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Numerical time perturbation and resummation methods
for nonlinear ODE

Abstract In this research work, numerical time per-
turbation methods are applied on nonlinear ODE. Solu-
tions are sought in the form of power series using time
as the perturbation parameter. This time integration
approach with continuation procedures allows to obtain
analytical continuous approximated solutions. Asymp-
totic Numerical Method and new resummations tech-
niques of divergent series namely Borel–Padé–Laplace
and Inverse Factorial series are studied. A comparison
with classic integration scheme is presented in order to
evaluate the robustness and the effectiveness of these
algorithms. Full details are given regarding first- and
second-order derivative of resummation techniques.

Keywords Time perturbation methods · Numerical
resummation · Borel–Laplace · Inverse factorial
series · Nonlinear ODE

1 Introduction

Time integration methods, used to solve dynamic prob-
lems, rely on a temporal discretization of the problem
by advancing the model in successive discrete time
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G. Girault
Centre de Recherche des Écoles de Saint-Cyr Coëtquidan, Écoles
de Coëtquidan, 56381 Guer Cedex, France

steps Δt . However, some constraint can appear espe-
cially when resolving nonlinear dynamic problems.
One may cite the delicate essential choice of an optimal
time step Δt that usually causes the increase in the num-
ber of iterations and the computation time. Moreover, it
is also shown that classic time integration methods lead
sometimes to a destruction in the invariance properties
of physical phenomena.

Linear problems have been solved using time per-
turbation methods in [1]. Hence, for a decade, a time
integration scheme based on the perturbation theory is
proposed [2]. This makes it possible to overcome the
notion of discrete time step. It is connected to a develop-
ing area of research that deals with nonlinear problems
called the Asymptotic Numerical Method and denoted
by “ANM”.

This latter is based on the perturbation theory and
has been applied with success to various solid and fluid
mechanics problems in [3–10]. Recently, time pertur-
bation methods have been studied in [1,11–13] on some
examples. The main idea of this time perturbation tech-
nique is to represent the unknowns of the problem in the
form of a polynomial by taking the time as the perturba-
tion parameter. Therefore, an analytical approximation
of the solution is then valid on a temporal domain to be
determined. A continuation technique is then applied to
reach a specific final time. The most important advan-
tage of this time approach is that the computed solutions
are obtained in a continuous way. However, its main
drawback is that the time-series solutions that appear
in physics are generally divergent [14–17].
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Very recently, a new class of analytic transient
solvers with numerical resummation of divergent series
has been proposed [2]. Within this new class of tempo-
ral integrator, the algorithm that interests us is named
Borel–Padé–Laplace and is denoted by “BPL”. This
type of solver is promising in order to make the numer-
ical simulations more efficient in terms of capture
of fast dynamic phenomenon and numerical stability
over a large number of cycles and computation time.
This algorithm has been successfully applied on aca-
demic examples such as the resolution of the heat equa-
tion, Burgers equation and some examples of Hamilto-
nian systems [2,12,13,18–20]. While numerical results
have shown that BPL algorithm presents some interest-
ing properties, there are also many disadvantages that
need to be alleviated. One may cite the appearance of
some numerical poles that can arise with the use of the
Padé approximant. Therefore, in such cases, the Borel
sum converges very slowly. In order to avoid these prob-
lems, another numerical resummation method namely
Inverse factorial series and denoted by “IFS” is pro-
posed as a time integration scheme in [21]. A first
study on the effectiveness of the Inverse factorial series
scheme has been initiated on some academic examples
only in [12,21].

Since time perturbation and numerical resummation
methods are very recent, our goal is to understand more
the behavior and the feasibility of such integration, then
develop the way of their use on more complex prob-
lems, and finally test their relevance and their robust-
ness.

In this article, we seek to validate the time pertur-
bation and resummation methods on different exam-
ples of nonlinear ODE. Details will be presented only
for the Van der Pol oscillator problem. It should be
noticed that power series solutions for Van der Pol oscil-
lator have been presented in many detailed studies in
the literature, for example in [22–26]. In such stud-
ies, μ is the perturbation parameter. Whereas in this
paper, time is used as the perturbation parameter. It
makes it possible to perform a time integration of the
problem.

An external force can be simulated as acting on the
system by adding a new periodic force to the second
member of the Van der Pol equation [27]. This forced
equation is studied in some papers [28–33]. Therefore,
a study of second member alone is realized by compar-
ing Taylor method and time perturbation methods using
some change of variables. This series representation is

then used in order to study the full forced Van der Pol
equation by time perturbation methods and resumma-
tion techniques.

Next, the proposed techniques are applied on the
nonlinear combustion equation, then to the hardening
spring problem. At the end, the efficiency of these lat-
ter is also established for the three degrees of free-
dom (3 DOF) Lorenz system. Solutions are obtained
in a continuous way, which permit to overcome the
notion of critical time step Δt related to the condition
of Courant–Friedrichs–Lewy (CFL). Since we have
no information in advance about the type of numer-
ical series terms obtained, resummation techniques
BPL and IFS are also applied. The purpose of this
study is to evaluate the recent tools of time perturba-
tion and resummation techniques on these interesting
examples. For a fair comparison: the first-, third- and
fourth-order accurate Runge–Kutta (RK) method are
considered.

This article is structured as follows. In Sect. 2, a brief
recall of the numerical time perturbation and resum-
mation methods is exposed. In Sect. 3, these latter are
studied and applied in details to the free Van der Pol
oscillator, then to the forced Van der Pol in Sect. 4.
Next, the advantages of the proposed methods with
respect to the classical integration schemes are shown
through two examples in Sects. 5 and 6. At the end,
the efficiency of these latter is also confirmed for the
three degrees of freedom (3 DOF) Lorenz system in
Sect. 7.

New estimates of first and second derivatives of
Borel–Padé-Laplace and Inverse factorial series, which
can prove useful also in other cases of studies to apply
the continuation technique, are established and given
explicitly in “Appendix A” and “B”.

2 Time perturbation and resummation methods

This section consists of a brief recall on the numerical
time perturbation and resummation methods. The orga-
nization of this section is as follow. First, ANM with
time series development is presented in subsection 2.1.
Then, the resummation methods Borel–Padé–Laplace
and Inverse-Factorial Series are exposed, respectively,
in Sects. 2.2 and 2.3.
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2.1 Asymptotic numerical method using time as
perturbation parameter

Consider the following ordinary differential problem:

Mü + Cu̇ + K u = 0 (1)

with the initials conditions at a given time t0

{

u(t0) = u0

u̇(t0) = u1
(2)

where M , C and K are prescribed scalars. In the case
of multiple degrees of freedom, those quantities are
matrices and u,u̇, ü are vectors.

Unknowns of the problem are sought as truncated
power series. In this work, time is the perturbation
parameter. Global time is then defined using a given
time t0 and a perturbation time t̂ as:

t = t0 + t̂ (3)

Continuous approximation u(t) ≈ û
(

t̂
)

writes as
follow:

û
(

t̂
)

= u0 +

N
∑

i=1

ui t̂
i (4)

where N denotes the truncation order. It is then possible
to differentiate this expression as:

˙̂u
(

t̂
)

=

N−1
∑

i=1

iui t̂
i−1 (5)

¨̂u
(

t̂
)

=

N−2
∑

i=2

i(i − 1)ui t̂
i−2 (6)

These developments are injected into Eq. (1) and by
identifying the terms according to the powers of t̂ , a
cascade of linear problems is obtained.
⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

t̂0 : 2Mu2 + Cu1 + K u0 = 0
t̂1 : 6Mu3 + 2Cu2 + K u1 = 0
t̂2 : 12Mu4 + 3Cu3 + K u2 = 0

.

.

.

t̂ N−2 : M N (N − 1)uN + C(N − 1)uN−1 + K uN−2 = 0

Series are obtained by the numerical resolutions of
those systems. Solutions are then defined on a specific

range of validity [0, tmax]. An explicit expression of
tmax has been proposed in [34]:

tmax =

(

δ
||u1||2

||uN ||2

) 1
N−1

(7)

where δ denotes a given tolerance and ‖.‖2 is the
Euclidean norm. Note that other definitions to evalu-
ate the range of validity domain exist in [34,35]. As
solutions are continuous in time, they can be evaluated
at any time t̂ ∈ [0, tmax].

In order to compute solution on a given time range,
a continuation algorithm is performed. It can be sum-
marized as follows:

1. Compute series until a given order N .
2. Evaluate the upper bound of the validity domain tmax

using δ.
3. Evaluate a new starting point u0 at a new t0 = t0 +

tmax, and go to 1.

This time series development allows to obtain a numer-
ical approximation of the solutions continuous in time.

2.2 Borel–Padé–Laplace

Drawback of the ANM approach with time as the per-
turbation parameter is that series might be divergent.
In such case, the range of validity of this representa-
tion, in the temporal domain, becomes extremely small.
Therefore, classical continuation is no longer efficient.
To mitigate this difficulty, a new class of analytic tran-
sient solvers with numerical resummation of divergent
series has been proposed [2,20].

Within this new class of temporal integrator, the
numerical algorithm named Borel–Padé–Laplace (BPL)
is presented in this subsection. First, a theoretical
reminder of Borel–Laplace is quickly presented. The
reader is referred to [17,36–39] for more details con-
cerning the definition of Borel resummation method.
Then, the numerical algorithm of Borel–Padé–Laplace
is exposed.

The first step, after computing the series terms, is to
compute the Borel transform given by

Bû(ξ) =

∞
∑

n=0

un+1

n!
ξn (8)
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The Borel transform Bû(ξ) has a nonzero convergence
radius if û is a Gevrey series.

Note that û is a Gevrey series of index k, if there
exists two constants C > 0 and A > 0 such that

|un| ≤ C An(n!)1/k, ∀n ∈ N (9)

The second step consists to prolongate naturally Bû(ξ)

into an analytical function P(ξ) (here Padé approxi-
mants).

The last one presents the Borel sum Sû(t) by com-
puting the Laplace transform of P along a direction d:

Sû(t̂) = u0 +

∫

d
P(ξ)e−ξ/t̂ dξ (10)

which permits to go back to the originally space.
These three steps are translated into the following

numerical algorithm BPL. It is organized around the
following three stages: Borel transform (B) + Approx-
imation of Padé (P) + Laplace transform (L). We
present this algorithm for Gevrey series of index k = 1
in a direction d = R

+.
For the first stage, series terms are computed up to

an order N , this yields that Borel transform B(ξ) is of
order N − 1.

For the second one, an extension of the Borel trans-
form is obtained by establishing an approximation of
Padé, which increases the range of validity of the series:

P(ξ) =
A0 + A1ξ + A2ξ

2 + · · · + ALξ L

1 + B1ξ + · · · + BMξ M
(11)

where L and M are two integers such that L+M = N−

1, A0, A1, . . . , AL and B1, . . . , BM are the coefficients
of Padé approximants. In cases of large size problems,
it is recommended to use a vector version of Padé [40].
Note that prolongation of Borel transform can be done
with different methods other than Padé. The interested
reader is referred to [41] for furthers details, but these
methods are designed for linear equations.

For the last stage, the Laplace transform is applied to
the Padé approximants in order to return to the temporal
space, with a Gauss–Laguerre quadrature [42].

Using the following relation

P(ξ)e−ξ/t̂ =
(

P(ξ)e−ξ/t̂ eξ
)

e−ξ (12)

then applying the Gauss–Laguerre quadrature to Eq.
(12) yields to

SûN (t̂) = u0 +

NG∑

i=1

P(ξi )e
−ξi (

1
t̂
−1)

wi (13)

where ξi are the roots of the NG-th Gauss–Laguerre
polynomial, and wi are the weights.

Applying the following change of variable ξ = ξ/t̂ ,
we get:

SûN (t̂) = u0 + t̂

NG∑

i=1

P(ξi t̂)wi (14)

Since the initial series Eq. (4) is truncated up to an
order N , and because of the numerical effects, numer-
ical resummation methods are not able to lead the
exact solution. Therefore, Borel sum Eq. (14) allows
to approximate analytically the exact solution only in a
certain time interval. Moreover, the definition of the
range of validity tmax of BPL is still not evaluated
explicitly. Therefore, a continuation procedure is pro-
posed to reach specific given time t . The continuation
of BPL algorithm is carried out using a criterion based
on the residual Res(t) defined by

Res(t) = M S̈(t) + C Ṡ(t) + K S(t) (15)

where S(t) is the Borel sum presented in Eq. (14), S̈(t)

is the second derivative of Borel sum and Ṡ(t) the first
derivative. Those latter should be determined in order
to evaluate the residual. These derivatives are estab-
lished in “Appendix A”. This constitutes one of the
main contributions of this work. Therefore, the ana-
lytical approximations are examined as long as

‖Res(t)‖2 < ǫ (16)

where ǫ is a small positive parameter and ‖.‖2 denotes
the Euclidean norm. For the next step, we redefine a new
starting point x̂(t1) where t1 > t0, which corresponds
to the end of the step where relation Eq. (16) holds.

2.3 Inverse factorial series

Another method of resummation called Inverse facto-
rial series, denoted by “IFS” was initially proposed in

4
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the context of time perturbation algorithm in [21]. The
link between Borel sum and Inverse factorial series is
shown in [21].

We call Inverse factorial series I (t̂) the following

I (t̂) = u0 +

∞
∑

n=0

bnn!t̂n+1

(1 + t̂) · · · (1 + nt̂)
(17)

with

bn =
1

n!

n+1
∑

k=1

|Ss(n, k − 1)|uk (18)

where Ss(n, k) denotes the Stirling numbers of the first
kind. Note that Eq. (18) is valid for the Borel summable
series in a direction d = R

+. Numerically, I (t̂) is com-
puted up to N −1 order. However, when the truncation
order N is large, the problem appears with the numer-
ical explosion of Stirling numbers.

Hence, an equivalent method to evaluate I (t̂), pro-
posed in [43], is described. Suppose that û(t) is 1-
summable in a direction d, with an angle θ with the
positive half-axis.

Let τl = sle
iθ with l = (1, 2, . . . , N ), where

{s1, s2, . . . , sN } is any sequence of complex numbers.
Let

z =
1

t̂
, y = zeiθ (19)

a1 =
u0

z
, a2 =

u1

z2
, . . . , am =

um−1

zm
, m = 1, . . . , N

(20)

Note that if the series are summable in the R
+ direction,

we have y = z and we will choose sl = l for l ≥ 1.
We call Inverse factorial series the following

I (t̂) =
1

t̂

N−1
∑

n=0

vn+1 = z

N−1
∑

n=0

vn+1 = z(v1 + v2 + . . . + vN )

(21)

where vn is the nth term of IFS which are calculated
using the following recursive algorithm based on

v
( j)
n+1 =

τn−1v
( j)
n + yv

( j+1)
n

y + τn

n ≥ 1, j ≥ 1, (22)

with

v
(1)
1 = a1 v

(2)
1 = a2 . . . v

(N )
1 = aN (23)

The terms v
(1)
1 , v

(1)
2 , . . . , v

(1)
n , v

(1)
n+1 are the terms of the

IFS denoted by : v1, v2, . . . , vn, vn+1.
The continuation of IFS algorithm is carried out

using the criterion of the residual Res(t) defined by

Res(t) = M Ï (t) + C İ (t) + K I (t) (24)

where Ï (t) is the second derivative of IFS, and İ (t)

the first derivative of IFS. Therefore, the approxima-
tions of derivatives of the IFS algorithm are needed
for the residual evaluation. This new part is detailed
in “Appendix B”. Therefore, the analytical approxima-
tions are examined as long as

‖Res(t)‖2 < ǫ (25)

where ǫ is a small positive parameter and ‖.‖2 denotes
the Euclidean norm. For the next step, we redefine a new
starting point x̂(t1) where t1 > t0, which corresponds
to the end of the step where relation Eq. (25) holds.

3 Application on free Van der Pol oscillator

First, we are interested to study the effectiveness of time
perturbation and resummation methods on free Van der
Pol oscillator problem that has attracted considerable
interest of many researchers from a long time, since
it models many problems in different areas [44]. The
Van der Pol oscillator equation is a dynamic system
described by a variable x(t) satisfying the following
nonlinear differential equation of the form

ẍ − μ(1 − x2)ẋ + x = 0 (26)

with x(0) = a and ẋ(0) = b the initial conditions, and
μ ≥ 0 denotes the control parameter or the coefficient
of nonlinearity. Note that the nonlinear behavior of the
oscillations depends on μ. Therefore, according to its
value, the trajectories have precise characteristics.

For μ = 0, Eq. (26) becomes

ẍ + x = 0 (27)

this is a simple harmonic oscillator, which has an exact
solution for t0 = 0 on the form:

x(t) = x(0) cos(t) + ẋ(0) sin(t) (28)

5
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For μ 	= 0, Eq. (26) have no exact solution; there-
fore, it was first integrated by the classical discretiza-
tion schemes, in order to compare the efficiency of time
perturbation methods to the classical ones.

3.1 Classical discretization schemes

Equation (26) is written as a first-order system of dif-
ferential equation:
{

ẋ = y

ẏ = μ(1 − x2)ẋ − x
(29)

A convergence study for different time steps Δt

between Runge–Kutta of first (RK1) and fourth order
(RK4) has been carried out. For sake of simplicity, only
results obtained with RK4 are presented for this exam-
ple. The goal of this comparison is just to get a good
approximation of the solution, since it will be the ref-
erence solution.

Firstly, constant time step Δt = 10−3s is chosen for
RK4. Secondly, a type of adaptive RK4 has been used
as presented in [45]. It computes local error between
two solutions obtained after performing two consec-
utive time steps using step-size Δt and another using
only one time step but with a larger step-size 2Δt . The
tolerance parameter on local error denoted Δ0 makes
it possible to adjust the step-size.

Initial conditions at a given time t0 = 0 are arbitrar-
ily chosen as x(0) = 1 and ẋ(0) = 0 and the coefficient
of nonlinearity μ = 2.

It should be noticed that for every choice of ini-
tial conditions, except {x(0) = 0, ẋ(0) = 0}, a unique
periodic motion is presented. The uniqueness of this
invariant set, the limit cycle, of the non-forced Eq. (26)
can be demonstrated by Liénard’s Theorem.

The results of numerical integration by Runge–Kutta
methods show that the characteristic of the trajectory
depends on the value of the coefficient of nonlinearity
μ. For small μ, the limit cycle is very nearly circular.
For large μ, the limit cycle is no longer nearly circular
and is representative of bounded periodic oscillatory
behavior.

3.2 Time perturbation series recurrence formula

In this subsection, time perturbation methods and
perturbation–resummation methods are applied on the
free Van der Pol oscillator. We seek to demonstrate the

accuracy of these methods by comparing their results to
RK4 and then check their ability on a problem involv-
ing significant temporal variations and limit cycles.

The Van der Pol equation is rewritten again

ẍ − μ(1 − x2)ẋ + x = 0 (30)

Let the following change of variable

z = x2 (31)

This yields to the new quadratic equation

ẍ − μ(1 − z)ẋ + x = 0 (32)

We first expand x(t), ẋ(t), ẍ(t) and the new variable
z(t) as a time power series:

x(t̂) = x0 +

N
∑

i=1

xi t̂
i

ẋ(t̂) =

N−1
∑

i=1

i xi t̂
i−1

ẍ(t̂) =

N−2
∑

i=2

i(i − 1)xi t̂
i−2

z(t̂) = z0 +

N
∑

i=1

zi t̂
i (33)

where N denotes the truncation order of the series. Sub-
stitution of the expansion Eq. (33) into Eq. (32) yields
to the following sequence problems:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

t̂0 : 2x2 − μ(x1 − z0x1) + x0 = 0
t̂1 : 6x3 − μ(2x2 − 2x2z0 − x1z1) + x1 = 0
t̂2 : 12x4 − μ(3x3 − 3x3z0 − 2z1x2 − z2x1) + x2 = 0

.

.

.

t̂ N : (N + 2)(N + 1)xN+2

−μ

(

(N + 1)xN+1 −

N
∑

i=0

(N + 1 − i)xN+1−i zi

)

+xN = 0

Therefore, series terms for k ≥ 2 are given by the
following recurrence formula

k(k − 1)xk

= μ

(

(k − 1)xk−1 −

k−2
∑

i=0

(k − 1 − i)xk−1−i zi

)

− xk−2

6
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where

zi =

i
∑

j=0

x j xi− j (34)

Once the series terms are evaluated, range of valid-
ity of the perturbed representation Eq. (33) is sought.
In this study, two techniques are used. The first is the
historical one for ANM, detailed in [34]. It consists
into a tolerance between two consecutive truncation
order. The range of validity [0, tmax] using a prescribed
tolerance parameter δ and for a truncation order N is
evaluated using Eq. (7). When using this criterion, the
method will be noted ANM(C). In this paper, for the
sake of comparison with other perturbation methods,
another criterion is used. Residual tolerance is used
in order to evaluate this tmax. It makes it possible to
ensure the quality of the solution. This method is noted
ANM(R).

3.3 Numerical results for time perturbation methods

Initial conditions are set to : x(0) = 1 and ẋ(0) =

0, and the coefficient of nonlinearity is fixed in this
subsection to μ = 2.

3.3.1 Numerical results of ANM

Behavior of ANM for different truncation orders N ,
before any continuation procedure, is presented in Fig.
1. It is observed that only a part of the solution is
obtained by computing series, even with a big trun-
cation order N .

Then, the continuation technique is used, the trun-
cation order is fixed to N = 15 and the tolerance is
set to δ = 10−6. Continuation is depicted in Fig. 2. It
should be noted that in between each dots on the plot,
solutions are continuous. This is one of the main fea-
ture of such approach. It also highlights the accuracy
of the continuation of the time series, since it presents
the same numerical result as RK4.

3.3.2 Numerical results of Borel–Padé–Laplace

Numerical results of the resummation technique Borel–
Padé–Laplace (BPL), with the continuation procedure
are presented. The Laplace transform is computed

Fig. 1 Free Van der Pol oscillator ANM solutions using different
truncation order, and no continuation steps, compared to RK4

Fig. 2 Free Van der Pol oscillator continuation using ANM
series for N = 15 and δ = 10−6, compared to RK4

using NG = 8 as number of Gauss points. The real
positive axis is the direction of the Laplace transform.
Scalar Padé in Eq. (11) applied on Borel’s terms are
chosen such that: M = integer part ((N − 1)/2) and
L = (N − 1) − M . The residual is evaluated using
the first and second derivative of Borel sum presented
in “Appendix A” (in strategy 1). The continuation of
BPL based on the residual is carried up to t = 25 s,
ǫ = 10−4.

It can be observed in Fig. 3a that BPL is able to
reproduce solutions as RK4. This is further supported
by Fig. 3b that shows the ability to reproduce limit
cycle.

7
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Fig. 3 Approximated solution (left) and phase portrait (right) using BPL for ǫ = 10−4, N = 15 for the free Van der Pol oscillator. In
black, the reference RK4 solution using Δt = 10−3s

However, in some cases Borel–Padé-Laplace proce-
dure lacks robustness. For example, apparition of poles
resulting from Padé approximants with different exam-
ples of parameter changes is depicted in Fig. 4. This
might disable efficient continuation procedure.

This drawback is well known. A way to overcome
this problem is to use Inverse factorial series resumma-
tion algorithm. It is applied also on Van der Pol oscil-
lator, where there is no need to evaluate P(ξ) [see Eq.
(11)].

3.3.3 Numerical results of inverse factorial series

We are interested to compute the whole time solution
without any difficulty in their representation (as poles
with BPL). Therefore, we propose to use IFS for an
example of Fig. 4d.

A comparison of the solution by the perturbation
method ANM, resummation techniques BPL and IFS
for a truncation order N = 8 without continuation, is
displayed in Fig. 5. Note that IFS algorithm in this paper
is using the second method presented in Sect. 2.3.

As expected and per construction, no numerical
poles are observed for IFS.

In order to perform continuation procedure using
IFS, ranges of validity are using residual norm toler-
ance. This residual is based on the first and second
derivative of IFS presented in “Appendix B”. The con-
tinuation of IFS based on the residual is carried up to a

final time t = 15 s, using residual tolerance ǫ = 10−4

and truncation order N = 8.
Evolution of the IFS solutions is plotted in Fig. 6.

It can be observed that IFS presents the same numeri-
cal solution as the classic scheme fourth-order Runge–
Kutta. Oscillations with IFS reach also a limit cycle as
it can be appreciated in Fig. 6b.

Finally, numerical stability of these numerical sch-
emes has been tested also for a final time t = 10, 000 s.
Numerical results show the ability of time perturbation
and resummation methods to reproduce the dynamics
of the system over a large time. It should be noted
that the long-time behavior of BPL is investigated
through numerical experiments on Hamiltonian and
non-Hamiltonian system, as well as on a partial dif-
ferential equations in [20].

3.3.4 Computational efforts

Some global information on computational effort is
given in this section. It is noted that the comparison
of the performance is not an obvious question in the
present study, because solutions obtained by classic
or time-perturbation methods are not evaluated in the
same way.

To the best of our knowledge, no explicit formula
of temporal range of validity of BPL and IFS has been
established yet. That is why it is proposed to evaluate it
via a residual criterion as in [2]. This latter guarantees
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Fig. 4 Different examples of apparition of poles resulting from Padé approximant of BPL for the free Van der Pol oscillator
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Fig. 5 Approximated solutions obtained using perturbation
methods without continuation procedure : SERIES, BPL and
IFS, for N = 8. In black, the reference curve obtained using
classic time stepping RK4 (Δt = 10−3s)

a very good quality of the solution which is continuous
but sometimes time-consuming because of the evalua-
tion of the residue.

We compare the performance of the numerical meth-
ods in terms of their computational efficiency, as mea-
sured both by computational load (CPU time) and in
terms of numerical accuracy as quantified by evaluating
the residual of the computed numerical solution.

CPU time needed to reach a final time of t = 100s

using RK4 with a constant time step Δt = 10−3s is

Table 1 CPU time needed to reach t = 100 s using the classic
time integration scheme RK4 adaptive time step for different
values of local error tolerance Δ0

Δ0 CPU time (s)

10−3 0.30296

10−4 0.98494

10−5 3.2892

10−6 10.258

7.8709 s. Results for RK4 adaptive step size are pre-
sented in Table 1 for different values of local error tol-
erance Δ0 (Δ0 denotes the desire accuracy parameter
of RK4 as mentioned in [45]).

It should be noted that using Δ0 = 10−6 allows
to stay in the same residual range as the perturbation
methods.

CPU times for time perturbation techniques are
given in Table 2.

ANM(C), based on Cochelin criterion with δ =

10−5 is in the same residual ranges than other meth-
ods, allows to reach final time in approximately 0.3s.
Interestingly, ANM using a residual norm criterion
(ANM(R)) for evaluating tmax and BPL are longer than
ANM (C). This shows the problem of using residual
for computing range of validity. Finally, it is noted that
IFS is relatively less efficient in terms of computational
time as can be seen in Table 2.

Fig. 6 Approximated solution (left) and phase portrait (right) using IFS for ǫ = 10−4, N = 8 for the free Van der Pol oscillator. In
black, the reference RK4 solution using Δt = 10−3s
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Table 2 CPU time needed to reach t = 100 s time perturba-
tion methods (ANM), time perturbation–resummation methods
(BPL, IFS) for a truncation order N = 8

Method CPU time (s)

ANM (C) 0.29951

ANM (R) 1.3056

BPL (R) 3.9281

IFS (R) 7.0321

For time perturbation methods, (R) stands for ranges of validity
evaluated using a residual tolerance criterion ǫ = 10−3, while
(C) stands for Cochelin criterion using δ = 10−5

So the results show that ANM based on Cochelin
criterion with δ = 10−5 is the fastest in CPU time,
while the residual stays in the same range as others
methods. But when using ANM(C), it is not possible
to determine a priori the residual ranges. One have to
determine it afterward. One can note that RK4 adap-
tive step size with Δ0 = [10−4s, 10−3s] is also fast in
CPU time. However, the residual norms of the solu-
tion obtained are not as low as the ones prescribed with
ANM(R), BPL and IFS.

It is noted that computational efforts of classic and
perturbation methods are globally in the same order
of magnitude. ANM(C) is 4 time faster than ANM(R).
But ANM(R), BPL and IFS ensure a prescribed residual
tolerance. Moreover, most of the CPU time is spent in
the evaluation of the range of validity. An incremental
algorithm is being used, where dichotomy would be
much faster. At least, it is possible to conclude that IFS
is not so efficient in that case, but might be interesting
where BPL is not working due to bad a priori choice of
Padé approximants parameters.

3.3.5 ANM, BPL and IFS comparisons

We now propose a comparison of ranges of validity
and number of continuation steps needed to reach a
specific final time. We recall here that for each con-
tinuation step, continuous approximated solutions are
obtained using time perturbation methods. For the sake
of comparison, ranges of validity are evaluated using
the residual criterion.

As a reminder, RK4 needs 10,000 steps to reach a
final time of t = 10 s using a discrete constant time
step Δt = 10−3s.

Table 3 Number of steps required to reach t = 10 s for the free
Van der Pol equation using RK4 adaptive step size with different
values of the desire accuracy parameter Δ0

Δ0 Number of steps

10−3 177

10−4 575

10−5 1922

10−6 6026

Fig. 7 tmax evolution for ANM, BPL and IFS for N = 15, and
ǫ = 10−4

A small study on number of step is presented in Table
3 for adaptive RK4 based on [45]. For every Δ0 value,
residual of solutions were globally higher than 10−3.

Evolution of tmax obtained using ANM (Series only),
BPL and IFS (numerical resummation) is proposed in
Fig. 7. It is observed an automatic adaptation of the
range of validity [0, tmax] accordingly to the cyclic solu-
tion. Ranges of validity for ANM and BPL oscillate
around 0.4s and stay bounded in [0.1, 0.78]s.

Number of steps for ANM, BPL, and IFS with each
other are given in Table 4. It is noted that ANM and
BPL reach final time using approximately the same
number of steps. BPL is slightly better than ANM in
this example. IFS performs two to four times more steps
than other methods in this example.

The results of this study highlights the effectiveness
of the analyticity of the approximation, since it can
represent the important temporal variations in the evo-
lution of the physical phenomenon studied.

Finally, regarding computational efforts and num-
ber of steps for adaptive RK4 and time perturbation
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Table 4 Case of the free Van der Pol equation. Number of steps
needed to reach final time t = 10 s using perturbation methods
with N = 15 and different values of the residual tolerance ǫ

Residual tolerance ANM BPL IFS

10−2 24 21 55

10−3 30 26 79

10−4 36 33 99

10−5 44 41 168

10−6 51 50 214

methods it is possible to say that wider step size is per-
formed, in a slightly better amount of time and for a
better prescribed accuracy of the solution.

3.4 Behavior for a higher value of μ

In this subsection, we consider the same equation of
the free Van der Pol oscillator by increasing the non-
linearity coefficient μ to 1000. In this particular case,
the solution changes radically and presents oscillations
on a much longer time scale.

We are interested to see how the polynomial appro-
aches can deal with large values of the nonlinearity
coefficient where the equation becomes stiff and some
very fast dynamic in the system is expected.

First, Fig. 8 displays the results of the solution
obtained by time perturbation method ANM and RK4
for a discrete time step Δt = 10−4s and for a final
time t = 6000 s. One can see that the solutions are
superposed. A zoom of the plot close to the area of
fast changes of the solution is presented in Fig. 9.
It is observed that ANM solution is different than
the one obtained by RK4 with a discrete time step
Δt = 10−4s. For this reason, we decrease the step
size to Δt = 10−5s. With this latter, RK4 solution is
now in a good agreement with ANM solution as can be
appreciated in Fig. 9.

An additional plot of the velocity in that vicinity of
the “jumps” that can give an additional insight in the
quality of the approximation is presented in Fig. 10.

As mentioned in [46], if we integrate a stiff problem
using variable-step Runge–Kutta, the initial step size
chosen generally leads to a large local error estimate.
This then causes the routine to reduce the step size, until
the main local error is reduced to its specified limit. The
routine sometimes works well to integrate the problem,

Fig. 8 Approximated solution using RK4 with a discrete time
step Δt = 10−4s, and ANM for a truncation order N = 15, for
the free Van der Pol oscillator with μ = 1000

Fig. 9 Enlarged view of Fig. 8 of the approximated solution
using ANM and RK4 with two discrete time steps Δt = 10−4s
and Δt = 10−5s, with μ = 1000

Fig. 10 Zoom plot of the approximated velocity using ANM
and RK4 with a discrete time step Δt = 10−5s, with μ = 1000
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Fig. 11 tmax evolution for ANM(R), ANM(C), BPL and IFS for N = 25, μ = 1000. (R) stands for ranges of validity evaluated using
a residual tolerance criterion ǫ = 10−4, while (C) stands for Cochelin criterion using δ = 10−4

but uses a much larger number of steps than seems
logical. As a result, rounding error and computation
time are constraints when using classical techniques to
integrate such problems.

These constraints are surmounted with the time per-
turbation methods. This example is a very good illus-
tration to realize that these methods are also appropriate
for stiff problems.

Same results are obtained with the other time
perturbation–resummation methods BPL and IFS pre-
sented in this work.

We are now interested in comparing the range of
validity of these time perturbation and resummation
methods. The comparison is carried out in Fig. 11 for a
truncation order N = 15. It is observed that use of the
resummation methods BPL and IFS tend to increase
the range of validity of the ANM series in this case.

4 Application on forced Van der Pol oscillator

An external transient force F(t) can act on the oscilla-
tor, by placing at the second member a function of t ,
which is equivalent in mechanics to the actions of an
external force on the system :

ẍ − μ(1 − x2)ẋ + x = F(t) (35)

This equation is called forced Van der Pol.
The external action will be assumed sinusoidal peri-

odic force; therefore, the second member F(t) is cho-
sen as A cos(ωt), where A denotes the forcing ampli-
tude and ω the forcing frequency. While we use time

perturbation for the unknowns, this right hand side
(RHS) also needs to be represented by a power series.
In order to obtain the best numerical solution of the
complete forced Eq. (35), it is necessary to have the
best approximation of this RHS. Therefore, a time per-
turbation study of this RHS is realized by comparing
Taylor method and time perturbation methods using
specific change of variable [47].

4.1 Time perturbation of the forcing term

The chosen time-dependent forcing term is F(t) =

A cos (ωt). It is necessary to look for a polynomial
approximation of it, as:

F̂
(

t̂
)

= F0 +

N
∑

i=1

Fi t̂
i (36)

with F0 = F (t0). Two specific procedures are com-
pared in order to evaluate the Fi series terms.

4.1.1 Variable change

The following change of variable U = cos(ωt) and
V = sin(ωt) proposed in [47] leads to

{

U = cos(ωt)

V = sin(ωt)

⇒

{

dU = −ωV dt

dV = ωU dt
(37)

Writing U and V as series : U =
∑N

i=0
Ui t̂

i and

V =
∑N

i=0
Vi t̂

i , then injecting them into Eq. (37),
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Fig. 12 Influence of the initial time t0 for the time perturbed RHS: F(t) = A cos(ωt) without continuation procedure. Comparisons
with the exact solution (plain black curve) are performed for A = 17, ω = 4 and truncation order N = 20

and finally equating terms with identical powers of t̂ ,
we get for i ≥ 1:

{

Ui = −ω
i

Vi−1

Vi = ω
i

Ui−1
(38)

The initial terms are U0 = cos (ωt0) and V0 =

sin (ωt0), where t0 denotes a given initial time.
Thus, the recurrence formula for the RHS is:

Fi = AUi , ∀i ≥ 0. (39)

4.1.2 Taylor decomposition

The general formula of Taylor series for cos(ωt) also
makes it possible to determine the Fi series terms:

cos (ωt) =

N
∑

i=0

(cos(ωt0))
(i)

i !
(t − t0)

i (40)

where (cos(ωt0))
(i) denotes the i th derivative of the

cosine function evaluated at the point ωt0. This for-
mula has been directly used for numerical validation.
Recurrence formula for the Fi terms is not provided
here as it was not necessary.

4.1.3 Numerical validation of the RHS series

representation

Exact solution is compared to the solution given by
Taylor method and the change of variable method, for
A = 17, ω = 4. It is done without continuation pro-
cedure in order to fully understand the behavior of the
obtained series. Firstly, influence of the initial time t0
is depicted in Fig. 12 using truncation order N = 20.
No difference can be seen between both methods, nor
influence of the initial time. Secondly, truncation order
influence is presented in Fig. 13. It can be seen that the
domain of validity tmax of the RHS, ≈ 1.5s, is wider
than previously computed branch of solutions.

Numerical results for the zeroth step show that the
two methods: Taylor formula and the method based on
change of variable have the same behavior, same range
of validity and same error with the exact solution. As it
is easier to evaluate Eq. (39) than finding a recurrence
formula for the Taylor expansion for t0 	= 0, we decide
to use this method for the RHS.
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Fig. 13 Influence of the truncation order for the time perturbed
RHS F(t) = A cos(ωt) without continuation procedure. Com-
parisons with the exact solution (plain black curve) are performed
for different truncation orders N , for A = 17, ω = 4 and t0 = 0

4.2 Numerical study of the forced Van der Pol
equation

4.2.1 Classical discretization schemes

The forced Van der Pol equation (35) is solved by con-
verting it into a first-order system of differential equa-
tion:
{

ẋ = y

ẏ = μ(1 − x2)ẋ − x + F(t)
(41)

A convergence study for different time steps Δt

between RK4 and RK1 schemes has been also car-
ried out in this case. The corresponding time step for
x(0) = 1, ẋ(0) = 0 and μ = 2 is Δt = 10−3s.

4.2.2 Time perturbation representation

In order to solve the forced Van der Pol equation using
time perturbation, we proceed with the same proce-
dure as in the free case. Power series representation
of the unknowns Eq. (33), using time as the perturba-
tion parameter, are injected in the equation to solve Eq.
(35). Moreover, series terms Fi of the RHS are eval-
uated using Eq. (39). Therefore, identifying the terms
according to the powers of t̂ , the following recurrence
formula is obtained:

k(k − 1)xk = μ

(

(k − 1)xk−1 −

k−2
∑

i=0

(k − 1 − i) xk−1−i zi

)

−xk−2 + Fk−2 (42)

Fig. 14 Approximated solution using ANM (series only) for
different truncation orders N , in the case of the forced Van der
Pol oscillator (μ = 2, ω = 4 and A = 17)

where

zi =

i
∑

j=0

x j xi− j (43)

4.2.3 Numerical results

For all the computations, initials conditions are set to
x(0) = 1, ẋ(0) = 0, the amplitude to A = 17 and the
frequency to ω = 4.

In order to understand the behavior of the ANM,
solutions are plotted without continuation procedure in
Fig. 14. It can be seen a standard evolution in pertur-
bation method. After some time, continuous solutions
diverge. Moreover, the more terms you add in the rep-
resentation, the wider is the range of validity.

Solutions and phase portrait are proposed in Fig. 15.
Continuation procedure is exactly the same as in the
free case. Residual norm tolerance is set to an ǫ value,
and this makes it possible to evaluate the range of valid-
ity of the time perturbation representation tmax. The
same results are obtained using IFS and ANM. They
are not plotted here for sake of conciseness. Hence, it
is confirmed that ANM, BPL and IFS are able to repro-
duce solutions of the forced Van der Pol equation.

A small robustness study is proposed for the time
perturbation methods. Phase portraits are plotted in Fig.
16 for BPL only (but results are the same for ANM
and IFS methods). It is done for others values of the
forced Van der Pol equation parameters A, ω and μ .
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Fig. 15 Approximated solution (left) and phase portrait (right) using BPL for ǫ = 10−4, N = 15, μ = 2, ω = 4 and A = 17 for the
forced Van der Pol oscillator. In black, the reference RK4 solution using Δt = 10−3s

Perfect agreement with the RK4 solutions is observed.
This confirms the ability of the proposed methods to
reproduce numerical solutions of the forced Van der
Pol oscillator.

Number of steps for ANM, BPL and IFS needed to
reach final time t = 10 s are given in Table 5. Domain
of validities is around 0.1 s to 0.2 s. It is once again
recalled that solution within those steps is continuous.
Moreover, derivative values are available at any time
and are also continuous in time. It is noted that ANM
and BPL methods are equivalent in terms of number of
steps for this case of study and those parameters. But,
it is not easy to find BPL parameters (truncation order,
number of Gauss point) for which no pole appears. At
last, IFS needs about 50% more steps than BPL and
ANM.

5 Application on the nonlinear combustion

equation

We now consider a model of flame propagation. If a
match is lit, the fireball spreads rapidly until it reaches
a critical size. It then preserves this size because the
amount of oxygen absorbed by the combustion inside
the ball balances the amount accessible through the
surface of the fireball. To illustrate this further, let us
consider the following nonlinear combustion equation
[48]:

ẏ = y2(1 − y) (44)

with the initial condition

y(0) = δ (45)

The scalar variable y(t) represents the radius of the
ball. The terms y2 and y3 refer to surface area and
volume. The critical parameter δ corresponds to the
initial radius which is small. The solution is sought
over a length of time such that t ∈ [0, 2/δ].

This example is studied by Larry Shampine, one of
the authors of the MATLAB’s suite of ordinary dif-
ferential equations [49]. This problem is characterized
by its transitory aspect in the middle of the integration
interval. The solution switches from non-stiff to stiff,
and then, it becomes non-stiff again.

Series terms of time perturbation method for Eq.
(44) are given in “Appendix C.1”.

The exact solution of this differential equation is
[50]:

y(t) =
1

W (a exp(a − t)) + 1
(46)

where a = 1/δ−1 and W (t) is the Lambert W function
(the inverse of the function : t exp(t)).

For the numerical test, we take δ = 0.0001. We
provide the solution of combustion equation by time
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Fig. 16 Phase portrait using BPL for ǫ = 10−4, N = 15, for different values of amplitude A, frequency ω and μ, for the forced Van
der Pol oscillator. In black, the reference RK4 solution using Δt = 10−3s

perturbation methods and MATLAB ode solvers. We
start by ode45 (based on an explicit Runge–Kutta (4,
5) formula and the Dormand–Prince pair [51]), since
in general it is the best solver to apply as a first try for
the majority of problems.

Figure 17 shows the exact solution compared to the
solution obtained by time perturbation method and the
MATLAB solver ode45 with the zoom detail, for a final
time equal to 2/δ, so to t = 20, 000 s. One can see that
the solution obtained by the solver ode45 gives oscil-
latory motion, while ANM solution is in a very good

agreement with the exact one. Same result as ANM is
obtained by BPL and IFS.

Note that good results can be obtained with MAT-
LAB solver ode23s (based on a modified Rosenbrock
formula of order 2 [49]). However, it only solves some
kinds of stiff problems and none of all ode solvers is
exempt from the step size restriction. Thus, the quali-
tative features of the solution obtained by time pertur-
bation method are shown.
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Table 5 Case of the forced Van der Pol equation (μ = 2, ω = 4
and A = 17)

Tolerance ANM BPL IFS

10−2 53 49 74

10−3 61 65 99

10−4 77 79 108

Number of steps needed to reach final time t = 10 s using pertur-
bation methods with N = 15 and different values of the residual
tolerance ǫ

Fig. 17 Solution of Eq. (44) obtained by time perturbation
method (ANM) and ode45 for δ = 0.0001

6 Application on the elastic hardening spring

problem

Consider the nonlinear elastic hardening spring prob-
lem [52,53] in the modified following form :

ü + s1(1 + s2 y)u = 0 (47)

y − u2 = 0 (48)

with the initials conditions u(0) = u0, u̇(0) = v0,
y(0) = u0

2, where s1 > 0 and s2 > 0. This problem is
an example of conservative systems which maintain a
constant total energy in their exact solutions.

Solution of this problem presents periodic oscil-
lations. The exact period and solution can be found
analytically in [54]. Series terms of time perturbation
method for Eqs. (47) and (48) are given in “Appendix
C.2”.

For numerical results, we take u0 = 1.5, v0 = 0.0,
s1 = 100, s2 = 10 as presented in [52]. The non-
linear period of the problem is T = 0.15153. Clas-

sic time integration schemes use a discrete time step
ΔT = T/32. The phase portraits of the reference
solution and the one obtained by time perturbation
method (ANM) are given in Fig. 18. Same results are
obtained by BPL and IFS. It is seen that good agree-
ment is obtained. However, results obtained with clas-
sical discrete time step Δt show the inaccuracy of
the numerical solution. In conservative systems, the
exact displacement-velocity portrait should be a closed
cycle which is not satisfied by the classical integration
schemes Runge–Kutta of third (RK3) and fourth order
(RK4) as can be deduced from Fig. 18. Note that simi-
lar results are obtained by using the following classical
schemes: Newmark, the Houbolt method, α-method,
the average acceleration method, the central difference
method and the Wilson θ -method. This has been con-
firmed by the deviation of the total energy obtained by
these schemes from its initial value in [53].

The results depicted in Fig. 18 prove that a good
quality of solution is guaranteed over large period of
time with time perturbation methods as explained in
[20].

7 Application on a three degrees of freedom (3

DOF) example : Lorenz system

One of the most famous chaotic systems was developed
by Edward Lorenz [55] who was interested in the fluid
flow patterns of the Earth’s atmosphere and noticed an
unexpected chaotic behavior. Depending on the choice
of the parameters that exist in the equations, Lorenz sys-
tem can exhibit chaotic and non-chaotic behavior. The
Lorenz equations govern, in a lower order, the dynam-
ics of convection in a heated fluid layer and present
particular challenges due to its high sensitivity to small
variations in initial conditions, from continuous con-
vection to low turbulence (chaos). The Lorenz equa-
tions are:

ẋ = σ(y − x) (49)

ẏ = x(ρ − z) − y (50)

ż = xy − βz (51)

where x , y and z are dynamical variables. The first com-
ponent of the solution x is related to the convection in
the atmospheric flow, while the other two components
y and z are related to horizontal and vertical tempera-
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(b)(a)

Fig. 18 Phase portraits of the hardening spring problem ü +

100(1 + 10u2)u = 0 , u0 = 1.5, v0 = 0.0 for a final time equal
to 50T , by time perturbation method (ANM) and the third- and

fourth-order Runge–Kutta method (RK3/RK4) with a discrete
time step Δt = T/32. Reference solution presented in [54]. (b)
is a zoom plot of (a)

ture variation. The parameters σ , ρ and β are the related
constants.

Series terms of time perturbation method for this
system are given in “Appendix C.3”.

Note that this system of differential equations is not
linear and it is very complicated to obtain exact solu-
tions with the presence of two nonlinear terms. Solu-
tions are completely dependent on initial parameters
and conditions, and it is very difficult to predict their
behavior. For some parameter values, the orbit of the
solution in the three-dimensional space is a strange
attractor. For other values of the parameters, the solu-
tion tends either to converge toward a fixed point,
or diverge to infinity or follow a periodic oscillation
motion. Bifurcation studies show that with the param-
eters σ = 10 and β = 8/3, and the critical chaos
parameter is ρ = ρcr = 27.74 [56]. The behavior of
the solution is non-chaotic when ρ < ρcr and chaotic
otherwise.

When resolving this system numerically, the numer-
ical methods provide the solutions only at a discrete
point in time. In order to ensure a good convergence
of the solution, these methods require a very small dis-
crete time step. However, even by reducing the inte-
gration step Δt , the result cannot be improved. This
is due to the fact that the integration error presents an
extremum as a function of Δt as mentioned in [57]. The
importance of handling Lorenz system with a time per-
turbation method instead of a discrete time integrator
is outlined in [57,58].

Fig. 19 Phase portraits of Lorenz system with x0 = 5, y0 =

5, z0 = 400 and ρ = 350 obtained by time perturbation method
(ANM) and ode45

For the numerical results, the following initials con-
ditions are set first to x0 = 5, y0 = 5, z0 = 400 and
the constant ρ is set to ρ = 350. Figure 19 illustrates
the phase portrait of Lorenz system and shows the effi-
ciency of time perturbation method.

Then, we consider x0 = 5, y0 = 5, z0 = 4 and ρ =

27. Figure 20 shows the ability of time perturbation
methods to reproduce the Lorenz attractor.

Same results are obtained for both test cases using
BPL and IFS.

8 Conclusions and perspectives

Nonlinear differential equations have been success-
fully solved using time perturbation methods as time
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Fig. 20 Phase portraits of Lorenz system with x0 = 5, y0 =

5, z0 = 4 and ρ = 27 obtained by time perturbation method
(ANM) and ode45

integrator. Full description of the time perturbation
has been made. First, classic Asymptotic Numerical
Method has been applied using time as perturbation
parameter. Then, resummation techniques Borel–Padé-
Laplace and Inverse-Factorial Series have been studied.
First- and second-order derivatives are explicitly given
for both BPL and IFS methods. This is one of the main
contributions of this work.

The principal advantage of such approaches is that
solutions and derivatives are continuous in time. It
makes it possible to evaluate those latter at any time. It
is noted that for free and forced Van der Pol equations,
both ANM and BPL methods are equivalent in terms of
number of steps using proposed parameters. Time per-
turbation methods make it possible to perform wider
time step, with a prescribed residual, than adaptive RK4
integrator. It is noted that computational efforts of clas-
sic and perturbation methods are globally in the same
order of magnitude. Most of the CPU time for ANM(R),
BPL and IFS is spent in the evaluation of the range of
validity. An incremental algorithm is being used, where
dichotomy should be much faster.

It has been confirmed that poles appear during con-
tinuation of BPL method. It is difficult to find correct
parameters for BPL : truncation order, number of Gauss
points, for which poles are not an issue. In this study,
IFS is a bit less efficient, but it can provide a good
alternative to BPL where poles might appear and in the
case of divergent series, for which ANM method is no
longer efficient.

Finally, time perturbation and resummation meth-
ods are well adapted to simulation over long time. Sev-
eral examples have indicated that classical schemes
often introduce a slight shift at each period, whereas

the time perturbation schemes reproduce more faith-
fully the limit cycle. The efficiency of these methods
has also been validated for the 3 DOF Lorenz system.
Some recent studies even show that time perturbation
features allow to handle correctly problems like Lorenz
system.

Application to models using high numbers of degrees
of freedom, more precise computational efforts and
comparisons of the proposed time perturbation inte-
grators will be studied in a further work.
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Appendix A Derivatives formulas for Borel–Padé–

Laplace

The Borel sum denoted by Sû(t) in a direction d = R
+

is given by the following formula:

Sû(t) = u0 +

∫ ∞

0
P(ξ)e−ξ/t dξ (52)

The first derivative of Borel sum is given by:

dSû(t)

dt
=

d

dt

(

u0 +

∫ ∞

0
P(ξ)e−ξ/t dξ

)

(53)

=
du0

dt
+

∫ ∞

0
P(ξ)

d

dt
(e−ξ/t )dξ (54)

= 0 +

∫ ∞

0
P(ξ)(

ξ

t2 )e−ξ/t dξ (55)

=
1

t2

∫ ∞

0
ξ P(ξ)e−ξ/t dξ (56)

The change of variable ξ = r t yields to:

dSû(t)

dt
=

1

t2

∫ ∞

0
r t P(rt)e−r d(rt) (57)

=
t2

t2

∫ ∞

0
r P(rt)e−r dr (58)

=

∫ ∞

0
r P(rt)e−r dr (59)

Finally, the first derivative of Sû(t) is

dSû(t)

dt
=

∫ ∞

0
r P(rt)e−r dr (60)
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The second derivative of Borel sum is given by:

d2Sû(t)

dt2 =
d

dt

(
1

t2

∫ ∞

0
ξ P(ξ)e−ξ/t dξ

)

(61)

= I1 + I2 (62)

with

I1 =
d

dt
(

1

t2 )

∫ ∞

0
ξ P(ξ)e−ξ/t dξ (63)

and

I2 =
1

t2

d

dt

∫ ∞

0
ξ P(ξ)e−ξ/t dξ (64)

For I1:

I1 =
d

dt
(

1

t2 )

∫ ∞

0
ξ P(ξ)e−ξ/t dξ (65)

=
−2

t3

∫ ∞

0
ξ P(ξ)e−ξ/t dξ (66)

Let the change of variable ξ = r t

I1 =
−2

t3

∫ ∞

0
rtP(rt)e−r d(rt) (67)

=
−2

t

∫ ∞

0
r P(rt)e−r dr (68)

=
−2

t

dSû(t)

dt
(69)

Therefore,

I1 =
−2

t

dSû(t)

dt
(70)

For I2:

I2 =
1

t2

d

dt

∫ ∞

0
ξ P(ξ)e−ξ/t dξ (71)

=
1

t2

∫ ∞

0
ξ P(ξ)

ξ

t2 e−ξ/t dξ (72)

=
1

t4

∫ ∞

0
ξ2 P(ξ)e−ξ/t dξ (73)

Let the change of variable ξ = r t

I2 =
1

t4

∫ ∞

0
r2t2 P(rt)e−r d(rt) (74)

=
1

t

∫ ∞

0
r2 P(rt)e−r dr (75)

Therefore, the second derivative of Borel sum is

d2Sû(t)

dt2 =
−2

t

dSû(t)

dt
+

1

t

∫ ∞

0
r2 P(rt)e−r dr (76)

Note that the evaluation of the second derivative of
Borel sum needs to start from t0 	= 0.

Therefore, as a summary:

Sû(t) = u0 + t

∫ ∞

0
P(rt)e−r dr (77)

dSû(t)

dt
=

∫ ∞

0
r P(rt)e−r dr (78)

d2Sû(t)

dt2 =
−2

t

dSû(t)

dt
+

1

t

∫ ∞

0
r2 P(rt)e−r dr (79)

A quick reminder about Gauss–Laguerre quadrature
is presented:

∫ ∞

0
f (x)e−x dx =

NG∑

i=1

wi f (xi ) (80)

with wi are the quadrature coefficients (or weights).
The xi points, or nodes, are real, distinct, unique and
are the roots of Laguerre’s NG polynomials.

Generally, we can also consider the integrals that
have a singularity of the law of power xα known to
x = 0, for α > −1 with α a real number that lead to
integrals of forms:

∫ ∞

0
xα f (x)e−x dx =

NG∑

i=1

wi f (xi ) (81)

This allows to estimate such integrals accurately for
f (x) smooth or polynomial even in the case where α

is not an integer.
It should be noticed that the nodes xi and the weighs

wi depend on α and NG . So, here are two different
strategies for calculating first and second derivatives of
BPL.
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A.1 Strategy 1

Strategy 1 is an application of Gauss–Laguerre formula
or the generalized formula with α = 0.

Borel sum is given by:

Sû(t) = u0 + t

∫ ∞

0
P(rt)
︸ ︷︷ ︸

H(r)

e−r dr

= u0 + t

∫ ∞

0
H(r)e−r dr

= u0 + t

NG∑

i=1

wi H(ri )

= u0 + t

NG∑

i=1

wi P(ri t) (82)

The first derivative of Borel sum is given by:

dSû(t)

dt
=

∫ ∞

0
r P(rt)
︸ ︷︷ ︸

G(r)

e−r dr

=

∫ ∞

0
G(r)e−r dr =

NG∑

i=1

wi G(ri )

=

NG∑

i=1

wiri P(ri t) (83)

The second derivative of Borel sum is given by:

d2Sû(t)

dt2 =
−2

t

dSû(t)

dt
+

1

t

∫ ∞

0
r2 P(rt)
︸ ︷︷ ︸

Q(r,t)

e−r dr

=
−2

t

dSû(t)

dt
+

1

t

NG∑

i=1

wi Q(ri , t)

=
−2

t

dSû(t)

dt
+

1

t

NG∑

i=1

wiri
2 P(ri t) (84)

Therefore, with α = 0, we have

Sû(t) = u0 + t

NG∑

i=1

wi P(ri t) (85)

dSû(t)

dt
=

NG∑

i=1

wiri P(ri t) (86)

d2Sû(t)

dt2 =
−2

t

dSû(t)

dt
+

1

t

NG∑

i=1

wiri
2 P(ri t) (87)

For this first way, the Padé solution P(ri t) is calculated
only once for the estimation of the Borel solution, the
first and second derivatives.

A.2 Strategy 2

The second way is based on generalized Gauss–
Laguerre.

For α = 0, we have:

Sû(t) = u0 + t

∫ ∞

0
P(rt)
︸ ︷︷ ︸

H(r)

e−r dr

= u0 + t

∫ ∞

0
H(r)e−r dr

= u0 + t

NG∑

i=1

wi H(ri ) = u0 + t

NG∑

i=1

wi P(ri t)

(88)

For α = 1, we have:

dSû(t)

dt
=

∫ ∞

0
r P(rt)
︸ ︷︷ ︸

G(r)

e−r dr

=

∫ ∞

0
rG(r)e−r dr

=

NG∑

i=1

wi G(ri ) =

NG∑

i=1

wi P(ri t) (89)

For α = 2, we have:

d2Sû(t)

dt2 =
−2

t

dSû(t)

dt
+

1

t

∫ ∞

0
r2 P(rt)

︸ ︷︷ ︸

Q(r,t)

e−r dr

=
−2

t

dSû(t)

dt
+

1

t

∫ ∞

0
r2 Q(r, t)e−r dr

=
−2

t

dSû(t)

dt
+

1

t

NG∑

i=1

wi P(ri t) (90)

Therefore,

Sû(t) = u0 + t

NG∑

i=1

wi P(ri t) α = 0 (91)
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dSû(t)

dt
=

NG∑

i=1

wi P(ri t) α = 1 (92)

d2Sû(t)

dt2 =
−2

t

dSû(t)

dt
+

1

t

NG∑

i=1

wi P(ri t) α = 2(93)

For this strategy, Padé’s development is not the same
for Borel sum and its derivative since the roots and the
weight depend on α.

Appendix B Derivatives formulas for inverse facto-

rial series

In this “Appendix,” we calculate the first and second
derivatives of Inverse factorial series I (t) of the sec-
ond way of Sect. 2.3 (great order N ). We recall some
definition of this sub-section before starting to evaluate
the derivatives.

Suppose that û(t) is 1-summable in a direction d,
with an angle θ with the positive half-axis. Let τl =

sle
iθ with l = (1, 2, . . . , N ), where {s1, s2, . . . , sN } is

any sequence of complex numbers. Let

z =
1

t
, y = zeiθ (94)

a1 =
u0

z
, a2 =

u1

z2 , . . . , am =
um−1

zm
, m = 1, . . . N(95)

Note that if the series are summable in R
+ direction,

so y = z and we will choose sl = l for l ≥ 1.
We call Inverse factorial series the following:

I (t) =
1

t

N−1
∑

n=0

vn+1 = z

N−1
∑

n=0

vn+1 = z(v1 + v2 + · · · + vN )

(96)

where vn is the n-th term of IFS which is calculated
using the following recursive algorithm based on

v
( j)
n+1 =

τn−1v
( j)
n + yv

( j+1)
n

y + τn

n ≥ 1, j ≥ 1, (97)

with

v
(1)
1 = a1 v

(2)
1 = a2 . . . v

(N )
1 = aN (98)

The terms v
(1)
1 , v

(1)
2 , . . . , v

(1)
n , v

(1)
n+1 are the terms of the

IFS denoted by: v1, v2, . . . , vn, vn+1.

B.1 First derivative

Note that the derivative in this “Appendix” will be
denoted by premium even if they are temporal deriva-
tives. (Just for more clarification in the formulas).

The first derivative of Inverse factorial series is given
by:

dI (t)

dt
= I ′(t) = z′ (v1 + v2 + · · · + vN )

+z(v1
′ + v2

′ + · · · + v′
N ) (99)

We have

z′ =
−1

t2 (100)

We will build a recursive algorithm of derivative to
evaluate I ′(t).

We have

am =
um−1

zm

⇒ a′

m =
−mum−1z′

zm+1 (101)

This algorithm for n ≥ 1 is based on

(v
( j)
n+1)

′ =

(

τn−1(v
( j)
n )′ + y′v

( j+1)
n + y(v

( j+1)
n )′

)

(y + τn) − y′
(

τn−1v
( j)
n + yv

( j+1)
n

)

(y + τn)2 (102)

with τ0 = 0 and

(v
(i)
1 )′ = a′

i i ≥ 1 (103)

and

y′ = z′eiθ (104)

If the series are summable in the R
+ direction, so

y′ = z′ (105)
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The terms (v
(1)
1 )′, (v

(1)
2 )′, . . . , (v

(1)
n )′, (v

(1)
n+1)

′ . . . are
the terms of the DI F S , (first derivative terms of IFS) :
v′

1, v
′
2, . . . , v

′
n, v′

n+1.

B.2 Second derivative

The second derivative of Inverse factorial series is given
by:

d2 I (t)

dt2 =I ′′(t) = z′′(v1 + v2 + · · · + vN+1)

+ 2z′(v1
′ + v2

′ + · · · + v′
N+1)

+ z(v1
′′ + v2

′′ + · · · + v′′
N+1) (106)

We have

z′′ =
2

t3 (107)

and

a′
m =

−mum−1z′

zm+1 
⇒ a′′
m

=
−mum−1

(

z′′zm+1 − (m + 1)zm z′2
)

z2(m+1)
(108)

We will build a recursive algorithm of second deriva-
tive. Since the second derivative is complicated to write
it directly, we will evaluate it using A, B, C such that

A =
(

τn−1(v
( j)
n )′ + y′v

( j+1)
n + y(v

( j+1)
n )′

)

(y + τn)

(109)

and

B = −y′(τn−1v
( j)
n + yv

( j+1)
n ) (110)

and

C = (y + τn)2 (111)

So

(v
( j)
n+1)

′′ =
(A′ + B ′)C − C ′(A + B)

C2 (112)

with

A′ =
(

τn−1(v
( j)
n )′′ + y′′v

( j+1)
n + y′(v

( j+1)
n )

′

+y′(v
( j+1)
n )

′
+ y(v

( j+1)
n )

′′
)

(y + τn)

+y′
(

τn−1(v
( j)
n )′ + y′v

( j+1)
n + y(v

( j+1)
n )′

)

(113)

and

B ′ = −y′′
(

τn−1v
( j)
n + yv

( j+1)
n

)

−y′
(

τn−1(v
( j)
n )′ + y′v

( j+1)
n + y(v

( j+1)
n )′

)

(114)

and

C ′ = 2(y + τn)y′ (115)

with

(v
(i)
1 )′′ = a′′

i i ≥ 1 (116)

with

y′′ = z′′eiθ (117)

If the series are summable in the R
+ direction, so

y′′ = z′′ (118)

The terms (v
(1)
1 )′′, (v

(1)
2 )′′, . . . , (v

(1)
n )′′, (v

(1)
n+1)

′′ are
the terms of the D2

IFS, (second derivative terms of IFS)
: v′′

1 , v′′
2 , . . . , v′′

n , v′′
n+1.

Appendix C Series terms for time perturbation

methods

C.1 Nonlinear combustion equation

The nonlinear combustion equation is

ẏ = y2(1 − y) (119)

For sake of recurrence formulas, it is recast as follows

ẏ − z(1 − y) = 0 (120)

z − y2 = 0 (121)

Series terms for k ≥ 1 for Eqs. (120) and (121) are
given by the following recurrence formulas:

kyk = −

k−1
∑

i=0

zi yk−1−i (122)
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zi =

i
∑

j=0

y j yi− j (123)

C.2 Elastic hardening spring problem

The nonlinear elastic hardening spring problem is in
the form

ü + s1(1 + s2 y)u = 0 (124)

y − u2 = 0 (125)

Series terms for equations (124) and (125) for k ≥ 2
are given by the following recurrence formulas:

k(k − 1)uk = −s1

(
k−2
∑

i=0

(1 + s2 yi )uk−2−i

)

(126)

yi =

i
∑

j=0

u j ui− j (127)

C.3 Lorenz attractor

The Lorenz equations are

ẋ = σ(y − x) (128)

ẏ = x(ρ − z) − y (129)

ż = xy − βz (130)

Series terms for Lorenz equations for k ≥ 1 are given
by the following recurrence formulas:

xk =
1

k
σ (yk−1 − xk−1) (131)

yk =
1

k

(

ρxk−1 −

k−1
∑

i=0

xi zk−1−i − yk−1

)

(132)

zk =
1

k

(
k−1
∑

i=0

xi yk−1−i − βzk−1

)

(133)
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