connection with the Ramanujan theta function


