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a b s t r a c t

Bayesian clustering models, such as Dirichlet process mixture models (DPMMs), are
sophisticated flexible models. They induce a posterior distribution on the set of all
partitions of a set of observations. Analysing this posterior distribution is of great
interest, but it comes with several challenges. First of all, the number of partitions
is overwhelmingly large even for moderate values of the number of observations.
Consequently the sample space of the posterior distribution of the partitions is not
explored well by MCMC samplers. Second, due to the complexity of representing the
uncertainty of partitions, usually only maximum a posteriori estimates of the posterior
distribution of partitions are provided and discussed in the literature. In this paper we
propose a numerical and graphical method for quantifying the uncertainty of the clusters
of a given partition of the data and we suggest how this tool can be used to learn about
the partition uncertainty.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An infinite mixture model is a mixture model with potentially infinitely many mixture components. One example of
uch models is the Dirichlet process mixture model (DPMM), an extremely popular model, used for density estimation,
rediction or clustering, which can estimate the number of components. This is a flexible method which allows for many
ypes of data (e.g. continuous, count, categorical, survival) and can also allow for joint modelling of covariates and response
ariables. These models are widely used in many fields, including machine learning, genetics and epidemiology.
Clustering aims at grouping individuals according to their degree of similarity. We expect that variability is small

ntra-cluster but high extra-clusters. In model based clustering, each component of a mixture is assigned to a cluster.
ata from a same cluster are assumed to follow a same parametric probability density, leading to the rule one component,
ne cluster. However, clusters may not arise from a single parametric distribution and the mixture may fail to retrieve
he clusters, over-estimating the number of clusters (Baudry et al., 2010; Hennig, 2010). Bayesian mixture models are
ore flexible, since we consider a probability distribution on the space of all possible partitions. In the case of DPMM the
ixture distribution is assumed to be engendered by a Dirichlet process. As a result, observations are not thought to be
enerated by a unique mixture, but they could be generated by a large set of mixture distributions. In this context, the
lustering task is still debated. We could consider the partition derived from only one mixture, as it is done when the
aximum a posteriori is researched (Fritsch et al., 2009), but we choose not to ignore all of the other possible mixtures.
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n this case, in practice, clustering is about finding a consensus from a large set of data partitions. The consensus partition
btained is not necessarily a member of the initial set, and it cannot be related to a given mixture.
In order to relativise the importance of the estimate partition, it is important to get information about its uncertainty.

osterior similarity matrices are the tools generally used to assess partition uncertainty. Based on the MCMC draws, the
osterior similarity matrix gives for each pair of subject their probability to be in a same cluster. However this matrix
as the drawback of not giving an index of confidence for one partition. Wade et al. (2018) develop the foundation of a
athematical framework to compute credible balls in the partition space, using the variation of information as a measure
f distance on the partition space. However, (1) the upper and lower bounds are generally not unique, (2) in practice, even
or very small datasets, the number of partitions expected within the 95% credible ball is so large that an analyst cannot
onsider all of the them and (3) estimates are given among the MCMC draws. Considering only partitions explored in the
CMC draws is a big limitation of the method, as the most desirable partition is often outside the MCMC sample (Hastie
t al., 2015; Jing et al., 2022). In practice, the ‘consensus’ partitions are usually obtained by postprocessing the MCMC
raws, for example applying partitioning around medoids on the dissimilarity matrix (Liverani et al., 2015).
Finite mixture models are not subjected to all of these pitfalls, because first the space of partition is limited by the fixed

umber of clusters and second, constraints are generally added in application to make the different clusters identifiable
cross the MCMC draws. As a consequence, it is possible to evaluate the posterior distribution of a given cluster in a
artition. It is then possible to evaluate the uncertainty of the partition, by computing for each individual its posterior
robability of belonging to a cluster.
In this paper we propose to take advantage of the two approaches: finite mixtures models and DPMM. We supply a

imple and efficient method for quantifying the uncertainty of any partition in a DPMM, as it can be done for finite mixture
odels. Our method is based on the predictive distribution, a recommended choice for model checking. The uncertainty
an be evaluated for any partitions including those that do not belong to the explored MCMC sample.
This paper is organised as follows. In Section 2 we review DPMMs and methods to identifying the consensus partition.

n Section 3 we propose our tools for quantifying the uncertainty of a given partition. In Section 4 we discuss how the
ethods proposed perform on a dataset.

. Bayesian clustering with Dirichlet process mixture models

The DPMM is a Bayesian clustering model, in which a Dirichlet process (DP) is assigned as latent distribution on the
arameters of the observation distribution. We use the stick breaking representation of the DP by Sethuraman (1994), in
hich the infinite mixture is explicit. The (possibly multivariate) data Dn = (D1,D2, . . . ,Dn) follow an infinite mixture
istribution, where component c of the mixture is a parametric density of the form fc(·) = f (·|Θc) parametrised by some
omponent specific parameter Θc , so

Di|Θ1,Θ2, . . . ∼

∞∑
c=1

ψc f (Di|Θc) i.i.d. for i = 1, 2, . . . , n,

Θc ∼ PΘ0 i.i.d. for c ∈ Z+, and ψc = Vc

∏
l<c

(1 − Vl) for c ∈ Z+
\ {1} (1)

with Θc independent of Vc for c ∈ Z+, with ψ1 = V1, and Vc ∼ Beta(1, α) i.i.d. for c ∈ Z+. By introducing the latent
allocation variable Zi of observation Di, the first line of the DPMM in Eq. (1) can be replaced by Di|Zi,Θ1,Θ2, . . . ∼ f (Di|ΘZi )
i.i.d. for i = 1, 2, . . . , n, and P(Zi = c) = ψc for i = 1, 2, . . . , n and for c ∈ Z+. Bayesian posterior samples for the
latent allocation variables can be effectively obtained from the model above. However, due to the categorical nature
of the clustering variables and the lack of scalable algorithms, it is not immediately clear how one can appropriately
summarise the output of partitions from this model. There are several methods available in the literature for selecting
a single clustering estimate Z∗ for an unknown number of clusters. Among them, many aim to retrieve the maximum a
posteriori (Fritsch et al., 2009). As Liverani et al. (2015), we prefer to use Partitioning Around Medoids (PAM) to identify
the partition Z . This method is very effective and robust in our experience. It consists of processing the similarity matrix,
S, through a deterministic clustering procedure where an optimal number of clusters can be chosen by maximising an
associated clustering score. Our proposal below to quantify the partition uncertainty is not influenced by the method used
to derive the partition estimate.

3. Quantifying the uncertainty of a consensus partition

Finite mixture models are an attractive alternative to deterministic methods such as k-means because they supply a
probabilistic framework for dealing with partition uncertainty. In these models, the density of an observation y is defined
as a weighted sum of standard densities which represent the clusters of a partition and can overlap: f (y) =

∑K
c=1 ωc fc(y).

The posterior probability that an observation y belongs to cluster c , is thus readily obtained by the Bayes theorem and is
given by P(‘‘y belongs to cluster c") = wc fc(y)/f (y). However, when an infinite mixture model is considered, this method
cannot be readily applied, because of the infinite number of potential clusters and label switching. Here, we propose to
write the predictive distribution of a DPMM, i.e. an infinite mixture model as a finite mixture, in order to take advantage
of the Bayes’ theorem. In the following section we present how we split the predictive distribution in k∗ components and
how they are connected to the k∗ clusters of a given partition. Then, the results of this method will be visualised in an
uncertainty table, as this is the most effective way to process the results.
2
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.1. The posterior predictive distribution as a finite mixture of distributions

Escobar and West (1995) discuss the posterior predictive distribution for DPMMs. They show that given a partition Z ,
he predictive distribution of a new observation Dn+1 is a mixture of marginal densities, one for each cluster formed by
he partition Z and one for a potential new cluster. The predictive distribution of a DPMM is obtained by integrating over
he space of partitions,

P(Dn+1|Dn) =
α

α + n
f0(Dn+1) +

1
α + n

∑
Z∈Z

∑
c:nc (Z)>0

nc f (Dn+1|{Di : Zi = c})p(Z |Dn) (2)

here Z denotes the space of partitions of Dn, f0(Dn+1) =
∫
f (Dn+1|Θ̃n+1)PΘ0 (Θ̃n+1)dΘ̃n+1, and f (Dn+1| {Di : Zi = c}) is

the predictive distribution for cluster c of partition Z , f (Dn+1|{Di : Zi = c}) can be written as
∫
f (Dn+1|Θc)p(Θc |{Di : Zi =

c})dΘc .
The posterior predictive can be rewritten, using the power set of Dn, P(Dn). The order within Dn does not influence

the posterior predictive because the DPMM considered here is exchangeable. We now consider Dn as a set. A partition Z
is thus a collection of some of the 2n elements of P(Dn) denoted S j. Z = {S j1 , . . . , S jkZ

}, where elements are non empty,
pairwise disjoint and covering Dn. Without loss of generality we set S1 = ∅ and f0(Dn+1) = f (Dn+1|S1). We show that

P(Dn+1|Dn) =
1

α + n

2n∑
j=1

ωjnjf (Dn+1|S j), (3)

where ωj =
∑

{Z∈Z:S j∈Z}
p(Z |Dn) is the posterior probability that subset S j is a cluster of the partition. For the empty set,

we set n1ω1 = α, so that
∑2n

j=1 njωj = α + n. The details of this proof are available in Appendix A.

3.2. The predictive distribution as a finite mixture

Our aim is to formulate the predictive posterior distribution as a finite mixture model linked to partition Z∗, which is
the consensus partition identified by postprocessing. The partition Z∗ has k clusters, S∗

1, S
∗

2, . . . , S
∗

k . Therefore, our ideal
finite mixture model will be a sum of k components with weights proportional to nl, the number of observations in cluster
l. Each component of the finite mixture will be represented by f̃l(·) for cluster l, as follows,

P(Dn+1|Dn) =

k∑
l=1

nl

n
f̃l(Dn+1). (4)

Because of the form of predictive distribution in Eq. (3), the components of the finite mixture should be of the form

f̃l(Dn+1) =

2n∑
j=1

njωj

α + n
β l
j f (Dn+1|S j) (5)

here β l
j represents the part of the marginal distribution f (Dn+1|S j) relating to component l in the finite mixture in Eq. (4).

Of course, f̃l(Dn+1) should be a density distribution, constraining the sum
∑2n

j=1 njωjβ
l
j to be equal to α+ n, for any l. Also,

he mixture in Eq. (4) should be equal to Eq. (3), meaning that for each subset j,
∑k

l=1
nl
n β

l
j = 1. Therefore, our problem

can be reduced to finding the β l
j which satisfy these two sequences of constraints, and such that each component f̃l(Dn+1)

is as close as possible to the predictive distribution of data in cluster S∗

l .
We propose a solution based on the simple empirical principle that the more S j has data in common with S∗

l , the more
f (.|S j) is close to the predictive distribution of S∗

l . This principle leads us to propose this simple rule of allocation based
on proportionality. The part of f (.|S j) allocated to cluster l will be proportional to njl, the number of data both in S j and
S∗

l . From these rules, a solution that satisfies all above mentioned constraints follows, β l
j = (nnlj)/(njnl) if j ≤ 2 and β l

j = 1
if j = 1. The proof is given in Appendix B.

3.3. Estimation using MCMC draws

Consider the consensus partition Z∗ and its k clusters. Using MCMC draws, we propose a Monte Carlo estimate of f̃l.
From a sequence of parameters (Z t ,Θ t

1,Θ
t
2, . . .) for t ∈ {1, . . . , T } drawn from the posterior distribution, and a sequence

of draws, Θ t
0, in the baseline distribution, we approximate f̃l(Dn+1) using the following Monte-Carlo estimate

(α + n) ˆ̃fl(Dn+1) =
1
T

T∑⎛⎝αf (Dn+1|Θ
t
0) +

n
nl

∑
nlc f (Dn+1|Θ

t
c )

⎞⎠ . (6)

t=1 c:n(Z t )>0

3
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Fig. 1. The plot on the left represents the predictive density (black), and densities f̃l(Dn+1) of the mixture of Eq. (C.2). The consensus partition
ecognises 5 clusters, data are represented by a star on the x-axis, they are coloured according to their cluster allocation. The plot on the right
and side is a graphical representation of p̂li for a visual analysis of cluster uncertainty. In this matrix, each row of the matrix corresponds to an
bservation in the original dataset. Each column represents a cluster in the partition that has been identified by PAM as a consensus. The observations
re ordered according first to their cluster allocation in the consensus partition, and then according to their probability of belonging to each cluster.

his estimate is based on the posterior draws, readily available when MCMC inference is done. Its computation demands
t each step, the evaluation of a small number of functions in about n points. If the integrals are in closed form, it is then
ossible to use the following estimate, with smaller variance

(α + n) ˆ̃fl(Dn+1) = αf0(Dn+1) +
n
nl

1
T

T∑
t=1

⎛⎝ ∑
c:n(Z t )>0

nlc f (Dn+1|{Di : Z t
i = c})

⎞⎠ . (7)

Finally, we estimate pli as the posterior probability that data point i belongs to cluster l of the Z∗ partition as:
ˆ li = nl

ˆ̃fl(Di)/
∑k∗

j=1 nj
ˆ̃fj(Di) We propose to calculate these probabilities for each data of Dn and for each cluster of Z∗

nd to visualise them graphically. In Appendix C we provide an application of this to mixtures of Gaussian distributions.

. Application to velocity galaxy data

We consider the velocity galaxy dataset proposed by Roeder (1990). See Appendix D for a detailed description of the
ataset and our implementation.
The predictive density and the densities f̃l(Dn+1) are represented on the left hand side of Fig. 1. From the representation

f the mixture of densities, the distinction between cluster 3 and 4 is unclear: some element of cluster 4 have a higher
robability to belong to cluster 3. A clear representation of the proposed methodology is presented on the right hand side
f Fig. 1, where the p̂li are displayed for a graphical analysis of the uncertainty of the selected partition. In this figure we
ote that cluster 1, 2 and 5 are well defined, because they are composed of elements that have a high probability to belong
o the cluster that they are allocated to and low probability to belong to a different cluster. However, doubts may exist
n the choice of clusters 3 and 4, as observations that have been allocated to them have high probability of belonging to
ither cluster. The graphical representation of cluster uncertainty was critically helpful to quantify this uncertainty, and
t can scale to higher dimensions.

. Discussion

In this paper we have provided the mathematical justification that underpins a much needed uncertainty quantification
ool for any given partition. As far as we know, we are the first to write the posterior predictive distribution for a DPMM
s a finite mixture. The uncertainty that we have computed can be visualised and we have demonstrated this to be a
owerful tool to learn about the partitions and the uncertainty of each cluster. In practice, if this tool identifies significant
ncertainty, it may trigger a further exploration of the partition space or a more in-depth analysis of the observations at
he boundaries between clusters.
4
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Even though we have focused on Bayesian DPMM clustering in this paper, our work can be extended to all Bayesian
odels which provide a sample of the posterior distribution of the partitions, and this is the focus of our future work.

ata availability

No data was used for the research described in the article.

ppendix A. The posterior predictive distribution as a finite mixture of distributions

Escobar and West (1995) discuss the posterior predictive distribution for Dirichlet process mixture models. They show
hat given a partition Z , the predictive distribution of a new observation Dn+1 is given by

P(Dn+1|Z,Dn) =
α

α + n

∫
f (Dn+1|Θ̃n+1)PΘ0 (Θ̃n+1)dΘ̃n+1

+

∑
c:nc>0

nc

α + n

∫
f (Dn+1|Θc)p(Θc |{Di : Zi = c})dΘc (A.1)

where nc is the number of individuals belonging to cluster c. Note that the predictive distribution is a mixture of marginal
densities. In the first term of the sum above, the parameter Θ̃n+1 is sampled from the baseline distribution PΘ0 (·), whereas
n the remaining terms of the sum, parametersΘc are sampled from their posterior distribution given prior PΘ0 (·) and data
Di : Zi = c}. This implies that a new observation Dn+1 could be assigned to one of the clusters defined by observations
n = (D1, . . . ,Dn) or to a new cluster. For simplicity, in the following, we denote f0(·) the first component of the mixture

in Eq. (A.1) and we note that it does not depend on the partition Z .
We obtain predictive distribution by integrating Eq. (A.1) over the space of partitions, so that

P(Dn+1|Dn) =

∫
Z
P(Dn+1|Z,Dn)p(Z |Dn)dZ (A.2)

=
α

α + n
f0(Dn+1)

+
1

α + n

∑
Z∈Z

∑
c:nc (Z)>0

nc f (Dn+1|{Di : Zi = c})p(Z |Dn) (A.3)

here Z denotes the space of partitions of Dn, and f (Dn+1|Z, {Di : Zi = c}) is the predictive distribution for cluster c of
partition Z ,

f (Dn+1|Z, {Di : Zi = c}) =

∫
f (Dn+1|Θc)p(Θc |{Di : Zi = c})dΘc . (A.4)

Eq. (A.4) is in closed form if the baseline distribution PΘ0 (.) is a conjugate prior for the likelihood f (.|Θc). Therefore, the
predictive distribution in Eq. (A.3) can be interpreted as a mixture of parametric densities, weighted by the marginal
posterior partition probability p(Z |Dn).

Then we introduce the 2n subsets of Dn, denoted S j with j = 1, 2, . . . , 2n. We recall that any partition Z is a set of
these subsets S j, Z = {S j1 , . . . , S jkZ

} such that

Dn = S j1 ∪ · · · ∪ S jkZ

|S jl | > 0 for all l = 1, 2, . . . , kZ and

S jc ∩ S j′c = ∅

for any pair of subsets (S jc , S j′c ) for jc = 1, 2, . . . , kZ and jc′ = 1, 2, . . . , kZ . Without loss of generality we set S1 = ∅ and
f0(Dn+1) = f (Dn+1|S1). We then rewrite Eq. (A.3) using the subsets S j and then switch the summations between partitions
and subsets.

P(Dn+1|Dn) =
α

α + n
f0(Dn+1)

+
1

α + n

∑
Z∈Z

kZ∑
c=1

njc f (Dn+1|S jc )p(Z |Dn) (A.5)

=
α

α + n
f (Dn+1|S1)

+
1

α + n

2n∑ ∑
p(Z |Dn)njf (Dn+1|S j) (A.6)
j=2 {Z∈Z:S j∈Z}

5
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or a non-empty subset j, we set ωj =
∑

{Z∈Z:S j∈Z}
p(Z |Dn), the posterior probability that subset j is sampled over the

space of partitions. For the empty set, we set n1ω1 = α. We notice that
∑2n

j=1 njωj = α + n because
∑

Z∈Z p(Z |Dn) = 1.
We have

P(Dn+1|Dn) =
1

α + n

2n∑
j=1

ωjnjf (Dn+1|S j). (A.7)

With this formulation, we have shown that the predictive distribution is a mixture of posterior parametric distributions
given each subset. The predictive distribution belongs then to the space generated by the functions f (·|S j).

Appendix B. The predictive distribution as a finite mixture

Our aim is to formulate the predictive posterior distribution as a finite mixture model linked to partition Z∗, which is
he consensus partition identified by postprocessing. The partition Z∗ has k clusters, S∗

1 , S
∗

2 , . . . , S
∗

k . Therefore, our ideal
inite mixture model will be a sum of k components with weights propotional to nl, the number of observations in cluster
l. Each component of the finite mixture will be represented by f̃l(·) for cluster l, as follows,

P(Dn+1|Dn) =

k∑
l=1

nl

n
f̃l(Dn+1). (B.1)

ecause of the form of predictive distribution in Eq. (A.7), the components of the finite mixture should be of the form

f̃l(Dn+1) =

2n∑
j=1

njωj

α + n
β l
j f (Dn+1|S j) (B.2)

here β l
j represents the part of the marginal distribution f (Dn+1|S j) relating to component l in the finite mixture

n Eq. (B.1). Of course, f̃l(Dn+1) should be a density distribution, constraining the sum
∑2n

j=1 njωjβ
l
j to be equal to α + n.

lso, the mixture in Eq. (B.1) should be equal to Eq. (A.7), meaning that for each subset j,
∑k

l=1
nl
n β

l
j = 1. Therefore, our

roblem can be reduced to finding the β l
j which satisfy these two sequences of constraints,

2n∑
j=1

njωjβ
l
j = α + n for all l ∈ {1, 2, . . . , k} (B.3)

k∑
l=1

nl

n
β l
j = 1 for all j ∈ {1, 2, . . . , 2n

} (B.4)

nd such that each component f̃l(Dn+1) is as close as possible to the predictive distribution of data in cluster S∗

l .
We propose a solution based on the simple empirical principle that the more S j has data in common with S∗

l , the more
f (.|S j) is close to the predictive distribution of S∗

l . This principle leads us to propose this simple rule of allocation based
on proportionality. The part of f (.|S j) allocated to cluster l will be proportional to njl, the number of data both in S j and
S∗

l . From these rules, a solution that satisfies all constraints in Eqs. (B.3) and (B.4) follows.

β l
j =

nnlj
njnl

if j ≤ 2
β l
j = 1 if j = 1.

(B.5)

For the constraints in Eq. (B.3) we have
2n∑
j=1

njωjβ
l
j = n1ω1β

l
1 +

2n∑
j=2

njωj
nljn
nlnj

= α +
n
nl

2n∑
j=2

nljωj

= α +
n
nl

2n∑
j=2

∑
Z∈{Z∈Z:S j∈Z}

p(Z |Dn)nlj

= α +
n
nl

∑
Z∈Z

p(Z |Dn)
2n∑
j=2

nlj1Sj∈Z = α +
n
nl
nl = α + n.

or the constraints in Eq. (B.4) we have, if j ̸= 1,
k∑ nl

n
β l
j =

k∑ nl

n
n
n

nlj

n
=

k∑ nlj

n
= 1 (B.6)
l=1 l=1 l j l=1 j

6
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nd, if j = 1,
k∑

l=1

nl

n
β l
j =

k∑
l=1

nl

n
= 1.

Appendix C. Application to mixtures of Gaussian distributions

Perhaps the most common model to be implemented under the DPMM framework is the Gaussian mixture model,
where Dn = Y n for some continuous multidimensional data Yi of dimension p, and Yi follows a mixture of Gaussian
distributions. Under this setting for each cluster c , the cluster specific parameters are given by Θc = (µc,Σc), where
µc ∈ Rp is a mean vector and Σc ∈ Rp×p is a covariance matrix. Under this setting

p(Yi|Zi,ΘZi ) = f (Yi|µZi ,ΣZi ) = (2π )−
p
2 |ΣZi |

−
1
2 exp

{
−

1
2
(Yi − µZi )

⊤Σ−1
Zi

(Yi − µZi )
}
. (C.1)

The normal inverse Wishart prior is a convenient prior choice for (µc,Σc) due to its conjugacy with the multivariate
Gaussian distribution, facilitating Gibbs updates. It is parametrised with µ0, ν0, κ0, R0 (NIW (µ0, ν0, κ0, R0)), and is such
that µc ∼ Normal(µ0, (1/ν0)Σc) and Σc ∼ InvWishart(R0, κ0), for each c.

If the Normal inverse Wishart prior for parameters µ0, ν0, κ0, R0 (NIW (µ0, ν0, κ0, R0)) is chosen, then f0(·) is the density
f a multivariate Student distribution with mean µ0, covariance matrix Ψ =

1+ν0
(κ0−p+1)ν0

R0 and degree of freedom κ0−p+1,
denoted Tκ0−p+1(µ0,Ψ ) with Yi ∈ Rp (Fraser and Haq, 1969). We use this widely used model for illustrative purposes but
see Jing et al. (2022) for a warning on the use of these prior distributions for highly dimensional data.

Thus we can write f̃l(Dn+1) as

f̃l(Dn+1) =
α

α + n
Tκ0−p+1(µ0,Ψ )

+
1

α + n

∑
Z∈Z

∑
c:nc (Z)>0

ncl(Z)f (Dn+1|{Di : Zi = c})p(Z |Dn).

In the same way, f (Dn+1|Z, {Di : Zi = c}) ∝
∫
f (Dn+1|Θc)p(Θc |Z, {Di : Zi = c})dΘc is the density of a p multivariate

Student distribution Tκ0+nc−p+1(µc,Σc), with

µc =
ν0

ν0 + nc
µ0 +

nc

ν0 + nc
ȳl (C.2)

Σc =
ν0 + nc + 1

(ν0 + nc)(κ0 + nc − p + 1)
(R0 + Sc +

ν0nc

ν0 + nc
(µ0 − D̄l)(µ0 − D̄l)′) (C.3)

Sc =

∑
i:Zi=c

(Di − D̄c)(Di − D̄c)′. (C.4)

Appendix D. Application to velocity galaxy data

We consider the velocity galaxy dataset proposed by Roeder (1990) and largely used in the literature for comparing
different clustering methods. It contains the velocities of n = 82 galaxies from a redshift survey in the Corona Borealis
region (Fig. D.2). The distribution of the data appears clearly multimodal.

Escobar and West (1995) apply a DPMM to these data for density estimation. We use the same model to illustrate our
method. Observation Di for i = 1, . . . , n are modelled with the DPMM. Conditionally on the partition, observations are
supposed Normally distributed,

Di|Zi,Θ ∼ N (µZi ,ΣZi )

with Θc = (µc,Σc). We chose of the conjugated normal inverse Gamma distribution (NIW (µ0, ν0, α, β)) as baseline
distribution. We use the hyperparameters as proposed by Escobar and West (1995), i.e. µ0 = 0, ν0 = 0, 001, α = 2 and
β = 1. For the illustration purposes, we fix α = 4. The model is fit with the PReMiuM package (see below), with one
run of 300,000 iterations of a Gibbs algorithm. The ‘consensus’ partition Z∗ is obtained applying PAM on the dissimilarity
matrix.

The plot on the left hand side of Fig. 1 shows that each component f̃l is not Gaussian. Indeed, each component is
a mixture of the 2n marginal densities. This point suggests that mixture components derived from a clustering using
DPMM should not be thought of as the parametric component f (.|Θc) of the model. Only if each data of cluster j has
a posterior probability 1 to be sampled from this cluster, each component corresponds to a cluster. The finite mixture
model components f̃l are themselves a mixture of densities. This phenomenon has been discussed by Baudry et al. (2010)
and Hennig (2010). Clusters are supposed to represent subpopulations, and the associated distribution is not necessarily
Gaussian. As a consequence, several mixture components can account for a single cluster. With this decomposition of the
predictive distribution, we show that using DPMM for clustering, implicitly results in multi-components clusters.
7
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Fig. D.2. Histogram of galaxy velocity data.

All the functions discussed in this paper are available in the R package PReMiuM, a package developed by Liverani et al.
(2015) for profile regression, a method that has a wide range of applications, such as spatial modelling (Liverani et al.,
2016; Lavigne et al., 2020) and epidemiology (Hastie et al., 2013; Molitor et al., 2014; Pirani et al., 2015; Mattei et al., 2016;
Coker et al., 2016, 2018; Liu et al., 2020; Liverani et al., 2021; Ricciardi et al., 2022). The functions used to create the figures
and plots in this paper are open source and available on Github at https://github.com/silvialiverani/partitionuncertainty
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