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Abstract. This study explores a collective self-consumption community
with several houses, a shared distributed energy resource (DER), and a
common energy storage system, as a battery. Each house has an energy
demand over a discrete planning horizon, met by using the DER, the bat-
tery, or purchasing electricity from the main power grid. Excess energy
can be stored in the battery or sold back to the main grid. The objec-
tive is to determine a supply plan ensuring a fair allocation of renewable
energy while minimizing the overall microgrid cost.
We investigate and discuss the formulation of these optimization prob-
lems using mixed integer linear programming. We show some dominance
properties that allow to reformulate the model into a linear program.
We study some fairness metrics like the proportional allocation rule and
max-min fairness. Finally, we illustrate our proposal in a real case study
in France with up to seven houses and a one-day time horizon with 15-
minute intervals.

Keywords: Energy Management · Fair Allocation · Production Plan-
ning

1 Introduction

In a time when renewable energy sources are gaining increasing prominence and
communities seek to reduce their carbon footprint, collective self-consumption
represents a fundamental transformation in the way individuals and communi-
ties access and use energy, offering a sustainable, economically viable, and en-
vironmentally friendly alternative to traditional energy distribution models [5].
Energy management under collective self-consumption empowers groups of indi-
viduals, neighborhoods, or even entire communities to unite and jointly harness,
generate, and distribute locally produced renewable energy. It offers numerous
advantages, including a reduced reliance on fossil fuels, lowered energy costs for
participants, and decreased stress on the grid. Furthermore, this approach fos-
ters a sense of ownership and environmental responsibility among participants,
thereby strengthening the sense of community as they collaboratively embrace
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the energy transition [6].An essential aspect within self-consumption communi-
ties is the distribution of the generated energy, which becomes the responsibility
of the legal entity managing the community. This entity must communicate
the distribution of the electricity generated to the distribution system operator
(DSO). For most of these communities, their operation can be divided into two
major systems: a technical system and an economic system. The technical system
must account for the actual distribution of energy, while the economic system
considers the monetary distribution that occurs after the energy has been pro-
cessed. Consequently, the financial balance of each participant depends on the
rules selected for the distribution of the generated energy, or allocation rules [14].
This problem has been long studied in the literature, however, its characteristics
and formulation depend on the technical configuration, the goals and the social
arrangements of the community [6]. The literature has focused mainly on micro-
grids where each user has their own DER and energy storage system, and they
are allowed to trade among community members [14, 10, 7]. These works focus
on price selection for exchanges between users. On the other hand, microgrids
where the DER is shared among all users are less studied. Ogando-Mart́ınez et
al. [11] presents an LP model to evaluate different allocation strategies for a
community with a shared ownership over a photovoltaic system. They consider
the allocation rule as a coefficient, of the PV production, fixed before the op-
timization process. In [16], fairness is measured by minimizing the discrepancy
between the cost assigned to each house and the cost it would have incurred if
it had been the only house in the microgrid.

In this paper, we address the problem of energy supply planning for col-
lective self-consumption communities, ensuring a fair allocation of renewable
energy. The energy supply planning problem in a collective self-consumption,
ensuring fair allocation of renewable energy consists in finding an energy sup-
ply planning that not only ensures equitable distribution of renewable energy
but also minimizes the overall expenses. We consider a microgrid composed of
a set of J smart houses, a renewable distributed energy resource (DER) as a
photovoltaic panel (PV), a shared energy storage system as a battery, and a
connection to the main power grid. Each house j ∈ J has an energy demand
to satisfy over a discrete planning horizon composed of T time steps of δ hours
each, typically δ = 0.25 which correspond to 15 min. The demand Dj,t, for each
house j at each time step t, can be fulfilled either by using the DER, the bat-
tery, or by purchasing electricity from the main power grid. Excess energy can
be stored in the battery or sold back to the main grid. The battery has a charge
and discharge efficiency, ec and ed respectively, i.e. energy is lost when charging
and discharging the battery. The battery has a maximum capacity Cs and a
minimum storage limit Smin, the charge and discharge rates have a maximum
limit, F and F , respectively. PV panels produce at most CPV

t at each time step
t ∈ T . There is a manager, who may or may not be a physical person, in charge
of managing the photovoltaic energy. This manager must report at each time
step the distribution of PV to the DSO, who is then in charge of issuing the
bills for each user. And, the following assumptions are considered, each member
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owns a smart meter that reports their actual consumption at each time step. For
each time step, electricity selling price β is always strictly lower than electricity
buying price Bt. The manager distributes all the PV energy at each time step.
A user cannot charge and discharge energy from the battery at the same time
step, and a user cannot sell and buy energy from the main grid at the same time
step. Finally, the charge efficiency must be larger than the discharge efficiency.

The main contributions of the paper are the following. We first formulate
the problem of energy supply planning, which does not incorporate fairness,
as a mixed integer linear programming (MILP) model. Then, we show some
dominance properties for this problem that allow not only to relax the integrality
constraints, but also to entirely remove binary variables from its formulation,
leading to a linear programming (LP) model. Finally, we study the fairness
aspect of this problem, by analyzing some fair allocation rules for green energy.
We propose a mathematical formulation for each allocation rule studied, and
show some dominance properties for these models. Some numerical experiments
on a real case study in France illustrate these properties. The rest of this article is
organized as follows, in Section 2 we analyze the energy supply planning problem
in collective self-consumption without fairness, and in Section 3 we study some
fair allocation rules and their implementation in the energy supply planning
problem in collective self-consumption. In Section 4 we present some numerical
experiments over a real case study in France.

2 Energy Supply Planning Problem

2.1 Mathematical Formulation

We formulate the energy supply planning problem considering shared PV and
battery as an MILP model. The daily cost is minimized by selecting the elec-
tricity output from the PV panel to each house pj,t, from the battery yj,t, and
from the main grid ij,t. It also selects the electricity that each house stores in
the battery zj,t, and the amount of electricity that each house sells to the main
grid gj,t. Finally, variable st represents the state of charge of the battery at each
time step, variables vj,t and wj,t are working variables that model the activation
of the charging and discharging, and the activation of the buying and selling of
energy, respectively.

Equation (1) represents a well accepted function to compute the total cost
of the microgrid [3] where all equipment capacities are considered given, so only
operating and maintenance costs are included. The cost function consists of
maintenance costs associated with battery discharge µ, the cost of purchasing
electricity from the main grid Bt and the revenues received from the sale of
surplus electricity β. Note that no production or maintenance costs associated
with the PV are considered, this is because the total production of electricity
through PV is fixed, independently of its allocation, so its operating costs become
constant, and therefore negligible for our problem.

Constraints (2) set the capacity limits for the state of charge of the battery.
While Equations (3) represent the electricity production of the PV. Equations
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(4) indicate the state of charge of the battery at each time step, which depends
on the state of charge of the previous period, the amount of electricity charged
and the amount discharged in the same period. Constraint (5) shows that the
state of charge of the battery at the end of the time horizon must be equal to the
initial state of charge. Constraints (6) and (7) represent the limits in the charge
and discharge rate of the battery at each time period.

(EPP )



min δ
∑

j∈J,t∈T

(µyj,t +Btij,t − βgj,t) (1)

s.t.: Smin ≤ st ≤ Cs ∀t ∈ T (2)∑
j∈J

pj,t = CPV
t ∀t ∈ T (3)

st = st−1 + ec
∑
j∈J

zj,t − ed
∑
j∈J

yj,t ∀t ∈ T (4)

sT = s0 (5)∑
j∈J

yj,t ≤ F ∀t ∈ T (6)

∑
j∈J

zj,t ≤ F ∀t ∈ T (7)

Dj,t = pj,t + yj,t + ij,t − zj,t − gj,t ∀j ∈ J, t ∈ T (8)

zj,t ≤ Fvj,t ∀j ∈ J, t ∈ T (9)

yj,t ≤ F (1− vj,t) ∀j ∈ J, t ∈ T (10)

ij,t ≤ (Dj,t + Cs)(1− wj,t) ∀j ∈ J, t ∈ T (11)

gj,t ≤ (CPV
t + Cs)wj,t ∀j ∈ J, t ∈ T (12)

st, ij,t, gj,t, zj,t, yj,t, pj,t ≥ 0 ∀j ∈ J, t ∈ T (13)

vj,t, wj,t ∈ {0, 1} ∀j ∈ J, t ∈ T (14)

Constraints (9) and (10) indicate that for each house in each time period
it cannot charge and discharge the battery at the same time. Similarly Con-
straints (12) and (11) indicate that a house cannot buy and sell power to the
grid in the same time period. Finally, Constraints (8) represent the electricity
balance in the microgrid.

2.2 Dominance Properties

We below show that the energy supply planning problem in collective self-
consumption can be reformulated as a linear programming problem. To address
this, we introduce a relaxed version of the model (EPP) where we remove con-
straints (9)-(12) and (14), obtaining a LP model that we call (EPP-L). Lemma 1
and Lemma 2 show some dominance properties of any optimal solution of (EPP-
L) problem.
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Lemma 1. Given an instance of (EPP-L) where Bt > β for all t ∈ T , then in
any optimal solution x∗ = (s∗, i∗, g∗, z∗, y∗, p∗) of (EPP-L), i∗j,tg

∗
j,t = 0 holds for

all j ∈ J, t ∈ T .

Proof. Let us assume, by contradiction, that there exists x∗ = (s∗, i∗, g∗, z∗, y∗, p∗),
an optimal solution of (EPP-L) with a cost c(x∗), such that ∃ t′ ∈ T, j′ ∈ J :
i∗j′,t′g

∗
j′,t′ > 0. We show that we can build a feasible solution x = (s, i, g, z, y, p)

of (EPP-L) identical to x∗ except for j′, t′ such that ij′,t′gj′,t′ = 0. We will prove
that x have a cost c(x) < c(x∗).

First we set s = s∗, pj′,t′ = p∗j′,t′ , yj′,t′ = y∗j′,t′ and zj′,t′ = z∗j′,t′ . In this way,
Constraints (2)-(5) are satisfied.

Now, let ϵ = min{i∗j′,t′ , g∗j′,t′}, ij′,t′ = i∗j′,t′ − ϵ and, gj′,t′ = g∗j′,t′ − ϵ. Thus,

ϵ > 0 and ij′,t′gj′,t′ = 0
As we are reducing the exported and imported energy in the same amount,

the balance of energy given by Equation (8) remains satisfied, and therefore, x
is a feasible solution of (EPP-L).

Furthermore, we can write the cost difference between x∗ and x as:

c(x∗)− c(x) =δϵ(Bt′ − β)

Now, as Bt > β ∀t ∈ T , then c(x∗) − c(x) > 0, and consequently, x∗ is not
optimal. Hence, we have reached a contradiction, and therefore, in any optimal
solution of (EPP-L) i∗j,tg

∗
j,t = 0 ∀j ∈ J, t ∈ T . ⊓⊔

Lemma 2. Given an instance of (EPP-L) where Bt > β ∀t ∈ T , and ec ≥
ed > 0 then, in any optimal solution x∗ = (s∗, i∗, g∗, z∗, y∗, p∗) of (EPP-L),
y∗j,tz

∗
j,t = 0 holds ∀j ∈ J, t ∈ T

Proof. In the same fashion as for lemma 1, let us assume, by contradiction, that
x∗ = (s∗, i∗, g∗, z∗, y∗, p∗) is an optimal solution to (EPP-L) with a cost c(x∗)
such that ∃t′ ∈ T, j′ ∈ J : y∗j′,t′z

∗
j′,t′ > 0.

We show that we can build x = (s, i, g, z, y, p), a feasible solution to (EPP-L),
with cost c(x) such that, x is identical to x∗ except for variables related to house
j′ at time period t′, where yj′,t′zj′,t′ = 0, and we will prove that c(x∗) > c(x).
First, we set st′ = s∗t′ and pj′,t′ = p∗j′,t′ , consequently, constraints (2), (3), and
(5) are satisfied. Now, considering that s = s∗, it holds from constraint (4) that
for both solutions to be feasible, we must have:

ecz
∗
j′,t′ − edy

∗
j′,t′ = eczj′,t′ − edyj′,t′ (15)

Now, as we are aiming at having either zj′,t′ = 0 or yj′,t′ = 0, it holds from (15)
that either ecz

∗
j′,t′ − edy

∗
j′,t′ = −edyj′,t′ or ecz

∗
j′,t′ − edy

∗
j′,t′ = eczj′,t′ Thus, we

can deduce the following cases:
Case 1: ecz

∗
j′,t′ − edy

∗
j′,t′ ≤ 0.

We set zj′,t′ = 0, and yj′,t′ = y∗j′,t′ −
ec
ed
ϵ where ϵ = z∗j′,t′ . In this way, in

solution x, we reduce the charge zj′,t′ and discharge yj′,t′ of energy from the
battery. Therefore, Constraints (6) and (7) are satisfied. However, the difference
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in battery charging is greater than the difference in discharging. Consequently,
there is a surplus of energy in the balance proposed by Equations (8):

Dj′,t′ − (pj′,t′ + yj′,t′ + ij′,t′ − zj′,t′ − gj′,t′) = 0

Dj′,t′ − (p∗j′,t′ + y∗j′,t′ −
ec
ed

ϵ+ ij′,t′ − (z∗j′,t′ − ϵ)− gj′,t′) = 0

⇔ i∗j′,t′ −
(
g∗j′,t′ +

ed − ec
ed

ϵ

)
= ij′,t′ − gj′,t′ (16)

By Lemma 1, we know that either i∗j′,t′ = 0 or g∗j′,t′ = 0. Therefore, to maintain
the energy balance, we can either buy less energy from the main grid, sell more
energy, or stop buying and sell energy instead. These cases can be formally
distinguished as follows:

– Case 1.1: g∗j′,t′ ≥ 0 and i∗j′,t′ = 0.

We set ij′,t′ = 0 and gj′,t′ = g∗j′,t′ +
ed−ec
ed

ϵ. Which verifies expression (16).
And, we can write the cost difference between x∗ and x as:

c(x∗)− c(x) =δ

(
µ
ec
ed

ϵ+ β
ed − ec

ed
ϵ

)
Now, as ed ≥ ec then c(x∗)−c(x) > 0, which is a contradiction to optimality
of x∗

– Case 1.2: g∗j′,t′ = 0 and 0 < i∗j′,t′ <
ed−ec
ed

ϵ.

We set ij′,t′ = 0 and gj′,t′ =
ed−ec
ed

ϵ− i∗j′,′t′ . Similarly as before, this verifies

expression (16). And, we can write the cost difference between x∗ and x as:

c(x∗)− c(x) =δ

(
µ
ec
ed

ϵ+ (Bt′ − β)i∗j′,t′ + β
ed − ec

ed
ϵ

)
Now, as ed ≥ ec, and Bt′ > β then c(x∗)− c(x) > 0, which is a contradiction
to optimality of x∗.

– Case 1.3: g∗j′,t′ = 0 and i∗j′,t′ ≥
ed−ec
ed

ϵ.

We set gj′,t′ = 0 and ij′,t′ = i∗j′,t′ −
ed−ec
ed

ϵ. Which verifies expression (16).
We can write the cost difference between x∗ and x as:

c(x∗)− c(x) =δ

(
µ
ec
ed

ϵ+Bt′
ed − ec

ed
ϵ

)
Now, as ed ≥ ec then c(x∗)−c(x) > 0, which is a contradiction to optimality
of x∗.

Case 2: ecz
∗
j′,t′ − edy

∗
j′,t′ > 0.

Symetrically, we prove that we can build a solution x for this case. We now
set yj′,t′ = 0, and zj′,t′ = z∗j′,t′ −

ed
ec
ϵ, where ϵ = y∗j′,t′ .Then, as in the previous

case, we are reducing both the charge and discharge of energy from the battery,
and therefore, Constraints (6) and (7) are satisfied. Now, the reduction we made
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in battery discharging is greater than the reduction we made in battery charging,
also generating an energy surplus in equation (8):

i∗j′,t′ −
(
g∗j′,t′ +

ed − ec
ec

ϵ

)
= ij′,t′ − gj′,t′ (17)

And, as well as for the previous case, by Lemma 1, we know that either i∗j′,t′ = 0
or g∗j′,t′ = 0. Therefore, to maintain the energy balance, we distinguish the cases:

(2.1) when g∗j′t′ ≥ 0 and i∗j′,t′ = 0, (2.2) when g∗j′t′ = 0 and 0 < i∗j′,t′ <
ed−ec

ec
ϵ,

and (2.3) when g∗j′t′ = 0 and i∗j′,t′ ≥
ed−ec

ec
ϵ. Using arguments similar to those

used above, we reach a contradiction in each case.
Hence, our initial assumption that x∗ is an optimal solution of (EPP-L) is false.
Therefore, in any optimal solution of (EPP-L) y∗j,tz

∗
j,t = 0 ∀j ∈ J, t ∈ T . ⊓⊔

Corollary 1. Given an instance of (EPP) where Bt > β ∀t ∈ T , and ec ≥ ed > 0
then (EPP) is a polynomial problem.

3 Adding Fairness Considerations

So far, we have focused our analysis of energy management in microgrids on the
overall system efficiency. However, in the context of shared resources, such as PV
energy, we are confronted with a challenge of allocating scarce resources. When
considering only the overall efficiency, individual agents often find themselves in
a position where they must sacrifice personal benefits to enhance the common
welfare. Consequently, the notions of fairness and equity have garnered signifi-
cant attention as potential tools to address the disadvantages some agents may
face [9, 15, 12, 1].

Thus, several definitions of fairness have emerged in the context of resource
allocation [13, 4, 2]. To implement these definitions in the resource allocation
problem, allocation rules are used. Such rule can be defined as the vector P ∈ Rn

composed of the resource quantities allocated to each user, where n is the number
of users. The vector P must meet the following characteristics: (i) non-negativity,
(ii) demand limitation, and (iii) efficiency. In our problem each component of
the vector P is defined as the aggregate PV electricity allocation of each house
j ∈ J over time horizon T , i.e., Pj =

∑
t∈T pj,t for each j ∈ J .

The following section aims to define some resource allocation rules for the
distribution of PV energy in microgrids: proportional allocation rule, and max-
min fairness.

3.1 Proportional Allocation Rule

The proportional allocation rule consists of allocating the resource in a way
that if the allocation of a user is increased it exists at least another user whose
allocation decreases and the loss of this user in proportion is larger than the gain
of any other one [8]. This rule satisfies the following properties: (a) each user
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receives the same portion of the demand, i.e., λ =
Pj

Dj
∀j ∈ J ; (b) users with the

same demand must receive the same amount of resource; (c) scale invariance;
and (d) resource monotonicity: if we increase the amount of available resource,
the users should receive at least the same allocation as before.

To implement this allocation rule in the energy supply planning problem,
we add equations (18) to (EPP), which state that the portion of the demand
allocated to each house must be the same.∑

t∈T p1,t∑
t∈T D1,t

=

∑
t∈T pj,t∑
t∈T Dj,t

∀j ∈ J (18)

3.2 Max Min Fairness (MMF)

In this rule, the allocation is based on the egalitarian notion and it seeks to
protect the weaker users [2], it can be calculated as follows, first we order the
users according to their increasing demand, i.e., D1 ≤ . . . ≤ Dn, then we allocate
the resource following Equation (19).

Pj = min{Dj ,
R−

∑j−1
k=1 Pk

n− j + 1
} (19)

And the main property of this rules is that for any other allocation P : if
Ps < P s for some user s ∈ J there exists at least one user l such that Pl ≤ Ps

and P l < Pl, i.e., to increase the allocation for a user, we have to decrease the
allocation for another user whose MMF allocation was smaller than the benefited
user.
To apply this allocation rule to our problem (EPP), we add constraints (20) and
(21). ∑

t∈T

pj,t ≤
∑
t∈T

Dj,t ∀j ∈ J

∑
t∈T

pj,t ≤
∑

t∈T CPV
t −

∑j−1
k=1

∑
t∈T pk,t

|J | − j + 1
∀j ∈ J

(20)

(21)

3.3 Dominance Properties

We below show that the fair energy supply planning problem in collective self-
consumption can be reformulated as a linear programming problem as proposed
in the previous section. To this, we consider (EPP-L), and we incorporate an
allocation rule, obtaining an LP model. Thus, we deduce Lemma 3.

Lemma 3. Given an instance of (EPP-L) with proportional allocation rule (or
max min fairness rule), where Bt > β ∀t ∈ T , and ed ≥ ec > 0, then in any
optimal solution x∗ = (s∗, i∗, g∗, z∗, y∗, p∗), i∗j,tg

∗
j,t = 0 ∀j, t, and y∗j,tz

∗
j,t = 0

∀j, t.
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Proof. By incorporating Constraint (18) (or Constraints (20)-(21)) into (EPP-
L) problem, we are limiting the quantity of PV energy being supplied to each
household. This allows us to apply the same proof approach as we did for Lemmas
1 and 2, where this variable does not play a significant role.

4 Numerical Experiments

These allocation rules were implemented in Julia 1.8.1, using the CPLEX 12.10
solver. Instances created from data collected by E4C’s DrahiX demonstrator
were used. These instances consider 7 zones of the building, whose electricity
consumption profiles will represent 7 houses in our problem, in increasing order
of their demand, i.e.,

∑
t∈T D1,t ≤ . . . ≤

∑
t∈T D7,t. For the production of green

electricity, a PV array with a capacity of 37.5 kWc and a battery with a capacity
of 10.5 kWh are considered. A time horizon of 24 hours with time steps of 15 min
is used. To calculate the costs we consider the fixed electricity purchase price
of 0.2062 euros, according to the current price of electricity in France, as well
as for the sale of electricity we use the price established for the sale of surplus
electricity in French self-consumption communities, 0.1 euros. All the technical
parameters of the battery were obtained from Zhang et al. [16].

4.1 Energy Supply Planning Problem

Figure 1 shows the results obtained by solving (EPP-L) without fairness. Figure
1a shows the percentage of demand that can be satisfied with the allocated PV
and battery. We can see that only one house is able to satisfy the 100% of their
demand, while the others are around 50%. In Figure 1b for each house, the first
bar shows the amount of PV energy allocated to the house, and the other one,
the amount of energy exported to the main grid. We observe that even the houses
with less than 100% of autonomy are selling some energy to the main grid.

4.2 (EPP-L) With Proportional Rule

In Figure 2a, we can see that all the houses are able to satisfy the same percentage
of their demand, ensuring more than a 50% of autonomy per house. In Figure 2b,
we observe that all of them are selling some energy to the main grid. Furthermore,
in order to ensure the same autonomy to all houses, we are forced to allocate
more PV energy to those houses with a bigger demand.

4.3 (EPP-L) With Max Min Fairness

In Figure 3 we can see that houses with a small demand are able to satisfy their
full demand, and this autonomy dicrease as we increase the demand. In Figure
3b, as well as we see before, some houses that are not able to satisfy their full
demand, are selling energy to the main grid. Furthermore, houses with less than
100% autonomy receive the same amount of photovoltaic energy, which is higher
than the amount received by those who achieve 100% autonomy.
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(a) Percentage of the demand satisfied
with the allocated PV energy and the bat-
tery.

(b) Amount of energy exported compared
to amount of allocated PV.

Fig. 1: Results obtained by solving (EPP-L)

(a) Percentage of the demand satisfied
with the allocated PV energy and the bat-
tery.

(b) Amount of energy exported compared
to amount of allocated PV.

Fig. 2: Results obtained using the proportional rule

4.4 Price of Fairness

In Figure 4 we can see the percentage increase in total cost when using the
fair allocation rules, compared to the cost obtained when solving (EPP-L). The
proportional rule does not present an increase in costs.

5 Conclusion

This work addressed the energy supply planning problem in collective self-
consumption. First we presented a mixed integer linear formulation of the prob-
lem, and we reformulated it as a linear program based on some dominance prop-
erties. Then we presented two fairness allocation rules from the literature, and
we proposed their implementation into the energy supply planning problem. We
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(a) Percentage of the demand satisfied
with the allocated PV energy and the bat-
tery.

(b) Amount of energy exported compared
to amount of allocated PV.

Fig. 3: Results obtained using the max min fairness rule

Fig. 4: Percentage increase in total cost when using the proportional and max
min fairness rules.

also showed how the dominance properties from the energy planning problem
holds for the problem considering fairness.

We illustrated our proposal in a real case study in France, using consumption
profiles from a university. We were able to show the impact of the different
allocation rules on the distribution of PV energy and on the economical efficiency
of the community.

To continue this work we want to study the impact of time aggregation in
allocation, and the impact of uncertainty in predictions of PV production or
demand. Furthermore, we want to study the α-Fairness allocation rule, which is
a collection of different allocations that captures different utility functions.
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F., Blázquez Gil, G., Carrasco Ortega, P.: Optimization of energy allocation strate-
gies in spanish collective self-consumption photovoltaic systems. Sustainability
15(12) (2023)
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