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Abstract: Light Detection and Ranging (LiDAR) technology is now becoming the main tool in many
applications such as autonomous driving and human–robot collaboration. Point-cloud-based 3D
object detection is becoming popular and widely accepted in the industry and everyday life due to its
effectiveness for cameras in challenging environments. In this paper, we present a modular approach
to detect, track and classify persons using a 3D LiDAR sensor. It combines multiple principles: a
robust implementation for object segmentation, a classifier with local geometric descriptors, and
a tracking solution. Moreover, we achieve a real-time solution in a low-performance machine by
reducing the number of points to be processed by obtaining and predicting regions of interest via
movement detection and motion prediction without any previous knowledge of the environment.
Furthermore, our prototype is able to successfully detect and track persons consistently even in
challenging cases due to limitations on the sensor field of view or extreme pose changes such as
crouching, jumping, and stretching. Lastly, the proposed solution is tested and evaluated in multiple
real 3D LiDAR sensor recordings taken in an indoor environment. The results show great potential,
with particularly high confidence in positive classifications of the human body as compared to
state-of-the-art approaches.

Keywords: 3D point cloud; person detection; tracking; classification; real-time

1. Introduction

Recent advancements in LiDAR technology have revolutionized many industries,
making it more reliable and accurate for various applications such as autonomous driv-
ing, human–robot interaction, and more [1,2]. Three-dimensional LiDAR data provide a
comprehensive representation of the environment in 360 degrees, which can be used by
robots or autonomous cars to make informed decisions. The applications of 3D LiDAR are
extensive, including autonomous driving [2], forestry [1], medical training [3], smart city
deployments [4], remote sensing [5], and 3D SLAM [6–8].

However, it is worth noting that 3D LiDAR sensors are costly, making it challenging to
mount them on multiple mobile robots or systems. Even the CEO of Tesla has reservations
about using 3D LiDAR for autonomous driving due to its cost (https://www.youtube.
com/watch?v=BFdWsJs6z4c, accessed on 8 May 2023). As a result, static sensors, which
are mounted in a fixed location, have emerged as a potential solution to this problem.

Furthermore, static sensors can be used in conjunction with mobile robots or systems,
making them more efficient and effective. By mounting 3D LiDAR in a suitable location,
different mobile robots can access the data and make informed decisions. This approach
can significantly reduce the cost of deploying multiple 3D LiDAR sensors on each mobile
robot or system, making it more feasible and affordable.

In summary, while the applications of 3D LiDAR sensors on mobile robots are ex-
tensive (Figure 1), static sensors have emerged as a potential solution due to their cost-
effectiveness and versatility. By highlighting the potential applications of static sensors, we
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can encourage further research and development in this area, leading to more innovative
solutions for various industries.

Figure 1. Applications of 3D LiDAR in industry, smart infrastructure, and automotive areas. (A) The
smart system for bus safety operating on public streets, (B) applications in agriculture, (C) intelligent
transportation, (D) intelligent security management, (E) intelligent rail monitoring and inspection,
and (F) drones and mobile robots.

In the field of robot perception, the Detection and Tracking of Moving Objects (DATMO)
is one of the main problems in almost every robotic application, such as autonomous driv-
ing or human-robot interaction. A great deal of previous work has been done to tackle
this particular problem in perception, most of which has used depth or 3D sensors such as
RGBD and stereo cameras.

The RGB-D cameras provide both RGB information and depth data. RGB information
could be useful in general vision applications such as detection by skin detectors and also
for specific applications such as person re-identification. Some examples of the possible
applications can be the segmentation and classification of the legs [9] and histograms for
the height difference and colors [10]. Moreover, multiple detectors could be implemented
depending on the object’s distance [11]. In addition, range data such as a target height can
be used in order to improve the accuracy [12]. The main limitations of RGB-D cameras are
the range of field view, which is limited, and RGB-D and stereo cameras are slow to extract
depth information and the results are often not precise [13,14]. Two-dimensional LiDAR
is used for depth information for various applications such as autonomous driving and
human tracking by the robot [15–17]. The 2D LiDAR sensors are affordable and precise,
and 2D point clouds are not computationally expensive to process. The main limitation of
2D LiDAR is that it perceives only one plane of the environment which makes it difficult
to detect people with high confidence. Meanwhile, 3D LiDAR offers a high resolution
of points at a high speed with great precision, resulting in a very descriptive geometry
of the environment [14,15,18,19]. Objects in 3D LiDAR point-clouds can be described
geometrically as they appear in the real world, with accurate representations of length,
width, and height up to a certain precision. The 3D LiDAR generates a huge amount of data
per scan. In order to handle the high amount of data obtained with 3D LiDARs and achieve
a real-time implementation, prior 3D maps have been used for background subtraction to
reduce the computation time [16], but this requires previous knowledge of the environment.
In contrast, in our approach, we rely on a background subtraction algorithm without any
previous knowledge of the environment, and our solution does not rely on a first movement
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to detect a person. Overall, for person detection (even at close range), the data provided
by a 2D LiDAR sensor is far too limiting to accomplish the ultimate task of analyzing and
understanding a person’s behavior.

For DATMO problems, occlusion is one of the major problems with all sensors, partic-
ularly when the object/robot is stationary. There are attempts to address occlusion such as
tracing the rays from positions near the target back to the sensor [20].

Previous works on person detection and tracking often rely on movement detection
and clustering, which can be challenging. Our proposed framework simplifies this process
by focusing solely on person detection and tracking using 3D LiDAR. In our solution,
classifying moving objects is a crucial step because our model places high priority on them.
Deep learning supervised models have been used for person detection by classifying point
clouds directly, which could replace the movement detection module [21]. However, the
process of classifying the whole frame can be computationally expensive.

Object detection and tracking using R-CNNs have also been explored, but these studies
have been limited to cars only [22,23].

It should be noted that in addition to the proposed framework, there are other exist-
ing frameworks that use 3D LiDAR technology, such as VoxelNet [24], OpenPCDet [25],
RCNN [26], HVNET [27], and 3D-Man [28], which are primarily focused on outdoor ob-
jects such as cars, pedestrians, and cyclists. However, these deep learning models require
the use of GPUs and are not yet capable of real-time processing. While the PV-RCNN++
framework, also known as OpenPCDet, is faster than its predecessors, it still cannot be
used on CPU-based machines. Moreover, detecting a person in an indoor environment is
far more challenging than detecting a pedestrian on the road, as the former may have more
complex and varied positions that must be accurately detected and tracked.

A 3D LiDAR sensor such as Ouster generates up to 64 K points per scan on average.
Processing all these points in real-time applications is discouraged, so only a subset of
points are extracted and processed [23].

Our work presents an efficient solution for person detection, classification, and track-
ing. Our proposed framework consists of several modules, namely movement detection,
voxelization, segmentation, classification, and tracking.

Our solution has several notable features, including a modular structure comprising
multiple stages that work together synergistically to achieve optimal performance and
results. Moreover, there is a continuous interaction between classification and tracking,
which allows for a robust and consistent performance when dealing with extreme pose
changes such as crouching, jumping, and stretching, or even with some of the sensor’s
limitations.

Furthermore, our solution can be implemented in real-time on low-performance
machines, making it highly versatile and practical for detecting, classifying, and tracking
individuals in indoor environments. Overall, our work provides a highly effective solution
for the accurate and reliable detection, classification, and tracking of persons, which has a
wide range of applications in various fields.

2. Implementation and Challenges

We used the Ouster OS1-32 3D LiDAR sensor for our solution, which has a vertical
resolution of 32 layers and customizable horizontal field of view up to a full 360-degree
turn. The base frequency of operation is 10 Hz, and the minimum and maximum ranges of
the sensor are 0.8 m and 150 m, respectively. The sensor’s precision is 1.1 cm in the 1–20 m
range, and it is shown in Figure 2a.
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(a) (b)

(c)

Figure 2. Some limitations of a 3D LiDAR sensor in indoor environments: (a) Ouster sensor used
in the experiment, (b) example of the restricted vertical field of view leading to chopped scans, and
(c) severe occlusion of a moving object due to the sensor’s fixed position, the different shades of the
color show the reflectance values of the returned laser signals.

Although the maximum sensor range is 150 m, it becomes challenging to differentiate
a moving object from the background at greater distances due to the sensor’s resolution. To
take advantage of the descriptive geometry that the sensor provides, we need to have the
maximum number of points possible on our objects of interest. Therefore, our solution is
designed for small indoor ranges of up to 8 m in any direction. We evaluated our solution
in two different offices: one big office of up to 12 m in length and 5 m in width, and a small
office space of 4 m in length and 5 m in width. In both cases, the sensor was positioned at a
height of 1.2 m, simulating a top-mounted sensor on a mobile robot platform.

2.1. Restricted Vertical Field of View

Despite having a complete 360-degree horizontal field of view, the Ouster OS1-32
sensor is restricted to only 33.2 degrees of vertical field of view. This restriction can cause
objects to appear chopped in the resulting scan, especially when they are close to the sensor.
Since our solution is designed for small indoor environments, people may walk close
enough to the sensor to appear chopped in the final scan. This phenomenon presents a
challenge to the classifier since it relies on object dimensions and shape. Figure 2b,c shows
an example of this situation.

2.2. Extreme Pose Change and Occlusion

Extreme pose change is a challenge for any person detector and tracker as people
can assume a wide variety of poses, making it difficult for a classifier to detect them in all
possible shapes. Poses such as crouching, stretching, jumping, and picking up objects are
some of the examples. To address this issue, our solution uses an interaction between the
classification and tracking modules to overcome their shortcomings.

Another common problem encountered in tracking is target occlusion [20]. Having a
sensor at a specific position generates the problem of moving objects being occluded by
static objects or each other. Although our solution does not deal explicitly with occlusions,
we evaluated it to see how it behaves in their presence.

3. Architecture and Implementation

Figure 3 shows the flow chart of the proposed solution where each module is differently
numbered. The first module receives a 3D point-cloud from the sensor and performs
movement detection to find ROIs. The ROIs return a significantly smaller number of points
to the process, which saves computation time and makes 3D point-cloud processing in real-
time possible. The ROIs are then passed for voxelization and segmentation, respectively.
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These segments, also known as objects, are then passed to the classifier. Finally, the last
module, the tracking module, handles the creation, updating, and elimination of the tracks.

Figure 3. Flow diagram of the proposed system showing the connections between each module. The
sensor position is represented by the red arrow, static points are represented by red points, dynamic
points by green points, and points classified as part of a person by pink points (as highlighted in
the green circle). Regions of interest (ROIs) are generated by movement detection denoted by the
* symbol.

3.1. Movement Detection

As already mentioned, in order to achieve a real-time implementation, we need to
process the smallest number of points possible at each scan. In an indoor environment, i.e.,
an office, most of the environment is static, which is not the case in outdoor environments.
Rather than processing all the points, which will be redundant, only ROI regions are
processed, which are detected by movement detection. For a sensor at a static position, the
most common and efficient way to extract the ROIs is the process of background subtraction.
Therefore, the first step is the creation and calibration of the background. This process
is executed at the start of the algorithm; we process all points in the scan to create the
background, as illustrated in Figure 3. In this way, if there is a person in the environment
at the moment of the creation, we eliminate those points from the final model. After the
background model creation, we assume all the points in a scan as static points, and ROIS
are extracted by comparing the subsequent scans.

3.2. Voxelization and Segmentation

The 3D point cloud obtained from the sensor consists of x-, y-, and z-coordinates
in the Cartesian space. Unlike RGB images, the raw point clouds are unstructured and
contain no semantic information about the scene. Therefore, all these data cloud points are
represented by a higher level, known as a voxel [29]. Voxelization is a widely practiced
technique in 3D point-cloud processing and the structuring of cloud points. In the proposed
framework, we have used the implementation of Trassoudaine et al. [23] for voxelization
and segmentation.

3.3. Classification

After the segmentation process, we have the list of segmented objects (formed by
voxels) that are inside the ROIs. The goal of the classifier is to solve a binary classification
problem, i.e., either the given object is a person or the background. To improve the true
positives in the proposed framework, we only focus on moving objects, as shown in Figure 4.
In the proposed framework, three weak classifiers are taken, and each weak classifier has
its own criteria for the classification. In the end, each vote for the objects. Since, there are
three classifiers and two classes, therefore, based on a majority vote, the decision is made
for the final label for the given object. The weak classifiers are discussed later in this section.
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Shape Classifier

Normals Classifier

Shadow Classifier

Voting

Classification Module

Figure 4. Flow diagram of the classification module. The module receives segmented objects as input
and uses a voting scheme by three classifiers to classify them as either a person or not. Each object
before classification is shown with different colors (on the left-most point cloud). The module also
outputs a processed point cloud. The color red indicates a person and blue indicates otherwise.

3.3.1. Shape Classifier

As already mentioned, one of the main benefits of 3D LiDAR with high resolution is
that we can extract precise and multiple geometric features from the objects. The shapes
classifier takes advantage of the descriptive geometry provided by the sensor. It is a simple
classifier that compares the dimensions and shape of each object to one of the “strict”
geometric models of a person that we already have. These models represent a variety of
attributes that an object should have to be considered as a person. These attributes include
width, height, length, and the proportions between them. For example, if an object is
taller than 2.3 m, it can easily be concluded that it cannot be a person, or if an object has
almost the same width and height, it cannot be a person. With a variety of these simple
thresholds/criteria, this classifier can recognize a person when they are in their most basic
poses (standing up or walking). The idea is to only start the tracking when we have high
confidence that an object is a person. Therefore, our classifier cannot deal directly with the
majority of poses a person can undergo other than walking and standing up; the integration
between the classification and tracking can overcome this problem, as discussed in the
tracking module.

3.3.2. Normals Classifier

Even though the shape classifier is made to recognize a person under the most basic
circumstances, its simplicity might also provide false negative or false positive results.
In order to fix this, we use the normal vector classifier. For every object, we calculate
the normal vectors of each voxel that form them. Estimating the surface normals in a
point cloud is a problem of analyzing the eigenvectors and eigenvalues or PCA (Principal
Component Analysis) [23], and this can easily be done in an ROS (robot operating system)
using PCL (Point Cloud Library). Once we have the normals, we calculate the average
contribution of each of the components of the vectors. Therefore, if the object has most of
its normals parallel to the ground, it is most likely a wall or an office division. In this way,
we can eliminate most of the false positives that result from a portion of a wall or division
that has dimensions similar to that of a person.

3.3.3. Shade Classifier

Lastly, this classifier was made to correct possible misclassifications that result from an
object of the background being partially occluded by a moving object. When this happens,
the shape of the object could be altered enough to be considered a person, and the normal
vectors calculation could also be affected, because of the smaller number of points. This is
what we called the shade effect. In order to avoid this, we created a weak classifier that
checks if an object is being affected by this effect by tracing the rays close to the object back
to the sensor—if the rays hit another object in the way, then there is a shadow. The situation
is explained graphically in Figure 5. This process is similar to the one presented in [20],
where it was done to detect partial and full occlusions of the tracked object.
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Figure 5. This Figure provides an example of how shading can impact object detection. The blue
color represents the background while the red color represents a person. Shading can often lead to
misclassification of objects.

Finally, all three classifiers vote for the given object. Based on the majority voting, the
object is classified as human or the background.

3.4. Tracking

Figure 6 shows the flow diagram for the tracking module. This module is responsible
for creating, eliminating, and updating the tracks. Moreover, it also handles the motion
prediction stage where a predicted ROI is created for each tracked person. Finally, it can
also filter some of the possible mistakes in the classification module.

3.4.1. Track Creation and Elimination

The classification module gives good accuracy; however, in some cases, there are
some false positives. To handle the false positives in tracking, we ensure that a track is
only created when the same object is classified as a person by the classification module in
three consecutive scans, and a track is eliminated if the tracked person is not found after
20 consecutive scans (at 10 Hz, this would be 2 s).

3.4.2. Motion Prediction

The motion prediction method also creates ROIs by keeping track of the previous
object’s positions based on the velocity. Assuming a constant velocity, we predict the next
position of the target, and we create a gating area of 0.5 m around the predicted position
(in every possible direction).

Handling False 
Positives

Motion Prediction
Tracking

● Creation
● Update
● Elimination

No

Yes

Tracks with no objects

Updated tracks

Update tracks

Predicted 
ROIs

Classified 
point clouds

Classified 
object

is_human

Figure 6. Flow diagram of the tracking module. Following person/not-person classification, the
objects are fed into the tracker. The tracker then creates, updates, or eliminates the tracks based on
certain assumptions, as explained in the text, and finally predicts the motion of the target person.

The radius of the gating area corresponds to the maximum distance a person can travel
at a maximum speed in the time before the next scan. The ROI becomes one of the inputs
to the next time step from the voxelization module, as shown in Figure 3.
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3.4.3. Track Updation

At every time step, every ROI goes through the voxelization, segmentation, and
classification process. The result is a list of classified objects in the ROIs only. The objects
that are classified as persons are assigned to their corresponding tracks—this is similar to
GNN (global nearest neighbor) for data association. Basically, the person closest to the last
recorder position of the track is assigned to it. Later, the framework tries to update the
classification by removing the false positives and false negatives, as shown in Figure 7.

Figure 7. Abstract conceptual flow diagram for removing false positives and false negatives.

4. Validation and Results

To evaluate the system, precision, recall, and F-measure are used. These are widely
used metrics in robotics literature [13,30,31]. The videos are recorded while positioning the
sensor at the height of 1.2 m, which is set to mimic a top-mounted sensor on a mobile robot
platform. To show the strength of the framework, several cases are created, as illustrated in
Table 1.

Table 1. Sensor data acquisition with different cases.

Cases Description

Case 1: Single person is walking in front of the camera.
Case 2: Single person is walking in front of the camera when there is occlusion.
Case 3: Single person with different and complex poses.
Case 4: Two persons are walking in front of the camera.
Case 5: Three person walking in front of the camera with occlusion and doing complex poses.
Case 6: Two persons are walking in front of the camera and the tracker tracks only the one person.

For cases from 1 to 4, the sensor is placed in an office with a length of 10 m and a width
of 6 m. In this experiment, cases are categorized from basic to challenging, gradually. In the
case 1 recording, a single person is walking around the room normally; in case 2, a single
person is walking where a big obstacle was placed in the middle of the office to simulate a
large amount of occlusion; in case 3, a single person is doing extreme pose changes such
as crouching, stretching, jumping, and doing pick and place actions; and in case 4, two
persons are walking around in the office. The results can be seen in Table 2 (videos of the
results can be found at the URL https://lig-membres.imag.fr/aycard/html//Projects/
JuanGomez/JuanGomez.html, accessed on 8 May 2023).

As expected, case 1 achieves the highest F-score, since it is the simplest case. The
person is correctly tracked at all times, with only a few false negatives. Some false positives
can also be seen due to the shadows created when the person is close to the sensor.

https://lig-membres.imag.fr/aycard/html//Projects/JuanGomez/JuanGomez.html
https://lig-membres.imag.fr/aycard/html//Projects/JuanGomez/JuanGomez.html
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Table 2. Framework evaluation under different cases.

Case Precision Recall F1 Score Freq

Case 1: 95.37 95.12 95.25 9.01
Case 2: 90.18 72.24 80.22 7.84
Case 3: 94.88 94.49 94.68 8.61
Case 4: 93.65 95.16 94.40 6.80

Case 5 with normal walk 96.41 78.83 86.74 8.11
Case 5 with complex poses 97.51 91.35 94.33 7.71

Case 5 with occlusion 91.23 87.93 89.55 7.37

The false positives have an impact on the metrics; however, they marginally affect
the tracking. This is because of the constraint that is imposed to start the tracker after
three consecutive classifications, as false positives or negatives mostly do not last in con-
secutive scans.

As seen in Table 2, in the case of complex poses, the proposed framework is indeed able
to keep the tracking consistent, as shown in Figure 8. This is possible due to the interaction
between the classification and tracking modules, as explained in Figure 7. Even though
the occlusion is not explicitly handled in the implementation, in the results, it can be seen
that the recall is affected by the number of false negatives (due to the occlusions), whereas
the precision remains stable. Interestingly, the proposed framework remains effective even
for more than one person. Despite the fact that our solution was mostly intended for
single-person tracking, it shows potential for multiple-person tracking as well. The metric
that decreases the most is the computing performance, outputting at 6.8 Hz down from the
10 Hz of the input frequency. This is normal since the more persons there are in the scan,
the more points the algorithm has to process.

Figure 8. Tracking results for extreme pose changes, ranging from crouching to doing jumping jacks,
and holding an object. Red points were classified as background and violet points as a person.

In experiments with more challenging cases, such as case 5, the system remains effec-
tive. For case 5, the sensor is placed in a smaller part of the building, which corresponds
to a small rest area surrounded by halls. Overall, we achieve good results in every situa-
tion. The cases included the persons walking around, sitting in a chair, and occasionally
crouching to tie their shoes. The poses included three that were either moving, jumping, or
doing aerobics moves. The qualitative results can be seen online where multiple processed
videos are shown. The repository (https://github.com/baberjunaid/3D-Laser-Tracking,
8 May 2023) contains several bag files, scripts, and ROS packages online for future ex-
periments and re-implementation. Table 3 provides a comparison between our proposed
implementation and other recent LiDAR-based scene segmentation frameworks. To reduce
the computational burden of processing the entire 3D scan, we extract the Region of Interest
(ROI) using an adaptive clustering approach [13]. This approach achieves high recall by
detecting various objects in the room, such as chairs, boxes, and walls. However, the detec-
tion of numerous objects results in a decreased precision of the framework. On average,
our proposed framework takes 0.55 s to process a scan on a core i5 with 8 GB RAM.

The online learning framework [31] also utilizes an adaptive clustering framework
for ROI extraction and later extracts seven features to train the classifier. As a result,

https://github.com/baberjunaid/3D-Laser-Tracking


Sensors 2023, 23, 4720 10 of 12

our customized configuration yields the same recall as the online learning framework, as
presented in Table 3.

Table 3. Comparison of the proposed framework with the baseline method which is a publicly
available package of ROS at GitHub. Adaptive clustering (AC) is also used for finding the ROI
(segmented objects) and passed to our proposed framework.

Method Precision Recall F-Score

Online Learning [31] 73.4 96.50 83.01
Proposed Framework 93.7 87.3 90.24

AC + Proposed Framework [13] 63.12 96.50 76.23

Table 4 shows the bandwidth usage of a ROS node, measured using the rostopic bw
command. The table reports the average bandwidth usage, as well as the mean, minimum,
and maximum bandwidth usage values for a window of 100 measurements. In the case of
the baseline method, the average bandwidth of the topic is 16.59 MB/s, which means that on
average, data are being sent at a rate of 16.59 megabytes per second. The mean bandwidth
over the period of measurement is 1.69 MB/s. The minimum bandwidth measured over
the period of measurement is 1.67 MB/s, and the maximum bandwidth measured over the
period of measurement is 1.72 MB/s. The window value of 100 indicates that the average,
mean, min, and max values were computed over the last 100 measurements. In the context
of the output from rostopic bw, the average refers to the overall average bandwidth usage
over the entire measurement period, while the mean refers to the average bandwidth usage
per message.

The average bandwidth usage can be large compared to the mean if there are periods
of time during the measurement where the bandwidth usage is higher than the overall
mean. For example, if there are short bursts of high bandwidth usage interspersed with
longer periods of low bandwidth usage, the average bandwidth usage can be skewed
upwards by the bursts.

It is also worth noting that the mean value reported by rostopic bw may not be a
very reliable metric, since it is calculated based on the number of messages and the total
bandwidth used over the measurement period, and these values can fluctuate rapidly.
The average value is likely to be a more stable and reliable metric for assessing the overall
bandwidth usage.

The proposed framework has a main limitation in that it is designed specifically for
detecting and tracking humans in a closed/indoor environment where the LiDAR sensor
is stationary. It may not perform as well in situations where the sensor is mounted on a
mobile robot or when there are many objects in the outdoor environment, as the increased
range of possible objects and shapes can confuse the classifier. In such cases, a combination
of adaptive clustering and the proposed framework may be necessary, but this can be more
time-consuming. Therefore, the proposed framework is best suited for indoor settings
where the environment is relatively stable and the focus is on detecting and tracking
human movements.

Table 4. Bandwidth comparison between baseline and the proposed method.

Method
Average

Bandwidth
(MB/s)

Mean
Bandwidth

(MB)

Min
Bandwidth

(MB)

Max
Bandwidth

(MB)

Online Learning [31] 16.59 1.69 1.67 1.72
Proposed Framework 9.06 0.90 0.90 0.91

5. Conclusion and Future Works

In this paper, we have developed a framework for detecting and tracking individuals
in 3D point clouds in near real-time on standard hardware. Our approach involves a robust
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object segmentation technique using super-voxels and a chaining method, followed by an
accurate classification of the objects, integrated with a tracking mechanism that effectively
handles extreme pose changes of individuals. Our experimental results demonstrate the
effectiveness of our prototype in detecting and classifying individuals even in challenging
scenarios and occlusions, as shown in Figure 8. The further development of our approach
on a larger scale holds potential for various applications in the field of social robotics and
human-robot collaboration, especially with the inclusion of geometric methods to detect
and segment individuals into multiple objects such as arms, heads, etc., for applications
such as industrial human–robot collaboration and smart surveillance. The framework is
developed in an ROS environment and can be easily used with any distribution of ROS.
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