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Abstract

The Diffusion Monte Carlo method with constant number of walkers, also called
Stochastic Reconfiguration as well as Sequential Monte Carlo, is a widely used Monte
Carlo methodology for computing the ground-state energy and wave function of
quantum systems. In this study, we present the first mathematically rigorous anal-
ysis of this class of stochastic methods on non necessarily compact state spaces,
including linear diffusions evolving in quadratic absorbing potentials, yielding what
seems to be the first result of this type for this class of models. We present a
novel and general mathematical framework with easily checked Lyapunov stability
conditions that ensure the uniform-in-time convergence of Diffusion Monte Carlo
estimates towards the top of the spectrum of Schrodinger operators. For transient
free evolutions, we also present a divergence blow up of the estimates w.r.t. the time
horizon even when the asymptotic fluctuation variances are uniformly bounded. We
also illustrate the impact of these results in the context of generalized coupled quan-
tum harmonic oscillators with non necessarily reversible nor stable diffusive particle
and a quadratic energy absorbing well associated with a semi-definite positive matrix
force.

1 Introduction

The many-body Schrédinger equation describes interacting quantum particles. Depend-
ing on the domain of application, these particles may represent electrons in solid-state
physics or quantum chemistry, nucleons in nuclear physics, atoms in quantum liquid
physics, or coupled modes of oscillators in molecular spectroscopy, among the main ap-
plications. Except for trivial quantum systems, it is impossible to solve this equation
analytically. The diffusion Monte Carlo method (abbreviated DMC) provides a power-
ful stochastic approach to numerically approximate the ground state energy and wave
function of Schrodinger operators.



The DMC methodology has a long and rich history, dating back to its first mention
in 1949 by Ulam and Metropolis in [1]. The idea was first implemented by Donsker and
Kac [2], and by Kalos [3] in the early 1960s. Over the years, the physics community
has proposed numerous variants of Diffusion Monte Carlo, known by various names
such as Green’s function Monte Carlo,[3, 4] Fixed-Node Diffusion Monte Carlo,[5], Pure
Diffusion Monte Carlo, [6, 7] Stochastic Reconfiguration Monte Carlo,[8, 9, 10, 11] and
Reptation Monte Carlo,[12] to cite the main ones. Despite their apparent diversity, all
these approaches are fundamentally based, in one way or another, on the stochastic
simulation of a specific implementation of the Feynman-Kac formula with importance
sampling.

For a more detailed discussion on the origins and the applications of these Monte
Carlo techniques in physics we refer the reader to the recent review article [13] as well
as to [14, 15] and references therein.

The version of interest employed here is the DMC method with a fixed number of
walkers, commonly known in physics as Stochastic Reconfiguration Monte Carlo; see the
pioneering article by Hetherington [8], followed by Sorella and co-authors [9, 10] and by
the first author and his co-workers in [11].

In mathematics, the methodology may also be referred to by different names, such
as genetic algorithm with selection and mutation, population Monte Carlo or sequential
Monte Carlo [16, 17, 18, 19, 20]. For a more thorough discussion on these application
model areas we refer to the books [21, 22] and references therein.

These sequential Monte Carlo methods do not rely on biased variational techniques.
They can be seen as a sophisticated genetic-type Monte Carlo methodology to simulate
interacting quantum many-body systems. Various asymptotic results have been derived,
including central limit theorems and large deviation principles, see for instance [23, 24]
and [25, 26], as well as the books [27, 21, 22] for an overview.

Our work concerns less studied non-asymptotic and time-uniform problems. Recall-
ing that the estimation of ground state energies relies on the limiting behavior of the
walkers’ evolution in the DMC method, it is therefore crucial to obtain uniform-in-time
convergence estimates. Despite its importance, there is a notable gap in the literature
and very few results have been proven in this respect. To the best of our knowledge,
such uniform controls are mainly valid for compact state space models, see for instance
[28, 21, 22] as well as [29]. Surprisingly, the theoretical efficiency of the DMC method has
never been verified rigorously even in basic linear-Gaussian scenarios such as the simple
and well known harmonic oscillator. In this paper, we address this gap by establishing
the first uniform-in-time convergence estimates that apply to general state space models
including the coupled harmonic oscillators presented in [30].

Our approach is partly based on recent developments on the stability of positive
semigroups presented in [31, 32], see also the analysis of generalized coupled harmonic
oscillators presented in [30]. In the present article, we provide a natural Lyapunov con-
dition that ensures the exponential stability of possibly time varying positive semigroups
on non necessarily compact state spaces (cf. (6) and the local conditions (7)). In the
context of time homogeneous positive semigroups, these conditions ensure the existence



of an unique leading eigen-triple (see for instance (12)). We underline that these results
do not rely on any reversibility-type condition, nor on some spectral theorem. They
can be seen as an extended version of Perron-Frobenius and Krein-Rutman theorems for
possibly time varying positive operators.

We present a nonlinear Markov chain interpretation of the DMC methodologies. In
this interpretation, the genetic type evolution of the walkers can be seen as a mean field
particle simulation of a nonlinear Markov chain (see Section 2.4). In this context, we
present an auxiliary Lyapunov condition that depends on the potential function and the
free evolution of the walkers that ensures the time uniform performance of the DMC
methodology (cf. condition (6), as well as Theorem 1 and Corollary 2). We illustrate
this condition in the context of generalized coupled harmonic oscillators for a linear
diffusive-type particle and a quadratic energy absorbing well associated with a semi-
definite positive matrix force. In this context, we also show that the DMC methodology
may diverge when the free evolution of the walkers is unstable for any fixed number
of walkers, even if the asymptotic variance of the Central Limit Theorem is uniformly
bounded with respect to the time parameter (see Proposition 1, as well as Section 5.4
and Proposition 5).

In the context of absorbing wells centered at the origin, this study leads us to con-
jecture that stable free evolution transitions is a necessary and sufficient condition for
the DMC method to be uniformly convergent w.r.t. the time horizon.

Additionally, we propose and, to some extent, establish the validity of an importance
sampling transformation to overcome this difficulty. This type of technique is related but
not identical to the use of guiding wave functions in physics to direct the Monte Carlo
moves to improve the efficiency of the DMC method [33, 34]. In contrast with con-
ventional guiding waves techniques our approach is based on conditional free evolutions
transitions and survival weight potential functions (cf. Section 2.4 and Section 5.2).

The rest of the article is organized as follows: In Section 2, we provide a detailed
description of the general framework in which our study is set, as well as the theoretical
foundations on which our proof will be based.

Section 3 is devoted to the presentation of our main results. Section 4 is mainly
concerned the detailed proofs of time-uniform estimates.

Section 5 is devoted to the application of our convergence result to generalized cou-
pled harmonic oscillators [30, 35, 36]. These models arise in various fields such as molecu-
lar spectroscopy[37], quantum optics [38], quantum cryptography [39] and photosynthesis
[40]. In signal processing, the harmonic oscillator and the DMC methods coincides with
the Kalman and the particle filter [41, 42].

2 Description of the models

2.1 Free evolution semigroups

Consider a Markov chain X, indexed by n € N and taking values in a locally compact
Polish space (F,&), where &£ is the Borel o-field on E. Let C(E) be the algebra of



continuous measurable functions on E. We also define Cy(E) C C(E) as the sub-algebra
of bounded measurable continuous functions endowed with the supremum norm ||.||.
With a slight abuse of notation, we denote by 0 and 1 the null and unit scalars as well
as the null and unit functions on E and we denote by I : © € E — I(z) = x the identity
function on E. Throughout, we will use a, b, ¢, ¢1, or ¢a to represent positive constants,
whose values may vary from line to line.

For n € N*, we consider the Markov transitions P,, associated with X,,, and assume
that they are Feller; in the sense that for any f € Cp(E) we have P,(f) € Cp(E), with
the function P,(f) defined for any « € E by the integral operator

Pu(f)(z) = /E P, dy) f(y) = E(f(Xn) | Xoo1 = ).

Let Coo(E) C C(E) be the sub-algebra of uniformly positive continuous functions
V that grow at infinity; that is, for any r > V, := infg V' > 0, the r-sub-level set
V(r) :=={V < r} C E is a non-empty compact subset. We further assume that there
exists a P-Lyapunov function V € Cs(F); in the sense that V(E) C [1,00) and there
exists € € [0,1) and ¢ € R such that for any n € N* we have

P,(V) <eV +e. (1)

Let Cy (E) C C(F) be the sub-space of functions f € C(E) such that f/V is bounded,
equipped with the norm || f||v := || f/V]. The Markov semigroup associated with the
Markov chain X, is defined for any f € Cy(E) by

Pk,n(f)(x) = E(f(Xn) | Xy = IE)

Condition (1) ensures that Py, is V-Feller in the sense that for f € Cy(E) we have
Py n(f) € Cv(F). To ensure the semigroup Py, is exponentially stable [31], we assume
the integral operator

Po(z,dy) = pn(z,y)v(dy)

has a density p, w.r.t. some Radon measure v satisfying for some r; > 0 and for any
r > 71 the local minorization condition

0 < inf,enx infv(r)a Pn < SUPpeN+ SUPY ()2 P < 00
(2)
0<v(V(r)) < .

The V-norm semigroup contraction techniques developed in Section 8.2 in [43] (see
also Lemma 2.3 in [32] and Theorem 2.2 in [31]), ensure that for any pu € Py (E), there
exists some parameters a,b > 0 such that for any k& < n, and any u1,pus € Py (E) we
have

=R |y — o[y (3)

Note that the r.h.s condition in (2) is met as soon as V has compact sub-level sets
with non empty interior and v is a Radon measure with full support; that is v is finite

|11 P — pi2Prnlly, < ae



on compact sets and strictly positive on non-empty open sets. For time-homogeneous
models, the Lh.s. minorization condition is satisfied as soon as (z,y) € (E°)? — pp(z,y)
is a continuous positive function on the interior E° of the set E.

2.2 Feynman-Kac semigroups

We denote by Co(E) := {1/V : V € Cx(E)} C Cp(E) the sub-algebra of bounded
continuous positive functions h that vanish at infinity; that is, for any 0 < e < ||h|| < oo
the e-super-level set {h > €} C F is a non empty compact subset.

Consider a family of strictly positive bounded continuous functions G,, such that

GnPni1(V)/V € Co(E) (4)

Condition (1) ensures that this is met for any family of functions in Co(E).
We associate with it the discrete time generation Feynman-Kac semigroups

n—1
Q@) =E | £(X0) [[ Go(X) | Xp =2
p=k

and

Qun(f) = G Qrn(Gnf),
with G,;l := 1/Gk. Note that condition (4) implies that for any positive function
f € Cy(E) we have Qnnt1(f)/V < Qni(V)/V € Co(E). Therefore, Qp nt1 is V-Feller.
In the same vain, we check that @), is V-Feller.
To simplify notation, for £ = (n — 1) we sometimes write @Q,, and Q. instead of
Qn-1,, and @n—l,n- In this notation, we have

Qu(f)(@) = Gua(2) Pu(f)(@) and  Qu(f)(@) = Pu(Gnf)(@).

We also use the convention @y, ,, = P, = Id, the identity operator.

Let My(E) be the set of bounded signed measures on E. Also, let P(E) C M,(E)
be the convex subset of probability measures on E and denote by Py (F) the convex
set of probability measures 1 € P(E) such that u(V) < 4o00. The left action of @, on
Py (E) is given for any (n, f) € (Pv(E),Cy(E)) by the formula

(@) = 1(Qu(f)) = / 0(d2)Qu(f) ()
- / () Qu (. dy) f (). (5)

By Fubini’s theorem, the integration order doesn’t matter. Thus to simplify notation,

we sometimes write nQ,(f) instead of (nQ,)(f) or n(Qn(f))-
We further assume the Lyapunov function V' introduced in (1) is a Q-Lyapunov

function in the sense that (1) holds and there exists © € Cy(E) and a compact subset



K C FE such that for any n > 1 we have

Qn(V)/V <O
(6)
(Gn-1(z) = Gn1(v)) e\ (2)V(2) — 1\ (¥)V (y)) < 0.

Note that the second condition in (6) holds as soon as there exists G € Co(E) such that
for any G,, < G, for any n > 0. This condition ensures that for any positive function
f €Cy(E) and n > 1 we have

Qn(f)/V <Qu(V)/V < 0.

By (2) the integral operator @, (z,dy) = ¢n(x,y) v(dy) also has a density given by
qn(z,y) = Gp_1(x)pn(z,y) and for any r > r; we have the local condition

0 < inf ¢, < sup ¢, < oo. 7
V(r)? V(r)2 @)

Consider the normalized measure valued process 7, € Py (FE) starting at g € Py (F)
defined for any n > 1 by

M1 = Pnt1 (nn) = an (nn)Pn—O—l and 7/7\” = an (nn)a (8)

with the updated Boltzmann-Gibbs transformations v, associated with the potential
function G,, defined by

1
n(Ghn)

We readily check that the evolution semigroup ¢y, = ¢r4+1,, © @i associated with the
flow of measure 7, is given for any k£ < n by the formula

an(nn)(d‘r) = Gn('r) U(dx)

_ nka,n
Phinl1le) = MQrn (1)
Note that for any p € Py (F) we have the updating formula
P (k) = Ve (1) Qb (9)
with the Markov operator
) — Wy Qea((@)
Qin(f) == Qren(f)/Qrn(l) and Hyp (2): 0 r (1) 0nn(1) (10)

By Theorem 4.2 in [32] (see also Theorem 1 in [44] in the context of nonlinear filtering),
for any p € Py (FE), there exists some parameters a,b > 0 such that for any k¥ < n, and
any pi, 2 € Py (E) we have

|11 Qi — 12Qkm] |y < ae” "R ||y — M2HV/H,‘:JL' (11)
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Note that for constant potential functions G, (x) = G, (y) we have an = Py, and the
above contraction estimates resume to (3). Moreover, we stress that our focus will be on
establishing exponential convergence rate without focusing on the estimation constant.
Therefore, we are not concerned with whether certain constants in (3) and (10), such
as a, might be large due to factors like high dimensionality. Our primary concern lies
solely in their existence.

For time homogeneous models @,, = ), Theorem 4.4 in [32] ensures the existence of
a leading eigen triple (h, Eo,7s0) € (Cv(E) x R%. x Py(E)), such that

Q(h) =Eyh , 1@ = FEynw and noo(h) =L (12)

2.3 Schrodinger semigroups

The objects defined in the previous subsection are core to a variety of physics problem.
Indeed, consider an Hamiltonian differential operator H given by the formula

H:=—-L+U,

where U is a potential energy function from F to Ry, and L is a kinetic energy operator
acting on a subset D(L) of C(E). The time dependent Schrodinger equation and the
imaginary time version associated with the hamiltonian H are given, respectively, by the
equations

iOphi(z) = H(Y)(w) and  — Ope(z) = H(pr)(7),

with prescribed initial conditions (g, ¢p). In the above display, ¢ € C stands for the
imaginary unit. The right-hand side equation is obtained via a formal time change by
setting oy (x) = ¥_;(z), and can be equivalently written in the following form

Oppr(x) = L(pr)(x) — Ulx)pe(), (13)

with initial condition ¢g.
For a twice differentiable function ¢, the solution of (13) is given by the Feynman-
Kac path integral formula

ol@) = Qulpo)() = / Qi(x. dy) woly) (14)

E <<p0(Xt) exp <_ /0 t U(X,) d5> | Xy = a:) .

In the above display, X} stands for a time homogeneous stochastic process X; on E, with
generator L. To facilitate the interpretation of the theoretical and numerical physics in
the measure theoretical framework used in this article, we note that the Feynman-Kac
propagator defined by the integral operator (14) is sometimes written in terms of the
exponential of the Hamiltonian operator with the exponential-type symbol

. —tH
Qt =€ )



or in the bra-kets formalism

Qi(0) = e ™|¢0).

The integral operator Q; is sometimes called the Feynman-Kac propagator. For any
s,t > 0 the integral operators Q; satisfy the semigroup property

Oy i1(, dz) = (Qs Q1) (, dy) = / O, (x.dz) Qi(z,dy)
= QPstt = Qs(‘Pt)'

In terms of left action bra-kets, defining p,(dz) := ¢(x)dz, Fubini’s theorem yields
(ple Mo = [ do ola) Qulw.dy) aldy) = (1,.) )

1o ((Q2s9t) (¢0))
= 11pQsti(0) = (ple” T ).

The exponential notation is compatible with finite space models and the matrix
notation of the continuous one-parameter semigroup for time homogeneous models. The
bra-ket notation (a.k.a. Dirac notation) is also used to represents linear projection forms
acting on Hilbert spaces associated with some reversible or some stationary measure,
such as the Lebesgue measure for the harmonic oscillator.

The present article deals with different types of non necessarily stationary stochastic
processes, including the free evolution process X; discussed in (14). Apart in the re-
versible situation in which spectral theorems are stated on the Hilbert space associated
with a reversible measure, the use of the exponential symbol or the use of the bra-
kets formalism is clearly not adapted to represent different expectations with respect to
different types of stochastic and non-necessarily reversible processes.

To analyze these general stochastic models, we have chosen to only use elementary
and standard measure theory notation such as (5). The integral actions of a given
integral operator ; on the right for functions and on the left for measures are clearly
compatible with finite space models and matrix notation. The left action pu — ©Q; maps
measures into measures, while the right action f — Q(f) maps functions into functions.

(1Qu)(dy) := [ p(dz)Qy(x, dy)
Qi (f)(x) == [ Qulx, dy) f(y).

In this context the normalized measures are defined for any s < ¢ by the flow of measures

,U't(f) = (I)s,t(ﬂs)(f) = Nth—s(f)/:U'th—s(l)y (15)



where ug stands for the distribution of the initial random state Aj. Note that

i) = € (V@) e (- [ U2 as) )

= —poQ:(U)
= Oy log 1109 (1) = —pe(U)

— 021 = e (- [ t U5, (16)

The operator Q; defined in (14) is sometimes called a Feynman-Kac propagator.
However, despite its mathematical elegance, it can rarely be solved analytically. Under
some regularity conditions (cf. for instance [32]) the flow of measures u; converge as
t — oo to some limiting fixed point measure fioo = Ps:(fio) (a.k.a. quasi-invariant
measure). In this case, choosing g = oo in (16) we have

oo Qi(1) = €720 with Ao := pioo(U).

Whenever it exists, the ground state hg is the leading eigen-function associated with Ag;
that is, we have

Qi(ho) = e hy.

On a given time mesh t,, = nd, with time step ¢, — t,_1 = § > 0 we clearly have

bt 9s(f)

Mty (f) - [, Q(S(l)

and  Qs(z,dy) = Gs(x) Ps(w,dy),

with the function
Gs(x) := Qs5(1)(x),

and the Markov transition

Qs(z, dy)
Po(w, dy) = Qs(1)(z)
Note that
foo(Gs) = 1100 Q5 (1) = 7209,
as well as

Qs(ho) = e by and Loo Q5 = e~ Pod oo -

In other words, choosing (G, P) = (Gs, Ps) in the time-homogeneous Feynman-Kac model
discussed in (8) and (12), we obtain the leading triple

(77007 Ey, h) = (,Uoo, 6_)\067 hO)'
This yields the formula
1

S 108 e (05) = o = oo (U)



Unfortunately, with the notable exception of coupled harmonic models (cf. [30] as
well as Proposition 7.1 in [31]), the potential function Gs can rarely be evaluated and
the Markov transition Ps cannot be sampled. The Feynman-Kac measure 7, introduced
in (8) can also be interpreted as the solution of a discrete-time approximation of the
formula (14). Indeed, consider a discrete time approximation Xy, of the process A}, and

let
Q(z,dy) = G(z)P(z,dy),
with
G(z) = exp (—U(x)0)
(17)
P(x,dy) =P(X} edy| X}

L =x).

In this situation, choosing n = |t/d] we have

mQoa(f)=E | r(x7) [ ¢&x7)

0<k<n

=E | f(X]) exp{ — > U(X])(trar — t)
0<k<n

~510 102 (f)-

The leading triple (7o, Eg, h) associated with the discrete time Feynman-Kac approxi-
mation model now depends on the time step § and we have

(77005 h) =510 (IU’OO) hO)a
and

1

)

It is clearly out of the scope of this article to analyze the bias introduced by the

discrete time approximation discussed above. We refer to [45] for a thorough discussion
of this matter.

1 _
0g oo (G) = — 5 log noo(€ U8) 510 Ao = poo (D).

2.4 Diffusion Monte Carlo

The Diffusion Monte Carlo methodology relies on the fact that the flow of measures 7,
introduced in (8) can be interpreted as the probability distributions 7, = Law(X,,) of
the random states X,, of a nonlinear Markov chain X,,. The choice of the Markov chain

is far from unique. For instance, we have

M+l = ¢n+1(77n) = D Knt1,m,5

10



with the local Markov transition

Koy, (@,dz) = (Spnp,Prs1) (x,d2)
= [ Suan o) Pria(y.d2)
= P(Ynﬂedz\yn:m).

In the above display, Sy, stands for the Markov transition

S (@, dY) = €n(Nn) Gn(2)dz(dy)
+ (1 = () Gn(@)) Ve, () (dy).

for some tuning parameter €,(n,) € [0, 1] chosen such that €,(n,)Gn(x) € [0,1]. For
instance, for ]0,1]-valued potential functions, we can choose €,(n,) = 0 as well as
€n(nn) = 1. For more general models, we can also choose the inverse of the 7,-essential
supremum of G,,.

Note that the transition X, ~ X, .1 depends on the probability distributions 7, of
the random states X,,. In reference with similar nonlinear Markov chain models arising
in fluid mechanics, the Markov chain X,, is called a McKean interpretation of the flow
of measures (8).

The mean field particle interpretation associated with a given McKean model is
defined by a discrete-time system of N walkers &, = (5%)1 <;j<n- The system starts with
N independent copies of a random variable Xg = X, with distribution 79. Given the
system &, at some time n > 0, we sample N conditionally independent walkers g; 11
with their respective distribution

4 . 1
Ky (Ehyda)  with  p)f = > G
1<i<N

In other words, the DMC method consists of approximating the measure 7),, by using
the occupation measure Y associated with a system of N walkers. The initial positions
of the walkers are randomly chosen from the distribution 79. The evolution of each
walker follows then the following selection/mutation steps:

e Selection: We evaluate the current position & of a walker and its potential value
Gn(&). With probability (1 —en(nly )Gn(g:;)), ¢! is killed and instantly replaced
by another walker say 5; = 5% with a probability proportional to Gn(&%) and
j€{1,...,N}; otherwise we keep it and set E,g = £

e Mutation: We move the selected walker E}l = z to a new location & 41 = Yy using
the transition kernel P, y;(x,dy).

The selection transition associated with the choice €, (7)) = 0 coincides with the
so-called proportional selection/reconfiguration. Note that the walker with the highest

11



potential value is always selected when €, (n2) is the inverse of the nN-essential supre-
mum of G,,.

For [0,1]-valued potential functions G, we can also choose €,(nY) = 1. In this
situation, particle are killed at a geometric clock that depends on the potential function.
In the context of the discrete time approximating Feynman-Kac models discussed in (17),
when the time step ¢ tends to 0, these geometric killing-rates converges to an exponential
killing rate. The limiting DMC scheme in continuous time consists of a system of N
walkers. Between killing times, walkers explore the space with a free evolution with
generator £; at rate U the walkers are killed and instantly another walker in the pool
duplicates (see for instance [16, 27, 46, 47, 48]). We underline that without the geometric
killing rates, the variance of the proportional reconfiguration associated with the choice
en(n)) = 0 blows up when the time step tends to 0.

We expect that the occupation measures of the system approximate the solution of
the measure-valued process (8); that is, in a sense to be given, for any time horizon
n > 0 we have

N
1
N _ )
= 20
1=

as well as
N

va, () = Z Cnl&n) O¢i — G, (Mn) = .

o1 21<i<N Gp(&n) ™ Nooo

The Lyapunov drift condition (1) combined with the local minorization condition
(2) ensures that the free evolution of the walkers is stable, in the sense that it forgets
exponentially fast its initial condition (see (3)). This condition is not satisfied for linear
gaussian processes with an unstable drift matrix. In this context, as shown in Proposi-
tion 1 and Proposition 5 (see also Section 5.4) the DMC method diverges for any fized
number of walkers, even if the asymptotic variance of the Central Limit Theorem stated
in Lemma 7 is uniformly bounded w.r.t. the time horizon.

Note that the stability regions and the Lyapunov functions are connected to the
potential function by (6). Importance sampling techniques and twisted guiding waves
can be used to design stable-like free evolutions. For instance, using the decomposition

Qni1(f)(x) = G Poga(f),

with the potential function

A 5 Pri1(Grgr f)
Gy = Pt1(Gy and P, =
-‘rl( -‘rl) +1(f) PnJrl(GnJrl)
we readily check the evolution equation
A1 = b1 (Tn) = v, () Patr. (18)

__ This shows that the updated measures evolve as in (8) by replacing (Gn, P) by
(Gn, Pp,). The DMC associated with these objects is a genetic-type Monte Carlo sampler

12



with selection fitness functions én and mutation transitions ]3” From the mathematical
viewpoint, this model coincides with the one discussed in (8). Nevertheless, the free
evolution of the walkers associated with (G, P,,) is now driven by the potential function.
This local conditioning importance sampling strategy if often used to turn infinite energy
absorbing wells (a.k.a. hard obstacles) into soft ones [17, 49].

More generally, for any given time mesh &, < k,+1 we have

Qhonenss (F) = G P s (),

with the potential function

an, kn+1 (f)

Gry = Qrpjonss (1) and Py g, (f) =
o o anykn+l(]‘)

This yields the formula

M1 (F) = Pk binsa k) = b, () P -

This shows that the updated measures 7, evolve as in (8) by replacing (Gn, P,) by
(Gkn, Pkn kns1)- The DMC associated with these objects is a genetic- type Monte Carlo
sampler with selection fitness functions Gk and mutation transitions Pkn’ ki1

As shown in Section 5.2 (see also Corollary 4) in the context of coupled harmonic
oscillators there exists a time mesh for which the mutation transitions ﬁkn,kn 41 and
the potential functions ékn satisfy the required stability properties. For more general
models, these objects do not have an analytic form. In this context, we can use the
unbiased Monte Carlo methodologies discussed in [50], see also Section 2.3.2 in [27],
and Section 11.5 in [21].

3 Statement of the main results

3.1 Some regularity conditions

For f € Cy(E), time-uniform L,-convergence of the error made by the DMC method
in estimating 7, (f) have been obtained (see for example [27, 28], as well as Chapter
4 in [21], Chapter 12 in [22] and the more recent article [32]) under the strong mixing
assumption that there exist ep € R and eg € R’ such that

V(x1,22,n) € B2 x N, Gpu(x1) > eq Gn(12)

P, (z1,dy) > ep Py(x2,dy).
A significant consequence of this assumption is a time uniform bound on the potential
function defined for some v € Py (E) and k € N by

GW

Kkt - cx€E— G]

prpn(®) =1/ H] L (2).
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Unfortunately, these uniform minorization and majorization conditions are rarely satis-
fied when FE is non-compact.

In order to guarantee a time-uniform L,-convergence for more general models in-
cluding coupled harmonic oscillators, our framework requires to estimate uniformly in
time the inverse moments of 77(]1\7 (Hqn). To do this, we first assume that there exists
v € Py (E) such that

sup ¢O,n(7) (Gn) < +o0. (19)
neN

For time-homogeneous models, without any further conditions on the potential, con-
dition (19) is easily checked with v = 7. For this scenario, we will then consider in
the rest that v = 1. Moreover, this hypothesis trivially holds if the functions G,, are
bounded by some constant independent of n.

We assume that there exists W € Cy(FE), a €]0,1] and a @Q-Lyapunov function
W € Cy(FE) such that

Qu(W)>x xW and W™ <W, (20)

where

X = sup P.(Gp)(z).
(n,x)e(N*XE)

For time homogeneous models, this condition can be relaxed into the following

QW) >min{x, Eg} x W and W~ < W. (21)

Note that, for time-homogeneous models, the set of functions W € Py (E) such that
Q(W) > EpW is non-empty as it contains at least the ground state h. It is also worth
noting that it is not necessary to know the exact value of x nor the one of Ey in order
to prove that (20) or (21) hold. Indeed, if one of these constants is less than some
C € RU{+o0}, then it is sufficient to prove that for any ¢ < C, there exist W, € Cy(E)
and a, € (0, 1] such that

QW.) >cW, and W_ % < V.

Finally, we assume that there exists a Q-Lyapunov function V' € C(E) and A € 2N
such that

VA<V, (22)

Without further mention, we assume that V,V and W are integrable with respect
to no, i.e., no € Py (E) NPy (E) NPy (E). Under conditions (19) and (20) or (21), it is
then possible to obtain a time uniform bound on the random potential function Gz -

Lemma 1. Let v and (n,p) be defined as in (19). There exists B € R% such that for
any B < B we have
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sup  E [@g(n) 1) (Hgn) P] < 400
(g,n,N)EN3
q<n

sup  E [nN(HJn)P] < +oo0.
(¢:n,N)eN?
qsn

The proof of this pivotal Lemma is postponed to the appendix.

3.2 A time-uniform convergence Theorem

The main goal of this paper is to establish that in the context we described, the L,-norm
of the error made by the DMC method in approximating the Feynman-Kac measures
1y remains bounded in time and converges to zero as the number of particles increases.
Our main result can be stated as follows

Theorem 1. For any p € N*, there exists ¢ € R and B € (0,1] such that for any
feC »(E) we have

A
vip

N[

1
sup E (|nn(f) = (F)IF)” < eN™
neN
The proof of this theorem is provided in subsection 4.1. Note that, due to the 3 factor,
the convergence rate obtained here may be slower than other existing convergence results
cited previously. The presence of this factor arises from technical reasons in the proof of
Theorem 1 and is directly related to the choice of the Lyapunov functions V and W. It
could be interesting to conduct a numerical study to determine whether there are cases
exhibiting a convergence rate proportional to N -2 with B lower than one.
For time-homogeneous models, a direct consequence of Theorem 1 is a control over
the estimation of the limiting quasi-invariant measure 7).

Corollary 1. For any p € N*, there exists (c1,c2,w) € Rf and € (0,1] such that for
any f € CV%(E) we have
P

E(IY (f) = noo(£)P)7 < et N=F/2 4 cpeem.,

Moreover, there exists ¢ € R such that, with a = L1In(co/c1) and b= 5

555 have

1 _B
sup  E(ji (f) = 0o (F)IP)7 < eN72.
n>a+bIn(N)

The proof the above Corollary is provided in subsection 4.2 .

Assuming that there exists a measure p € P(E) that is reversible for P, it becomes
possible to obtain a re-normalized weak form of the ground state h and its associated
eigenvalue from the limit measures 7, and 7)o, of 7, and 7,.

15



Indeed, referring to Section 9.5.5 in [43] (see also [16] as well as Section 12.4 in [21]),
we have

noo(G) - E07
and
() = )~ ) ).
Note that WG
() = MG By /).
In the reverse angle, we have the updated limiting measures
() = () () = 0 ) () = 20— o = P

The existence of a reversible measure is actually not required to express the ground-
state energy using the limit measure; indeed, we always have

-  o(GP(R)) Moo ()
Moo (h) = (o) (h) = (e Too(G)

Those equalities, combined with the convergence stated in Corollary 1, guarantee
the efficiency of the DMC method for approximating the ground-state energy and wave
function of quantum systems.

= E() = noo(G> = Eo.

Corollary 2. Let p € N*, and assume that G € C %(E) There exists (a,b,c) € Rf

V 4p

and B € (0,1] such that for any f € CV% (E) we have
P

sup E (B~ (G)F)F < eNE
n>a+bIn(N) 1

s E(Jun()(P() —n (NIP)F < N4
n>a+bIn(N) 1

sup  E (|Eo vn(p)(f/G) — Y ()7 < eN™3.
n>a+bIn(N)

3.3 Coupled harmonic oscillators

To illustrate the practical applications of Theorem 1, we carry out an in-depth study
of the generalized coupled harmonic oscillator [30]. Given d > 1, consider the flow
of measures p; on R? defined by (15) with the the kinetic energy operator £ and the
potential function U defined for some d x d real matrices (C, D, F) and x € R? by:

U(z) == exp <—;xe>

and
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L= Z Ok;,l xy 8zk + Z Dk,l a:]ck,xp

1<k,i<d 1<k,i<d

with 2’ standing for the transposition of vector z (or matrix, where appropriate) .
We define the normalized Markov integral operator O, associated with Q; from
equation (14), using the ratio formula:

Qu(f)(z) = Qu(f)(2)/ (1) ()

We know from [30] that, for ¢ > 0, there exists two positive-definite matrices B and
S, a matrix A and C' € R’ such that:

{ Q:(f)(z) ~ N(Ax, B)
Qa(1)(z) = Cexp (—32'Sz)

For any n € N, the sequence of measure -4, is then equal to the flow of measures
(Nn)nen starting from 7p and evolving according to (8) with the the transitions kernel
P, p and the positive function G's defined by

o~ 3 (A=) BT (Az—y)

PA,B(x7dy) = (QW)k/Q‘B‘1/2 dy

(24)
Gg(x) := exp (—#)

For the harmonic oscillator, studying the discrete-time models instead of the continuous-
time models involves then no approximation. Therefore, we will focus on discrete-time
models in the following analysis.

Note that, strictly speaking, in physical terms, the harmonic oscillator framework
implies that 79 is a normal distribution and that A is the null matrix. However, for the
purposes of this study, within the coupled harmonic oscillator framework, we assume
that the initial measure is not restricted to a normal distribution and that A can be
any real matrix, not necessarily the null matrix. Additionally, the matrix A may not
be symmetric nor a stable (Hurwitz) matrix. Furthermore, the transition P4 g is not
necessarily reversible, unless AB = BA'.

In order to state a convergence result on the error of the DMC method that is
not restricted to the harmonic oscillator, we now consider a family of Feller Markov
transitions (P,)nen with positive densities p,, an initial distribution 79 € P(E) and a
family of positive functions (G, )nen € Co(RY)N bounded by 1.

Let (A,2l) be real matrices and (B, B, .5) be real positive definite matrices. Denote
by pa, g the density of P4 p and by E4 p s the ground-state energy associated with the
operators P4 p and Gg. We assume then the following

e There exists ¢; € R such that for any (n,z,y) € N x R? x R? we have

pn(xvy) < pA,B(xay)‘ (25)
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e For any (n,7,y) € N x R? x R? we have

Gn () pnia(z,y) = x Gs(x) pasm(z,y). (26)

Eoss,s
e There exists a compact K C R? such that for any (n,z,y) € N x R? x R? we have

[Gs(2) = Gs(W)[GL (2)1ravk () — G () Lravi (9)] > 0. (27)
o There exists c3 € RY. such that G is integrable with respect to 7.

If P, and G, are time-independent, it is possible to replace y in (26) by the ground
state energy associated with P and G.

These conditions hold trivially for the coupled harmonic oscillator, i.e if P, = Py p,
Gy = Gg and 7 is a normal distribution.

In this context, Theorem 1 leads to a simple sufficient matrix condition that guaran-
tees the uniform convergence of the DMC method. The proof of the following corollary
can be found in subsection 5.1.

Corollary 3. Consider a family of Feller Markov transitions (Pp)nen and a family of
positive functions (Gp)nen € Co(RON bounded by 1, verifying (25), (26) and (27) with
A'SA < 8. Then, for any p € N*, there exist (3,a,¢) € (0,1] x R’f such that for any
function f € Cy(RY) we have

N[

supE (|1 (f) — ¥ (F)IP)? < eN~5,
neN

with o
V:xERdHeXp(§ xTSx>.

Returning to the coupled harmonic oscillator, we consider P = P4 p and G = G&.
Assuming the same conditions on 79 as in Corollary 3, we aim to design an algorithm
that estimates 7, and such that its error converges to 0 for any value of A, B and S. To
satisfy the convergence condition of Corollary 3, we propose a modification of the DMC
method by introducing a change in the transition kernel and the selection function. We
define, for all k > 1, the functions G*) Cy(FE) and the Markov kernels P®) on E, such
that for all f € Cy(F), we have:

G = Qo k(1)
Qox(f) = GPPW(f)  with (28)

PR (f) := Qox(f)/Qox(1).

We use the convention G(©) =1 and P©) = Id for k = 0.
For k € N*, consider a system of walkers f&k) = (éf“) eien associated to the DMC
_/L_

method with initial distribution ¥g(ng), transitions P*) and selection function G*) as
well as the empirical measures
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1
(k),N . E .
77’!’L T N ' 5 ’Etk%z‘ (29)
1<i<N

This system of walkers offers an approximation of the measures 7, for any n € kN.
This type of change in the approximation, based on an importance sampling transfor-
mation is analogous to using a guiding waves function to direct the Monte Carlo moves.
Without any additional condition, Theorem 1 ensures the uniform convergence of the
model. The details of the proof can be found in Subsection 5.1.

Corollary 4. Let p € N*, there exists k € N such that for any k > k, there exist
(B,a,c) € (0,1] x Rf satisfying for any f € Cy(R)

1

sup E ([ (F) = n N (FF) " < N7,
neN

with o
V:zeRY— exp <§xT5’x> .

Although the method does not provide an approximation for every time step, several
strategies can be used to fill the gaps left by the approximation. A simple approach,
though more computationally intensive, is to run independent systems of walkers for
each time step in the interval [0, & — 1]. This method not only fills in the gaps, but also
maintains the convergence property.

So far, our focus has been on approximating the flow of measures 7,,. However, as
shown in (18), the flow of measures 7, is defined similarly to 7,, but with (G, P) replaced
by (CA?, ﬁ) In the context of the coupled harmonic oscillator discussed earlier, denoting
by N(A, B) the Gaussian distribution centered at A with co-variance matrix B, we have:

(30)

with

A=BBA (31)
Si= A (S—S(B ' +8)"18)A>0.

This shows that, within this framework, the convergence condition stated in Corol-
lary 3 can be extended to the updated measures (7, )nen by replacing A and S with A
and S. Similarly, Corollary 4 can be extended in the same way.

Note that all corollaries in this subsection can be extended to a control on the
estimation of the limit measures, ground state, and eigenvalue using the same approach
as presented in Corollary 2.

Our study concludes with a focus on the divergence of the DMC method when ap-
proximating the one-dimensional harmonic oscillator. This confirms that the stability
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condition stated in Corollary 3 is necessary and that, in some cases, the set of assump-
tions presented can closely approximate a sufficient and necessary condition. Addition-
ally, it emphasizes the significance of the importance sampling method introduced in the
previous corollary. Specifically, in the one-dimensional context, the sufficient condition
for uniform convergence of the DMC method is expressed by A2 < 1. Proposition 1
establishes the divergence of the error made by the DMC method when A% > 1, leaving
open only the case A = 1.

Proposition 1. Assume that A*> > 1 and Py > 0. For any p € Nx we have

1
sup E (| (1) = (I)[P)? = o0,
neN

We complement the divergence result with an observation on the asymptotic con-
vergence. Our next proposition proves that, regardless of the value of A, the univariate
harmonic oscillator can always be uniformly controlled over time as the number of walk-
ers approaches infinity. This underscores the importance of achieving uniform control
for a finite number of walkers, rather than focusing solely on the asymptotic scenario.

Proposition 2. Consider the univariate harmonic oscillator. For any n > 1, we have
the following convergence in law as N tends toward +oo

VNI (1) =0 (D] 7 N (0,07),

with o2 the asymptotic variance such that

sup o2 < 00.
neN

The proof of those propositions can be found in Subsection 5.4.

4 Stochastic interpolation

4.1 Time varying semigroups

In this subsection, we focus on proving Theorem 1. To take advantage of the con-
ditional independence of the walkers, we structure our approach around the following
decomposition of the difference between the Feynman-Kac measure and its empirical
approximation, using the convention 7, = n9. Following [27, 28], we use the following
stochastic interpolation formula

n
N N N

M ==Y _bgn()) = Gan(dg(n)"1))]: (32)

q=0
Each term on the right-hand side represents the error that occurs when using the
DMC approximation instead of the real propagator for a single extra time step. Com-
bining the uniform bound given in Lemma 1 with the contraction property (11), the

following Lemma establishes an exponentially decreasing control for these local errors.
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Lemma 2. For any p € N*, there ezists (c, p, ) € R"f x (0, 1] such that for any function
fe CV%(E) and any (N, q,n) € N> with ¢ < n we have
P

3=

E [[[90.0(1") = ban(@g NI ” < ce™ N5, (33)

Proof:

Let (n,u) € P(E) and let v € Py (E) be defined as in (19). Consider Hy,, := Hgn
as defined in (10). Applying the updating formula (9), we obtain

qu,n(n)(f) - ¢q,n(/‘)(f)
= (/llz)Hq,n (n)Qq,n - @qu,n (M)Qq,n)(f)

— 77(;(1,71)(77 — 1) (HgnQqmlf — ¥m,, (11)Qqn(f)]) -

This yields the formula

Gqn(M)(f) = Pagn(p)(f) = (n = w)(EFgn), (34)

with the function
Fi () = Hyp(z) /E Uy (1) (dY)[ Qg (f) (@) = Qo (f)(y)]-

Then, applying Holder’s inequality for any 3 € [0, 1), we obtain the estimate

3 =

E (|60n(m)) () = San(@gmy D))
< E (0 (Hym) ™ () = o0 (m ) ER) )™
< E (| = damE ) ENI[)

)

N
with FLY = F;j fl(nq’l . Using (34) this yields the estimate

B =

E (|40 (10" ) (1) = ban(Ga (=) (D))
< E(|0 = o)) ERT) %

E (ng(Hq,n)*Qﬁp | b () (f) — ¢q,n(¢q(77cﬁv—1))(f>}QP(I_B)) .
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Recalling that f € CV 2 (E), this implies that
P

B =

E (|60 (1) (f) = San(@q(1"1)) (N
< [E@un ) (V) + E (90 (64 (nY 1) (V) 7

XE (2 (Hy.)~7) 5 E ([0 — o ) (F2) 7)™

From Lemmas 1 and 9, we deduce that, to conclude, it is enough to prove that, for some
constant ¢ € R’ independent of n, ¢ and N, we have

[N]jeY

E (|10 = duln )] (F2) )7 < cean-ay-

Let A = 228 and assume 8 small enough so that 8 < 1 /4.
For ¢ > 0, the walkers (5 )i<i<n are independent conditionally to 77(]1\7_ 1 we have

(35)

(g — bq(1g-)I(f) Z hi ],

1<1<N
with '
h’i = f - Sq—l,’r]é\ll‘PQ(f)(ézl]fl)'

Moreover, we have

(]5 (nq 1 Z Hi Wlth 12 —551 S N P

q— 1:77(1 1
1<z<n

Since for any i € [1, N], we have p;(h;) = 0, we can apply Lemma 7.3.3 from [21],
and deduce that there exists C' € R such that

E [\ EAREHCARY] (Févmwp};p
E [E (‘[774\7 _¢q(77(§v_1)] ( qn)‘ | 6 1)}%
<E [E (l [név - ¢q(77év_1)] (chyn)’A | fq—l)ﬁl] 35

c N N e
< WE [¢>q(77q—1) (|Fq,n ) ] .

For g = 0, the walkers are iid with common distribution 79. The previous reasoning
therefore holds using the convention E(X | £_1) = E(X).
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Applying the contraction property (11) with p = §, and n = §, we get the existence
of (a,p) € R2 such that

|Qq,n(f)(x)_(2q,n(f) (y)|

< qeP(n=9) (1 + f%) (1 + HZS@)) . (36)

By substituting (36) into the definition of Fy, ,, and applying Holder’s inequality along

with Jensen’s inequality, we obtain, for some (a’, p') € Rf

’ N N A g v
(Ilep (Tb—q)E |:¢q(7’]q_1) <|Fq7n| ) :|

< E |90 (mL ) (Hom + VY'Y by i ){ (o + V)1
1
g2
X dg(nply) (Hym) ™™
1 1
< E[bgm) " {(Hyn + V' ™ E 60 0) (o)™
From our hypothesis on @, we deduce from Lemma 3.2 in [32] that there exists
a constant ¢ such that for any (¢/,n’) € N*, Hy v < ¢V. We can then conclude by
choosing a small enough ' and using Lemmas 1 and 9. O
The proof of Theorem 1 is now relatively straightforward.
Proof of Theorem 1:

Let f € C » (E). From the sub-additivity of the L,-norm applied in (32), we have

A
Vip

E(InY (f)=na(f)IP)?
< S E ([60nti)S) = ban (64N D)

RS

By applying Lemma 2, we deduce that there exists (c,p,3) € R x R% x (0, 1] such
that for any N € N* we have

1 C (- c
E(ln () =ma(HIP)P < — 3 e <
Nz o<y N2

This ends the proof of the theorem. O
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4.2 Ground state estimates

This subsection concentrates on proving Corollary 1. We consider thus the time-homogeneous
model.
Let f € CV 2 (E). Notice that we can decompose the error made by the DMC method
P

in the following way:

E(nY (f)—neo (F)IP)7
SEY(F) =l HP)? + [ma(F) = 1o (£)]-
Theorem 1 implies that there exists (¢, 3) € R* x (0, 1] such that

up (Y (1)~ (D) < 0

According to Theorem 4.3 in [32], there exists (C2,w) € R*+2 such that

170 (f) = Moo (f)] < coe™ ™.

Hence

E(InN N = < A —wn

(’nn (f) nOO(f)’ )p = n7B/2 +cze
Thus, letting a = 2 1In(cy/c1) and b = %, we deduce that there exists ¢ € R such
that
sup  E(In (f) = me( NP < 5

n>a+bIn(N) " ~ NB/2

This concludes the proof. ]

5 Coupled harmonic oscillators

This section is devoted to a detailed study of the coupled harmonic oscillator. We recall
that in this framework, we consider the flow of measures (8) starting from some initial
measure 719 on R%, and that the transition kernel and the potential function considered
are defined for some positive definite matrices B and S and some matrix A by (24).

This study will be carried out in four steps. First, we consider the general framework
described at the beginning of Subsection 3.3. There, by performing a complete study
of the Lyapunov functions associated with P4 p and Gg, we establish that under the
simple condition A’SA < S, the DMC method can be controlled uniformly in time.

Note that in the coupled harmonic oscillator framework, if the initial measure is nor-
mal, then the entire flow of measures consists of normal distributions. More specifically,
the measures 7, = N (my,, Q,) are defined with
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my = S(anl) mMp—1 and Qn = (I)(anl),
with the mappings

E(Q):=AT+ Q9" and @(Q):= AT +QS)"'QA + B.

Building on this, we will show that the condition A’SA < S is a stability condition
ensuring that m,, is a decreasing sequence converging to the null vector.

Returning to the standard harmonic oscillator, we then study a variation of the DMC
method. This allows for uniform control of the method without any imposed condition
on the matrices A and S. This part also leads us to fully describe the ground state h as
well as the ground state energy associated with P4 p and G.

We continue with a result on the stability of the flow of measure 7, with respect
to the initial measure for the coupled harmonic oscillator. We prove that the harmonic
oscillator tends to forget its initial condition exponentially fast. This result is of both
theoretical and practical interest. It justifies that the constants in Corollary 3 should
not be too dependent on the initial measure, and it proves that a bad initialisation of
the walkers when running a simulation should have negligible consequences.

To complete our study, we examine the univariate harmonic oscillator. In this con-
text, we prove that the expected error of the DMC method diverges to co as soon as
A > 1. Additionally, we establish the asymptotic convergence of this error for any value
of A. Together, these results not only confirm the validity of our convergence theorem
but also validate our choice to study the uniform-in-time convergence of the error rather
than restricting our analysis to its asymptotic convergence.

5.1 Lyapunov functions

This subsection is dedicated to the proof of Corollary 3. Therefore, we place ourselves
within the framework associated with this corollary. We will conduct the proof assuming
(20). If (21) holds with Ey < x then the demonstration is completely analogous.

Consider a family of Feller Markov transitions (P,),en and a family of positive
functions (Gp)nen € Co(RY)N bounded by 1, verifying (25), (26) and (27). It is clear
from Subsection 2.2 that proving the existence of a continuous P-Lyapunov function
V € Co(R?) makes (25) and (26) sufficient conditions for (2) to hold. To guarantee the
existence of an appropriate Q-Lyapunov function, we need a result obtained by Kato in
[51]. We present it here using the formulation provided in [52].

Lemma 3. Suppose that D C R is an interval, and let A be a continuous function from
D to the space of real d x d matrices. In this case, there exist d eigenvalues (counted
with algebraic multiplicities) of A(t) which can be parameterized as continuous functions
A1(t), ..., Ag(t) from D to R.

We can now ensure the existence of a (Q-Lyapunov function under a simple matrix
condition.
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Lemma 4. Assume that ATSA < S. There exists a € R% such that the function
V:zeR¥— exp <%CCTSCC> , (37)
is a Q-Lyapunov function and it is integrable w.r.t ng.

Proof :
From (27), we deduce that the r.h.s of (6) holds for V and G,,. Then, together with

(25), we deduce that it is enough to prove that V' is a Lyapunov function for P4 p with
€ < 1/c. Let’s then compute P4 p(f) for any function of the form

1
f:zeRY— exp <2:1:TFJ:> ,
where F is an invertible matrix such that B~' — F' is positive definite.

In this setting, the Woodbury matrix identity provides the following equality:

(B—F ) '=B'-B!'(B'-F) "B
We have then for any 2 € RY, with Bp := (B~! — F)~! .
Pap(f)(@)
1 —1l(Az—y)T B~ 1 (Az—y)—yTF
= (20)42 det(B) 12 /Rd -2l B A=y

B exp(32T(ATB~1BpB~'A — ATB™1A — F)z)
= /@) (27)4/2 det(B) /2

17, = _ _
X /d exp <—2 {(BFB_IAx —y) " Bp'(BpB ' Az — y)}) dy
R

This yields the formulae

Pap(f)(z)

det(Bp)
~\[det(B) 1)
(38)
x exp (327 (AT[B~Y(B~! — F)"'B~! — B"1JA — F)x)

— ! f(x)exp (—;xT(F + AT(FB - Id)_lFA)x> .

\/det(I; — BF)
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From those calculations, we deduce that V' is a Lyapunov function for P4 p if the
matrices B~! — a8 and S — AT(I; — aSB)~'S A are positive definite.
Let Ap be the greatest eigenvalue of B and Ag be the greatest eigenvalue of S. It is
clear that for a € (0, ﬁ), B~! — a8 is positive definite.
BAS
Consider now the function

Via€E [ ) — sp(S — AT(I; — aSB)"'SA) e R

0 1
"ABAs
Here, sp(M) represents the spectrum of a matrix M with multiplicity taken into

account.
Given the hypotheses on A and S, we can conclude that ¥(0) C Rf. Furthermore,

by Lemma 2, it is clear that ¢ is a continuous function. Since Rf is an open set, there

exists & € R such that for any a € (0,@), ¥ (a) C R*+d.
By choosing a sufficiently small value for a to ensure that V is integrable w.r.t 7,
we can conclude. O

From this Lemma and the hypothesis on G,,, we deduce that the L.h.s of (6) holds as
well. We can now focus on verifying that (21) holds by proving the following Lemma.

Lemma 5. There exists a positive definite matrix H such that
1
VneN, Qu(W)>xxW with W(z):= exp(—ixTHx)
Proof :

From (26), we have

Qn(W) =

= X GS PA’7B/(W)-
A’ B'.S

Using (38), we derive the following expression for Gg(x)Par g/ (W)(x) with z € R%:

W (x)exp (%xT(H —AT(HB +1;) 'HA - S)x)
det(I; + B'H)

Hence, chosing H as the solution to the Riccati equation
H—-AT(HB +1,)"'"HA — § =0,

we deduce that 1

E / / = .
AP ety + B'H)

Thus:
Qn(W) > x xW.
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For a sufficiently small, W~ is lower than V. The right-hand side of (21) is then
also verified.

Under the condition ATSA < S, we have confirmed that all the assumptions con-
cerning P,, G,, and ng in Theorem 1 are satisfied. We can therefore apply it to conclude
on the proof of Corollary 3.

Although justified by previous calculations, the meaning and implication of this
matrix condition may not be immediately apparent. To remedy this, we consider the
framework of the coupled harmonic oscillator to provide a property that illustrates how
this condition is a stability condition that ensures that the mean of the flow of measures
N = N (mp, Q) is a strictly decreasing sequence converging to zero.

Proposition 3. Let B and S be positive definite matrices and A be a matriz. Con-
sider a Gaussian distribution ng = N(mq, Qo) and consider the flow of measures n, =
N (my, Q) given in (8) with P = Pap and G = Gg. The following implication holds

ASA<S =3Cel0,1) st.Vk<n, |[ma)] <C** |myl.

Proof :

The flow of measures 1, = N (my, ,) are defined with
my = S(Qn_l) mp—1 and Qn = (I)(Qn_l),
with the mappings

E(Q):=AT+Q9)™' and @(Q):= AT +QS)"'QA + B.

We set
Ern(Q) == E(@"HQ)) ... E(@"F(Q)
as well as
En(Q) =& n(Q)
and

" =do ",
In this notation, we have
my = gk:,n(QO) mi.

Note that
ASA<S = AA<I with A:=8Y24571/2
In the same vein, we have
£(Q) =812 E(Q) 5172
with

E(Q) =4 (I+85Y2q 8%~
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Let ||M||2 := \/ Amaz (M’ M) be the spectral norm, where Ay,q2(S) stands for the maximal
eigenvalue of a symmetric matrix S. In this notation, we have the estimate

IEDl2 < [ All2 Amac (I + Y2 Q@ 51271
[[All2

<
B Amin(I‘F 51/2 Q 51/2)

<||A|l2 < 1.

Using the easily checked decomposition
Exn() = STV (E@"H(Q)) ... E@"H®))) 52,
this yields the rather crude exponential decay
1€k (Q)]l2 < [IAI5~"
We conclude that

A'SA<S = [lmal <A™ [lme] —nso0 0.

5.2 Conditional free evolutions

This subsection focuses on the study of the importance sampling described in Section 2.4,
Section 3.3 and on the proof of Corollary 4.

We consider the coupled harmonic oscillator, i.e, for some matrices A, B and S, with
B and S symmetric definite positive, we consider P = P4 p and G = Gg. Up to this
point, we have established that the L,-norm of the error made by the DMC method is
uniformly bounded in time, with a convergence rate of ﬁ for some 8 € (0,1] when
ATSA < A.

Our aim is now to use Theorem 1 to prove that the approximation of the measures 7,
made by the DMC method - enhanced by the importance sampling scheme described in
(29) - remains uniformly bounded in time, regardless of the value of A and S. However,
there’s a trade-off involved: we will only have access to the measures at specific times.
Indeed, despite the converging property that we are about to prove, the sequence of
empirical measures @(l only approximates the measures 7; for [ € kN.

Before proving the main result of this section, we conduction a short and necessaty
study of the functions G*).

Lemma 6. There exists a sequence of positive definite matrices S, such that

1
G (z) x exp <—2 x’Snx>.
Moreover, there exists Sint, Ssup symmetric positive definite such that Sins < Sp < Ssup-

Proof :
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Using the same notations as the one used in the proof of Proposition 3, the Markov
operators Qo.n := Qo,n/Qon(1l) are then given by

5IQO,TL = d’O,n((Sx) =N (Anl’, Bn) (39)
with
Ap:=&,(0) and B, = ®"(0).
Using the product formula

Qon()(z) = [] ¢04(8:)(G),

0<i<n

we check that )
QuaD)a) x exp (= a'5,)

with

Sui=Y &0 (S ~ S (<1>l(0)—1 + S)il

0<i<n

s) £/(0)

= 3 &0y (s #(0) &) >0

0<i<n

The matrices &(0)' (S~ + <I>l(0))_1 &1(0) being positive for all [ € N*, S, is lower
bounded by Sj.

Moreover, recalling that S > 0 and using the results from Theorem 1.3. and Corol-
lary 1.4 in [53] as well as the proof of Proposition 2.3, we know that there exists a
positive definite matrix Py, a matrix E such that A\, (E) < 1 as well as a uniformly
bounded sequence of matrices L,, such that we have

£,(0) = E"L,, and ®"(0) = Py, — E"L,Ps(E™)

The sequence &(0) (S — S (@H0)7! + S)_1 S) &(0) is then converging, thus there
exists C7 € R such that

Sp < C1 Y &(0)&(0)

0<i<n

Since E" is converging to zero, there exists n; € N such that ||[E™| < 1, with ||.||
being the spectral norm. Let Co = C X maxgeon,| B[ X supgen || Lil|. The spectral
norm being sub-multiplicative, we have then

EAE S T T S S T

0<i<n 0<i<|n/n1|
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The norm of S, being bounded, we can conclude that there exists a positive definite
matrix Sg,p such that
vn e N, S, < Squp

The proof of Corollary 4 is now relatively straightforward.
Proof of Corollary 4 :

From Corollary 3, Lemma 6 and (39), we deduce that to prove the uniform conver-
gence toward the Feynman-Kac measure of the DMC method associated with G and
P™) it suffices to prove that

Al SpAp < Sp.

Let Apnaz(Sn) be the greatest eigenvalue of S,. The matrix S — A\naz(Sn)Ig being
negative, we get from Sylvester’s law of inertia that for any non-singular matrix A,
A'(S — AMnaz(Sn)Iq)A is negative. By density of the invertible matrices, this holds for
any matrix A. Thus

A SpAn < Amaz(Sn) AL Ay,
Denoting by ||[M||2 be the spectral norm, we have then

A SnAn < Mmaa(Sn) || Anll3 1.

From Lemma 6 and its proof, we deduce that A’ S, A, is converging to zero. Thus,
for n large enough, we have

Al S Ay < Sine < S
This concludes the proof. O

We conclude this section with an observation regarding the ground state energy
associated to the coupled harmonic oscillator for any value of A, B and S. Notice first
that all of the hypotheses required for the existence of an eigen-triple (12) are trivially
met by taking V : 2 € R? — 2/z 4+ 1. Furthermore, with zy being the null vector, it is
possible to express the triple as

1 1
h(z) x hoo(z) := exp (—2x'5’00x> , Ey=

Vdet(Iy + BSx)

and
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with

Soc = lim S, =Y &(0) (S +c1>l(0)) £(0)
=0
and
Po = (0)

Indeed, we have

o L _ Qon(1)(z)
hn(x) = exp(—gx Spx) = Qon(1)(0)
_ Qonr1(D(w0)
= Q(hy,) = Qo) (z0) Pt (40)

Using the calcultions from (38) we deduce that

Qo.n+1(1)(20) = Q[Qon(1)](x0)
= Qon(1)(z0) x Q(hn)(x0)
Qo.n(1)(x0)
det([d+BSn)

Hence, going to the limit in (40) we obtain

1
hoo
det(ly + BSx)

The value of 7o directly follows from the computations of the flow of Gaussian
measures 1), in the proof of Proposition 3.

It is also worth noting that, by analogy with the calculations done in the proof of
Lemma 5 , S, is the solution to the Riccati equation

Q(hoo) =

Seo — A'(SsB + Iy) 1SseA — S = 0.

5.3 Stability w.r.t to the initial measure

So far, in the context of the coupled harmonic oscillator, we have concentrated on ex-
amining the convergence of the DMC method with a fixed initial distribution. This
naturally raises the question: does the choice of the initial measure significantly affect
the control of the method 7 To answer this question, we establish a stability result
for the Feynman-Kac flow of measure (8) in the harmonic oscillator framework. Our
analysis shows that the system tends to forget its initial condition exponentially fast.
Consequently, regardless of the initial condition, the flow of the Feynman-Kac measure
converges exponentially to the stationary measure 7.
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Proposition 4. Let S, B be two symmetric positive definite matrices on R* and A be a
matriz. Consider G = Gg and P = Py p. Let v1 and vz be two probability measures on
Re. There exists (a,b) € R x [0,1) such that

”¢n(yl) - (pn(VQ)Htv < abnv

with the total variation distance between the measures vy and vo defined by

|1 —vall, = sup  |vi(f) — ve(f)]
[fllec<1

Proof :

Let f such that || f||,, <1, then

Pn(v1)(f) = dn(v2)(f)
. VlQn(f) VQQn(f)

1Qn(1)  12Qn(1)
=10, 1) (11)Qn(f) — ¥g,1)(¥2)Qn(f)

= /Rd Vg, 1) (V1) ([dx)vg, 1) (v2) (dy) [Qn(f)(z) — Qu(f)(y)] -

‘We have then

|0n (1) (f) = En(v2) (f)]
< /Rd VqQ. 1) (V1) (dx) g, 1) (2)(dy) |¢n(0z) = dn(dy)lly, - (41)

From Pinsker’s inequality, we have, with Ent being the relative entropy - or Kull-
back—Leibler divergence

[pn(62) — ¢n(5y)”tv < \/; Ent(¢n(0z) | ¢n(5y))-

Using the results from [54], we know that for two Gaussian distributions p; =
N(m1,33%) and ps = N (ma, 33), we have

1 _ _
Ent(ju|u2) = 5[log| 223y | + tr (S5 '%1)
+{(my — mg)'EQ_I(ml —mg) —nl.

Thus, using the notations from the proof of Property 3, ¢,(d,) and ¢,(d,) being
Gaussians with the same covariance €, and respective mean &,(0)x and &,(0)y, we
deduce that
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Ent(¢n(0z2) | ¢n(0y)) = (z — y)'€n(0)" Qn £, (0)(z — ).

From Theorem 1.3. and Corollary 1.4 in [53], we know that €, is uniformly bounded
in time and that &,(0) converges exponentially fast to zero. Thus, there exists (a,b) €
R x [0,1) such that

Ent(¢n(0z) | 6n(0y)) < ab”[lz —y]|*.
Combining this with Pinsker’s inequality and (41), we get, for some (a,b) € Rx [0, 1)

|Pn(11)(f) = Pn(v2) ()] < ab™[Pg, ) (v1)([] - [])
+ g, ()] - D],

where || - || represents the function that maps 2 € R? to its norm.
Using the computations from Lemma 6, we know that

Qn(l) X €exp (_; x,Snx) ‘= (n,

and that there exists two symmetric positive definite matrices Sg,p and Sin¢ such
that for any n € N, Sipr < S, < Sgup-

Considering the function g, := exp (—% x Sinfx) and gsup = exp (—% i Ssupx), we
have then

vill - [lgn) vl - [lgint)
vi(gn) — vi(Gsup)
The function || - ||gint and gsup being bounded, we deduce that the previous upper

bound is finite.
Hence, for any f such that || f||,, < 1, we have

Yo, @@l - 1) =

() (f) — dn(2) ()] < apr | 2L Naine)  wo(l]- o)

Vl(‘]sup) V2(qup)

‘We can thus conclude. O

5.4 Divergence and fluctuation estimates

In the previous subsections, we presented a simple sufficient condition for controlling
the DMC method and introduced an importance sampling technique that satisfies this
criterion. However, it is natural to question the robustness of this condition and whether
it is necessary to use importance sampling. Specifically, for the uni-dimensional harmonic
oscillator, the convergence condition reduced to A? < 1, and we will prove divergence of
the DMC method when this stability condition is not met.
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Within this framework, we can break down the evolution of the walkers into two
distinct steps, a mutation transition and a selection transition

i N selection =i N
(gn)ie[[l,N}] eR <€n>z‘€[[1,N]] €R

mutation

(g’fl'i‘l)ieﬂl,N]] )

The initial configuration (56) is determined by sampling N independent ran-

1€[1,N]
dom variables from the distribution 79. The selection transition involves the sampling

of N independent random variables (E;) e[LN] using the weighted distributions
el

en(mn )Gs(65)0¢;,

_S¢k?
e 25%n

F = eal)Gs(E) Y —
Ke[LN] Y. e 2%n
JE[1,N]

n

The mutation transition is defined using a family of Gaussian random variables with
zero-mean and unit variance (V;);cqi,n] such that

€ = Ag._, + VBV
The measures (7, )nen can be described exhaustively using the Kalman filter equa-

tions. It provides us with the mean and variances (my,,c2) of the Gaussian random
variables 7, with the recurrent equations

A
Mp41 = mmn
(42)
2 AQWQL

Tni1 = gz T

In this scenario, when the condition A2 > 1 is met, it is possible to prove that the
DMC'’s error in approximating the Feynman-Kac measure does not admit a uniform-in-
time bound. It is properly stated in Property 1, and we can now conduct its proof.

Proof of Proposition 1:

For any n > 2, we know from (42) that

A2
1) := = o < A%my, .
Y M
For any n € N*, let & = rﬁur]{[ | ¢! and define the random variables V,* in the following
ie[1,

way:
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Vi =— max |Vi|.
i€[1,N]

By definition of the evolution of the walkers, there exits (i,j) € [1, N] such that

€>2kn = A2 gn—Q + \/E‘/Qin—l + A\/E‘/an—Q
> A%, o+ VBV, 4 + |AVBVs, _,.

Thus

7)%(—’) —nen(l) > AQ(@(”_D - mQ(n—l))
+VBVy, |+ |AVBVS, ,.

Iterating the process, we obtain

N(I) — nan(I . Vo
Ton )A2n772 (1) > (50—m0)+\/§ Z jlk%l
1<k<n
2(k—1)
+IAVB Y jx% .

1<k<n

For any sequence of N independent centred Gaussian random variables U; with unit
variance, we have

E Lr<nzzix \U; |] 2log(2N).

This inequality is obtained by using Jensen’s inequality as follows, with t = 1/21log(2V)

exp [tE (121&2}( \U; |)] E [e Xp (t lglegv\U |)]

E lexp (¢|Ui])]

'Mz

<
1

1

and noticing that

E [exp (4|Ui])] = 2/0+°° exp (-W) da

< 2exp(t?/2).
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Then, on the event

o {55 . Hmﬁwm}, (13

with € € R% , we have

Elmhn (1) = ma(D)E5] > €A’ "% oo, (44)
Integrating over £; we deduce
Ellnon (1) = m2a (D] > eA>P(). (45)
We can then conclude by noticing
2VB(1+ 4] !

> 0.

O

For the case A = 1, we are unable to determine whether a uniform bound exists. To
the best of our knowledge, the strongest divergence-type result established so far is a
linear bound on the variance of the unnormalized measure for R = S = 1 obtained in [55].
In that work, the authors employed a stronger exponential drift condition compared to
our linear condition (1). As a result, they used a quadratic Lyapunov function, whereas
we adopted an exponential Lyapunov function, which enabled us to apply Corollary 3
to a broader range of test functions.

The divergence result in Proposition 1 highlights the importance of studying non-
asymptotic uniform convergence results rather than relying solely on central limit the-
orems (CLTs). Extensive research has been devoted to CLTs and, under appropriate
assumptions. We quote the first studies in this field [25, 27] mainly based on uniformly
bounded potential and test functions.

More general fluctuation theorems that apply to more general models including
diffusion-type processes with Lipschitz drift and diffusion functions as well as test func-
tions with at most polynomial growth are discussed in [56, 57]. We can formulate the
following result :

Lemma 7. In the context of proportional selection/reconfiguration, for any n > 1, we
have the following convergence in law as N tends toward 400

VNI = 9 ()] —5— N(0,02),

N—o0
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with the asymptotic variance

>\ Qpn(1) 5 ?
On = an [(anp’n(l)Qp,n(I Un(I))> ] .

p=0

Related asymptotic variance formulae and comparisons are discussed in [49] in the
context of random walks with absorbing barriers, including geometric killing rates and
local reflection moves.

In [44], Nick Witheley also obtains a uniform time bound on the asymptotic variance.
However, our next proposition shows that, for a given system, the DMC method can
have a uniform time bound on its asymptotic variance, despite the fact that its non-
asymptotic variance is unbounded.

22
Proposition 5. Let G : z € R — e~ 27, and P such that 5,P ~ N(Az, B) for some
(A,B,S) € (1,400] x Rf. There exists an intial distibution ng such that

1
supoz < oo and supE (|n,(I) —név(fﬂp)p = 400, (46)
neN neN

2

where o

is defined as in Lemma 7.

Proof :

Considering 19 ~ N (my, ag) and using the Kalman filter’s equations, we are able to
fully describe the measures 7,,. For n € N* we have

A
Mptl = ———5 M
n+1 1 —i—SU% n
Nn ~ N (my,,02) with
A2
2 + B.

Intl T 17 So2

The limit measure is given by 1., = N(0,02)) where o2, is the fixed point of the
A2

T+5; + B. From now on, we assume that 7y = 7j.c. We have then

function x € Ry —

02 . - UL (Qp,n(l)2)
Z (noon,n(l))Q .

n
p=0

Using the calculations and notations from Lemma 10, we have then

A v?

2
— - y
= P e 2% 677(1"—de
2
\2mos, JR

Ay

Vn-poi + 1
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as well as

2

2 :un _Mn—p 2 *y72 —y2q —
Noo (an(l—) ) = \/7 e 2% ¢ n de
2mo2
2
:un—p 9]

- (2¢n—po2, +1)3/2

Then

2 = g2 ZH”P (dn—poae +1)*
o (2¢n—po, +1)3/2°

As a solution to a Riccati equation, ¢, converges towards some ¢, € R such that

Since A > 1, we obtain that 14+ qg..B = A% +5/q. > A. Thus, there exists C € (0,1)
such that, for n large enough, we have

Hn
< (O—rkee.
fntt =2 T+ ¢, B

Thus, comparing the definition of A, and the previous bound, we deduce that there
exists a € R such that we have

M%*p (Qn*pago + 1)3/2 <
)‘7217;0 (2qn*po-go + 1)3/2 N

We can thus conclude on the right-hand side. of (46). The left-hand side is a direct
application of Proposition 1. O

aC2(n=p)
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Appendix

Some technical Lemmas

Lemma 8. Let (G, V) € C(FE)xCx(E) be positive functions and K C E be such that the
right-hand side of (6) holds. There exists ¢ € Ry such that for any probability measure
pwonkE :

va(p)(V) < pu(V) +c
Proof : Let V := 1p\xV. For any (,t) € E?, we have:

0 ge(G(z) = G)(V(2) = V(y))
=G@)V(z) + G)V(y) - Gy)V(z) - G@)V(y).

Integrating with respect to the probability measure p over both = and y, we obtain:

W(GV) = w(@)u(V) < 0.

Hence

Thus

Ya(p) (V) <va(p)(V) + S%pV <u(V)+ SipV

< (V) +supV.
K

O
Lemma 9. Let V € Coo(E) be a Q-Lyapunov function, then
su 5 E [9gn(m) (V)] < 400
p(q,mN)EN q,n nq
q<
(47)

SUP (¢,n)eN? ¢q,n(7]q)(v) < +00.
g<n

Proof: First, let’s prove that for any v € Py (E), we have, with (e,¢) € [0,1) x R
defined in (1),

Cc

sup  ¢gn(7)(V) <A (V) + (48)

(g,n)EN? 1—e
q<n
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To do so, we begin by using the @-Lyapunov property of V' as well as Lemma 8 for
some [ € N* to deduce that

_ Pgn—1 (VNG P (V))
Pgn—1(1)(Gn)

By iterating the process, we obtain (48). We now prove that

bgn (V) <€ pgna (V) +C.

C/

sup E [} (V)] <mo(V) + —
neN — €

(49)

Notice first that

N
1
E [ (V) I'm=a] = 5 D meaSu 1, Pa(V)
=1

= PG,y (1) (Pa(V))-

Then, using as previously the @-Lyapunov property of V and Lemma 8 we obtain

Ve, (M) (Pa(V)) < e mp (V) + .

By iterating the process, we obtain

n—1 ’

E [ (V)] < €"mo(V) +¢ Y e <mo(V) + 1 C_ ¢
=0

Thus, by combining (48) and (49), we can conclude regarding the first part of (47).
The second part is obtained by proceeding in a strictly analogous way. O

Proof of Lemma 1

We first consider the case where only (20) holds and prove that

$0,4(7)(Qqn(1)) < OX" 170 (50)
For ¢ < n + 2, we have

Qq,n(l)(x) = Qq,an(anlpn(Gn))(x)
<X Qgn—2(Gn-1)(7) < x Qgn-1(1)(2).

Iterating the process, we deduce
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Qq,n(l) S Xn_q_lefl-

Using (19) we deduce (50).
For g > 1 and p € {név’ﬁbq(név_ﬂ}, we have then

R $0.4(V)@qn (1)
iy~ o)X= G
T g1 (W)
= Qe (W)

From Holder’s inequality, Jensen’s inequality and the hypothesis on W, we get :

=

E |u(Hyn) 7| < O |64n(1) (W)
< E [0y (W) 2]
< O [oun )] "€ [

Then, by choosing § small enough such that W=2% < W and V?? < V, where W
and V are Q-Lyapunov functions, we obtain

cB

_ o1
sup E[M(H7 )—5}§7 sup  E [u(V)]?
(¢,n,N)EN3 an X 3
q,n,N)EN (g,n,N)EN
q<n q<n
- 1
x sup E[p(W)]>.
(¢,n,N)EN3
q<n

We can conclude using Lemma 9.
The demostration for time-homogeneous models with Ey < x is analogous. Indeed
the equivalent of (50) is obtained by noticing that

¢0,q(7700)Qq,n(1) = ﬁqu,nfl(G) = ﬁoqu,nfl(l)%O(G)
= EO X noqu,n—l(l) = Eg_q-

The rest of the proof follows the same arguments, thus it is skipped. This ends the proof
of the lemma. O
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x2
Lemma 10. Let G : © € R — e~ 27, and P such that 6,P ~ N(Az, B) for some
(A,B,S) eRx Rf. Denoting by Q™ the n-times composition of the operator QQ, we have

2

Q (1)) = e~ 5% and Q(I)(x) = pn x5, (51)
with the parameters (qo, Ao, po) = (5,1, A) and

A%q,
=M 45
dn+1 1+ an +
A =—" _ and p — #
n+1 1+an n+1 (1+an)3/2.

Proof :
For n = 0 the result is immediate. Assume that it holds for some n € N. In this
situation, we have

Q" (1)(2) = QQ™(1))(x) = MQ {y - } (x)

2 2 )2
= )\TL e_gs/e_%q" (A y> y
2nB R
z2 (A2 A2
— An e*7<?7B(1+an)+S>
2B

(1+Qn3)(ﬁ1*y)2
X / e 2B dy
R

2 (42,
An 6_%(1+qnn3 +S)

v1+q,B

Similarly, we have

Q" (1) (@) = Q@ (D)) = 1 [y - y} (@)

o2 [ A24,

_ Mn 677(1+qu+S)

V2rB
(1+QnB)(ﬁI*y)2
X /ye 2B dy

R

22 A2

= Atin e 2 (Hqt’llnB +S>

(1t quB)32"

This ends the proof. O
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