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Fraunhofer approximation of Fresnel integrals

A method to derive the Fraunhofer diffraction integral by making use of the theory of distributions is presented. With respect to standard textbooks, the pedagogical benefit of this method is that it uniquely uses the far field approximation of the Fresnel diffraction integral. An operator representation of Fresnel diffraction is also derived.

Introduction

Diffraction [START_REF] Born | Chapter VII -Elements of the theory of diffraction[END_REF][START_REF] Born | Chapter XI -Rigorous diffraction theory[END_REF][START_REF] Hecht | [END_REF] and Fraunhofer approximation of Fresnel diffraction integrals (see [START_REF] Goodman | Introduction to Fourier optics[END_REF] p. 74) is taught at the end of the undergraduate program in our University. Although this is an important topic on its own, it has to be addressed precisely before teaching Fourier Optics.

Our course on Fourier Optics thus starts by using Fourier transform for solving the wave equation of the angular spectrum (see [START_REF] Goodman | Introduction to Fourier optics[END_REF] p. 57). This leads to an exact solution representing the electromagnetic field in a given plane. From this expression we apply the paraxial approximation and eventually use the convolution theorem (see [START_REF] Goodman | Introduction to Fourier optics[END_REF] p. 67) to derive the Fresnel diffraction integral.

Important topics are thus illustrated throughout this approach: Fourier transform and the convolution theorem, angular spectrum of electromagnetic waves, solutions of the wave equation for angular spectra and the paraxial approximation.

Once the Fresnel diffraction integral has been derived, a far-field approximation is used to obtain the Fraunhofer integral. However, the validity of this approximation has sometimes been questioned by some of our students because it consists in dropping some quadratic terms in the phase factor of the Fresnel propagator while keeping bilinear ones. To justify this approximation, we provide an alternative derivation of the Fraunhofer integral starting from a functional expansion of the Fresnel integral. To do so, we use the moment expansion [START_REF] Daniel | Moment expansion representation of probability density functions[END_REF] of the theory of distributions. This method has been used recently to describe the diffraction of Laguerre-Gauss beams by screen circular open apertures [START_REF] Dupraz | Diffraction of gaussian and laguerre-gauss beams from a circular aperture using the moment expansion method[END_REF]. Here, for pedagogical purposes, we focus on the diffraction of circular Gaussian beams by polygonal apertures. Cartesian coordinates can thus be used and manipulations of special functions are avoided. Even-though a Gaussian beam must be introduced in the calculations, the classical expression of the diffraction of a plane wave is indeed recovered by taking the limit of large beam radius compared to the screen open aperture size. The purpose of this article is to describe this alternative method. In passing, an operator expression of the Fresnel diffraction integral is also derived. This expression differs from the one for free-space propagation [START_REF] Bacry | Metaplectic group and fourier optics[END_REF][START_REF] Simon | Gaussian-maxwell beams[END_REF]. For the sake of clarity, we also show how to get this latter expression using the method of moment expansion.

The pedagogical relevancy of the approach described in this article is therefore threefold. Firstly, the Fraunhofer approximation for a Gaussian beam is derived starting from the far-field approximation only. Transitions from Fresnel to Fraunhofer regimes and Gaussian beam to plane-wave can be studied by playing with a perturbation series. Calculations are concise but, on the other hand, a new mathematical difficulty appears since the theory of distributions is used. However, in our University, this topic is taught concomitantly in an advanced mathematical course for physicists. The second interest is then to give an illustrative example of the use of the theory of distributions in the diffraction domain. Eventually, this method naturally introduces an operator formulation of diffraction and propagation. Such a formulation may be useful to prepare students to advanced courses in optics such as e.g. Fourier optics [START_REF] Nazarathy | Fourier optics described by operator algebra[END_REF], mode propagation [START_REF] Nienhuis | Paraxial wave optics and harmonic oscillators[END_REF], general astigmatism [START_REF] Visser | Orbital angular momentum of general astigmatic modes[END_REF] or non-planar ring resonators [START_REF] Steven | Modes of a twisted optical cavity[END_REF].

The Fresnel integral and the derivation of the Fraunhofer approximation usually found in textbooks are reminded in section 2.1. In section 2.2, the moment expansion of the Fresnel diffraction integrals is done and our alternative derivation of the Fraunhofer approximation is described. An operator expression for the Fresnel diffraction integral is also derived in this section. The method is illustrated by a numerical example in section 3, namely the diffraction by a rectangular slit, which is reducible to a one dimensional problem.

Formalism

The Fraunhofer approximation

Diffraction of an electromagnetic plane wave by a screen aperture, located in the z = 0 plane, is sketched in Fig. 1. Axis frames used throughout this article are also defined on this figure. The origin O of the reference frame is located at the centroid of the perimeter of the screen aperture. A screen open aperture function U (ξ, η) is defined such that U (ξ, η) = 1 for points (ξ, η) inside the aperture area and 0 elsewhere. Characteristic aperture lengths along ξ and η axes are further defined by: a ξ = max(|ξ|) and a η = max(|η|) for ξ and η on the aperture perimeter.

In the paraxial approximation regime, assuming the electric field is known at z = 0, one can use the Fresnel diffraction integral to obtain its expression in an observation plane z > 0. Denoting by λ the wavelength of the electromagnetic wave, one can eventually apply the scalar field approximation provided λ/min(a ξ , a η ) ≪ 1 [START_REF] Bekefi | Diffraction of electromagnetic waves by an aperture in a large screen[END_REF]. One thus obtains:

E(r) = exp(ikz) iλz E 0 +∞ -∞ U (ξ, η) exp i k 2z (x -ξ) 2 + (y -η) 2 dξdη (1) 
with k = 2π/λ and where E 0 is a constant. In this expression and in the rest of this article, the time dependence of the electric field exp(-iωt) with ω = 2πc/λ is omitted. During a lesson, mathematical properties of Fresnel transform can also be given [START_REF] Aoyagi | Generalized fresnel transformations and their properties[END_REF] and its domain of validity can be discussed [START_REF] Wh Southwell | Validity of the fresnel approximation in the near field[END_REF]. The Fraunhofer approximation of Eq. ( 1) reads

E(r) = E 0 exp(ikz) iλz exp i k 2z x 2 + y 2 +∞ -∞ U (ξ, η) exp -i k z xξ + yη) dξdη. (2) 
It is obtained by taking the far-field limit in the exponential term in the integral of Eq.

(1), that is,

z ≫ k max(a 2 ξ , a 2 η ) 2 (3) 
which implies that quadratic terms in ξ and η are consequently removed from the phase term of Eq. ( 1). However, comparing Eq. ( 1) and Eq. ( 2) one sees that, in order to keep terms linear in ξ and η, one must also assume that

|xξ + yη| ≫ ξ 2 + η 2 2 . (4) 
Therefore, how to justify this approximation for values of ξ or η such that |ξ| ≥ 2|x| or |η| ≥ 2|y| respectively, that is for the intervals |x| ≤ a ξ /2 and |y| ≤ a η /2 in the observation screen ? As an answer, one can argue that Fraunhofer diffraction integral is well established and that it can be tested experimentally in laboratory works or even numerically, so that making this approximation indeed leads to the 'good result'. This can also be explained by realizing that in the region where Eq. ( 4) is not fulfilled, one has z ≫ k|xξ + yη| and thus that the corresponding term does not contribute significantly to the integral of Eq. ( 1). This later argument is further developed in Appendix A.

Here we aim to provide an alternative answer without relying on the approximation of Eq. ( 4) but solely on Eq. ( 3). We start by rewriting Eq. ( 1) as a Fourier transform:

E(r) = exp(ikz) iλz E 0 exp i k 2z (x 2 + y 2 ) I(r) (5) 
with

I(r) = +∞ -∞ U (ξ, η) exp ik ξ 2 + η 2 2z exp -i(ξω x + ηω y ) dξdη = F ωx,ωy U (ξ, η) exp ik ξ 2 + η 2 2z ( 6 
)
with ω x = 2πx/(λz), ω y = 2πy/(λz) and where F ωx,ωy is the Fourier transform from (ξ, η) to (ω x , ω y ). Thanks to the convolution theorem, Eq. ( 6) can then, a priori, also be written as a convolution product:

I(r) = F ωx,ωy U (ξ, η) * F ωx,ωy exp ik ξ 2 + η 2 2z ( 7 
)
where * stands for the convolution product and where the first term of the r.h.s of this equation F ωx,ωy {U (ξ, η)} is the Fraunhofer diffraction integral for a plane wave. Therefore, expanding the second term F ωx,ωy {exp[ik(ξ 2 + η 2 )/(2z)]} as a function of the Dirac distribution and its derivatives [START_REF] Dupraz | Diffraction of gaussian and laguerre-gauss beams from a circular aperture using the moment expansion method[END_REF], that is performing its moment expansion, will eventually lead to the desired expression.

Moment expansion

Since exp[ik(ξ 2 + η 2 )/(2z)] is not absolutely integrable, one is not allowed to apply the convolution theorem and therefore to write Eq. ( 7). This issue can be circumvented by introducing a Gaussian regulator in the integral, or equivalently by considering an incident Gaussian beam [START_REF] Kogelnik | Laser beams and resonators[END_REF] instead of a plane wave. We thus insert

U G (ξ, η) = U (ξ, η) exp - ξ 2 + η 2 w 2 0 instead of U (ξ, η) in Eq. ( 1 
). The Gaussian beam waist w 0 is assumed to be located at z = 0. As it is shown below, the result for a plane wave is recovered by taking the limit w 0 ≫ max(a ξ , a η ). It is worth to mention that in order to use the paraxial approximation, the additional condition λ/(πw 0 ) ≪ 1 must hold [START_REF] Simon | Gaussian-maxwell beams[END_REF]. Hence, Eq. ( 7) becomes

I(r) = F ωx,ωy U (ξ, η) * F ωx,ωy exp -α(ξ 2 + η 2 ) ( 8 
)
with α = 1/w 2 0 -ik/(2z). We explicitly get:

I(r) = 1 4πα +∞ -∞ F (ωx-ω ′ x ,ωy-ω ′ y ) U (ξ, η) exp - (ω ′2 x + ω ′2 y ) 4α dω ′ x dω ′ y . ( 9 
)
The convolution product of Eq. ( 9) provides the advantage of integrating two continuous integrable functions (e.g. see section 3 for the rectangular slit). We can now perform the moment expansion [START_REF] Daniel | Moment expansion representation of probability density functions[END_REF] of the exponential term. Since the dependencies on ω x and ω y can be factorized, one just has to compute exp -

Ω 2 4α = ∞ n=0 (-1) n n! µ n δ (n) (Ω) (10) 
with δ (n) (Ω) = d n δ(Ω)/dΩ n and δ (0) (Ω) ≡ δ(Ω) where δ is the Dirac distribution. One also has [START_REF] Daniel | Moment expansion representation of probability density functions[END_REF] +∞

-∞ f (x)δ (n) (x)dx = (-1) n f (n) (0)
. The moments µ n are defined accordingly by [START_REF] Daniel | Moment expansion representation of probability density functions[END_REF] 

µ n = +∞ -∞ Ω n exp - Ω 2 4α dΩ = 2 n α n+1 2 Γ n + 1 2 (1 + (-1) n ) ( 11 
)
where Γ(X) is the Gamma function. At this point one notices that such a moment expansion, involving derivatives of the Dirac distribution, is meaningful because it is used under the sign integral of Eq. ( 9). The derivation of the expression of the moment expansion and of the moments themselves is straightforward [START_REF] Daniel | Moment expansion representation of probability density functions[END_REF] and can possibly be shown during a lesson. One therefore gets exp -

(ω 2 x + ω 2 y ) 4α = 4πα ∞ n=0 ∞ m=0 α n+m n!m! δ (2n) (ω x )δ (2m) (ω x ) (12) 
using Γ(n + 1/2) = √ π(2n)!4 -n /n!. Inserting Eq. ( 12) in Eq. ( 9) and performing the integral over ω ′

x and ω ′ y we obtain

I(r) = ∞ n=0 ∞ m=0 α n+m m!n! d 2n+2m dω 2n
x dω 2m y F ωx,ωy U (ξ, η) with d 0 f (ω)/dω 0 ≡ f (ω). Defining N = n + m, one can write this later equation as

I(r) = ∞ N =0 α N N ! I (N ) (r) (13) 
with

I (N ) (r) = N m=0 N ! m!(N -m)! d 2(N -m) dω 2(N -m) x d 2m dω 2m y F ωx,ωy U (ξ, η) . ( 14 
)
Recognizing a binomial expansion in Eq. ( 14) and an exponential expansion in Eq. ( 13) one can write an operator expression for the Fresnel diffraction integral of Gaussian beams

I(r) = exp α d 2 dω 2 x + d 2 dω 2 y F ωx,ωy U (ξ, η) (15) 
and for plane waves by further fixing α = -ik/(2z)

I P W (r) = exp -ik 2z d 2 dx 2 + d 2 dy 2 F ωx,ωy U (ξ, η)
The operator expression of Fresnel integrals is known [START_REF] Bacry | Metaplectic group and fourier optics[END_REF] and has been used for describing the free space propagation of Gaussian beams [START_REF] Simon | Gaussian-maxwell beams[END_REF]. Eq. ( 15) is thus an extension to diffracting apertures. Nevertheless, in deriving Eq. ( 15) it was implicitly assumed that F ωx,ωy {U (ξ, η)} is finite and infinitely derivable. Then, the limit case of an infinite aperture, for which the Fourier transform is a product of Dirac distributions, cannot be described by Eq. ( 15). An account on how to treat this limit with the moment expansion method is given at the end of this section. Reverting to our problem, Eq. ( 13)- [START_REF] Wh Southwell | Validity of the fresnel approximation in the near field[END_REF] show that I(r) can be written as a series expansion of increasing power of α. The zero order term,

I (0) (r) = F ωx,ωy U (ξ, η) (16) 
is indeed the Fraunhofer approximation of the diffraction of a plane wave by an aperture defined by U (ξ, η). Furthermore, switching to the dimensionless variables Ω x = a ξ ω x and Ω y = a η ω y and next defining the dimensionless parameters

A ξ = a 2 ξ α = a 2 ξ w 2 0 -iπN F ξ , A η = a 2 η α = a 2 η w 2 0 -iπN F η
with N F ξ = a 2 ξ /(λz) and N F η = a 2 η /(λz) one sees that Eq. ( 15) becomes

I(r) = exp A ξ d 2 dΩ 2 x + A η d 2 dΩ 2 y F ωx,ωy U (ξ, η) (17) 
Hence, in the limit N F ξ , N F η → 0 and w 0 ≫ a ξ , a η we obtain I(r) ≈ I (0) (r), that is the Fraunhofer diffraction integral, without relying on the approximation of Eq. ( 4) but solely on Eq. ( 3). Therefore, the far field approximation is made by comparing only the screen observation position z to the size of the screen aperture a ξ , a η . For given z, w 0 and U (ξ, η) values, the accuracy of the Fraunhofer approximation can be directly estimated by looking at the first terms of the sum of the r.h.s of Eq. ( 13). This is another advantage of this expression. Besides, Eq. ( 13) also offers the possibility to study the diffraction of Gaussian beams such w 0 ⪆ a ξ , a y by keeping terms in the sum of the r.h.s of this equation. Nevertheless, as mentioned above in the comment of Eq. ( 15), Eq. ( 13) is useless for w 0 ≪ a ξ , a η because in that case one should sum up the series to infinity. However, this case is also interesting to illustrate the use of the moment expansion. The operator expression for the free space propagation of Gaussian beams [START_REF] Simon | Gaussian-maxwell beams[END_REF] can be in fact obtained by starting from Eq. ( 1)

E(x, y, z) = exp(ikz) iλz +∞ -∞ E(x -Ξ, y -H, 0) exp -α Ξ 2 + H 2 dΞdH(18)
with Ξ = x -ξ, H = y -η, α = -ik/(2z) and where E(ξ, η, 0) is the scalar field representing a Gaussian beam at z = 0. Performing the moment expansion of exp[-α(Ξ 2 + H 2 )] and next performing the integrals of Eq. ( 18) over Ξ and H, similarly to Eqs. ( 10)-( 14), one obtains the following known expression [START_REF] Simon | Gaussian-maxwell beams[END_REF]:

E(x, y, z) = exp(ikz) exp iz 2k d 2 dx 2 + d 2 dy 2 E(x, y, 0). ( 19 
)
This expression was thus derived starting here from the Fresnel integral and using the method of moment expansion. However, it is to mention that this expression cannot be used to account for a screen aperture, that is for a transversely truncated field, because E(x, y, 0) must be an infinitely derivable function of x and y, i.e. Eq. ( 15) cannot be derived from Eq. (19).

Numerical examples

The rectangular slit is the simplest example because it is reducible to a 1D problem (see [START_REF] Goodman | Introduction to Fourier optics[END_REF] p. 85). Looking at the x axis, one can thus write Eq. ( 13) in the following way:

J (x) ≈ J (0) (x) + ncut n=1 J (n) (x) (20) 
where we have introduced a truncation index n cut and where

J (n) (x) = (a 2 α) n n! d 2n dΩ 2n x F ωx U (ξ)
with Ω x = aω x . For an aperture slit of width 2a, one has

F ωx {U (ξ)} = 2a • sinc(Ω x )
where sinc is the sine cardinal function. Calculations of the successive derivatives of this function are straightforward, and so are the functions I (n) (x) up to the index cut-off n cut . Numerical calculations are performed to provide graphical illustrations of Eq. ( 20). In all calculations, we fix a = 1 in arbitrary units. (1), that is n cut → ∞, the Fraunhofer (i.e. n cut = 0), first (n cut =1) and fourth order (n cut =4) approximations. The quasi plane-wave case a/w 0 = 10 -3 and intermediate field region N F = π -1 is shown in Fig. 3. Eventually, Fig. 4 illustrate the diffraction of a Gaussian beam a/w 0 = 1 in the far field region N F = 10 -3 /π. Eventually, for the sake of clarity, the Fraunhofer limit N F = 10 -3 /π and a/w 0 = 10 -3 is shown in Fig. 5. As expected, all calculations lie on the top of each other.

Looking at these figures, one sees that, with our choice of parameters, just a few terms (n cut = 4 in Eq. ( 20)) are needed to get a noticeable description of the shape of the diffraction pattern beyond the Fraunhofer approximation. One also notices the rich variety of shapes induced by the Gaussian behaviour of the incident beam when considering an intermediate diffraction region.

Summary

A method to derive an operator expression of the Fresnel diffraction integral (see Eq. ( 17)) has been described in this article. This expression differs from those previously published [START_REF] Bacry | Metaplectic group and fourier optics[END_REF][START_REF] Simon | Gaussian-maxwell beams[END_REF] describing free-space propagation. The difference has been discussed, and a derivation of the free-space propagation operator using the moment expansion method has also been shown (see Eq. ( 19)).

The Fraunhofer diffraction integral is eventually obtained from its operator expression after applying solely the far field approximation of Eq. (3). We hope that it will be useful for others when introducing diffraction integral in optics and/or as an illustrative problem for a course of theory of distributions. with f (x, ξ) = k(-xξ + ξ 2 /2)/z and where J (y) is obtained by changing x to y and ξ to η in the expression of J (x). As stated in [START_REF] Born | Chapter VII -Elements of the theory of diffraction[END_REF], the Fraunhofer approximation is obtained by dropping the term in ξ 2 in the phase factor f (x, ξ).

In order to get an idea of the contribution of this term one can look at J (0) as a function of z, that is the on-axis diffraction pattern. Fixing x = 0 in Eq. (A.1) we obtain:

J (0) = +a -a exp i k 2z ξ 2 dξ (A.2) = 2πz -ik Erf -ika 2 2z (A.3) = 2a + 2ia 3 ka 2 2z - a 5 
ka 2 2z 2 + O ka 2 2z 3 (A.4)
where Erf(X) is the error function and the first two terms in the series expansion when z ≫ ka 2 /2 is provided. At the leading order, J (0) ≈ 2a. Curves corresponding to |J (0)| and arg[J (0)] are shown on Figs. A1 andA2, respectively. Noticing that the far-field limit J (0) = 2a is obtained by setting f (0, ξ) = 0 in Eq. A.2, one observes that the ξ 2 term in f (0, ξ) can safely be dropped for N F = ka 2 /(2πz) < 10 -2 /π.

To confirm this statement for x ̸ = 0, Eq. (A.1) is written as follows where Ξ = x -ξ. The obtained formal expressions, functions of x and N F , are similar to that of Eqs. (A.3) and Eqs. (A.4), but somewhat longer. It is interesting to realize that the series expansion of J (x) given in Eq. A.6 matches that of the product of the on-axis diffraction pattern J (0) and the customary off-axis diffraction pattern in the Fraunhofer approximation sinc(kax/z) at the second order of the development in ka 2 /(2z). However, terms of order three and beyond differ. As a consequence,

J (x) = exp -i k 2z x
J (x) = J (0) • sinc( kax z ) + O ka 2 2z 3 (A.7) = 2a • sinc( kax z ) + O ka 2 2z (A.8)
Therefore, taking the limit ka 2 /(2z) → 0 for x ̸ = 0 leads to J (x) ≈ 2a • sinc(kax/z) which is equivalent to drop the term ξ 2 in f (x, ξ).

The method presented in this appendix is close to the one described in the core of the article. However, it is not straightforward to generalize to the diffraction of Gaussian beams. In addition, to study the transition between Fresnel and Fraunhofer regimes, one should provide the full series expansion in Eq. (A.8) which implies lengthy calculations that are out of the scope of this paper. 
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 1 Figure 1. Schematic drawing of the diffraction problem.
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 2 Figure 2. Circles: exact numerical integration of Eq. (1); dotted line: Zero order Fraunhofer approximation for plane waves (n cut =0 in Eq. (20); dashed line: first order approximation (n cut =1 in Eq. (20)); full line: fourth order approximation (n cut =4 in Eq. (20)). Calculations are done for N F = π -1 , a = 1 and a/w 0 = 1.

  Fig. 2 shows |I(x)| as a function of Ω x = aω x for an intermediate field region N F = π -1 and a Gaussian beam such a/w 0 = 1. Various values of n cut are considered: the exact numerical integration of Eq.
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 3 Figure 3. Same as in Fig. 2 but for N F = π -1 , a = 1 and a/w 0 = 10 -3 .
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 4 Figure 4. Same as in Fig. 2 but for N F = 10 -3 /π, a = 1 and a/w 0 = 1.
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 5 Figure 5. Same as in Fig.2but for N F = 10 -3 /π, a = 1 and a/w 0 = 10 -3 . It explicitly shows that all calculations lie on the top of each other's in the region of validity of the Fraunhofer approximation, star and square markers have been used to represent the zero order (Fraunhofer) and fourth order approximations respectively.
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 A1 Figure A1. |J (0)| as a function of 2z/(ka 2 ) for a = 1.

Figure A2 .

 A2 Figure A2. arg[J (0)] as a function of 2z/(ka 2 ) for a = 1.
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Appendix A. Fraunhofer approximation

Some details on the derivation of the Fraunhofer approximation for a plane-wave are given below. As in Section 3, the study is restricted to the case of a rectangular slit aperture so that the Fresnel integral reads

where E 0 denotes here the plane-wave amplitude and