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Abstract—In this paper, we introduce a novel linear model
tailored for semisupervised/library-based unmixing. Our model
incorporates considerations for library mismatch while enabling
the enforcement of the abundance sum-to-one constraint (ASC).
Unlike conventional sparse unmixing methods, this model in-
volves nonconvex optimization, presenting significant computa-
tional challenges. We demonstrate the efficacy of Alternating
Methods of Multipliers (ADMM) in cyclically solving these
intricate problems. We propose two semisupervised unmixing
approaches, each relying on distinct priors applied to the new
model in addition to the ASC: sparsity prior and convexity
constraint. Our experimental results validate that enforcing
the convexity constraint outperforms the sparsity prior for
the endmember library. These results are corroborated across
three simulated datasets (accounting for spectral variability and
varying pixel purity levels) and the Cuprite dataset. Additionally,
our comparison with conventional sparse unmixing methods
showcases considerable advantages of our proposed model, which
entails nonconvex optimization. Notably, our implementations
of the proposed algorithms—fast semisupervised unmixing (Fa-
SUn) and sparse unmixing using soft-shrinkage (SUnS)—prove
considerably more efficient than traditional sparse unmixing
methods. SUnS and FaSUn were implemented using PyTorch
and provided in a dedicated Python package called Fast Semisu-
pervised Unmixing (FUnmix), which is open-source and available
at https://github.com/BehnoodRasti/FUnmix.

Index Terms—sparse unmixing, hyperspectral, sparsity, semi-
supervised, blind, unmixing, PyTorch, GPU, alternating direction
method of multipliers, nonconvex, optimization

I. INTRODUCTION

SPECTRAL unmixing estimates the abundances of pure
spectra of materials called endmembers. Depending on the

prior knowledge of endmembers, the unmixing problem can
be categorized into three main types: supervised unmixing,
blind unmixing, and semi-supervised unmixing. In supervised
unmixing, abundances are estimated relying on known end-
members. Blind unmixing estimates both endmembers and
abundances simultaneously. Semi-supervised unmixing relies
on an endmember library to estimate the corresponding abun-
dances [1].

An unmixing problem can be tackled using a sequential
process of extracting/estimating endmembers (often using a
geometrical approach) followed by an abundance of estimation
techniques. We call this group of methods supervised since
the endmembers are assumed to be known in the abundance

Behnood Rasti (corresponding author): behnood.rasti@gmail.com
Alexandre Zouaoui, Jocelyn Chanussot, and Julien Mairal are with Univ.

Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
Manuscript received 2024; revised 2024.

estimating step [1]. Endmember extraction/ estimation tech-
niques often rely on the geometry of the data simplex, such as
Vertex Component Analysis (VCA) [2], Simplex volume max-
imization (SiVM) [3], the minimum volume simplex analysis
(MVSA) [4], and the simplex identification via variable split-
ting and augmented Lagrangian (SISAL) [5]. The discussion
on the endmember extraction/estimation techniques is out of
the scope of this paper, and therefore, we refer to [6], [1] for
an overview of this topic.

When the endmembers are known, abundances can be esti-
mated. Unconstrained least squares unmixing (UCLSU) via the
orthogonal subspace projection was proposed for abundance
estimation [7]. Non-negative constrained least squares unmix-
ing (NCLSU) [8], [9] was proposed to estimate the abundances
subjected to ANC. There are several attempts to solve the
least squares problem subjected to both ANC and ASC [10],
[11]. The first efficient algorithm was proposed in [12] and
called fully constrained least squares unmixing (FCLSU).
FCLSU can be efficiently solved using general-purpose convex
optimization toolboxes. However, in this paper, we will show
that with the advances in graphical processing units (GPU),
FCLSU can be efficiently solved using convex optimization
techniques i.e., Alternating Direction Method of Multipliers
(ADMM) [13].

The pioneer semisupervised unmixing is Multiple Endmem-
ber Spectral and Mixture Analysis (MESMA) [14] proposed to
address endmember variability. MESMA assumes a structured
library containing endmember bundles for all materials, allow-
ing different scaled endmembers for each pixel. However, this
is a combinatorially complex task and computationally expen-
sive. J. M. Bioucas Dias and M. A. T. Figueiredo [15] proposed
a formulation of the semi-supervised unmixing problem as a
sparse regression problem, giving rise to what is known as
sparse unmixing. They proposed sparse unmixing by variable
splitting and augmented lagrangian (SUnSAL), as well as its
variant known as Constrained SUnSAL (C-SUnSAL) [15].
SUnSAL and C-SUnSAL employ the ℓ1 penalty to encourage
sparsity in the abundance estimation. In the case of SUnSAL,
the ℓ2 norm is combined with the ℓ1 penalty to enhance
fidelity, whereas C-SUnSAL uses the ℓ2 norm as a constraint
in order to minimize the ℓ1 term. The optimization problems
associated with SUnSAL were tackled through the Alternating
Direction Method of Multipliers (ADMM) [13].

Sparse unmixing offers computational efficiency; however,
the high correlation among library endmembers presents a
significant challenge for sparse regression. This concern has
been addressed through techniques like library pruning and
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the application of various sparsifying regularizers. To enhance
SUnSAL, a total variation (TV) penalty was incorporated,
resulting in SUnSAL-TV [16], which leverages spatial in-
formation. Nevertheless, SUnSAL-TV does not satisfy the
constraint of abundance sum-to-one (ASC) due to its potential
conflict with the ℓ1 penalty.

Collaborative sparse unmixing [17] enforces a constraint
by applying the sum of ℓ2 norms to the abundances. Double
Reweighted Sparse Unmixing (DRSU) [18] and Spectral-
Spatial Weighted Sparse Unmixing (S2WSU) [19] adopt a
weighted ℓ1 norm approach to induce sparsity. Additionally,
DRSU employs total variation to capture spatial attributes. The
Multiscale Sparse Unmixing Algorithm (MUA) [20] capital-
izes on spatial correlation by performing sparse regression
on segmented pixels, enabling the capture of both spectral
variability and spatial correlation. In this context, segmentation
techniques such as Binary Partition Tree (BPT), Simple Linear
Iterative Clustering (SLIC), and the K-means algorithm were
suggested in [20]. In [21], SLIC was adopted for segmentation,
while sparse unmixing was executed with superpixel-based
graph Laplacian regularization.

A common drawback of the aforementioned sparse un-
mixing techniques is that the estimated fractional abundances
may not accurately represent the aerial fraction of each pure
material on the ground due to the absence of the ASC con-
straint. As mentioned, applying ℓ1 penalties to the abundances
cannot maintain the ASC. This issue was addressed in sparse
unmixing using a convolutional neural network (SUnCNN)
[22]. In [22], we demonstrated that selecting an appropriate
prior for sparse regression could be transformed into an
optimization task involving the parameters of a deep encoder-
decoder network, while the ASC could be enforced using
a softmax layer. However, it is worth noting that selecting
suitable hyperparameters for such a deep network is often a
challenging endeavor. In [23], an asymmetric encoder-decoder
network is used with a sparse variation of softmax to avoid
the full support of softmax while enforcing ASC.

Algorithm unrolling-based strategies have also been ex-
plored in the context of sparse unmixing. A recent instance of
this approach involves the development of a shallow network
for sparse unmixing, as outlined in [24] and [25]. In these
works, an unrolling technique was employed to address the
nonnegative ℓ1 sparse regression problem, i.e., SUnSAL. To
enhance spatial information integration, an intermediate con-
volutional layer was applied to the abundance representation.
The training of the shallow network involved a combination of
loss functions, including SAD (Sum of Absolute Differences),
MSE (Mean Squared Error), and SID (Spectral Information
Divergence).

Furthermore, in [26], a similar unrolling approach was
employed, where the Iterative Soft-Thresholding Algorithm
(ISTA) [27] was unrolled to tackle the nonnegative ℓ1 sparse
regression problem. Additionally, in the pursuit of sparse
unmixing, the unrolling technique was applied to SUnSAL,
as documented in [28].

A significant concern arises with the techniques mentioned
above when the endmembers do not align with those in the
library. In such cases, even a well-curated and pruned spectral

library may fall short in representing all the unique endmem-
bers present in real-world datasets. Factors such as noise,
atmospheric effects, variations in illumination, and intrinsic
material differences introduce shifts in the endmembers. This
often leads to scaling discrepancies between the endmembers
in the scene and those in the library.

We recently introduced Sparse Unmixing using Archetypal
Analysis (SUnAA) to tackle this issue. SUnAA assumes that
the endmembers can be expressed as convex combinations of
the library endmembers. It addresses the problem as a non-
convex optimization using a cyclic descent algorithm. SUnAA
runs on the CPU and can be computationally demanding. The
number of pixels and endmembers in the dataset influences
its performance. In this paper, we propose efficient unmixing
algorithms using ADMM to address those drawbacks. Over-
all, our main contributions can be summarized in three key
aspects:

1) We introduce a new linear model for
semisupervised/library-based unmixing which takes into
account the endmember library mismatch and ASC.
Our experiments show the advantages of this model
compared with the sparse and redundant model used in
conventional sparse unmixing.

2) We propose two ADMM-based methods named Fast
Semisupervised Unmixing (FaSUn) and Fast Sparse
Unmixing using Soft-Shrinkage (SUnS) aiming at com-
paring two different priors on the new model. FaSUn
and SUnS enforce convexity and sparsity on the end-
members, respectively. Our experiments reveal that the
convexity constraint outperforms the sparsity prior.

3) We provide GPU (PyTorch)-based implementations for
the ADMM-based algorithms showcasing the efficiency
of the proposed algorithms compared to the state-of-the-
art semisupervised unmixing techniques.

II. METHODOLOGY

A. Low-rank Linear Mixture Model

Assuming matrix E ∈ Rp×r contains r endmembers within
the observed hyperspectral pixel y ∈ Rp (i.e., the sensor has
p bands), then linear mixture model (LMM) is given by

y = Ea+ n, s.t.

r∑
i=1

ai = 1, ai ≥ 0, i = 1, 2, .., r, (1)

where n denotes the p-dimensional random vector denoting the
additive random Gaussian noise. To represent all the pixels we
use the matrix notation Y. Then, we have

Y = EA+N, s.t. A ≥ 0,1T
r A = 1T

n , (2)

where Y∈ Rp×n is the observed HSI, with n pixels and
p bands, N ∈ Rp×n is noise, and A ∈ Rr×n contain the r
endmembers and their fractional abundances, respectively. 1n

indicates an n-component column vector of ones. LMM is
often used for supervised modeling [1].
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B. Sparse and Redundant Linear Mixture Model

Sparse and Redundant Linear Mixture Model is given by

Y = DX+N,

s.t. X ≥ 0,1T
mX = 1T

n , (3)

where D ∈ Rp×m (p ≪ m) denotes the spectral library
containing m endmembers and X ∈ Rm×n is the unknown
fractional abundances to estimate. Please note that D serves
as an overcomplete dictionary, and as such, it should be
meticulously crafted. A well-structured dictionary comprises
endmembers representing the materials present in the scene
and can efficiently reduce the redundancy in X. Consequently,
it becomes possible to prune a spectral library based on
the spectral angles between spectra, meaning that spectra
with small angular differences are removed. However, there
is a caveat: this pruning strategy carries the risk of losing
endmember materials if they happen to be scaled versions of
each other.

In the context of a well-designed dictionary, the pixels in the
scene are composed of a mixture of a few dictionary atoms.
This characteristic results in X being a sparse matrix. It is
worth noting that if a specific endmember material is absent
from the observed spectra, the corresponding row in X will
be entirely composed of zeros. This is a common occurrence
since abundance values are typically sparse in this model. This
framework is frequently employed in the context of sparse
unmixing, where fractional abundances X are estimated by
applying sparsity-enforcing penalties or constraints within a
sparse regression formulation.

C. A New Linear Mixture Model

To enforce both ASC and sparsity, recently, a new linear
model inspired by archetypal analysis [29] was proposed in
[30] for library-based unmixing (semisupervised). In [30], we
proposed a mixing model for observed spectra in

Y = DBA+N, (4)

B ∈ Rm×r, determines the contributions of the endmembers
from D. Model (4) exploits both low-rank property and sparse
contribution of the endmembers. The low-rank property of
model (4) decreases the computational time. However, the
problem will turn into a noncovex problem (both B and A
are unknown), increasing the algorithms’ complexity. There
are two main advantages of the model (4) compared to the
sparse and redundant model: 1- The ASC can be enforced,
2- It can compensate for the mismatch between the library
endmembers and data endmemers [30].

D. FaSUn: Fast Semisupervised Unmixing

We propose a nonconvex optimization to simultaneously
estimate B and A:

(B̂, Â) = argmin
B,A

1

2
||Y −DBA||2F

s.t.B ≥ 0,1T
mB = 1T

r , andA ≥ 0,1T
r A = 1T

n . (5)

Note that, in (5), the unknown endmembers are a convex
combination of the library’s endmembers due to the non-
negativity and sum to one constraint on B. In [30], we
proposed a parameter-free solution to (5) using active set
methods. The major issue with SUnAA is that it runs on
the CPU and is highly time-consuming. Here, we propose an
ADMM-based solution for the proposed minimization problem
(5), which benefits from a GPU-accelerated implementation.

First, we should note that the minimization problem (5)
is non-convex; however, it can be solved in two steps using
a cyclic descent scheme; A-step: when B is fixed and B-
step: A is fixed. In every step, we are dealing with a convex
optimization, and therefore, every solution of the steps succes-
sively decreases the loss function, which leads to a minimum.
The convergence of the final solution is guaranteed upon the
convergence of every step throughout the iterations.
A-step: when B is fixed then E = DB is fixed. Therefore,

problem 5 turns to

Â = argmin
A

1

2
||Y −EA||2F

s.t.A ≥ 0,1T
r A = 1T

n . (6)

Problem (6) can be solved using any convex optimization,
least squares, or quadratic programming solver. However,
for unmixing and particularly Earth observation applications,
we are often dealing with big datasets, and therefore, these
general-purpose convex optimization solvers are not efficient.
Here, we propose an ADMM solution.

To solve problem (6), we start by splitting A,

Â, Ŝ = argmin
A,S

1

2
||Y −EA||2F

s.t. A = S, S ≥ 0,1T
r A = 1T

n . (7)

Using ADMM, the augmented Lagrangian (AL) can be written
as

Â, Ŝ = argmin
A,S

1

2
||Y −EA||2F +

µ

2
||S−A− L||2F

s.t. S ≥ 0,1T
r A = 1T

n , (8)

where L is the Lagrange multiplier. Note that, we did not use
AL for ASC. As can be seen in Appendix A, using Lagrangian
and Karush-Kuhn-Tucker (KKT) will lead to a close form
solution and the augmented term in (8) turns the matrix needs
to be inverted non-singular. The solution to this problem is
given in three steps.

When S is fixed, the problem turns to

Â = argmin
A

1

2
||Y −EA||2F +

µ

2
||S−A− L||2F

s.t. 1T
r A = 1T

n , (9)

Problem (9) is a quadratic programming (also known as least
squares) with equality constraint (QuEC). In appendix A we
show that there is a closed-form solution for (9) which is given
by

A = QuEC(A,S,L;Y,E, µ) (10)
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where QuEC is the function given by

QuEC(A,S,L;Y,E, µ) =

(Q+Q1rc1T
r Q)(ETY + µ(S− L))−Q1rc1T

n (11)

and

Q = (ETE+ µIr)
−1

c = −1/(1T
r Q1r) (12)

When A is fixed, the problem turns to

Ŝ = argmin
S

µ

2
||S−A− L||2F s.t. S ≥ 0,

and the solution is given by

S = max(0,A+ L) (13)

Finally, we update the multiplier

L = L+A− S. (14)

B-step: When A is fixed, problem (5) turns to

B̂ = argmin
B

1

2
||Y −DBA||2F

s.t. B ≥ 0,1T
mB = 1T

r . (15)

Splitting the variables as B = S1 and DB = S2, the AL is
given by

B̂ = arg min
B,S1,S2

1

2
||Y − S2A||2F +

µ

2
||S1 −B− L1||2F

+
µ1

2
||S2 −DB− L2||2F s.t. S2 ≥ 0,1T

mB = 1T
r . (16)

We solve (16) with respect to each unknown matrix separately.
Therefore, we have

B̂ = QuEC(S1,L1; (S2 − L2),D, µ1/µ2), (17)

Ŝ1 = max(0,B+ L1), (18)

Ŝ2 = (YAT + µ2(DB+ L2))(AAT + µ2Ir)
−1. (19)

Finally, we update the multipliers

L1 = L1 +B− S1, (20)

L2 = L2 +DB− S2. (21)

Here, we initialize S1, S2, L1, and L2 with 0. A-Step and B-
Step should be repeated until the convergence otherwise, the
cyclic descent with respect to A and B may fail due to the
non-convex nature of the problem. The pseudo-code for FaSUn
is given in Algorithm 1. Note that for FaSUn the number of
endmembers should be given.

Algorithm 1: FASUn
Input: Y: Hyperspectral data, D: Endmember library, r: Number of

endmembers, µ, µ1, and µ2: AL parameters.
Output: A: Abundances, E: Endmembers, B: Endmembers’

contributions.
Initialization: Si = Li = 0, i = 1, 2
for t = 1 to T do

A-step :
for i = 1 to T1 do

A = QuEC(A,S,L;Y,E, µ)
S = max(0,A+ L)
L = L+A− S

end
B-step :
for i = 1 to T2 do

B = QuEC(S1,L1; (S2 − L2),D, µ1/µ2)
S1 = max(0,B+ L1)
S2 = (YAT + µ2(DB+ L2))(AAT + µ2Ir)−1

L1 = L1 +B− S1

L2 = L2 +DB− S2
end

end
Ê = DB̂

E. SUnS: Sparse Unmixing Using Soft-Shrinkage

Conventional sparse unmixing [15] uses model (3) and
sparse regression given by

X̂ = argmin
X

1

2
||Y −DX||2F + λ||X||1

s.t. X ≥ 0,1T
mX = 1T

n , (22)

to estimate the abundances. An ADMM-based algorithm was
proposed to solve the problem (22), and therefore, it was called
sparse unmixing by variable splitting and augmented La-
grangian (SUnSAL). However, it is suggested to use SUnSAL
without ASC due to the conflict with ℓ1 [31]. Additionally,
ASC was found to be a rigorous constraint that often does not
occur in the real world due to noise and signature variability
[32]. Therefore, SUnSAL often refers to the problem (22)
without ASC. We should note that ignoring ASC breaks
physical constraints on pixels for the mixture model. Here,
we propose a solution to this challenge. We propose to use an
archetypal-type model, i.e., using model (4) and enforce the
sparsity on B instead of abundances. In this way, we can keep
ASC while enforcing sparsity. Therefore, we propose a new
optimization,

(B̂, Â) = argmin
B,A

1

2
||Y −DBA||2F + λ||B||1

s.t.A ≥ 0,1T
r A = 1T

n , 0 ≤ B ≤ 1. (23)

One of the main differences of (23) compared to the con-
ventional sparse unmixing is that the former is nonconvex
while the latter is convex if the prior is convex. Moreover,
in the former approach, the number of endmembers must be
predetermined.

Here, we propose an ADMM-based solution to (23). Similar
to FaSUn, we use a cyclic descent algorithm, and the A-step
is the same and therefore we do not repeat it. For the B-step,
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Algorithm 2: SUnShrink (SUnS)
Input: Y: Hyperspectral data, D: Endmember library, r: Number of

endmembers, µ, µ1, and µ2: AL parameters.
Output: A: Abundances, E: Endmembers, B: Endmembers’

contributions.
Initialization: Si = Li = 0, i = 1, 2, Γ = (µ1Im + µ2DTD)−1

for t = 1 to T do
A-step :
for i = 1 to T1 do

A = QuEC(A,S,L;Y,E, µ)
S = max(0,A+ L)
L = L+A− S

end
B-step :
for i = 1 to T2 do

B = Γ(µ1(S1 − L1) + µ2DT (S2 − L2)),
S1 = min(1,max(0, soft(B+ L1,

λ
µ1

))),

S2 = (YAT + µ2(DB+ L2))(AAT + µ2Ir)−1

L1 = L1 +B− S1

L2 = L2 +DB− S2
end

end
Ê = DB̂

after splitting the variables (B = S1 and DB = S2) the AL
is given by

arg min
B,S1,S2

1

2
||Y − S2A||2F + λ||S1||1 +

µ1

2
||S1 −B− L1||22

+
µ2

2
||S2 −DB− L2||22, s.t.0 ≤ S1 ≤ 1. (24)

The solutions w.r.t. each variable are given by
B-Step:

B̂ = (µ1Im + µ2D
TD)−1(µ1(S1 − L1) + µ2D

T (S2 − L2)),
(25)

Ŝ1 = min(1,max(0, soft(B+ L1,
λ

µ1
))), (26)

Ŝ2 = (YAT + µ2(DB+ L2))(AAT + µ2Ir)
−1. (27)

L1 = L1 +B− S1, (28)

L2 = L2 +DB− S2. (29)

Here, we initialize S1, S2, L1, and L2 with 0. Similarly,
A-Step and B-Step should be repeated until the convergence
otherwise, the cyclic descent with respect to A and B may
fail due to the non-convex nature of the problem. The pseudo-
code for SUnS is given in Algorithm 2. The initializations are
the same as Algorithm 1 Note that for SUnS the number of
endmembers should be given.

III. EXPERIMENTAL RESULTS

We employed a total of four datasets, comprising three
simulated datasets designed to encompass various mixing
scenarios and one real-world dataset, Cuprite, which is a well-
documented geological site. The hyperparameters for the cho-
sen methods were fine-tuned as per Table I. For the simulated
datasets, we conducted five independent runs, and the results
were then averaged. The standard deviations are indicated
through error bars. We evaluated the performance of eight

semi-supervised unmixing methods, selected as follows: SUn-
SAL [15], CLSUnSAL [17], MUA SLIC [20], S2WSU [19],
SUnCNN [22], SUnAA [30], SUnS and FaSUn. The source
code used for running SUnSAL, CLSUnSAL, MUA SLIC,
S2WSU, and SUnCNN is available in the HySUPP tool-
box [1] for the sake of reproducibility. Moreover, SUnS
and FaSUn were implemented using PyTorch and provided
in a dedicated Python package called Fast Semisupervised
Unmixing (FUnmix), which is open-source and available at
https://github.com/BehnoodRasti/FUnmix.

In terms of quantitative evaluation, we employed the signal-
reconstruction-error (SRE) measured in decibels (dB) to assess
the estimated abundances, defined by:

SRE(A, Â) = 20 log10
∥A∥F

∥A− Â∥F
. (30)

A. Data Description

1) Synthetic Datasets with Spatial Structure: We simulated
two data cubes (DC1 and DC2). DC1 was simulated using
a linear mixing model with 5 endmembers selected from the
USGS library and 75×75 pixels. The abundance maps are
composed of five rows of square regions uniformly distributed
over the spatial dimension. This dataset contains pure pix-
els for all endmembers. DC2 has 100×100 pixels and was
simulated using a linear mixing model with 9 endmembers.
The abundance maps were sampled from a Dirichlet distribu-
tion centered at a Gaussian random field to have piece-wise
smooth maps with steep transitions. Therefore, DC2 contains
spectral variations. For DC1 and DC2, an endmember library
D ∈ R188×240, composed of 240 spectral signatures was
selected from the USGS library with a minimum pair-spectra
angle of 4.44°. Synthetic Gaussian noise is added so as to
create different signal-to-noise ratio (SNR) scenarios (e.g., 20,
30, and 40 dB SNR).

2) Synthetic Datasets with varying Pixel Purity Levels:
We assessed the performance of our chosen methods in an
alternative unmixing scenario characterized by the absence
of spatial structure but parameterized pixel purity levels. In
this context, we were able to explore a spectrum of scenarios
ranging from highly mixed, where pure pixels are typically
missing, to predominantly pure pixels, with various degrees of
mixing in between. The degree of pixel purity was quantified
by the parameter ρ, with lower values signifying less purity
and higher values indicating greater purity.

To construct our dataset, we selected six spectra from the
USGS library (D ∈ R224×498) and created a dataset of size
n = 100 × 100 pixels using the following methodology.
Initially, we generated a substantial number of abundance
samples denoted as S. These samples were drawn from the
symmetric Dirichlet distribution, employing a scalar concen-
tration parameter α = 1/r where r corresponds to the number
of endmembers (in this case, 6). Given a pixel purity level
ρ, we randomly drew n abundances from S such that their
ℓ2 norm fell within the range of ρ − 0.1 to ρ. Subsequently,
we combined the selected spectra based on the sampled
abundances to create the final pixel set Y = [y1, . . . ,yn].

https://github.com/BehnoodRasti/FUnmix
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TABLE I
HYPERPARAMETERS IN DIFFERENT SCENARIOS

Methods Simulated Cuprite

SUnSAL SNR-dependent (see source code) λ = 0.005
CLSUnSAL SNR-dependent (see source code) λ = 0.05, µ = 0.01
MUA SLIC SNR-dependent (see source code) λ1 = 0.001, λ2 = 0.01, β = 10, slic size = 200, slic reg = 0.01

S2WSU SNR-dependent (see source code) λ = 0.001
SUnCNN SNR-dependent (see source code niters = 20000
SUnAA default (see source code) default
SUnS T = 10000, TA = TB = 5, µ1 = 50, µ2 = 2, µ3 = 1, λ = 0.01 T = 10000, TA = TB = 5, µ1 = 400, µ2 = 100, µ3 = 1, λ = 0.1
FaSUn T = 10000, TA = TB = 5, µ1 = 50, µ2 = 2, µ3 = 1 T = 10000, TA = TB = 5, µ1 = 400, µ2 = 20, µ3 = 1

Synthetic Gaussian noise is eventually added to obtain an input
SNR of 30 dB.

3) Cuprite Dataset: The Cuprite dataset used in this paper
contains 250× 191 pixels. Cuprite is a well-studied mineral
site, and dominant minerals are demonstrated using a geologi-
cal ground reference. Therefore, the abundance maps estimated
by different techniques can be compared visually. We use a
library D ∈ R188×498 composed of 498 spectral pixels from
the USGS library. Note that we remove the water absorption
and noisy bands, such that the final pixels are of dimension
p = 188.

B. Experimental Results: Synthetic Datasets

We first compare the selected methods on the synthetic
datasets. Figure 1 summarizes the results in terms of SRE
on DC1 and DC2 for different input SNR. The following
observations can be formulated:

• In the presence of pure pixels (Fig. 1, DC1), regardless
of the noise level, archetypal analysis inspired techniques
(i.e. SUnAA, FaSUn, and SUnS) perform very well.
MUA SLIC is suitable when the noise is significant (e.g.
20 dB) but its performance drops when dealing with less
noisy images due to its segmentation approach. CLSUn-
SAL performs a bit better than SUnSAL but struggles
to compete with the top performing methods overall.
S2WSU and SUnCNN provide similar results on this
dataset. It is worth mentioning that most methods, except
the archetypal analysis inspired ones, require tuning their
regularization parameter to obtain competitive results
depending on the input SNR, which is a major hindrance.

• In the presence of spectral variability (Fig. 1, DC2),
SUnCNN performs very well, likely due to its convo-
lutional architecture that is suited to capture the spectral
variability relying on the spatial structure of the data.
Similarly, S2WSU obtains competitive results. SUnAA
and FaSUn, which both solve problem (5), outperform
the other methods. It should be noted that SUnS struggles
in the lower SNR scenarios (i.e. 20 and 30 dB) which
reveals the advantage of convexity constraint compared
to the sparsity prior. Moreover, it appears that SUnSAL
and CLSUnSAL demonstrate the poorest performances
compared to the other methods.

Figure 2 summarizes the results in terms of SRE for
different pixel purity levels using a fixed SNR (30 dB). The
following observations can be made:

• The archetypal analysis inspired models severely out-
perform their sparse unmixing counterparts, regardless
of the pixel purity level. This is particularly striking
when the pixel purity is low, meaning the image only
contains highly mixed pixels. This indicates that SUnAA,
FaSUn and SUnS are better suited to handle highly
mixed scenarios. Furthermore, the latter methods do not
leverage spatial information contrarily to S2WSU, whose
performance drops significantly due to the absence of
spatial structure in the data.

• It is worth mentioning that the endmembers library, D,
has not been pruned, contrarily to the previous setups, in
which the number of atoms in the dictionary went down
from 498 to 240. Therefore there is a clear benefit in
having access to the number of endmembers present in
the scene (i.e. r), which is available for SUnAA, FaSUn
and SUnShrink.

Figure 3 and 4 demonstrate the visual comparisons of
estimated abundances by applying different semisupervised
unmixing techniques to DC1 and DC2, respectively, for
SNR=20 dB. Overall, the visual comparisons confirm that
FaSUn and SUnA perform similarly and outperform the other
semisupervised techniques for those datasets. SUnS performs
similarly to SUnAA and FaSun in the case of DC1. However,
in the case of DC2, SUnS cannot successfully estimate the
abundance map associated with endmember 7. It is worth
mentioning that, in the case of DC1 (20 dB), MUA SLIC
provides the highest SRE, however, the visual comparisons
reveal that abundances are oversmoothed due to the prior
segmentation step which can be associated with the high SRE
only for low SNR. SUnCNN performs well in the case of
DC2 but the abundances for DC1 are oversmooothed. The
abundances estimated by SUnSAL, CLSUnSAL, and S2WSU
are not competitive with the other methods.

C. Experimental Results: Real Data

Figure 5 visually compares the estimated abundances for
three dominant materials, i.e. , Chalcedony, Alunite and Kaoli-
nite, using the geological map as a reference. It is worth
mentioning that hyperparameters for each method had to be
tuned, except for SUnAA as it is parameter-free. Moreover, for
the archetypal analysis-inspired methods to work, the number
of endmembers in the scene (i.e. r) was set to r = 14.

Visual comparison based on the reference map reveals that
USnAA better estimated Chalcedony compared to the other

https://github.com/ricardoborsoi/MUA_SparseUnmixing
https://github.com/ricardoborsoi/MUA_SparseUnmixing
https://github.com/ricardoborsoi/MUA_SparseUnmixing
https://github.com/ricardoborsoi/MUA_SparseUnmixing
https://github.com/BehnoodRasti/SUnCNN
https://github.com/inria-thoth/SUnAA
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Fig. 1. Abundance SRE (↑) in dB for the selected semi-supervised methods on two simulated datasets (DC1 and DC2) for three noise levels.

methods. FaSUn does not exhibit the same saliency as SUnAA,
but still detects Chalcedony on a bigger area of the map
than other sparse unmixing methods. As for Alunite, SUnAA
and FaSUn both show strong responses to the mineral in
the expected areas. Sharp abundance maps are obtained for
Kaolinite by SUnAA and FaSUn which are in line with the
reference map. Overall, SUnS shows similar performances as
the other sparse unmixing techniques. It is worth mentioning
that SUnS introduces another regularization parameter, λ,
(similar to the other sparse unmixing methods) that requires
additional tuning, compared to FaSUn.

D. Processing time

Perhaps the gist of our contributions is the considerable scal-
ability of our proposed approaches (FaSUn and SUnShrink),
as highlighted in Table II. Note that SUnCNN processing time
depends on the number of iterations, which is itself dependent
on the input SNR. Here we report the processing time for a
fixed SNR equal to 30 dB obtained using a computer with
an Intel(R) Xeon(R) Silver 4110 CPU at 2.10GHz, 32 cores,
64 Gb of RAM, and a NVIDIA GeForce RTX 2080 Ti GPU
with 12 Gb of RAM. We observe that SUnAA processing
time is prohibitive for real-world applications, as soon as the
number of pixels exceeds n = 10000. On the contrary, the
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Fig. 2. Abundance SRE (↑) in dB for the selected semi-supervised methods on three different pixel purity levels (ρ) for a given input SNR (30 dB)

Fig. 3. Visual comparisons of abundance maps estimated by using different semi-supervised unmixing methods applied to DC1 (20 dB).

most efficient methods are SUnS and FaSUn on Cuprite, which
exploit GPU computations despite using many outer iterations,
i.e. T = 10000. It is worth highlighting the growth rate of
consumed time by the FaSUn and SUnS compared to the other
techniques. They take around three minutes to perform on a
dataset with 90k pixels and 224 bands. These results shed light
on the scalability challenge posed to semi-supervised methods
despite ongoing efforts.

IV. CONCLUSION

We proposed two nonconvex optimizations for hyperspectral
unmixing relying on a new type of linear model called FaSUn
and SUnS. FaSun utilizes convexity constraint while SUnS
uses a sparse prior. We derived ADMM-based solutions for
those problems implemented using PyTorch. We conducted
a comprehensive evaluation of our proposed techniques by
comparing them with SOTA methods. This evaluation was
performed on three simulated datasets, considering spatial
structure, spectral variability, and various pixel purity and
noise levels, and we measured their performance in terms of
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Fig. 4. Visual comparisons of abundance maps estimated by using different semi-supervised unmixing methods applied to DC2 (20 dB).

signal-to-reconstruction error. The results strongly support the
superiority of the proposed unmixing technique, FaSUn, over
existing state-of-the-art methods. Notably, FaSUn consistently
achieved better performance across a range of scenarios. The
results confirmed the advantage of the convexity constraint
compared to the sparsity-promoting prior. Additionally, we
applied these unmixing techniques to real-world data using the
Cuprite dataset. To validate the accuracy and practical utility
of the proposed methods, we visually compared the results
with geological reference maps. Furthermore, the proposed
ADMM-based algorithms demonstrated remarkable efficiency
in addition to their superior performance. This was evident
when comparing the processing times for large datasets, high-
lighting the practical advantages of our approach.

APPENDIX A
DERIVATION OF QUEC FUNCTION

Assuming the quadratic programming (or least squares) with
the equality constraint as

Â = argmin
A

1

2
||Y −EA||2F +

µ

2
||S−A− L||2F

s.t. 1T
r A = 1T

n , (31)

the Lagrangian function is given by

L(A, ν) =
1

2
||Y−EA||2F+

µ

2
||S−A−L||2F+νT (1T

r A−1T
n ),

(32)
where the solution can be given using Karush-Kuhn-Tucker
(KKT) conditions. Here, we derive the KKT conditions for
(32). The stationary condition is give by ∇AL(A, ν) = 0,

(ETE+ µI)A+ 1rν = ETY + µ(S− L) (33)
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(a) Reference Map (b) Estimated abundances
Fig. 5. Estimate abundances obtained by applying different semi-supervised methods to Cuprite compared with the geological reference map.

TABLE II
PROCESSING TIME. THE BEST RESULTS ARE IN BOLDFACE AND THE SECOND BEST ARE UNDERLINED.

# Pixels # Bands # Endmembers # Atoms SUnSAL CLSUnSAL MUA SLIC S2WSU SUnCNN SUnAA SUnS FaSUn

DC1 5625 224 5 240 7.1 15.3 6.1 41.1 94.7 131.1 85.3 89.2
DC2 10000 224 9 240 18.9 27.2 10.2 51.0 78.0 264.8 80.0 77.6

Mixed Pixels 10k 10000 224 6 498 46.4 159.1 98.2 61.3 87.2 208.7 136.9 134.3
Cuprite 47750 188 14 498 200.3 343.8 198.5 662.0 769.6 1838.0 154.5 147.7

Mixed Pixels 90k 90000 224 6 498 566.5 2065.3 755.9 660.0 576.0 1359.0 183.4 194.6

For the primal feasibility we hold 1T
r A = 1T

n . Therefore, we
have(

ETE+ µI 1r

1T
r 0

)(
A

ν

)
=

(
ETY + µ(S− L)

1T
n

)
, (34)

using the blockwise inversion, the solution is given by

Â = (Q+Q1rc1T
r Q)(ETY + µ(S− L))−Q1rc1T

n (35)

Where

Q = (ETE+ µIr)
−1 (36)

c = −1/(1T
r Q1r). (37)

As can be seen, the augmented term in (32), makes matrix Q
to be always non-singular (note that µ > 0) and therefore the
closed form solution (35) becomes feasible.
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