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Meta-Schrödinger and meta-conformal
symmetries in the non-equilibrium dynamics of
the directed spherical model

Stoimen Stoimenov and Malte Henkel

Abstract New scaling regimes exist, for large distances and sufficiently long-ranged
initial conditions, in the kinetics of directed spin models. The spatial length scales
are larger than those found in spatially isotropic dynamic scaling. Their dynamical
symmetries are given by the meta-conformal and the meta-Schrödinger algebras.
These facts are illustrated through the exact solution of the directed spherical model
at T ≤ Tc and compared with the 1D directed Glauber-Ising model at T = 0.

1 Introduction

Physical ageing in many-body systems can arise after a quenching from some ini-
tial (disordered) state, either onto a critical point or else into a two-phase coex-
istence regime [55, 9, 14, 32, 56]. This leads to slow relaxation processes, with
formally infinite relaxation times. In addition, ageing is characterised in the macro-
scopic observables by dynamical scaling and by the breaking of time-translation
invariance. A central quantity is the time-dependent length scale L = L(t), which
for the systems of interest here grows for large times algebraically, according to
L(t) ∼ t1/z where z is the dynamic exponent. Relevant physical observables in-
clude two-time correlators C and two-time responses R. In the limit of large times
t,s ≫ τmicro (with a microscopic reference time τmicro) such that t/s > 1, these are
constructed from the time-space-dependent order-parameter ϕ(t,rrr) and the conju-
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Fig. 1 Scaling regimes in the directed spherical model for spatial distances r∥ and r⊥ as compared
to the characteristic length scales τ1/2 and τ . Conveniently long-ranged initial correlations in the
preferred direction are necessary for the existence of the meta-conformal scaling regime.

gate symmetry-breaking external field h(s,rrr) and are expected to admit dynamical
scaling forms

C(t,s;rrr) := ⟨ϕ(t,rrr)ϕ(s,000)⟩= s−bFC

(
t
s
,
|rrr|z

t + s

)
(1a)

R(t,s;rrr) :=
δ
⟨
ϕ(t,rrr)

⟩
δh(s,000)

∣∣∣∣∣
h=0

= s−1−aFR

(
t
s
,
|rrr|z

t − s

)
(1b)

where a,b are system-dependent, but universal, ageing exponents. The time t is
called the observation time and s is the waiting time. In almost all cases, one finds an
asymptotic algebraic behaviour of the form FC(y,0)∼ y−λC/z and FR(y,0)∼ y−λR/z

for y = t/s ≫ 1 and where λC and λR are the (universal) auto-correlation and auto-
response exponents, respectively. Almost always λC = λR = λ are identical. How-
ever, further dynamical symmetries are required in order to fix the form of scaling
functions FC and FR in (1). These and other generic properties of the scaling func-
tions follow from a new interpretation of broken time-translation-invariance [43].

In the scaling forms (1), spatial isotropy and spatial rotation-invariance are im-
plicit. However, one may ask what occurs if in addition to the usual diffusive and
spatially isotropic transport, an extra ballistic transport in a preferred direction
arises. For simplicity of terminology, we shall restrict to the case of simple dif-
fusive dynamics where the dynamic exponent z = 2.1 Figure 1 outlines the generic
scenario. First, for relatively short spatial distances and times, with r2/t = cste. being
kept fixed and z = 2, the ballistic anisotropy is not relevant and the scaling form (1)
are the well-known one of diffusive scaling. The underlying dynamical symmetry is
the one of the Schrödinger group. On the other hand, for larger spatial separations

1 This value of z arises in the phase-ordering kinetics of a spin system quenched to below criticality,
T < Tc, and with a dynamics such that the order-parameter is not conserved [7, 8, 9].
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one must distinguish spatial coordinates r∥ and rrr⊥ parallel and perpendicular to the
preferred direction of ballistic transport. Indeed, if the scaling limit is taken in such
a way that ∣∣r∥∣∣/t = cste,

∣∣rrr⊥∣∣/t = cste, (2)

the scaling behaviour remains spatially isotropic with a dynamic exponent z = 1 in
all directions. It turns out this in this case one has a new dynamical symmetry, the
so-called meta-conformal symmetry [29, 40]. Alternatively, one may take the scaling
limit also in a spatially anisotropic way such that∣∣r∥∣∣/t = cste,

∣∣rrr⊥∣∣2/t = cste. (3)

which implies a spatially anisotropic dynamic exponent, namely z∥ = 1 in the pre-
ferred direction whereas z⊥ = 2 in the transverse directions. The dynamical symme-
try is the meta-Schrödinger symmetry [54].

What are the physical conditions to be satisfied that these new scaling regimes
with their as yet largely unexplored dynamical symmetries are realised ? Here, we
shall review recent work in exactly solvable models which illustrate the physical
conditions required. This might serve as a guide in future simulational studies.

Extended dynamical scaling is common for equilibrium phase transitions. In-
deed, extensions to conformal invariance, especially for two-dimensional systems,
leads to spectacular results [5, 17, 28, 33, 50]. Out of equilibrium, systems under-
going ageing are ideal candidates for analogous extensions, because of their natu-
ral dynamical scaling [55]. For example, in the case of phase-ordering kinetics at
T < Tc and a microscopic dynamics without any conservation laws (‘model A’), one
has z = 2 and the Schrödinger algebra [44, 45] is a good candidate for a dynam-
ical symmetry algebra [27]. It is the maximal finite-dimensional Lie sub-algebra
of the infinite-dimensional Schrödinger-Virasoro Lie algebra [30, 57]. Schrödinger-
invariance furnishes the best known description of recent experiments on the phase-
ordering kinetics in liquid crystals [2], see [32, 39] for reviews.

Other possibilities exist for non-trivial dynamical symmetries, see [16, 42]. These
include dynamical scaling, with either z = 1 (for ortho- [5] and meta-conformal [52,
40, 53] or conformal-galilean algebras [26, 4, 3]) or else z = 2 (for the Schrödinger-
related algebras). Dualisation techniques of string theory clarify the nature of n-
point functions as either correlators or response functions [30, 34, 35, 38, 41]. Here,
we are interested in systems with directed dynamics [51, 47]. Their non-equilibrium
dynamics has been studied intensively, notably in the directed Ising [20, 22, 23, 24]
and the directed spherical models [21]. As we shall see, long-ranged spatial initial
correlations are essential for the physical realisation of meta-conformal or meta-
Schrödinger symmetries [40, 42].

This work is organised as follows. Section 2 recalls the exact solution of the
directed spherical model from which section 3 finds the two-time correlators and
responses, with long-range initial correlations. Section 4 lists the meta-conformal
and meta-Schrödinger generators in Fourier space, used in section 5 to predict the
co-variant two-point correlation/response functions and compare them with the di-
rected spherical model, and the 1D Glauber-Ising model. We conclude in section 6.
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2 Directed spherical model

The directed spherical model will serve as illustration for the realisation of dynami-
cal symmetries in directed spin models, at temperatures T ≤ Tc. We begin by recall-
ing the main lines of the computation of two-time correlators and responses [21].

Consider continuous spin variables Snnn(t)∈R on the sites nnn of a lattice, subject to
the spherical constraint ∑nnn∈Λ

⟨
Snnn(t)2

⟩
= |Λ |, the number of sites of the hyper-cubic

lattice Λ ⊂ Zd . In the |Λ | → ∞ limit, these become S = S(t,rrr) ∈ R and obey the
equations of motion (with nearest-neighbour interactions and the habitual scalings)

∂tS(t,rrr)=
d

∑
a=1

[
(1+va)S(t,rrr−eeea)+(1−va)S(t,rrr+eeea)−2S(t,rrr)

]
+z(t)S(t,rrr)+η(t,rrr)

(4)
with the centred white noise η = η(t,rrr) and the Lagrange multiplier z(t) to enforce
the spherical constraint. The directional bias is given by vvv and eeea is the unit vector
in direction a = 1, . . . ,d. From now on, one rotates axes such that vvv = veee1.

The formal solution is in Fourier space, generalising the non-biased case [13, 19]

Ŝ(t,qqq) = e−Ω(qqq)t−Z(t)
(

Ŝ(0,qqq)+
∫ t

0
dτ eΩ(qqq)τ+Z(τ)η̂(τ,qqq)

)
(5a)

Ω(qqq) = ω(qqq)+2ivsinq1 = 2
d

∑
a=1

(
1− cosqa

)
+2ivsinq1, (5b)

with qqq = (q1,qqq⊥) ∈ R⊗Rd−1. The two-time correlator Ĉ(t, t ′;qqq) is found from⟨
Ŝ(t,qqq)Ŝ(t ′,qqq′)

⟩
= (2π)dδ (qqq+qqq′)Ĉ(t, t ′;qqq) (6a)⟨

η̂(t,qqq)η̂(t ′,qqq′)
⟩
= 2T (2π)dδ (t − t ′)δ (qqq+qqq′) (6b)

along with ⟨η̂(t,qqq)⟩= 0. Let lng(t) = 2
∫ t

0dτ z(τ) to find the single-time correlator

Ĉ(t,qqq) := Ĉ(t, t,qqq) =
e−2ω(qqq)t

g(t)

(
Ĉ(0,qqq)+2T

∫ t

0
dτ e2ω(qqq)τ g(τ)

)
(7)

The spherical constraint reads 1
(2π)d

∫
BdqqqĈ(t,qqq) = 1 with the Brillouin zone B =

[−π,π]d . It turns into a Volterra integral equation for g(t), together with [48]

g(t) = A(t)+2T
∫ t

0
dτ f (t − τ)g(τ) (8a)

f (t) =
1(

2π
)d

∫
B

dqqq e−2ω(qqq)t , A(t) =
1(

2π
)d

∫
B

dqqqĈ(0,qqq)e−2ω(qqq)t (8b)

From this, the critical temperature is readily found to be bias-independent
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conditions 𝟋
T = Tc 2 < d < 2−α −1−α/2
T = Tc 2−α < d < 4 d/2−2
T = Tc 4 < d 0

T < Tc 2 < d −(d +α)/2

Table 1 Exponent 𝟋 in the directed spherical model, for temperatures T ≤ Tc.

Tc = Tc(d) = 2
/∫ ∞

0
du

(
e−4uI0(4u)

)d
(9)

such that Tc(d)> 0 for d > 2 [19, 21], where I0(u) is a modified Bessel function [1].
The new ingredient [42] are long-range initial correlations, in the auxiliary func-

tion A(t). We admit a disordered initial state in the transverse directions but long-
range initial correlations in the preferred direction, such that for small momenta

Ĉ(0,qqq) = Ĉ(0,q1,qqq⊥) = cα
∣∣q1

∣∣α , −1 < α < 0 (10)

with a positive constant cα > 0. This goes beyond the case α = 0 studied before
where A(t) = f (t) =

(
e−4t I0(4t)

)d [21]. An asymptotic analysis for the constraint
(8a) shows that for T ≤ Tc one has the long-time behaviour g(t) ∼ t𝟋, where the
values of 𝟋 are given in table 1 [42]. It is independent of the bias vvv [21], but depends
through α on the initial correlations (10). Then the Lagrange multiplier z(t)≃ 𝟋

2
1
t .

Then the leading scaling behaviour of eq. (4) can be derived from the equation

∂tS(t,rrr) = ∆rrrS(t,rrr)−2vvv ·∇∇∇rrrS(t,rrr)+
𝟋
2t

S(t,rrr)+η(t,rrr). (11)

We shall investigate below its dynamical symmetries.
Observables are now immediately found. The two-time correlator is [21]

Ĉ(t,s;qqq) =
exp(−Ω(qqq)t −Ω(−qqq)s)√

g(t)g(s)

(
Ĉ(0;qqq)+2T

∫ s

0
dτ e2ω(qqq)τ g(τ)

)
(12)

in Fourier space. The response function is found by adding a magnetic perturbation
δH = ∑rrr h(t,rrr)S(t,rrr) to the hamiltonian which amounts to replacing η 7→ η + h
in (4). Adapting (5a), this gives [19, 21, 48, 25, 37, 42]

R̂(t,s,qqq) =
δ
⟨
Ŝ(t,qqq)

⟩
δ ĥ(s,qqq)

∣∣∣∣∣
ĥ=0

= e−Ω(qqq)(t−s)

√
g(s)
g(t)

(13)

which depends on the initial conditions (10) only indirectly through the value of α .
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3 Time-space responses and correlators

Working out observables in the scaling limits (2,3) is rendered more simple in
Fourier space. The dispersion relation (5b) is in the limit of low momenta

Ω(qqq) = 2
d

∑
a=1

(
1− cosqa

)
+2ivsinq1 ≃

(
q2

1 +qqq2
⊥
)
+2ivq1 (14)

and we decompose qqq =
(
q1,qqq⊥

)
∈ Rd into preferred and transverse components.2

First, consider the two-time response function. We study the scaling limits:
(A) The meta-conformal scaling limit (2) when τ = t − s → ∞ and qa → 0 such

that (t−s)qa is kept fixed in all spatial directions a= 1,2, . . . ,d. Then Ω(qqq)
(
t−s

)
≃

2ivq1
(
t − s

)
+ . . ., up to corrections to scaling, and we find

R̂(t,s;qqq) = e−2ivq1(t−s)
( s

t

)𝟋/2
(15a)

R(t,s;rrr) =
1
2v

(
t − s

)−d
( t

s

)−𝟋/2
δ
(

r1

2v(t − s)
−1

)
δ (d−1)

(
rrr⊥

t − s

)
(15b)

where δ denotes the Dirac distribution [18]. The cases T < Tc(d) and the different
regimes at T = Tc(d) are merely distinguished by the value of 𝟋, see table 1.

(B) The meta-Schrödinger scaling limit (3) when τ = t − s → ∞ and qa → 0 such
that (t−s)q1 as well as (t−s)q2

a are kept fixed for a = 2, . . . ,d. Then Ω(qqq)
(
t−s

)
≃

2ivq1
(
t − s

)
+qqq2

⊥(t − s)+ . . ., up to corrections to scaling. The two-time response is

R̂(t,s;qqq) = e−2ivq1(t−s)−qqq2
⊥(t−s)

( s
t

)𝟋/2
(16a)

R(t,s;rrr) =
π1/2

v
R[ms](t,s)δ

(
1
2v

r1

t − s
−1

)
exp

[
−

rrr2
⊥

4(t − s)

]
(16b)

with the autoresponse R[ms](t,s) =
(
4πs

)−(d+1)/2 ( t
s −1

)−(d+1)/2 ( t
s

)−𝟋/2 which is
of the same form as for un-biased case [19, 48], but with different scaling dimen-
sions. Again, the different cases of T ≤ Tc(d) are distinguished by the value of 𝟋.

Next, we analyse the two-time correlator, which in Fourier space is given by (12)
with its contributions of the initial noise and thermal noise, respectively. Using the
low-energy dispersion (14) and and the initial condition (10) we find

Ĉ(t,s;qqq) =
exp

[
−2ivq1(t − s)−qqq2

⊥(t + s)
]

g∞
(
ts
)𝟋/2

(
cα

∣∣q1
∣∣α +2T

∫ s

0
dτ e2qqq2

⊥τ
(

A0

M2 δ (τ)+g∞τ𝟋
))

=
exp

[
−2ivq1(t − s)−qqq2

⊥(t + s)
](

ts
)𝟋/2

(
cα
g∞

∣∣q1
∣∣α +

2T
1+𝟋

s1+𝟋
1F1

(
1+𝟋,2+𝟋;2qqq2

⊥s
))

(17)

2 Formally un-bounded two-point functions in direct space in the meta-conformal and meta-
Schrödinger cases are regularised by dualising the generators, see [38, 41, 42] for details.
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where 1F1 is a Kummer function [1]. In the first line, we recognise that the singu-
lar term ∼ A0δ (τ) produces for α < 0 merely a correction to scaling. As to the
two scaling limits, in the meta-conformal limit, we have qqq2

⊥s → 0 and in the meta-
Schrödinger limit, qqq2

⊥s is finite. In (17), the initial correlator is more relevant, if

α
!
<−1−𝟋 (18)

Using table 1, we can distinguish the following situations for T ≤ Tc(d) [42]:

1. For T < Tc(d), we should have α
!
< d −2. Since d > 2 is needed to have a non-

vanishing Tc(d), and α < 0 that condition is automatically satisfied and thermal
noise is irrelevant in the entire ordered phase.

2. For T = Tc(d) and 2 < d < 2−α , the condition (18) leads to α
!
< α/2 < 0.

Hence at criticality with 2 < d < 2−α thermal noise is always irrelevant.

3. For T = Tc(d) and 2−α < d < 4, we find from (18) that α
!
< 1−d/2. Only for

these values of α , with an initial spatial correlator decaying more slowly than
Cn(0) ∼ |n|−(2−d/2), the initial noise is relevant and the thermal noise generates
a correction to scaling. But if 0 > α > 1−d/2, the thermal noise is relevant.

4. For T = Tc(d) and d > 4, we have 𝟋 = 0, hence α
!
< −1. This is impossible.

Hence thermal noise is always relevant: the usual mean-field behaviour.

This leads to the following scaling forms of the two-time correlator:

1. First, if the initial noise is relevant, the momentum-space two-point correlator is

Ĉ(t,s;qqq) =
cα
g∞

exp[−2ivq1(t − s)−qqq2
⊥(t + s)]

(ts)𝟋/2

∣∣q1
∣∣α (19)

but the form in direct space does depend on the scaling limit to be taken.
(A) In the meta-conformal limit (2), the term qqq2

⊥(t + s)→ 0, so that the scaling
form in time-space of the two-point correlator is

C(t,s;rrr) =
1

(2π)d

∫
Rd

dqqq eiqqq·rrr cα
g∞

exp[−2ivq1(t − s)]
(ts)𝟋/2

∣∣q1
∣∣α

= C(0)
(
ts
)−𝟋/2 ∣∣r1 −2v(t − s)

∣∣−α−1δ (d−1)(rrr⊥) (20)

with the constant C(0) := cα
2πg∞

∫
Rdq1 eiq1

∣∣q1
∣∣α (this is a distribution [18]).

(B) In the meta-Schrödinger limit (3), we rather have

C(t,s;rrr) =
1

(2π)d

∫
Rd

dqqq eiqqq·rrr cα
g∞

exp[−2ivq1(t − s)−qqq2
⊥(t + s)]

(ts)𝟋/2

∣∣q1
∣∣α (21)

= C[0]
(
ts
)−𝟋/2 ∣∣r1 −2v(t − s)

∣∣−α−1 (t + s
)−(d−1)/2 exp

[
−1

4
rrr2
⊥

t + s

]
with a constant C[0] which we do not specify.
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Relevant initial noise occurs (i) either if T < Tc(d), or else (ii) if T = Tc(d) if
either d < 2−α or else for 2−α < d < 4 if α < 1−d/2.

2. Second, if the thermal noise is relevant, we rather find

Ĉ(t,s;qqq) =
exp

[
−2ivq1(t − s)−qqq2

⊥(t + s)
](

ts
)𝟋/2 2Tc(d)

∫ s

0
dτ e2qqq2

⊥τ τ𝟋

=
2Tc(d)
1+𝟋

s
( s

t

)𝟋/2
e−2ivq1(t−s)−qqq2

⊥(t+s)
1F1

(
1+𝟋,2+𝟋;2qqq2

⊥s
)

(22)

reduces to the un-biased correlator, up to a small damping term. This is the sit-
uation which has been discussed in detail in the littérature [21]. This occurs at
criticality if either d > 4 or else for 2−α < d < 4 if α > 1−d/2 and notably for
all dimensions d > 2 for short-ranged initial correlations where α = 0.

Proposition 1: [42] In the directed spherical model at T ≤ Tc, with long-ranged
initial correlations (10) in the preferred direction, there exists a ballistic scaling
regime, for distances larger than for diffusive scaling. The dynamic exponent is
isotropically z = 1 for a meta-conformal scaling limit (2) or z∥ = 1 and z⊥ = 2
in the preferred/transverse directions for a meta-Schrödinger scaling limit (3).

4 Representations in Fourier space

We need the representations of meta-conformal [40] and meta-Schrödinger algebras
[54] in Fourier space. For notational simplicity, we use one ‘parallel’ or preferred
direction x → q∥ =: q and one ‘perpendicular’ or transverse direction y → q⊥ =: p
in Fourier space. For the meta-Schrödinger algebra, scaling operators transform as

Φ(t,x,y)=
1

4π2

∫
R2

dqdpei(xq+yp)Φ̂(t,q, p) , Φ̂(t,q, p)=
∫
R2

dxdye−i(xq+yp)Φ(t,q, p)

(23)
and from this follows the correspondence between differential operations3

∂x → iq, x → i∂q, x2 →−∂ 2
q , ∂ 2

x →−q2, x∂x →−q∂q −1

Furthermore, for application to non-equilibrium dynamics, it turns out that a fur-
ther change of representation is necessary [54, 42, 43]

Xn 7→ eξ ln tXne−ξ ln t , Yn 7→ eξ ln tYne−ξ ln t (24)

which also implies a corresponding change in the Schrödinger operator

S 7→ eξ ln tS e−ξ t = S −ξ/t (25)

3 Similarly for y. This also implies rules such as rrr2∂rrr = rrr · (rrr∂rrr)→ i∂qqq · (−qqq∂qqq −d), where d is the
number of the space dimensions.
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since S is a first-order differential operator in t. In the spherical model, with the
effective long-time equation of motion (11), we can identify ξ =𝟋/2.

Now we are able to write the generators of meta-conformal and meta-Schrödinger
algebra4, in Fourier space, that is acting on Φ̂ defined in (24).

4.1 The meta-conformal algebra in Fourier space

In order to find the n-point functions of quasi-primary scaling operators, the gener-
ators of the finite-dimensional algebras are required. We have using (24) [54, 42]

X−1 = −∂t +ξ/t, X0 =−t∂t +q∂q −δ +ξ +1

X1 = −t2∂t + iβq∂ 2
q +2tq∂q −2i(γ −β )∂q − (2δ −ξ −2)t

Y−1 = −iq, Y0 =−itq+βq∂q − (γ −β )
Y1 = −it2q+2β tq∂q −2iβ (γ −β )∂q + iβ 2q∂ 2

q −2t(γ −β ) (26)

where we set d⊥ = 1 for simplicity. Meta-conformal generators do not contain the
transverse momentum p. The scaling operators on which these generators act are
each characterised by the scaling dimensions δ ,ξ and the rapidity γ . The equilib-
rium (‘standard’) representation is recovered by setting ξ = 0.

4.2 The meta-Schrödinger algebra in Fourier space

For quasi-primary scaling operators in Fourier space, we have for d⊥ = 1 [54]:

X−1 = −∂t +ξ/t, X0 =−t∂t +q∂q +
p
2

∂p −δ +ξ +
3
2

X1 = −t2∂t + iβq∂ 2
q +2tq∂q −2i(γ −β )∂q + t p∂p +

M

2
∂ 2

p − (2δ −ξ −3)t

Y (∥)
−1 = −iq, Y (∥)

0 =−itq+βq∂q − (γ −β )

Y (∥)
1 = −it2q+2β tq∂q −2iβ (γ −β )∂q + iβ 2q∂ 2

q −2t(γ −β )

Y (⊥)

− 1
2
= −ip, Y (⊥)

1
2

=−it p− iM ∂p, M0 =−M (27)

Spatial rotation-invariance allows a trivial generalisation to d⊥ ≥ 1 transverse di-
mensions. Notice that the transverse momentum p not only appears in the genera-
tors Xn but also leads to the appearance of the additional generators Y (⊥)

± 1
2

and M0.

The equilibrium (‘standard’) representation is recovered by setting ξ = 0.

4 Technically, we restrict to case α = 0 for both algebras, see [40, 54] for details.
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5 Two-point functions and comparison with the spherical model

In Fourier space one has for the covariant two-point functions

F = F [2](ta, tb,qa,qb, pa, pb) =
⟨
Φ̂(ta,qa, pa)Φ̂(tb,qb, pb)

⟩
(28)

where the scaling operators Φ̂ are quasi-primary, i.e. transform covariantly with
respect to the maximal finite-dimensional subalgebra of the meta-conformal algebra
(26) or of the meta-Schrödinger algebra (27). The Ward identities readily follow
since the transformation terms are already included in the generators.

5.1 Meta-conformal covariant two-point functions

We first look for the form of two-point function covariant under representation (26)
of meta-conformal algebra. Here time-translation-invariance is explicitly broken via
the time-dependence of the generator X−1 = eξ ln t

(
−∂t

)
e−ξ ln t = −∂t + ξ/t, ob-

tained from the standard time-translations −∂t . The co-variance under X−1 leads to
the following equation for the two-point function F = F(τ,u,qa,qb), after a change
of variables τ = ta − tb and u = ta/tb(

(u−1)u∂u +ξa +uξb
)
F(τ,u,qa,qb) = 0 (29)

Integrating (29), the u-dependence is determined

F(τ,u,qa,qb) = uξa(u−1)−ξa−ξbδ (qa +qb) f (τ,qa) (30)

where spatial translation-invariance is also taken into account. Herein, the function
f (τ,qa) satisfy the system of covariance conditions under X0 and Y0;

(τ∂τ −qa∂qa +δa +δb −1−ξa −ξb −1) f (τ,qa) = 0 (31a)
(iτqa −βaqa∂qa + γa + γb −βb) f (τ,qa) = 0 (31b)

together with β = βa = βb. The solution of the above system is

f (τ,qa) = F0 τ−δa−δb+(γa+γb)/β q(γa+γb)/β−1
a exp

(
i
β

τqa

)
(32)

Finally, the covariance under X1 and Y1 merely gives the constraints

δa = δb = δ , γa = γb = γ. (33)

and the final result for the two-point function covariant under representation (26) of
meta-conformal algebra is (F0 is an undetermined normalisation constant)
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F [2](ta, tb,qa,qb)=F0 δ (qa+qb) tξa
a tξb

b

(
ta−tb

)−δa−δb+2γ/β q2γ/β−1
a exp

(
iqa

β
(ta − tb)

)
.

(34)
The analogous result of equilibrium dynamics is recovered by setting ξa = ξb = 0.

5.2 Correlators and meta-conformal invariance

Meta-conformal invariance predicts the form of the two-point correlator C =
⟨
ΦΦ

⟩
[34, 35, 36, 38, 41, 53] of quasi-primary scaling operators Φ . Therefore, we com-
pare the explicit spherical model correlator (17) with the prediction (34) of meta-
conformal invariance. Since the spherical model result (17) has two contributions,
one from the initial noise and one from the thermal noise, two cases must be distin-
guished, depending on the relevance of both terms, according to the criterion (18).

In the first case, when the initial noise is relevant, it is enough to compare
(19) with the meta-conformal prediction (34). From the exponential factors and the
momentum-dependence, we read off

1
β

=−2v ,
2γ1

β
= 1+α (35)

and comparison of the exponents of the time-dependent factors leads to

ξ1 = ξ2 =−𝟋
2

, δ1 +δ2 −
2γ1

β
= 0 (36)

which gives for the scaling dimension and the rapidity

δ1 = δ2 =
1+α

2
> 0 ,

γ1

β
=

γ2

β
=

1+α
2

(37)

It is satisfying that the scaling dimensions δ1 = δ2 come out to be positive. We also
find that the second scaling dimension ξ1 = ξ2 = −𝟋/2 > 0 does not vanish. Its
value depends in general on the initial correlator through α , with the only exception
at T = Tc(d) and 2−α < d.
Proposition 2: In the directed spherical model with relevant long-ranged initial
conditions (10), a meta-conformal scaling regime (2) exists (i) either for quenches
to T < Tc(d) for all α < 0 (ii) or else for quenches to T = Tc(d) where d < 2−α
and −1 < α < 0 or for 2−α < d < 4 and −1 < α < 1−d/2.

In the second case, the thermal noise is relevant and we now compare (22) with
the prediction (34), where we take into account that qqq2

⊥s → 0 in the meta-conformal
scaling limit. As before, comparison of the exponential factors and the momentum-
dependence would lead to 1/β =−2v and 2γ1/β = 1. Then, identifying the power-
law terms in t and s, we would read off ξ1 = −𝟋

2 and 2δ = 1. If true, this would
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imply δ1 = δ2 =
1
2 and ξ2 = 1−ξ1 = 1+𝟋/2. The finding ξ1 ̸= ξ2 is incompatible

with a correlator of two identical scaling operators.
Proposition 3: In the directed spherical model with relevant thermal noise, a meta-
conformal scaling regime does not exist.

5.3 Meta-Schrödinger covariant two-point functions

For simplicity, consider first the equilibrium case ξa = ξb = 0. Write the Ward iden-
tities for the two-point function

F [2](ta, tb,qa,qb, pa, pb) =
⟨
Φ̂(ta,qa, pa)Φ̂(tb,qb, pb)

⟩
(38)

Co-variance under X−1,M0,Y
(∥)
−1 ,Y

(⊥)

− 1
2

gives (again with τ = ta − tb)

F [2](ta, tb,qa,qb, pa, pb) = δ (Ma +Mb)δ1(qa +qb)δ (pa + pb) f (τ,qa, pa) (39)

Next, co-variance under the generators X0,Y
(∥)
0 ,Y (⊥)

1
2

produces the system

(
τ∂τ −qa∂qa −

pa

2
∂pa +δa +δb +

3
2

)
f (τ,qa, pa) = 0 (40a)(

iτqa −βaqa∂qa + γa + γb −βb
)

f (τ,qa, pa) = 0 (40b)(
τ pa +Ma∂pa

)
f (τ,qa, pa) = 0. (40c)

where β = βa = βb and which has the solution, unique up to a factor F0:

f (τ,qa, pa) = F0 τ−δa−δb+(γa+γb)/β+ 1
2 q(γa+γb)/β−1

a exp
(

i
β

τqa −
p2

a

2Ma
τ
)

(41)

Finally the covariance under X1 and Y (∥)
1 reproduces (33).

Going via (25) to the non-equilibrium representation with ξa,ξb ̸= 0, we find [42]

F [2](ta, tb,qa,qb, pa, pb) = F0 δ (Ma +Mb)δ (qa +qb)δ (pa + pb)× (42)

×tξa
a tξb

b

(
ta − tb

)−δa−δb+2γ/β+d⊥/2q2γ/β−1
a exp

(
iqa

β
(ta − tb)−

p2
a

2Ma
(ta − tb)

)
with the constraint (33). Assuming rotation-invariance in the transverse directions,
we have also restored an arbitrary transverse dimension d⊥ = d −1 ≥ 1.
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5.4 Responses and meta-Schrödinger invariance

Meta-Schrödinger invariance predicts the form of the two-point response [54], writ-
ten as a correlator of the order parameter Φ with a response operator Φ̃ , and both as-
sumed quasi-primary, such that R =

⟨
ΦΦ̃

⟩
. The comparison must be done between

the explicit spherical model result (16a) and the prediction (42) of meta-Schrödinger
invariance. Comparing the exponential factors, we identify

1
β

=−2v , M1 =
1
2

(43)

and comparison of the algebraic prefactors further leads to, using also (33)

ξ1 =−ξ2 =
𝟋
2

, δ1 = δ2 =
1
2
+

d⊥
4

=
d +1

4
,

γ1

β
=

γ2

β
=

1
2

(44)

and using the values of 𝟋, listed in table 1. We finally have the scaling dimen-
sions δ = δ1 of the order parameter, δ̃ = δ2 of the response operator, the second
scaling dimensions ξ = −ξ̃ = ξ1 (in agreement with eq. (11)) and the rapidities
γ/β = γ̃/β = 1

2 . These identifications hold for all temperatures T ≤ Tc(d) and all
dimensions d > 2 and it is satisfying that always δ > 0 and δ̃ > 0. The identity
δ = δ̃ is expected from local scale-invariance [29, 43].
Proposition 4: In the directed spherical model, in the meta-Schrödinger scaling
limit (3), the scaling two-response function perfectly reproduces for all initial con-
ditions (10) the prediction of meta-Schrödinger invariance.

6 Conclusions

We have been investigating the existence of new scaling regimes in the relaxational
dynamics of spin models with a directional bias in the interactions. At the time of
writing, information on this question only exists from two exactly solvable models,
namely the d > 2 directed spherical model [21, 42] (studied here) and the directed
1D Glauber-Ising model quenched to the temperature T = Tc = 0 [20, 22, 40]. The
admissible reaction rates in the latter model are illustrated in figure 2 and are sym-
metric under a global reversal of all spins. Without a bias, these models always
have z = 2, with the Schrödinger group (and the representations (24)) as dynam-
ical symmetry [32]. This is realised in the isotropic scaling regime where t → ∞,∣∣rrr∣∣→ ∞ and where

∣∣rrr∣∣2/t is kept fixed. In the presence of a directional bias either a
meta-conformal or else a meta-Schrödinger Lie algebra are candidates for a new dy-
namical symmetry, which however can only be realised in one of the scaling limits
(2) or (3), respectively, as is illustrated in figure 1.

The supplementary condition required for either meta-conformal or meta-Schrö-
dinger-invariance is the presence of long-ranged initial correlations (10) in the pre-
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(1 −    v)

(1+    v)2

2
1

1−

−(a)

γ

γ (1 −    )

(1+    )2

1
2

−

−

1

(b)

γ

γ

Fig. 2 Reaction rates in the biased 1D Glauber-Ising model, with γ = tanh 2
T and the bias 0≤ v≤ 1.

The flip rates of the central spin (in red) only depend on its two nearest neighbours (in green).

ferred direction, of the form C
(
0;r∥,rrr⊥

)
∼
∣∣r∥∣∣−ℵ, with 0<ℵ= 1+α < 1 [40, 42].

If the initial correlations are more relevant than thermal noise, then meta-conformal
invariance arises for sufficiently long-ranged initial correlations, otherwise the dy-
namical symmetry is given by the meta-Schrödinger algebra. From the available
evidence, we arrive at the following scenario: Meta-conformal invariance occurs

1. at T < Tc(d) for any kind of initial correlations. The spherical model order-
parameter scaling operator Φ is characterised by

δ =
1+ℵ

4
> 0 ,

γ
β

=
ℵ
2

, ξ =
d −1+ℵ

4
(45)

2. at T = Tc(d) for relevant initial correlations. In the spherical model, when

if 2 < d < 3−ℵ : δ =
ℵ
2

=
γ
β

> 0 , ξ =
1+ℵ

4
(46a)

if 3−ℵ < d < 4−2ℵ : δ =
ℵ
2

=
γ
β

> 0 , ξ = 1− d
4

(46b)

but in the 1D Glauber-Ising model at T = 0, we rather find

if 0 < ℵ <
1
2

: δ =
ℵ
2

=
γ
β

> 0 , ξ = 0 (46c)

with a similar result for δ in all known cases (46).

There is no meta-conformal invariance in these directed spin models if the above
conditions on the initial correlations are not met. In that case, at very large distances
meta-Schrödinger-invariance (3) will hold instead, which predicts the two-time re-
sponse functions R =

⟨
ΦΦ̃

⟩
for all T ≤ Tc. In the spherical model

δ = δ̃ =
d +1

4
> 0 ,

γ
β

=
γ̃
β

=
1
2

, ξ =−ξ̃ =−𝟋
2

(47)

Figure 1 gives a schematic view of these new regimes of dynamical scaling. It
illustrates the scaling limits to be taken in either the preferred spatial direction (r∥)
or else the transverse spatial direction (r⊥) as compared to the characteristic times
scales τ , see eqs. (2,3). If both r∥ ∼ r⊥ ∼ τ1/2 are relatively small, then the re-
laxation dynamics of the spherical model is described by Schrödinger-invariance.
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If larger distances are considered such that anisotropically r∥ ∼ τ but r⊥ ∼ τ1/2,
the dynamical symmetry become meta-Schrödinger-invariance. Finally, if both dis-
tances become isotropically large r∥∼ r⊥∼ τ , together with sufficiently long-ranged
initial correlation in the preferred direction, then the dynamical symmetry is meta-
conformal invariance.

This physical picture should give indications where to look for these new scaling
regimes in further spin models, notably in the two-dimensional directed Ising model
[23, 24], and beyond those relatively rare cases where exactly solutions are readily
available. Since the dynamic exponent z = 1 also arises in the non-equilibrium dy-
namics of quantum systems [10, 11, 15] or emergent hydrodynamics [12, 49, 46, 6]
it would be interesting to see if in such systems evidence for meta-conformal or
meta-Schrödinger invariance could be found.
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