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Abstract

In this study, we explore mixed-dimensional Thermo-Hydro-Mechanical (THM)
models in fractured porous media accounting for Coulomb frictional contact at ma-
trix fracture interfaces. The simulation of such models plays an important role in many
applications such as hydraulic stimulation in deep geothermal systems and assessing
induced seismic risks in CO2 storage. We first extend to the mixed-dimensional frame-
work the thermodynamically consistent THM models derived in [1616] based on first and
second principles of thermodynamics. Two formulations of the energy equation will be
considered based either on energy conservation or on the entropy balance, assuming
a vanishing thermo-poro-elastic dissipation. Our focus is on space time discretisations
preserving energy estimates for both types of formulations and for a general single phase
fluid thermodynamical model. This is achieved by a Finite Volume discretisation of the
non-isothermal flow based on coercive fluxes and a tailored discretisation of the non-
conservative convective terms. It is combined with a mixed Finite Element formulation
of the contact-mechanical model with face-wise constant Lagrange multipliers account-
ing for the surface tractions, which preserves the dissipative properties of the contact
terms. The discretisations of both THM formulations are investigated and compared
in terms of convergence, accuracy and robustness on 2D test cases. It includes a Dis-
crete Fracture Matrix model with a convection dominated thermal regime, and either
a weakly compressible liquid or a highly compressible gas thermodynamical model.

Keywords: Thermo-Hydro-Mechanical (THM) model, Mixed-dimensional model, Dis-
crete Fracture Matrix model, Contact-mechanics, Thermodynamically consistent dis-
cretisation, Finite Volume, Mixed Finite Element formulation.

1 Introduction

Thermo-Hydro-Mechanical (THM) models in fractured/faulted porous rocks play an impor-
tant role in addressing the challenges of a sustainable exploitation of subsurface resources.
This is for example typically the case of deep geothermal energy production and CO2 geo-
logical storage. THM models offer valuable insights into the complex interactions between
temperature changes, fluid flow, rock deformation and fracture/fault mechanical behavior
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within the subsurface. They play a pivotal role in assessing potential risks, informing mit-
igation strategies and managing hydraulic stimulation of geothermal systems. Similarly,
in CO2 sequestration projects, THM models are instrumental in predicting and preventing
issues like fault reactivation which can potentially induce CO2 leakage or seismicity.

The THM models considered in this work initially integrate a mixed-dimensional approach,
coupling a non-isothermal Poiseuille flow within the network of fractures/faults represented
as co-dimension one surfaces, to the non-isothermal Darcy flow in the surrounding porous
rock, known as the matrix. Let us refer to [11, 2121, 2727, 2929, 1010, 1111, 2222, 3131, 44] and the references
there-in for the derivation and for various discretisations of such mixed-dimensional models
in the context of single phase Darcy flows. The second key component is the thermo-poro-
mechanical model coupling the deformation of the rock with the non-isothermal Darcy
flow within the matrix domain. Let us refer to the monograph [1616] as a key reference
textbook on a thermodynamically consistent derivation of such models. In this work, we
will follow this framework further assuming small strains and porosity variations as well as
a linear thermo-poro-elastic behavior of the porous rock. The third ingredient is related
to the mechanical behavior of the fractures/faults typically based on contact-mechanics
taking into account frictional contact at matrix-fracture interfaces. This type of mixed-
dimensional poromechanical models have been the object of many recent works both in the
isothermal case [3030, 2424, 33, 2323, 55, 66, 77, 88] and in the non-isothermal case [3232, 2525, 3333].

Building upon existing research, our work focuses on discretisations of mixed-dimensional
THM models preserving energy estimates for a general single phase fluid thermodynamical
model, an aspect not thoroughly explored in previous studies. We first extend to the
mixed-dimensional framework the thermodynamically consistent THM models derived in
[1616] based on first and second principles of thermodynamics. Two formulations of the energy
equation will be considered based either on energy conservation or on the entropy balance,
assuming a vanishing thermo-poro-elastic dissipation. The entropy balance formulation
is frequently combined with a small Darcy velocity assumption and a linearisation of the
Fourier term based on a small temperature variation assumption [1212, 99]. It leads to an
approximate entropy equation which will be investigated in this work both theoretically and
numerically from the points of view of energy estimates and accuracy of the solution. One
difficulty that needs to be dealt with when starting from such entropy balance equation is
the ability to return back to the energy equation at the discrete level. This will be addressed
in this work by preserving at the discrete level the links between the energy conservation
and entropy balance equations.

To achieve these goals, the space and time discretisations of the non-isothermal flow and
of the contact-mechanics must be selected carefully. Regarding the flow, our framework is
based on coercive fluxes and incorporate a possible upwind approximation of the convection
terms in order to deal with convection dominated regimes. The discretisation of the non-
conservative convective terms in the entropy balance formulation is designed in order to
preserve the link with the energy formulation. Although, this setting accounts for a large
class of coercive Finite Volume schemes, we focus in the following on the Hybrid Finite
Volume (HFV) discretisation [1919, 1010] in order to simplify the presentation. The time inte-
gration scheme is based on a forward Euler discretisation including a semi-implicit variation
in the entropy balance approach. Regarding the discretisation of the mechanical model, it
will be based, for the sake of simplicity, on a conforming Finite Element approximation of
the displacement field accounting for its discontinuity at matrix fracture interfaces. The
discretisation of the frictional contact along the fracture network is a key feature both for
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the robustness of the scheme and for the derivation of energy estimates. Different formu-
lations such as mixed or stabilized mixed formulations [2626, 3434, 2828], augmented Lagrangian
[1313] and Nitsche methods [1414, 1515, 22] have been developed to discretise Coulomb frictional
contact. In line with [2020, 2323, 77], a mixed formulation with face-wise constant Lagrange
multipliers is selected. This choice maintains at the discrete level the dissipative properties
of the contact terms and the lower bound on the fracture aperture. It enables the straight-
forward handling of complex fracture networks, including corners, tips, and intersections,
and lead to local expressions of the contact equations, making possible the use of efficient
semi-smooth Newton nonlinear solvers.

The rest of this article is organised as follows. Section 22 presents the mixed-dimensional
THM models with energy equations based either on an energy conservation formulation
or on an approximate entropy balance formulation. The energy estimates satisfied by
both models are formally derived in Section 2.32.3. Their discretisations are described in
Section 33 including the Finite Volume discretisations of the non-isothermal flow in Section
3.23.2 and the mixed formulation of the contact-mechanics in Section 3.33.3 . The discrete
energy estimates are derived in Section 3.43.4 for the discretisations of both models which
are compared numerically in Section 44 in terms of convergence, accuracy and robustness.
We first consider in Section 4.14.1 a manufactured solution for an incompressible fluid and
different Peclet numbers on a 2D square domain without fractures. Then, a 2D Discrete
Fracture Matrix (DFM) model with a six fracture network is investigated in Section 4.24.2
both for the case of a weakly compressible liquid and for the case of a highly compressible
perfect gas.

2 Mixed-dimensional Thermo-Hydro-Mechanical models

2.1 Mixed-dimensional geometry and function spaces

In what follows, scalar fields are represented by lightface letters, vector fields by boldface
letters. We let Ω Ă Rd, d P t2, 3u, denote a bounded polytopal domain, partitioned into a
fracture domain Γ and a matrix domain ΩzΓ. The network of fractures is defined by

Γ “
ď

iPI

Γi,

where each fracture Γi Ă Ω, i P I, is a planar and simply connected polygonal domain,
which is relatively open in the hyperplane it spans. Without restriction of generality, we
will assume that the fractures may only intersect at their boundaries (Figure 11), that is,
for any i, j P I, i ‰ j it holds Γi X Γj “ H, but not necessarily Γi X Γj “ H.

The two sides of a given fracture of Γ are denoted by ˘ in the matrix domain, with unit
normal vectors n˘ oriented outward from the sides ˘. We denote by γa the trace operators
on the side a P t`,´u of Γ for functions in H1pΩzΓq and by γBΩ the trace operator for the
same functions on BΩ. The jump operator on Γ for functions u in pH1pΩzΓqqd is defined by

JuK “ γ`u ´ γ´u,

and we denote by

JuKn “ JuK ¨ n` and JuKτ “ JuK ´ JuKnn`
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Figure 1. Illustration of the dimension reduction in the fracture aperture for a 2D domain
Ω with three intersecting fractures Γi, i P t1, 2, 3u, with the equi-dimensional geometry on
the left and the mixed-dimensional geometry on the right.

its normal and tangential components. The notation JqmKn will also be used to denote the
normal jump of flux functions qm P HdivpΩzΓq defined by

JqmKn “ γ`
n qm ` γ´

n qm

with γan the normal trace operator on the side a of Γ oriented outward to the side a P t`,´u.
The notation γan will also be applied to tensor fields. The tangential gradient and divergence
along the fractures are respectively denoted by ∇τ and divτ . The symmetric gradient
operator ε is defined such that εpvq “ 1

2p∇v`p∇vqtq for a given vector field v P H1pΩzΓqd.

To fix ideas, the pressure p and temperature T are assumed to be continuous at the matrix–
fracture interface, that is, these functions belong to H1pΩq. As a consequence, letting γ :
H1pΩq Ñ L2pΓq be the trace operator on the fracture, the fracture pressure and temperature
are given by pf “ γp and Tf “ γT .

The space for the displacement field is defined by

U0 “ tv P H1pΩzΓqd : γBΩv “ 0u.

2.2 Mixed-dimensional models

We consider a Thermo-Hydro-Mechanical (THM) model under the hypothesis of small
perturbations for the skeleton accounting for small strain, displacement and variations of
porosity [1616]. Linear isotropic thermo-poro-elastic constitutive laws are considered for the
skeleton assuming small variations of temperature around the reference temperature Tref .
The Darcy law is used for the fluid velocity and the Fourier law for the thermal conduction.
Thermal equilibrium is assumed between the fluid and the skeleton, and the mechanical
inertial term is modelled using the frozen specific average fluid-rock density m0.

The fluid thermodynamical properties, depending on its pressure p and temperature T , are

• ϱpp, T q: specific density,

• epp, T q: specific internal energy,

• hpp, T q “ epp, T q `
p

ϱpp,T q
: specific enthalpy, and

• ηpp, T q: dynamic viscosity.

For a fluid property Ξ “ ϱ, e, h, η, we use the short notations Ξm “ Ξpp, T q in the matrix
and Ξf “ Ξppf , Tf q “ γΞm along the fracture network.
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The primary unknowns of the model are the fluid pressure p, the fluid temperature T and
the skeleton displacement field u. They are solutions of the nonlinear system of PDEs
coupling the mixed-dimensional fluid mass conservation equation, the mixed-dimensional
total energy conservation equation, the skeleton momentum balance equation, and the
frictional contact conditions at matrix fracture interfaces. The model is detailed below
starting with the equations in the matrix followed by the equations along the fracture
network. Two different formulations of the energy equation will be considered.

2.2.1 Matrix model

In the matrix, the model accounts for the mass and energy conservation equations coupled
to the skeleton momentum balance equation. Letting tF be the final simulation time, we
therefore consider

Btpϱmϕq ` divpϱmVmq “ Gm in p0, tF q ˆ Ω, (1a)

TBtSs ` pBtϕ ` Btpϱmϕemq ` divpϱmhmVm ` qmq “ Hm in p0, tF q ˆ Ω, (1b)

m0B2
tu ´ divσ “ F in p0, tF q ˆ Ω, (1c)

with the Darcy and Fourier laws governing respectively the matrix fluid velocity and the
matrix conductive thermal flux:

Vm “ ´
Kpϕq

ηm
∇p, qm “ ´Λmpϕq∇T, (1d)

where K and Λm are respectively the rock permeability and the fluid rock average thermal
conductivity, both possibly depending on the matrix porosity ϕ. The energy equation (1b1b)
has been obtained under the hypothesis of reversible mechanical deformation in the sense
of zero thermo-poro-mechanical dissipation:

TBtSs ` pBtϕ ` σ : Btεpuq ´ BtEs “ 0. (2)

Assuming a linear isotropic thermo-poro-elastic behavior of the skeleton, this gives the
following constitutive laws

Btϕ “ b divBtu ´ αϕ BtT `
1

N
Btp , (3a)

BtSs “ αsKs divBtu ´ αϕ Btp `
Cs

Tref
BtT, (3b)

σ “ σepuq ´ b pI ´ αsKspT ´ TrefqI, (3c)

σepuq “ 2µ εpuq ` λ divu I, (3d)

which derive from the following volumetric skeleton internal energy [1616]:

Es “ µ|εpuq|2 `
λ

2
pdivpuqq2 `

1

2

”

p T
ı

M

«

p

T

ff

` αsKsTref divu, (4)

where the matrix M , defined below, is assumed to be definite positive:

M :“

«

1
N ´αϕ

´αϕ
Cs
Tref

ff

.
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In the equations above, Ss is the volumetric skeleton entropy, σ the total stress tensor and
σe the effective stress tensor. The parameters µ and λ are the effective Lame coefficients,
N is the Biot modulus, b the Biot coefficient, Ks is the bulk modulus, αs is the volumetric
skeleton thermal dilation coefficient, αϕ is the volumetric thermal dilation coefficient related
to the porosity, and Cs is the skeleton volumetric heat capacity.

Considering the combination 1
T ˆ (1b1b) ´hm

T ˆ (1a1a) leads to the following alternative formu-
lation of the energy equation

BtSs `
ϱmϕ

T
Btem `

pϱm
T

ϕBt
1

ϱm
`

1

T
ϱmVm ¨ ∇hm `

1

T
divqm “

Hm

T
´

hm
T

Gm. (5)

An approximation of (55) is obtained based on the classical assumptions of small Darcy ve-
locity Vm and small variations of temperature around Tref . Then, using the approximation

ϱmVm ¨ ∇hm “ ϱmVm ¨ ∇em ` pϱmVm ¨ ∇ 1

ϱm
` Vm ¨ ∇p

„ ϱmVm ¨ ∇em ` pϱmVm ¨ ∇ 1

ϱm
,

and the linearisation 1
T divqm „ 1

Tref
divqm, we obtain the following approximate equation:

BtSs `
ϱmϕ

T
Btem `

pϱm
T

ϕBt
1

ϱm
`

1

T
ϱmVm ¨ ∇em

`
p

T
ϱmVm ¨ ∇ 1

ϱm
`

1

Tref
divqm “

Hm

T
´

hm
T

Gm.

(6)

Note that, using Tds “ de ` pd1
ϱ with s the fluid specific entropy, equation (66) becomes

BtSs ` ϱmϕBtsm ` ϱmVm ¨ ∇sm `
1

Tref
divqm “

Hm

T
´

hm
T

Gm.

This equation is a classical approximate non conservative formulation of the entropy equa-
tion [1616], which motivates the terminology adopted in the following of approximate entropy
equation for (66) and of entropy equation for (55).

2.2.2 Fracture model

The mass and energy conservation equations of the reduced fracture model are obtained by
integration along the fracture width of the equi-dimensional equations taking into account
the mass and energy normal flux continuity at matrix fracture interfaces. This process leads
to

Btpϱfdf q ` divτ pϱfVf q ´ JϱmVmKn “ Gf in p0, tF q ˆ Γ, (7a)

pfBtdf ` Btpϱfdfef q ` divτ pϱfhfVf ` qf q ´ JϱmhmVm ` qmKn “ Hf in p0, tF q ˆ Ω,
(7b)

with the fluid tangential velocity and thermal conductive flux integrated along the fracture
width defined by

Vf “ ´
Cf pdf q

ηf
∇τpf , qf “ ´Λf pdf q∇τTf , (7c)

and where
df “ d0 ´ JuKn (7d)
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is the fracture aperture with d0 the aperture at contact state as illustrated in Figure 22.
In (7c7c), Cf is the fracture hydraulic conductivity typically given by the Poiseuille law

Cf “
pdf q3

12 , and Λf is the fracture thermal conductivity also possibly depending on df .
At matrix fracture interfaces, a contact Coulomb frictional model is considered defined as
follows

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

T` ` T´ “ 0 on p0, tF q ˆ Γ,

Tn ď 0, JuKn ď 0, JuKn Tn “ 0 on p0, tF q ˆ Γ,

|Tτ | ď ´F Tn on p0, tF q ˆ Γ,

pBtJuKτ q ¨ Tτ ´ F Tn|BtJuKτ | “ 0 on p0, tF q ˆ Γ,

(7e)

where the vectorial surface tractions and their normal and tangential components are de-
fined by

$

’

’

’

&

’

’

’

%

Ta “ γanσpuq ` pfn
a on p0, tF q ˆ Γ, a P t`,´u,

Tn “ T` ¨ n` on p0, tF q ˆ Γ,

Tτ “ T` ´ pT` ¨ n`qn` on p0, tF q ˆ Γ.

In a similar way as in the matrix, we also consider the entropy equation defined by the
combination 1

T ˆ (7b7b) ´hm
T ˆ (7a7a) leading to

ϱfdf
Tf

Btef `
pfϱf
Tf

dfBt
1

ϱf
`

1

Tf
ϱfVf ¨ ∇hf `

1

Tf
pdivqf ´ JqmKnq

´
1

Tf

´

JϱmhmVmKn ´ hf JϱmVmKn
¯

“
Hf

Tf
´

hf
Tf

Gf .

(8)

By continuity of the pressure and temperature (and thus of the fluid specific enthalpy),
JϱmhmVmKn ´hf JϱmVmKn “ 0 and the last term in the left-hand side of (88) therefore van-
ishes. However, at the discrete level, as a result of a possible upwinding this compensation
may not necessarily occur. To keep that in mind in the continuous model, and justify the
discretisation chosen in Section 33, we therefore write this vanishing term in the form of a
(fictitious) jump of the enthalpy between the matrix and the fracture.

JϱmhmVmKn ´ hf JϱmVmKn “
ÿ

aPt`,´u

γanpϱmVmqpγahm ´ hf q.

Therefore, (88) can be recast as

ϱfdf
Tf

Btef `
pfϱf
Tf

dfBt
1

ϱf
`

1

Tf
ϱfVf ¨ ∇hf `

1

Tf
pdivqf ´ JqmKnq

´
1

Tf

ÿ

aPt`,´u

γanpϱmVmqpγahm ´ hf q “
Hf

Tf
´

hf
Tf

Gf .
(9)

Its approximation based on small Darcy velocity and temperature variations assumptions
writes

ϱfdf
Tf

Btef `
pfϱf
Tf

dfBt
1

ϱf
`

1

Tf
ϱfVf ¨ ∇ef `

pf
Tf

ϱfVf ¨ ∇ 1

ϱf
`

1

Tref
pdivqf ´ JqmKnq

´
1

Tf

ÿ

aPt`,´u

γanpϱmVmq

´

γaem ´ ef ` pf p
1

γaϱm
´

1

ϱf
q

¯

“
Hf

Tf
´

hf
Tf

Gf .
(10)
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Figure 2. Conceptual fracture model with contact at asperities, d0 being the fracture
aperture at contact state.

The model is closed by considering no-flow and no-energy flux boundary conditions both
for the matrix and fractures. Let us also recall that the pressure and temperature are
assumed to be continuous at matrix pressure interfaces. At fracture intersections, the
fracture pressure pf and temperature Tf are classically also continuous, and mass and
thermal flux conservation is imposed.

In the sequel, we use the following terminology to refer to the two mixed-dimensional THM
systems:

(11)-(22)-(33)-(77): “enthalpy-based” THM model, (H-model)

(11)-(22)-(33)-(77) with (1b1b) replaced by the approximation (66) and

(7b7b) replaced by the approximation (1010): “entropy-based” THM model.
(S-model)

2.3 Energy estimates

Let us first consider the enthalpy-based THM model (H-modelH-model). Summing the integral
over Ω of (1b1b) ` Btu ¨ (1c1c) and the integral over Γ of (7b7b), taking into account the contact
and boundary conditions, the following contact persistence condition (which results from
(7e7e))

ż

Γ
TnJBtuKndσ “ 0,

and the zero dissipation equation (22), we obtain formally the following energy estimate:

Bt

ż

Ω
pEs ` ϱmϕemqdx ` Bt

ż

Γ
ϱfdfefdσ`

ż

Γ
´FTn|JBtuKτ |dσ

“

ż

Ω
pHm ` F ¨ Btuqdx `

ż

Γ
Hfdσ.

(11)

Let us now consider the entropy-based THM model (S-modelS-model). By construction, the energy
estimate for this model can be deduced from the previous estimate (1111) just by adding to
the left hand side of (1111) the term

ż

Ω

´

´Vm ¨ ∇p ` p
T

Tref
´ 1qdivqm

¯

dx `

ż

Γ

´

´Vf ¨ ∇τpf ` p
Tf

Tref
´ 1qpdivqf ´ JqmKnq

¯

dσ,

which corresponds to the difference between the exact terms and their approximations.
Recalling the definitions (1d1d) and (7c7c) of Vm, qm, Vf and qf , this leads to the following
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stronger form of the energy estimate

Bt

ż

Ω
pEs ` ϱmϕemqdx ` Bt

ż

Γ
ϱfdfefdσ `

ż

Γ
´FTn|JBtuKτ |dσ

`

ż

Ω

´ K
ηm

∇p ¨ ∇p `
Λm

Tref
|∇T |2

¯

dx `

ż

Γ

´Cf

ηf
|∇τpf |2 `

Λf

Tref
|∇τTf |2

¯

dσ

“

ż

Ω
pHm ` F ¨ Btuqdx `

ż

Γ
Hfdσ.

(12)

3 Discretisation

The objective is to design a discretisation preserving the energy estimates (1111) and (1212)
for respectively the enthalpy-based and entropy-based THM models. Both types of for-
mulations will be compared in the numerical section. The schemes must account for both
diffusive and convective dominated energy transport. This motivates the choice of a Fi-
nite Volume formulation of the mass and energy equations with possible upwinding of the
mobilities. To fix ideas, we will consider in this work the mixed-dimensional Hybrid Fi-
nite Volume (HFV) discretisation introduced in [1010] accounting for the continuity of the
pressure and temperature at matrix fracture interfaces. It will be combined with a mixed
variational formulation of the contact-mechanics with a conforming Finite Element dis-
cretisation of the displacement field and a facewise constant approximation of the Lagrange
multiplier introduced to represent the surface tractions along the fractures. This choice
handles fracture networks with corners and intersections, and leads to a local formulation
of the contact conditions. It also ensures the discrete persistence property of the contact
term and a dissipative frictional term which are key conditions to obtain an energy estimate
for the coupled THM systems.

3.1 Space and time discretisations

Let M denote the set of polytopal cells, and F the set of faces of the mesh, with internal
faces gathered in F int and boundary faces in Fext. The subset FK Ă F denotes the set of
faces of the cell K P M. We denote by σ “ K|L the internal face shared by the two cells
K,L gathered in the subset Mσ “ tK,Lu. The notations σ “ K|¨ and Mσ “ tKu are used
for a face σ P FK X Fext. The mesh is assumed conforming to the fracture network Γ in
the sense that there exists a subset FΓ of F such that

Γ “
ď

σPFΓ

σ.

The subset of edges of a face σ is denoted by Eσ and we define the set of edges of Γ by
EΓ “

Ť

σPFΓ
Eσ. For a given edge ζ P EΓ, let us denote by FΓ,ζ the subset of fracture faces

sharing the edge ζ. We denote by |K| the d-dimensional measure of the cell K P M, and
by |σ| the pd ´ 1q-dimensional measure of the face σ P F .

The HFV method is a Gradient Discretisation (GD) defined by the vector space of discrete
unknowns

XD “ tvD “ ppvKqKPM, pvσqσPF , pvζqζPEΓqu “ RMYFYEΓ ,

and the reconstruction operators Πm
D ,∇m

D in the matrix and Πf
D,∇

f
D along the fractures

(see [1010] for their detailed definition). We assume that Πm
D and Πf

D are piecewise constant
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reconstructions [1717, Definition 2.12] and, more specifically, pΠm
DvDq|K “ vK for all K P M,

and pΠf
DvDq|σ “ vσ for all σ P FΓ. From the gradient reconstruction operator ∇m

D in the
matrix, and given any K P M and any symmetric positive definite dˆ d matrix DK , fluxes
FK,σpDK ; ¨q : XD Ñ R (for σ P FK) are defined such that, for all vD, wD P XD and all
K P M,

ż

K
DK∇m

DvD ¨ ∇m
DwDdx “

ÿ

σPFK

FK,σpDK ; vDqpwK ´ wσq. (13)

Likewise, from the fracture tangential gradient reconstruction operator ∇f
D, for any σ P FΓ

and any symmetric positive definite pd´ 1q ˆ pd´ 1q matrix Dσ, fracture fluxes Fσ,ζpDσ; ¨q :
XD Ñ R are defined (for ζ P Eσ) such that, for all vD, wD P XD,

ż

σ
Dσ∇f

DvD ¨ ∇f
DwDdσ “

ÿ

ζPEσ

Fσ,ζpDσ; vDqpwσ ´ wζq. (14)

These fluxes are local to each cell K P M (resp. each fracture face σ P FΓ) in the sense
that they only depend on pvK , pvσqσPFK

q (resp. pvσ, pvζqζPEσq) [1010].

In order to account for convective dominated energy transport, an upwind approximation
needs to be introduced according to the sign of the Darcy flux FK,σpKK ; pDq using the
following notations. Let the index “Kσ,`” denote either σ if no upwinding is used, or an
upwind choice between K and L if σ “ K|L P F intzFΓ, or an upwind choice between K
and σ if σ “ K|¨ P Fext Y FΓ (note that, if σ “ K|L is an internal face and not a fracture
face, this upwinding must not depend on K or L; for example, ϱKσ,` “ ϱLσ,`).

Similarly, for a given fracture edge ζ, the index “σζ,`” denote either ζ if no upwinding is
used, or an upwind value between σ and σ1 if FΓ,ζ “ tσ, σ1u and ζ is not a boundary edge,
or an upwind value between σ and ζ in the other cases. The choice of the upwind value is
done according to the sign of the Darcy flux Fσ,ζpCf,σ; pDq.

For any fluid thermodynamical property Ξ “ h, e, η, ϱ, and pD, TD P XD, we define ΞD P XD
component by component by setting Ξν “ Ξppν , Tνq for all ν P M Y F Y EΓ.

The displacement field u is discretised using a finite dimensional subspace UD of U0,
typically given by a Finite Element Method.

We consider a time discretisation ptnqn“0,...,N of the time interval p0, tF q with t0 “ 0 and
tN “ tF , and denote by ∆tn “ tn ´ tn´1 the time step n. If f “ pfnqn“0,...,N is a family of
functions or vectors of XD, the discrete time derivative of f is defined as

δnt f “
fn ´ fn´1

∆tn
.

The second time derivative of the discrete displacement field is defined by

δnt 9uD “ 2
9un
D ´ 9un´1

D
tn ´ tn´2

with 9un
D “ δnt uD.

It corresponds to the generalisation to non-uniform time steps of the standard centered
discretisation of B2

tu. To alleviate notations, whenever wD P XN`1
D and ‚ “ tm, fu, we set

δnt,‚wD “ δnt pΠ‚
DwDq. We also consider the discrete time derivative of products of functions

and elements of XD, or elements of XD, by setting: δnt,‚pfvDwDq “ δnt pfΠ‚
DvDΠ

‚
DwDq for

all families of functions f “ pfnqn“0,...,N and elements vD, wD P XN`1
D .

10



The discrete porosities pϕn
Dqn“0,...,N and skeleton entropies pSn

s,Dqn“0,...,N are families of

piecewise constant functions Ω Ñ R on M such that ϕ0
D, S

0
s,D are given (e.g., as projections

of the continuous initial porosity and entropy) and, for all n “ 1, . . . , N ,

δnt ϕD “ bπMpδnt divuDq ´ αϕδ
n
t,mTD `

1

N
δnt,mpD, (15)

δnt Ss,D “ αsKsπMpδnt divuDq ´ αϕδ
n
t,mpD `

Cs

Tref
δnt,mTD, (16)

where πM is the projection on piecewise constant functions on M (that is, pπMfq|K “
1

|K|

ş

K f for all K P M).

In the fracture, we define the discrete apertures as pdnf,Dqn“0,...,N , with dnf,D : Γ Ñ R given
by

dnf,D “ πF ,Γpd0 ´ Jun
DKnq. (17)

Here, πF ,Γ is the L2-projection on facewise constant functions on Γ.

We also define, for n “ 1, . . . , N , the function pGn
m : Ω Ñ R which is piecewise constant

on M equal on K P M to the average of Gm on ptn´1, tnq ˆ K. The piecewise constant
functions pHn

m and pFn on M, as well as pGn
f and pHn

f on FΓ are similarly defined. In the
following, we use the notations

V n
K,σ “ FK,σ

´Kpϕn´1
K q

ηn´1
K

; pnD

¯

and V n
σ,ζ “ Fσ,ζ

´Cf pdn´1
f,σ q

ηn´1
σ

; pnD

¯

, (18)

for the matrix and fracture Darcy flux, as well as

Qn
K,σ “ FK,σ

´

Λmpϕn´1
K q;Tn

D

¯

and Qn
σ,ζ “ Fσ,ζ

´

Λf pdn´1
f,σ q;Tn

D

¯

(19)

for the matrix and fracture Fourier fluxes. Note that K, Λm, Cf and Λf could also explicitly
depend on x. This dependence is omitted for the sake of simplicity.

3.2 Discretisation of the mass and energy equations

Let us first consider the HFV discretisation of the mass and energy conservation equations
of the enthalpy-based THM model (H-modelH-model). For all time step n “ 1, . . . , N , it couples
the discrete mass conservation equations

|K|δnt pϱKϕKq `
ÿ

σPFK

ϱnKσ,`V
n
K,σ “ |K| pGn

m,K @K P M, (20a)

|σ|δnt pϱσdf,σq `
ÿ

ζPEσ

ϱnσζ,`V
n
σ,ζ ´

ÿ

KPMσ

ϱnKσ,`V
n
K,σ “ |σ| pGn

f,σ @σ P FΓ, (20b)

ÿ

KPMσ

V n
K,σ “ 0 @σ P FzFΓ, (20c)

´
ÿ

σPFΓ,ζ

ϱnσζ,`V
n
σ,ζ “ 0 @ζ P EΓ, (20d)

to the discrete total energy conservation equations

|K|

´

Tn
Kδnt Ss,K ` pnKδnt ϕK ` δnt pϱKϕKeKq

¯

`
ÿ

σPFK

pϱnKσ,`h
n
Kσ,`V

n
K,σ ` Qn

K,σq “ |K| pHn
m,K @K P M,

(21a)
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|σ|

´

pnσδ
n
t df,σ ` δnt pϱσdf,σeσq

¯

`
ÿ

ζPEσ

pϱnσζ,`h
n
σζ,`V

n
σ,ζ ` Qn

σ,ζq

´
ÿ

KPMσ

pϱnKσ,`h
n
Kσ,`V

n
K,σ ` Qn

K,σq “ |σ| pHn
f,σ @σ P FΓ,

(21b)

ÿ

KPMσ

Qn
K,σ “ 0 @σ P FzFΓ, (21c)

´
ÿ

σPFΓ,ζ

pϱnσζ,`h
n
σζ,`V

n
σ,ζ ` Qn

σ,ζq “ 0 @ζ P EΓ, (21d)

Note that (20c20c), (21c21c) embed both the conservation of fluxes across internal faces, as well as
the zero-flux conditions on boundary faces. The same remark holds for the flux conservation
equations (20d20d), (21d21d) at fracture edges but keeping the full nonlinear fluxes due to the
dependence on σ of the upwind density and enthalpy when FΓ,ζ contains more than two
faces (which happens at internal crossing lines between three or more fractures). Similar
considerations hold for (23c23c) and (23d23d) below.

Temporarily dropping the time index n for simplicity, the HFV discretisation of the approx-
imate entropy equations (66)-(1010) is based on the following discretisation of ϱmVm ¨∇wm “

divpϱmwmVmq ´ wm divpϱmVmq on a given cell K, which includes a possible upwinding:
for wD P XD,

ÿ

σPFK

wKσ,`ϱKσ,`VK,σ ´ wK

ÿ

σPFK

ϱKσ,`VK,σ “
ÿ

σPFK

ϱKσ,`VK,σpwKσ,` ´ wKq.

This is a key choice which preserves the link between the non conservative entropy and the
conservative energy formulations in the sense that it is designed to satisfy the following
discrete version of wm divpϱmVmq ` ϱmVm ¨ ∇wm “ divpϱmwmVmq:

wK

ÿ

σPFK

ϱKσ,`VK,σ `
ÿ

σPFK

ϱKσ,`VK,σpwKσ,` ´ wKq “
ÿ

σPFK

wKσ,`ϱKσ,`VK,σ.

Likewise, in the fractures, we use the following discretisations of ϱfVf ¨ ∇τwf
ÿ

ζPEσ

ϱσζ,`Vσ,ζpwσζ,` ´ wσq,

on σ P FΓ, and
ÿ

σPFΓ,ζ

´ϱσζ,`Vσ,ζpwσζ,` ´ wζq,

on ζ P EΓ. In the same spirit, the terms such as ϱmϕBtwm in the matrix are discretised by
Πm

Dϱn´1ϕn´1
D δnt,mwD to ensure that

Πm
Dϱn´1

D ϕn´1
D δnt,mwD ` Πm

Dwn
D ˆ δnt,mpϱDϕDq “ δnt,mpϱDϕDwDq. (22)

The same discretisation is applied for the terms such as ϱfdfBtwf in the fractures. Following
this methodology, the approximate entropy equations are discretised for all time step n “

1, . . . , N by

|K|δnt Ss,K `
|K|

Tn
K

ϱn´1
K ϕn´1

K

´

δnt eK ` pnKδnt
1

ϱK

¯

`
1

Tref

ÿ

σPFK

Qn
K,σ

`
1

Tn
K

ÿ

σPFK

ϱnKσ,`V
n
K,σ

´

enKσ,` ´ enK ` pnKp
1

ϱnKσ,`

´
1

ϱnK
q

¯

“
|K|

Tn
K

p pHn
m,K ´ hnK

pGn
m,Kq @K P M,

(23a)
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|σ|

Tn
σ

ϱn´1
σ dn´1

f,σ

´

δnt eσ ` pnσδ
n
t

1

ϱσ

¯

`
1

Tref

´

ÿ

ζPEσ

Qn
σ,ζ ´

ÿ

KPMσ

Qn
K,σ

¯

`
1

Tn
σ

ÿ

ζPEσ

ϱnσζ,`V
n
σ,ζ

´

enσζ,` ´ enσ ` pnσp
1

ϱnσζ,`
´

1

ϱnσ
q

¯

´
1

Tn
σ

ÿ

KPMσ

ϱnKσ,`V
n
K,σ

´

enKσ,` ´ enσ ` pnσp
1

ϱnKσ,`

´
1

ϱnσ
q

¯

“
|σ|

Tn
σ

p pGn
f,σ ´ hnσ

pGn
f,σq @σ P FΓ,

(23b)

ÿ

KPMσ

Qn
K,σ “ 0 @σ P FzFΓ, (23c)

´
1

Tn
ζ

ÿ

σPFΓ,ζ

ϱnσζ,`V
n
σ,ζ

´

enσζ,` ´ enζ ` pnζ p
1

ϱnσζ,`
´

1

ϱnζ
q

¯

´
1

Tref

ÿ

σPFΓ,ζ

Qn
σ,ζ “ 0 @ζ P EΓ,

(23d)

By construction, applying this space time discretisation to the entropy equations (55)-(99)
would lead to an equivalence between the entropy and energy formulations at the discrete
level when combined with the discrete mass equations. It results that the following Lemma
states the equivalence up to the terms which have been neglected or linearised in the
approximate entropy equations.

Lemma 3.1. For all cell K P M, Tn
K ˆ (23a23a) ` hnK ˆ (20a20a) is equivalent to (21a21a) upon

correcting the left-hand side by adding
ˆ

Tn
K

Tref
´ 1

˙

ÿ

σPFK

Qn
K,σ ´

ÿ

σPFK

V n
K,σppnKσ,` ´ pnKq.

For all fracture face σ P FΓ, T
n
σ ˆ (23b23b)` hnσ ˆ (20b20b) is equivalent to (21b21b) upon correcting

the left-hand side by adding
ˆ

Tn
σ

Tref
´ 1

˙

´

ÿ

ζPEσ

Qn
σ,ζ ´

ÿ

KPMσ

Qn
K,σ

¯

´
ÿ

ζPEσ

V n
σ,ζppnσζ,` ´ pnσq `

ÿ

KPMσ

V n
K,σppnKσ,` ´ pnσq.

For all fracture edge ζ P EΓ, Tn
ζ ˆ (23d23d)` hnζ ˆ (20d20d) is equivalent to (21d21d) upon correcting

the left-hand side by adding

´

ˆ

Tn
ζ

Tref
´ 1

˙

ÿ

σPFΓ,ζ

Qn
σ,ζ `

ÿ

σPFΓ,ζ

V n
σ,ζppnσζ,` ´ pnζ q.

Proof. Let us detail only the proof for the cell terms since fracture face and edge terms are
similar. Gathering the terms of Tn

K ˆ (23a23a) ` hnK ˆ (20a20a) leads to the equation:

|K|

„

Tn
Kδnt Ss,K ` hnKδnt pϱKϕKq ` ϱn´1

K ϕn´1
K

´

δnt eK ` pnKδnt
1

ϱK

¯

ȷ

` hnK
ÿ

σPFK

ϱnKσ,`V
n
K,σ `

ÿ

σPFK

ϱnKσ,`V
n
K,σ

´

enKσ,` ´ enK ` pnKp
1

ϱnKσ,`

´
1

ϱnK
q

¯

`
Tn
K

Tref

ÿ

σPFK

Qn
K,σ “ |K| pHn

m,K .
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Recalling that h “ e ` p{ϱ, we obtain

|K|

”

Tn
Kδnt Ss,K `

´

enKδnt pϱKϕKq ` ϱn´1
K ϕn´1

K δnt eK

¯

` pnK

´

ϱn´1
K ϕn´1

K δnt
1

ϱK
`

1

ϱnK
δnt pϱKϕKq

¯

ȷ

ÿ

σPFK

ϱnKσ,`V
n
K,σ

´

hnKσ,` ` ppnK ´ pnKσ,`q
1

ϱnKσ,`

¯

`
Tn
K

Tref

ÿ

σPFK

Qn
K,σ “ |K| pHn

m,K .

Invoking (2222), this relation reduces to

|K|

´

Tn
Kδnt Ss,K ` pnKδnt ϕK ` δnt pϱKϕKeKq

¯

`
ÿ

σPFK

´

ϱnKσ,`h
n
Kσ,`V

n
K,σ ` Qn

K,σ

¯

´
ÿ

σPFK

V n
K,σppnKσ,` ´ pnKq `

ˆ

Tn
K

Tref
´ 1

˙

ÿ

σPFK

Qn
K,σ “ |K| pHn

m,K ,

which is the expected result for the cell term.

3.3 Mixed variational discretisation of the contact-mechanical model

The subspace MD Ă L2pΓq denotes the set of piecewise constant functions on the partition
FΓ and we set MD “ pMDqd. For λD in MD, we use the decomposition λD “ pλD,n,λD,τ q

with λD,n “ λD ¨n`, λD,τ “ λD´λD,nn
`. We denote by λσ the constant value of λD P MD

on the face σ P FΓ and by λn,σ and λτ,σ its normal and tangential components.

We consider the mixed formulation based on facewise constant Lagrange multipliers, which
seamlessly deals with fracture intersections, corners and tips and leads to local expressions
of the discrete contact conditions and efficient semi-smooth Newton solvers. On the other
hand, this approach requires to assume the following uniform inf-sup condition between the
space UD of displacement fields and the space MD of Lagrange multipliers: there exists c‹

independent on the mesh such that

inf
µDPMD

sup
vDPUD

ż

Γ
µD ¨ JvDKdσ

}vD}U0}µD}
H´ 1

2 pΓqd

ě c‹ ą 0. (24)

Let us define the discrete dual cone of normal Lagrange multipliers as

ΛD “ tλD,n P MD |λD,n ě 0 on Γu,

and the discrete dual cone of vectorial Lagrange multipliers given λD,n P ΛD as

ΛDpλD,nq “ tµD “ pµD,n,µD,τ q P MD |µD,n ě 0, |µD,τ | ď FλD,n on Γu.

Note that the friction coefficient F is assumed to be facewise constant on the partition FΓ.

The mixed discretisation of the quasi static contact-mechanical model reads: find puD,λDq P

UD ˆ ΛDpλD,nq such that, for all pvD,µDq P UD ˆ ΛDpλD,nq,
ż

Ω

´

m0δ
n
t 9uD ¨ vD ` σpun

Dq : εpvDq ´ rb Πm
DpnD ` αsKspΠm

DTn
D ´ Trefqs divpvDq

¯

dx

`

ż

Γ
λn
D ¨ JvDKdσ `

ż

Γ
Πf

Dp
n
D JvDKn dσ “

ż

Ω

pFn ¨ vD dx,

(25a)

14



ż

Γ

´

pµD,n ´ λn
D,nqJun

DKn ` pµD,τ ´ λn
D,τ q ¨ Jδnt uDKτ

¯

dσ ď 0, (25b)

The variational inequality in (25b25b) is equivalent to the contact conditions between λσ and
the face average of JuDK denoted by JuDKσ (see e.g. Lemma 4.1 of [77]). This is a key
property to obtain the following discrete persistence property of the normal contact term

ż

Γ
λn
D,nJδnt uDKndσ ě 0, (26)

leading to the dissipative property of the contact term
ż

Γ
λn
D ¨ Jδnt uDKdσ ě

ż

Γ
Fλn

D,n|Jδnt uDKτ |dσ ě 0. (27)

We refer the interested reader to [77] for the proof.

3.4 Summary of the schemes and discrete energy estimates

To summarise, the discretisations of the enthalpy-based and entropy-based formulations are
as follows:

(2020)-(2121)-(2525)-(1515)-(1616)-(1717) for the enthalpy-based model (H-modelH-model). (H-scheme)

(2020)-(2323)-(2525)-(1515)-(1616)-(1717) for the entropy-based model (S-modelS-model). (S-scheme)

Let us define the discrete skeleton internal energy En
s : Ω Ñ R by

En
s “

1

2

”

Πm
DpnD Πm

DTn
D

ı

M

«

Πm
DpnD

Πm
DTn

D

ff

` αsKsTref divu
n
D ` µ|εpun

Dq|2 `
λ

2
pdivun

Dq2.

Then, the following propositions state the discrete energy estimates for both formulations
of the energy equation.

Proposition 3.2. The scheme (H-schemeH-scheme) based on the conservative enthalpy formulation
of the energy equation satisfies, for all n “ 1, . . . , N , the following energy estimate

ż

Ω

m0

2
δnt | 9uD|2dx `

ż

Ω
δnt Es `

ż

Ω
δnt,mpϱDϕDeDq `

ż

Γ
δnt,f pϱDdf,DeDq

`

ż

Γ
Fλn

D,n|Jδnt uDKτ |dσ ď

ż

Ω

´

pHn
m ` pFn ¨ δnt uD

¯

dx `

ż

Γ

pHn
f dσ.

(28)

Proof. Adding (25a25a) with vD “ δnt uD “ 9un
D to the sums over M of (21a21a), over FΓ of (21b21b)

and over EΓ of (21d21d), and taking into account the flux conservativity and the homogeneous
Neumann boundary conditions (20c20c)-(21c21c), together with the definitions of the discrete
fracture aperture (1717), porosity (1515) and skeleton entropy (1616), we obtain the following
equality

ż

Ω
m0δ

n
t 9uD ¨ 9un

D dx `

ż

Ω
δnt,mpϱDϕDeDqdx `

ż

Γ
δnt,f pϱDdf,DeDqdσ

`

ż

Ω

´”

Πm
DpnD Πm

DTn
D

ı

Mδnt,m

«

pD

TD

ff

dx ` σepun
Dq : δnt εpuDqdx ` αsKsTref divδ

n
t uD

¯

dx

`

ż

Γ
λn
D ¨ Jδnt uDKdσ “

ż

Ω

´

pHn
m ` pFn ¨ δnt uD

¯

dx `

ż

Γ

pHn
f dσ.
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Then, using the diffusive properties of the implicit Euler time stepping (that is e.g., δnt 9uD ¨

9un
D ě 1

2 | 9un
D|2 ´ 1

2 | 9un´1
D |2) and the dissipative property of the discrete contact term (2727), we

obtain the energy estimate (2828).

Proposition 3.3. The scheme (S-schemeS-scheme) based on the non-conservative approximate en-
tropy equation satisfies, for all n “ 1, . . . , N , the following energy estimate

ż

Ω

m0

2
δnt | 9uD|2dx `

ż

Ω
δnt Es `

ż

Ω
δnt,mpϱDϕDeDq `

ż

Γ
δnt,f pϱDdf,DeDq

`

ż

Ω

´Kpϕn´1
D q

Πm
Dηn´1

D
∇m

DpnD ¨ ∇m
DpnD `

Λmpϕn´1
D q

Tref
|∇m

DTn
D|2

¯

dx

`

ż

Γ

´Cf pdn´1
f,D q

Πf
Dη

n´1
D

|∇f
Dp

n
D|2 `

Λf pdn´1
f,D q

Tref
|∇f

DT
n
D|2

¯

dσ

`

ż

Γ
Fλn

D,n|Jδnt uDKτ |dσ ď

ż

Ω

´

pHn
m ` pFn ¨ δnt uD

¯

dx `

ż

Γ

pHn
f dσ.

(29)

Proof. The estimate (2929) is a consequence of the proof of Proposition 3.23.2 combined with
Lemma 3.13.1 and the definitions of the Darcy (1818) and Fourier (1919) fluxes from the coercive
matrix (1313) and fracture (1414) fluxes.

4 Numerical experiments

Two test cases are considered in this Section. The first is based on a manufactured solution
for both the entropy and enthalpy-based models on a square domain with no fracture. The
objective is to assess and compare the convergence of the schemes for both models and
both for centred and upwind approximations of the thermal convection. Two values of the
permeability are tested to induce either convection dominated or equilibrated diffusion and
convection thermal regimes.

The second example considers a Discrete Fracture Matrix (DFM) model introduced in [33]
including a six fracture network. The setting of the simulation follows the test case proposed
in [3333] and the physical and numerical behavior of the discrete models are investigated both
for the case of a slightly compressible liquid and for the case of a perfect gas.

In all these numerical experiments, the HFV discretisations of the non-isothermal flow are
combined with the P2 conforming Finite Element discretisation of the displacement field.
This choice ensures the inf-sup condition (2424) for the P2 ´ P0 mixed formulation of the
contact-mechanics (2525). It also satisfies the inf-sup condition between the displacement
and pressure discrete spaces which prevents potential oscillations of the pressure field at
short times in the undrained regime.

The coupled nonlinear system is solved at each time step using a fixed-point method on the
function:

gp,T : pp, T q ÝÑ
Contact Mechanics

Solve

uh ÝÑ
Flow
Solve

pp̃, T̃ q,

accelerated by a Newton–Krylov algorithm – which have proven to be efficient within this
context in the isothermal case [77]. The stopping criteria is set to 10´10 on the relative
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residual. We refer to [1212] for an investigation of various fixed-point algorithms for THM
models.

At each iteration of the Newton–Krylov algorithm, the p, T sub-system is solved using
a Newton–Raphson algorithm and the contact-mechanics is solved using a semi-smooth
Newton method. In both cases, the stopping criteria is defined by a relative norm of the
residual set to 10´10 or a scaled maximum Newton increment of 10´10. At each Newton
iteration, the linear system is solved using the sparse direct solver SuperLU version 4.3
both for the non-isothermal flow and for the contact-mechanics.

4.1 Manufactured solution without fractures

We investigate in this section the numerical convergence of the schemes (H-schemeH-scheme) and
(S-schemeS-scheme) for respectively the (H-modelH-model) and (S-modelS-model) models using the following ana-
lytical solution

upx, tq “ 10´1e´t

˜

x2y2

´x2y2

¸

,

ppx, tq “ e´t sin pxq sin pyq , T px, tq “ e´t p2 ´ cos pxq cos pyqq ,

on the domain Ω “ p0, 1q2m2 and time interval p0, tF q with tF “ 1 s. The fluid is as-
sumed incompressible and its specific internal energy is defined by epT q “ T . Two values
K “ 100 Im2 and K “ Im2 (with I the identity matrix) of the homogeneous isotropic
permeability are considered. They are chosen such that the resulting Darcy velocity Vm

corresponds to a thermal convection dominated regime in the first case, and to similar orders
of magnitude for thermal convection and diffusion in the second case. Dirichlet boundary
conditions are imposed for p, T and u on p0, tF q ˆ BΩ and the source terms Gm, Hm and
F are computed from the analytical solution based on the data set defined in Table 11. The
domain Ω is discretised using the first family of triangular meshes from [1818] as illustrated
in Figure 33. Each mesh indexed by m P t1, 2, 3, 4u includes #M “ 56 ˆ 4m´1 triangles.
We consider a uniform time stepping of p0, tF q with time step ∆t “ 2.10´5 s chosen small
enough to reduce the error due to the time discretisation and focus on the convergence in
space.

The convergence of the L2 space time errors for p, T,u and their gradients are exhibited for
both schemes and both permeabilities in Figures 44-55 as functions of the mesh step. Both
the upwind and centred schemes are considered for the thermal convection. Note that the
centred schemes are not presented for K “ 100 I since they fail to provide a solution due
to their instability in the convection dominated regime. From Figures 44-55, we first observe
that the discretisations of both models provide a very similar convergence behavior for a
given choice of the permeability and of the centred or upwind approximation of the thermal
convection terms. Regarding the displacement field, second and first order convergence
rates are observed in all cases for respectively u and ∇u. This is in accordance with the
cellwise constant reconstruction Πm

D of the pressure and temperature in the displacement
field variational formulation (25a25a). The convergence rates for p and ∇p are respectively
roughly 2 and 1 in all cases as could be expected. On the other hand, the converge rates
for T and ∇T depend on the approximation of the convection term and on the convection–
diffusion regime. For equilibrated convection and diffusion, the centred scheme provides a
higher convergence rate of order roughly 2 for T than the upwind scheme of order between
1 and 2. An order 1 is observed on ∇T for both the centred and upwind schemes. In the
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convection dominated regime, the upwind scheme exhibits a convergence rate slightly better
than 1 for T , and an order between 0.5 and 1 for ∇T slightly better for the entropy-based
than for the enthalpy-based model.

Figure 3. Square domain Ω with its triangular mesh m “ 2 using 56 ˆ 4 cells.

Table 1. Material Properties

Symbol Quantity Value Unit

E Young modulus 2.5 Pa

ν Poisson coefficient 0.25 ´

N Biot modulus 0.25 Pa´1

b Biot coefficient 1.0 ´

Ks Bulk modulus 2.0 Pa

η Fluid viscosity 1.0 Pa s

ϕ0 Initial porosity 4 ´

Λm Effective thermal conductivity 0.1 W m´1 K´1

ϱ The fluid specific density 1 Kg m´3

αs The volumetric skeleton thermal dilation coefficient 1 K´1

αϕ The volumetric thermal dilation coefficient related to the porosity 1 K´1

Tref Reference temperature 1 K

m0 Average fluid skeleton specific density 0 Kg m´3

Cs The skeleton volumetric heat capacity 0.5 J m´3 K´1
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Figure 4. Convergence of the relative L2 errors for the temperature T , pressure p, and
displacement u and their gradients for the discretisation of the (S-modelS-model) model and both
the centred (for K “ I) and upwind (for K “ I, 100 I) schemes.
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Figure 5. Convergence of the relative L2 errors for the temperature T , pressure p, and
displacement u and their gradients for the discretisation of the (H-modelH-model) model and both
the centred (for K “ I) and upwind (for K “ I, 100 I) schemes.

4.2 2D Discrete Fracture Matrix (DFM) model

We consider the DFM model exhibited in Figure 66 and introduced in [33]. It is defined on
the domain Ω “ p0, 1q ˆ p0, 2qm2 and includes a network Γ of six fractures, among which
fracture 1 made up of two sub-fractures forming a corner, nearly intersecting fractures
and the non-immersed fracture 5 with one tip lying on the left boundary. The setting of
the simulation follows the test case proposed in [3333] and consists in three stages on the
time intervals I1 “ p0, tp1qq, I2 “ rtp1q, tp2qq and I3 “ rtp2q, tF s. These three stages are
monitored by the boundary conditions triggering respectively mechanical, hydraulic and
thermal driving forces. As exhibited in Figure 77, the displacement u “

t
p5,´2q 10´4m is

imposed at the top boundary for t ą 0. At the left boundary, a high pressure p “ 8. 106 Pa
is set for t ě tp1q, and a low temperature T “ 285K is prescribed for t ě tp2q.

The initial pressure and temperature are fixed to p0 “ 105 Pa and T 0 “ 300K. The initial
displacement field u0 is computed by solving the discrete contact-mechanical problem (25a25a)
at given p0, T 0 with a zero displacement u “ 0 at the bottom and top boundaries and
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a free boundary condition at the left and right sides. Throughout the simulation, the
top and bottom boundaries are assumed impervious with zero heat flux while the right
boundary condition imposes a fixed pressure p “ 105 Pa and temperature T “ 300K. A
zero displacement u “ 0 is prescribed at the bottom boundary and the left and right sides
are kept with homogeneous total stress conditions.

In order to compare the (H-modelH-model) and (S-modelS-model) models and their discretisations on
different fluid behaviors, we consider in the following two cases corresponding first to a
slightly compressible liquid and second to a perfect gas. The simulation parameters, not
depending on the fluid thermodynamical model, are reported in Table 22 together with
αϕ “ pb ´ ϕ0qαs, Ks “ λ ` µ, N “ Ks

pb´ϕ0qp1´bq
. The times tp1q, tp2q, tF will be fixed

according to the fluid thermodynamical model in such a way that a stationary state is
roughly reached at the end of each stage.

The simulations are performed on a family of 4 uniformly refined meshes indexed by m P

t0, ¨ ¨ ¨ , 3u with 2855ˆ4m triangular cells and 88ˆ2m fracture faces. The finest mesh m “ 3
is used for the reference solution in the numerical convergence investigations. Due to the
thermal convection dominated regime during stage 3, the convection terms are upwinded
for the discretisation of both models.

Figure 6. Two-dimensional domain Ω “ p0, 1q ˆ p0, 2qm2 including the six fracture network
Γ.

Table 2. Material Properties common to the liquid and gas test cases.

Symbol Quantity Value Unit

E Young modulus 40 GPa

ν Poisson coefficient 0.15 ´

F Friction coefficient 0.5 ´

b Biot coefficient 0.65 ´

K Permeability coefficient

˜

1 0

0 0.5

¸

ˆ 10´15 m2

ϕ0 Initial porosity 0.1 ´

d0 Contact aperture 5. 10´4 m

Λm Effective thermal conductivity 2 W m´1 K´1

αs The volumetric skeleton thermal dilation coefficient 1.5 10´5 K´1

m0 Average fluid skeleton specific density 0 Kg m´3

Cs The skeleton volumetric heat capacity 2 MJ m´3 K´1
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(a) Stage 1 (b) Stage 2

(c) Stage 3

Figure 7. Set up of the simulation in terms of initial condition at time t “ 0 and of boundary
conditions during each of the three stages corresponding to the time intervals I1 “ p0, tp1qq,
I2 “ rtp1q, tp2qq and I3 “ rtp2q, tF s. Here 1 bar corresponds to 105 Pa.

4.2.1 Weakly compressible liquid case

We consider a weakly compressible liquid with thermodynamical constitutive laws deriving
from a free enthalpy potential. It is characterised by its specific density ϱpp, T q such that

ϱref
ϱpp, T q

“ 1 ´
pp ´ prefq

Kf
` αf pT ´ Trefq,

and its specific internal energy

epp, T q “ CfT ´
αf

ϱref

´

pp ´ prefqTref ` ppT ´ Trefq

¯

`
pp2 ´ p2refq

2ϱrefKf
,

given the parameters Tref “ 300 K, pref “ 105 Pa, ϱref “ 103 Kg.m´3, Kf “ 2.18 GPa,
αf “ 2.07 10´4K´1, and Cf “ 4180 J.Kg´1.K´1. The fluid viscosity is set to η “ 10´3 Pa s.
The time intervals for each of the three stages are given by tp1q “ 100 s, tp2q “ 200 s and
tF “ 5 days. The time stepping is defined by a small initial time step of 0.1 s in order to
capture the undrained regime time scale at the beginning of stage 1 and by the maximum
time steps of 5 s for stage 1 and 2 and of 0.1 day for stage 3.

Figure 99 exhibits the evolution of the contact state (open, contact stick or contact slip)
along the fractures at different times during the three stages. At time t ą 0, due to the
imposed displacement at the top, most of the fractures switch from open to contact. During
the undrained regime, at the very beginning of stage 1, the high increase of the pressure
(see Figure 88 (a)) induces a slip state for most of the fractures in contact, as a result of the
reduction of the normal surface traction. Toward the end of stage 1, these fractures switch
back to stick state due to the pressure relaxation (see the evolution of the mean pressure
in Figure 1010 (a)). During stage 2, fractures 1 and 3 switch back to slip state as a result
of the high pressure front propagation (see Figure 88 (b) and 1010 (a)) while they partially
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or totally open during the cold temperature front propagation in stage 3 (see Figures 88 (c)
and 1010 (b)) as a result of the matrix shrinkage.

(a) Stage 1 (b) Stage 2

(c) Stage 3

Figure 8. Discrete solution obtained with the enthalpy-based model on the finest mesh
m “ 3: (a) pressure p at the very beginning of stage 1 (t “ 0.1 s), (b) pressure p at t “ 116
s during stage 2, (c) temperature T at t “ 27715 s time during stage 3.

Figure 1010 compares the evolution in time of mean in space variables (p, pf , T , Tf , and
scaled df ´d0, JuKτ , and ϕ´ϕ0) for the entropy-based and enthalpy-based discrete solutions
obtained on the finest mesh m “ 3. A very good match is observed on all variables with
only small differences during stage 3 which has been checked to result from the neglected
terms V ¨ ∇p in the approximate entropy equations of the (S-modelS-model) model. When these
terms are added back, the discrete solutions of both models fully match. Note that the
linearisation of the Fourier term is not a significant source of discrepancy for this test case
due to the thermal convection dominated regime.

Figure 1111 compares, for the discrete solutions of both models, the convergence of the L2

errors in time of mean in space variables as functions of the mesh step h (1/total number
of fracture faces). The errors are computed w.r.t. the fine mesh m “ 3 reference solutions
obtained using the same time stepping and the same model. The observed convergence
behaviors of the discretisations of the two models are very similar, with a rate of convergence
roughly equal to 1.5.
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(a) Initial state pp “ 1 bar, T “ 300 Kq

(b) Beginning of Stage 1 (c) End of stage 1

(d) Stage 2 (e) Stage 3

Figure 9. Contact state (open, contact stick, contact slip) along the fractures at different
times for the discrete solution on the finest mesh m “ 3 of the enthalpy-based model.
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Figure 11. Relative L2 in time errors vs. the mesh step h (1/total number of fracture faces)
of mean in space p, pf , T , Tf df , JuKτ , ϕ discrete solutions for both enthalpy-based (full
lines) and entropy-based models (dash lines). The errors are computed using the fine mesh
m “ 3 reference solutions with the same time stepping and model.
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Figure 10. (a) Matrix and fracture mean pressures, (b) matrix and fracture mean tempera-
tures, and (c) scaled mean JuKτ , df ´d0 and ϕ´ϕ0 as functions of time for the solutions on
the finest mesh m “ 3, for the discretisations of the enthalpy-based (H) and entropy-based
(S) models.

4.2.2 Perfect gas case

We now consider the case of a perfect gas characterised by the following specific enthalpy
and density

hpp, T q “ CfT, ϱpp, T q “ Mf
p

RT
,

with gas specific heat capacity Cf “ 1000 J.Kg´1.K´1, molar mass Mf “ 28.9645 10´3

Kg.mol´1 and the perfect gas constant R “ 8.3149 J.mol´1.K´1. The gas viscosity is fixed
to η “ 1.72 10´5 Pa s.

The time intervals for each of the three stages are given by tp1q “ 100 s, tp2q “ 500 s and
tF “ 3.005 105 s. The time stepping is defined with a single time step during stage 1 since
the coupling of the displacement with the pressure is very small during this stage due to the
high gas compressibility (see the pressure solution during stage 1 in Figure 1212 (a)). Stage
2 is initialised with a time step of 10 s and the maximum time steps are set to 100 s for

25



stage 2 and 8000 s for stage 3.

In Figure 1313 we present the L2-errors in time, vs. the mesh size, for the spacial means of
relevant variables. Both schemes provide roughly a convergence order of 1.5. It can also be
noticed that the enthalpy-based discrete solution is not very well captured by the coarser
mesh, which explains the strong decrease of the errors between the first two meshes. The
significant differences between the convergence plots of the two models result from the high
discrepancy between the enthalpy-based and entropy-based discrete solutions.

Figure 1414 better illustrates the difference between the solutions of both models; we see in
particular that the entropy-based model exhibits a temperature variation far below ´15
K during stage 3 while it should physically be close to 15 K as it is the case for the
enthalpy-based model. We demonstrate in Figure 1515 that this discrepancy is due to the
neglected terms Vm ¨ ∇p in the approximate entropy equations of the (S-modelS-model) model.
Once these terms are added, the discrete solutions of both models fully match. This can be
easily explained by comparing during stage 3 the order of magnitude of the neglected term
Vm ¨∇p with that of ϱmVm ¨∇hm. The ratio between both terms is of the order of roughly
10 for the gas test case while it is roughly 0.1 for the liquid test case. This is explained by
the rather high pressure gradient combined with the low density and heat capacity in the
gas case compared with the liquid case. We can conclude that the terms Vm ¨ ∇p cannot
be neglected in the entropy-based model in the gas case with low specific density.

(a) Stage 1 (b) Stage 2

(c) Stage 3

Figure 12. Discrete solution obtained with the enthalpy-based model on the finest mesh
m “ 3: (a) pressure p at the end of stage 1, (b) pressure p at t “ 170 s during stage 2, (c)
temperature T at t “ 42730 s during stage 3.
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Figure 13. Relative L2 in time errors vs. the mesh step h (1/total number of fracture faces)
of mean in space p, pf , T , Tf df , JuKτ , ϕ discrete solutions for both enthalpy-based (full
lines) and entropy-based models (dash lines). The errors are computed using the fine mesh
m “ 3 reference solutions with the same time stepping and model.
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Figure 14. Matrix and fracture (a) mean over-pressures (p ´ p0) and (b) mean over-
temperatures (T ´ T 0) as functions of time for the solutions on the finest mesh m “ 3, for
the discretisations of the enthalpy-based (H) and entropy-based (S) models.
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Figure 15. Matrix and fracture (a) mean over-pressures (p ´ p0) and (b) mean over-
temperatures (T ´ T 0) as functions of time for the solutions on the finest mesh m “ 3,
for the discretisations of the enthalpy-based (H) model, and the entropy-based model with
Vm ¨ ∇p correction (S (`Vm ¨ ∇p)) discrete models.

4.2.3 Performances of the nonlinear solver

Figures 1616 and 1717 exhibit the total numbers of Newton iterations against time for the
Thermo-Hydro and Mechanical models. The total number of time steps is 110 for the
liquid case in Figure 1616 and 87 for the gas case in Figure 1717. We can notice the robustness
in both cases of the nonlinear solvers w.r.t. the mesh size. Remarkably, in the liquid case, the
entropy and enthalpy-based discrete models provide similar numbers of iterations through
time. In the gas case, the number of Thermo-Hydro Newton iterations gets moderately
larger during stage 3 for the entropy-based than for the enthalpy-based discrete models as
a result of a much larger temperature variation for the entropy-based simulation. It has
been checked that adding the Vm ¨∇p terms to the entropy-based discrete model gives back
essentially the same Newton behavior as for the enthalpy-based model.
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Figure 16. Total numbers of Newton iterations for the Thermo-Hydro and Mechanical
models as a function of time, for the liquid case and both enthalpy-based (H) and entropy-
based (S) schemes. (Left) mesh m “ 3, (right) mesh m “ 1, with a total number of 110
time steps in all cases.
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Figure 17. Total number of Newton iterations for the Thermo-Hydro and Mechanical models
as a function of time, for the gas case and both enthalpy-based (H) and entropy-based (S)
schemes. (Left) mesh m “ 3, (right) mesh m “ 1, with a total number of 87 time steps in
all cases.

5 Conclusion

This work focuses on discretisations of mixed-dimensional THM models preserving energy
estimates for a general single phase fluid thermodynamical model. Our approach uses a
Finite Volume scheme for the mass and energy equations with a possible upwinding of the
convection terms in order to account for convection dominated regimes. It is combined
with a mixed Finite Element discretisation of the contact-mechanics with face-wise con-
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stant Lagrange multipliers, keeping the dissipative property of the contact terms at matrix
fracture interfaces. Two formulations of the energy equation are considered and compared
numerically. It is built either directly from the energy conservation or obtained from an
approximate entropy balance equation based on a small Darcy velocity and small tempera-
ture variation assumptions. The Finite Volume discretisation of the entropy-based model,
and in particular of the non-conservative convection terms, is carefully designed in order
to preserve the link between both formulations, which in turns guarantees that it satisfies
an energy estimate. Both discrete models are assessed and compared in terms of conver-
gence, accuracy and robustness on 2D test cases including a convective dominated regime,
and either a weakly compressible liquid or highly compressible gas. It is shown that both
approaches provides similar results in terms of spatial convergence and robustness of the
nonlinear solver. On the other hand, in the gas case, for low specific density and high
pressure gradient, the terms V ¨ ∇p that are typically neglected in the entropy balance
approach must be accounted for in order to provide the physical solution.
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