
HAL Id: hal-04409313
https://hal.science/hal-04409313v1

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the challenges of estimating the low-wavenumber
wall pressure field beneath a turbulent boundary layer

using a microphone array
Hesam Abtahi, Mahmoud Karimi, Laurent Maxit

To cite this version:
Hesam Abtahi, Mahmoud Karimi, Laurent Maxit. On the challenges of estimating the low-
wavenumber wall pressure field beneath a turbulent boundary layer using a microphone array. Journal
of Sound and Vibration, 2024, 574, pp.118230. �10.1016/j.jsv.2023.118230�. �hal-04409313�

https://hal.science/hal-04409313v1
https://hal.archives-ouvertes.fr


On the Challenges of Estimating the Low-wavenumber

Wall Pressure Field beneath a Turbulent Boundary

Layer using a Microphone Array

Hesam Abtahia, Mahmoud Karimia, Laurent Maxitb

aCentre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney,
Australia

bUniv Lyon, INSA–Lyon, Laboratoire Vibrations-Acoustique (LVA), 25 bis, av. Jean
Capelle, F-69621, Villeurbanne Cedex, France

Abstract

The low-wavenumber components of the turbulent boundary layer (TBL)
wall pressure field (WPF) are known to be the primary cause of structural
vibration in low-Mach number flows, despite the maximal energy of the TBL
being at the convective wavenumber. Existing semi-empirical TBL models
show good agreement in predicting the WPF levels in convective region but
differ significantly in the low-wavenumber domain. This study aims to high-
light the challenges of estimating the low-wavenumber WPF in a TBL using
a microphone array. A regularized Fourier-based approach is proposed to
numerically study the estimation of the low-wavenumber WPF. Performance
of the proposed method is initially evaluated by comparing the estimated
WPF against a closed-form input TBL model. Effects of sensor spacing, co-
array factor, and sensor distribution on the estimation of the low-wavenumber
WPF levels are then investigated. To mimic experimental measurements, a
virtual acoustic experiment is proposed, involving the synthesis of snapshots
of TBL-induced WPF. It is demonstrated that although with relatively small
number of snapshots the convective region can be identified, a significant
number of snapshots is required to well estimate the TBL low-wavenumber
region.
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1. Introduction1

The interaction of a fluid flow with structures generates vibration and2

noise, which has significant implications in many engineering applications,3

including the vibration and noise produced in water transport pipelines, the4

prediction and reduction of aircraft cabin noise, and sound generation in5

automobiles [1, 2, 3]. Different internal and external forces can cause the6

vibration and radiated noise of these structures. TBL, as one of the main7

noise and vibration contributors, generates pressure fluctuations over a sur-8

face, subsequently imposing an unsteady load on the structure that leads to9

noise and vibrations.10

Although the maximum energy of the TBL occurs around the convective11

wavenumber, it is known that the low-wavenumber components of the WPF12

beneath a TBL is the main cause of structural vibration in low Mach num-13

ber flows associated with marine applications [4, 5, 6, 7]. This is because14

the structure filters the convective ridge of the TBL excitation at frequencies15

well above the aerodynamic coincidence frequency [8]. This has been graph-16

ically illustrated in Fig. 1 where the schematic of spatial matching of the17

wavenumber-frequency spectrum of the TBL WPF, ϕpp(k, ω), and vibration18

modal response of the structure, Ψs(k, ω), are plotted under the condition19

Uc < cb < c0 where Uc, cb and c0 are the fluid convective velocity, bending20

wave speed of the structure and speed of sound, respectively. The vibration21

response of the structure can be mathematically determined by integrating22

the product of the WPF excitation and modal response of the structures in23

the wavenumber domain [3]. Therefore, accurate estimation of the WPF in24

this region is of paramount importance to the prediction of TBL-induced25

vibrations.26

A variety of semi-empirical TBL models have been developed and are27

available in literature such as the Corcos [9], Mellen [10] and chase [11]. De-28

spite the fact that most models are in good agreement when it comes to29

predicting the convective region, there is a significant discrepancy at sub-30

convective region as shown in Fig. 2. Historically, it has been difficult to31

model and measure the low-wavenumber levels of the TBL WPF due to32

their relatively low amplitudes compared to the amplitude of the WPF at33

convective wavenumber. Moreover, most of the existing body of research on34
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Fig. 1. Schematic of the spatial matching of the wavenumber-frequency spectrum of the
TBL WPF and vibration modal function when Uc < cb < c0 (not in scale). The solid thick
line represents the squared magnitude of the structural mode shape, while the dashed line
represents the WPF.

estimation of the TBL WPF focuses on the convective ridge and not on the35

low-wavenumber region despite of its importance. This highlights the need36

for further study to better understand the process of identification of the37

low-wavenumber WPF. Hence, this work aims to investigate the key param-38

eters in the estimation of the low-wavenumber WPF beneath a TBL using39

numerical study.40

Microphone arrays are typically used to measure the WPF. They di-41

rectly capture the sound waves generated by the WPF. To estimate the42

WPF, microphones are usually placed near a rigid wall exposed to turbu-43

lent flow, recording the sound waves produced by the pressure fluctuations.44

However, this approach has limitations related to spatial resolution, which45

is constrained by microphone spacing and configuration. Reducing the spac-46

ing between microphones can enhance resolution but often requires more47

sensors, increasing both cost and setup complexity. Conversely, increasing48

the distance between sensors may result in the failure to capture all sam-49

ples of incoming sound waves, leading to a reduction in the resolution of50

high-frequency pressure fluctuations. Furthermore, the data recorded in this51

approach can easily be contaminated by background noise and instrument52

recording noise.53

To address these issues, advanced signal processing techniques have been54
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Fig. 2. Wavenumber-frequency spectra for f = 1000 Hz as a function of non-dimensional
wavenumber for ky = 0 for three semi-empirical TBL models. kx and ky represent the
streamwise and spanwise wavenumbers, respectively, and kc is the convective wavenumber.

developed to extract the WPF information [3, 12]. This enables the direct55

measurement of pressure fluctuations, offering detailed information about56

the pressure field’s characteristics [13]. One widely used signal processing57

technique is beamforming, which combines microphone outputs to form a58

directed or focused sensitivity beam. This enhances the desired signal while59

suppressing interference and noise from other directions. Various beamform-60

ing techniques are discussed in [14, 15, 16]. It should be noted that some61

researchers have used vibration measurements of a structure excited by a62

TBL to estimate the WPF [17]. However, in this work, we consider only63

the use of a microphone array, which is the most commonly used method in64

the literature, with a focus on highlighting challenges on estimation of the65

low-wavenumber WPF.66

Panton and Robert made the initial attempt in using microphones to mea-67

sure the turbulent wall-pressure spectrum [18]. They utilised only two micro-68

phones and increased the distance between them along a line for measuring69

two-point cross-spectral pressure. This concept had been further expanded70

to the point that an array of sensors was used for the first time by Maidanik71
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[19] and was further developed by Blake and Chase [20] and Farabee and72

Geib [21]. In this approach, the microphones are spaced regularly at specific73

intervals in a linear streamwise array. Using a linear streamwise equidistant74

array with intervals of d, they could recognize pressure fluctuations around75

kx = π/d by analyzing alternate microphone outputs. These mode arrays76

were then used to calculate spectral levels in sonic and subsonic regions by77

selecting suitable frequencies [3]. The large surface area of each individual78

sensor effectively filters out many of the undesired pressure fluctuations asso-79

ciated with convective ridge motions. However, some noises were introduced80

into the measurement through spatial aliasing [22]. This issue arises due to81

the finite size of practical sensors and the process of signal averaging over a82

sensor’s surface, which inherently limits the precision of the WPF measure-83

ments at high frequencies [23]. Consequently, using larger sensors results in84

reduced resolution for high-frequency pressure fluctuations. Corcos [24] was a85

pioneer in exploring the relationship between sensor size and the correspond-86

ing spectral attenuation based on theoretical foundations. More recently,87

Hu [23] introduced a correction model to address high-frequency attenuation88

associated with sensor size when measuring WPF beneath the TBL.89

Aliasing occurs in any array where sensor spacing cannot resolve the90

smallest turbulent scales [3]. The results of using a large number of sensors91

were presented by Manoha [25] and Bermer [26] to alleviate the aliasing effect.92

In order to comprehensively capture the spatial characteristics of the two-93

point cross-spectrum of the WPF, which can subsequently undergo Fourier94

transformation to generate the wavenumber-frequency spectrum of wall pres-95

sure, an alternative methodology was introduced [27, 28]. In this technique,96

transducers were deployed in an array spanning the diameter of a disk, ar-97

ranged along a line that can be rotated to various angular positions. By98

conducting measurements repeatedly at different rotational orientations of99

this array, it becomes possible to extract numerous cross-spectral attributes100

pertaining to the boundary layer. Subsequently, a wavenumber analysis can101

be conducted to derive valuable insights from the data. The technique of102

using large arrays and small sensors has enabled investigators to create clear103

maps illustrating the convective ridge and acoustic cone [29].104

It should be noted that a periodic arrangement of microphones is not105

the best choice since it causes redundant distances between sensors [30].106

Various techniques have been proposed to optimize array efficiency. One107

of the most common techniques is using an array with a spiral shape [31].108

The advantage of using a non-equidistant array was studied by Haxter and109
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Spehr [30] in 2014. They evaluated the efficiency of equidistant and non-110

equidistant array patterns in detecting a single source in the wavenumber111

domain. They showed that opposed to the non-equidistant spaced array112

pattern, the equidistant array has amplitudes on the side lobes identical113

to that of the main lobe. In other words, the non-equidistant spacing of114

the transducers has the capability to transfer aliasing effects at a greater115

wavenumber than in the equidistant array. In addition to Nyquist criterion116

and array pattern, the co-array size plays an important role in the array117

performance [3]. Co-array describes the number of different cases where the118

distance between every pair of sensors is unique [32]. More recently, Schram119

et al. [33] applied a similar procedure to Ref. [30] and used microphones on120

a rotatable disk to minimize the number of rotation angles and acquisition121

time while providing a relatively uniform sampling of the co-array plane.122

Beamforming is a powerful technique for enhancing the resolution of sen-123

sor arrays, enabling more accurate localization and characterization of sound124

sources in complex or noisy environments. This method is developed to am-125

plify signals arriving from specific directions. In the context of TBL prob-126

lems, beamforming is particularly useful for identifying and localizing regions127

with high levels of WPF and provide valuable insights into the characteris-128

tics of turbulent flows. Ehrenfield and Koop [34] were among the pioneers129

who utilized the beamforming method in their analysis. They measured the130

WPF beneath a compressible TBL at a high subsonic Mach number using131

a sparse array of pressure transducers in a wind tunnel. They applied the132

infinite beamforming technique and deconvolution algorithm to deconvolve133

the wavenumber-frequency spectrum from the surface pressure array data.134

They only detect the domains associated with convective peak and acoustic135

peak in their studies and showed that acoustic noise is particularly dominant136

in the lower frequencies. In 2017, Haxter et al [35], conducted a study that137

built upon the work of Ehrefried and Koop [34] by using the same microphone138

array arrangement to obtain the phase velocity of TBL pressure fluctuations139

at high subsonic Mach number from wind tunnel data affected by strong140

background noise. They used a method called CLEAN-SC to remove the141

dominant existing acoustic signals and their coherent parts in the beam-142

forming map, which improved the accuracy of their results. Additionally,143

Prigent et al. [36] used beamforming and DAMAS deconvolution techniques144

to process a synthetic field consisting of a diffuse acoustic field and the Cor-145

cos WPF model. To estimate the WPF, they utilized an aligned microphone146

array with a rotating configuration.147
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This paper aims to highlight the challenges of using an array of micro-148

phones for estimating the low-wavenumber region of TBL wall pressure fluc-149

tuations. Most previous studies have primarily focused on identifying the150

convective ridge and acoustic peak. Moreover, the importance of the low-151

wavenumber domain in the vibration of structures subjected to turbulent152

flow as well as the significant discrepancies between different existing TBL153

models for this region are the main motivations for this work. For this154

purpose, the study employs a regularized Fourier-based approach (RFBA).155

This approach relies on the inverse Fourier transform (IFT) expression that156

links the cross spectrum density (CSD) of the pressure in both physical and157

wavenumber space. The discretization of the integral in this expression is158

achieved using the rectangular rule, which results in a linear matrix system.159

An adapted regularization technique is then used to invert this system and160

estimate a stable solution. To assess the capability of the RFBA in esti-161

mating the low-wavenumber components of the WPF, numerical simulations162

of a TBL excitation are conducted, and the WPF estimated by the RFBA163

using a microphone array is compared with the reference WPF of the input164

TBL model. Considering this process, the effect of number of sensors, ar-165

ray pattern, co-array factor and data averaging on the estimated WPF are166

examined. Moreover, to mimic experimental measurements, a virtual acous-167

tic experiment is proposed, involving the synthesis of snapshots of the TBL168

WPF.169

The structure of the paper is as follows: Section 2 describes the RFBA,170

while Section 3 evaluates its effectiveness. Section 3.1 focuses on calculating171

the CSD matrix of the pressure measured by a virtual microphone array from172

a closed-from semi-empirical TBL model and particularly studies the effects173

of three factors of sensor spacing, co-array factor, and sensor distribution on174

estimation of the WPF in the low-wavenumber domain. In order to simulate175

real experimental measurements, Section 3.2 estimates the CSD matrix of176

the pressure measured by the virtual microphone array by averaging different177

snapshots of the WPF induced by the TBL. These snapshots are generated by178

employing so-called uncorrelated wall plane wave (UWPW) technique [37].179

Performance of the RFBA on estimating the WPF in the low-wavenumber180

domain is evaluated based on this virtual experiment. The paper concludes181

with a discussion in Section 4 and a summary of the findings.182
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2. The Regularized Fourier-based Approach183

This section covers the theoretical formulation of the regularized Fourier-184

based approach to estimate the WPF in the wavenumber domain using pres-185

sure measurements obtained from microphones. Fig. 3 shows a network of186

Ns flush-mounted microphones that are installed on a rigid surface. They187

are distributed within a rectangular area measuring Lx × Ly. The position188

of each microphone is determined by the coordinates xi, denoted as (xi, yi)189

for i ∈ {1, Ns}. The sensors are used for recording the WPF beneath a TBL.190

The TBL is assumed to be homogeneous, stationary and fully developed over191

the surface. The x-axis is considered parallel to fluid flow with a constant192

free stream velocity of U∞.193

Fig. 3. Schematic representation of a microphone array mounted within a rectangular area
with dimensions Lx in length and Ly in width to measure wall pressure fluctuations from
the TBL.

The wavenumber-frequency spectrum ϕpp(kx, ky, ω) of the wall pressure194

p(x, y, t) can be expressed as follows [34]195

ϕpp(kx, ky, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Rpp(ξ, η, ω)e

−j(kxξ+kyη) dξdη, (1)

where (ξ, η) are the distances between two points in the (x, y) plane, ω196

is the angular frequency, j =
√
−1 is the imaginary unit, and kx, ky are197

wavenumber components in the streamwise and spanwise direction, respec-198

tively. Rpp(ξ, η, ω) is the temporal Fourier transform of the space-time cor-199

relation function of wall pressure given by [34]200

Rpp(ξ, η, ω) =
1

2π

∫ ∞

−∞
Gpp(ξ, η, τ)e

jωτ dt, (2)
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201

Gpp(ξ, η, τ) = ⟨p(x, y, t) p(x+ ξ, y + η, t+ τ)⟩, (3)

where the angle bracket ⟨· · · ⟩ denotes the mathematical expectation. The202

IFT of the Eq. (1) can be used to determine how the wavenumber spectrum203

ϕpp(kx, ky, ω) relates to Rpp(ξ, η, ω)204

Rpp(ξ, η, ω) =

∫ ∞

−∞

∫ ∞

−∞
ϕpp(kx, ky, ω)e

j(kxξ+kyη) dkxdky. (4)

By employing a rectangular integration method over a truncated wavenumber205

domain, one can approximate Rpp(ω) between two points xi and xj as follows206

Rpp(ξi,j, ηi,j, ω) ≈
Nk∑
l=1

ϕpp(kx,l, ky,l, ω) e
j(kx,lξi,j+ky,lηi,j) δkxδky, (5)

where (ξi,j, ηi,j) = (xi − xj, yi − yj) with i, j = 1, 2, . . . , Ns and δkx, δky207

are the wavenumber resolutions in the streamwise and spanwise directions,208

respectively, and Nk = Nkx × Nky corresponds to the total number of grid209

points in the truncated wavenumber space, and each vector index l is assigned210

uniquely to a grid point (kx,l, ky,l). A cut-off wavenumber is defined to take211

into account the convective contributions of the TBL WPF (see Section 3).212

Eq. (5) can be represented in matrix notation as follows213

Spp = QΦpp, (6)

where Spp is a vector consisting of the cross-spectrum elements and Φpp214

is a vector consisting of the unknown WPF components in the truncated215

wavenumber space as follows216

Spp =



Rpp(ξ1,1, η1,1, ω)
Rpp(ξ1,2, η1,2, ω)

...
Rpp(ξi,j, ηi,j, ω)

...
Rpp(ξNs,Ns−1, ηNs,Ns−1, ω)
Rpp(ξNs,Ns , ηNs,Ns , ω)


N2

s×1

,Φpp =



ϕpp(kx,1, ky,1, ω)
ϕpp(kx,1, ky,2, ω)

...
ϕpp(kx,l, ky,l, ω)

...
ϕpp(kx,Nkx

, ky,Nky−1, ω)

ϕpp(kx,Nkx
, ky,Nky

, ω)


Nk×1

(7)

The components of Φpp are organized such that the first Nky components217

correspond to ϕpp(kx,1, ky,l, ω) with l ∈ {1, Nky}, the next Nky components218
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correspond to ϕpp(kx,2, ky,l, ω) with l ∈ {1, Nky}, and so on. Also, for a219

microphone array with Ns sensors, the elements of Spp can be measured for220

the discrete separations of sensors, (ξi,j, ηi,j), which the first Ns components221

correspond to Rpp(ξ1,j, η1,j, ω) with j ∈ {1, Ns}, the next Ns components222

correspond to (ξ2,j, η2,j, ω) with j ∈ {1, Ns}, and so on. Besides, Q is the223

matrix with the following elements224

Q = δkxδky



ej(kx,1ξ1,1+ky,1η1,1) ej(kx,1ξ1,1+ky,2η1,1) · · · · · · e
j(kx,Nkx

ξ1,1+ky,Nky
η1,1)

ej(kx,1ξ1,2+ky,1η1,2) . . .
...

... ej(kx,lξi,j+ky,lηi,j)
...

...
. . . e

j(kx,Nkx
ξNs,Ns−1+ky,Nky

ηNs,Ns−1)

ej(kx,1ξNs,Ns+ky,1ηNs,Ns ) · · · · · · e
j(kx,Nkx

ξNs,Ns+ky,Nky
ηNs,Ns )


N2

s×Nk

. (8)

Considering Eq. (6), we arrive at N2
s equations for the Nk unknown225

coefficients. In most cases, the number of unknowns Nk exceeds the num-226

ber of equations N2
s . Eq. (6) is therefore an under-determined system and227

the system of equations has no unique solution. Using the Moore-Penrose228

inverse of matrix Q can yield a solution with minimal 2-norm, but the prob-229

lem posed by Eq. (4) is equivalent to a first-kind Fredholm integral equation230

that is known to be ill-conditioned [38]. Hence, the inversion method derived231

from the discretization of the Riemann integral formula leads to a severely232

ill-conditioned linear system (i.e., Eq. (6)) with many tiny singular values.233

This means applying the Moore-Penrose inversion using singular value de-234

composition (SVD) generates inadequate results. Since matrixQ can contain235

small rounding errors due to computer calculation and vector Spp can con-236

tain errors induced by measurement in practice, the ill-conditioning of Q can237

greatly amplify these errors, resulting in erroneous results. However, adapted238

regularization techniques can produce useful stabilized solutions [38, 39, 40].239

The goal of regularization theory is to provide proper side constraints with240

optimal weights so that the regularized solution is a good approximation of241

the unknown solution. Different regularization techniques described in [38]242

were applied to Eq. (6) to evaluate the WPF in the low-wavenumber domain.243

The truncated generalized singular value decomposition (TGSVD) method244

with minimising the first derivative 2-norm of the solution was found to be245

the most appropriate [38, 41]. The regularization parameter is determined246

from the corner of the discrete L-curve produced by the TGSVD method247

[42]. For the numerical applications presented herein, the Matlab package248

developed by C. Hansen for the analysis and solution of discrete ill-posed249

problems [38] was utilized (See Appendix A).250
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3. Results and Discussion251

To evaluate the WPF in the low-wavenumber domain, the procedure de-252

scribed in Section 2 is employed, and the results obtained by the RFBA are253

examined.254

According to the Graham formulation [43, 44], the CSD of the WPF can255

be computed using various models for auto-spectral density (ASD) of the256

pressure field,Ψpp(ω), and the normalized CSD of the pressure field, ϕ̃pp(k, ω),257

independently from each other as follows258

ϕpp(k, ω) = Ψpp(ω)

(
Uc

ω

)2

ϕ̃pp(k, ω). (9)

In this work, the ASD function of the WPF is evaluated using the Goody259

model described in Appendix B (Eq. (B.1)). It should be noted that Ψpp(ω)260

is a one-sided radial frequency spectrum. Therefore, to convert it into cyclic261

frequency spectrum density Ψpp(f), Ψpp(ω) was multiplied by 2π. For the262

normalized CSD function, various semi-empirical models have been devel-263

oped [45]. The Corcos model is by far the most popular model since it con-264

siders homogeneity across the surface, and this assumption leads to a cross265

spectrum model dependent only on the separation distances [9]. Thus, the266

Corcos model has two separate relationships for representing the in-flow and267

cross-flow directions of the WPF [9]. Even though separability is convenient268

analytically, it is not a realistic assumption. Other researchers recognized269

this issue and proposed a simple change to the Corcos model. For example,270

Mellen proposed an elliptical coherence zone, which is different from the Cor-271

cos model with the rhombic coherence zone [3]. It is well known that Corcos272

model overpredicts the amplitude of the low-wavenumber domain, whereas273

the Mellen model provides more realistic predictions of the low-wavenumber274

levels. This has been confirmed by comparing the vibration responses of a275

plate excited by a TBL modelled by the Corcos/Mellen models with exper-276

imental data [46]. Hence, the Mellen model is used here as the normalized277

CSD function (see Appendix B, Eq. (B.2)). For all the subsequent numerical278

analyses, a wavenumber resolution of δkx = δky = 4 m−1 is considered and279

the results are presented at frequency of 1000 Hz.280

Furthermore, in order to assess the effectiveness of the proposed method281

for estimating the WPF in the low-wavenumber domain, we have defined282

the low-wavenumber domain as the region within the flexural wavenumber283

(−kb ≤ kx, ky ≤ kb) of a steel plate with a 1 mm thickness. The plate’s284
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properties include a Young’s modulus of 210 Gpa, a density of 7800 (kg m−3),285

and a Poisson’s ratio of 0.3, resulting in a flexural wavenumber of kb = 63.26286

m−1. The low-wavenumber region is indicated with the square area in Fig. 4287

where the CSD function of the reference TBL using the Goody and truncated288

Mellen models is plotted. In Section 3.1 and 3.2 we employ the RFBA289

to estimate the WPF in the low-wavenumber domain and the results are290

compared with those simulated using the theoretical WPF formula based on291

the Goody and truncated Mellen models as shown in Fig. 4.292

A turbulent flow with an air flow speed of U∞ = 50 m s−1 is assumed293

flowing over the rigid surface, see Fig. 3. The values of air density and294

the kinematic viscosity are set to 1.225 kg m−3 and 1.5111 × 10−5 m2 s−1,295

respectively. It is assumed that the TBL is homogeneous, stationary and fully296

developed over the panel surface. The TBL parameters used for this analysis297

are given in Table 1. Moreover, the convective velocity Uc is approximated298

using Bull’s model [47, 5] as follows299

Uc ≈ U∞
(
0.59 + 0.3e−0.89δ∗ω/U∞

)
, (10)

where δ∗ is displacement thickness.300

The simulations are performed in Matlab on a desktop computer with301

32 GB of RAM and four physical cores. To employ Eq. (5), one needs to302

truncate the wavenumber domain. It is necessary to note that the range303

of the considered wavenumber domain should be large enough to be able304

to include the significant contribution of the CSD function. Hence, a cut-off305

wavenumber of 1.2kc was used in both the streamwise and spanwise directions306

to take into account the convective contributions of the TBL WPF, where307

kc = ω/Uc is the convective wavenumber. It is noteworthy to mention that308

converge studies have been done for the selection of the cut-off wavenum-309

ber and wavenumber resolution to ensure that the input TBL is accurately310

modelled.311

Table 1. TBL parameters for a air flow with speed of 50 m/s.

Parameter Value
TBL thickness δ (mm) 5.77

TBL displacement thickness δ∗ (mm) 0.729
Wall shear stress τ (pa) 5.989
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Fig. 4. Contour plots of the Goody+Mellen wavenumber-frequency model for a flow speed
of 50 m/s at 1000 Hz.

3.1. Effect of Microphone Array Parameters on the Estimated312

TBL Wall Pressure Field313

In this section, the effects of array parameters namely number of sensors,314

co-array factor and sensor distribution on the performance of the RFBA are315

examined. The array size is kept constant in all subsequent calculations.316

3.1.1. Effect of Sensor Spacing317

Before processing the array data for signal analysis, the initial step in-318

volves establishing the relative position of sensors, which is crucial in array319

creation. In this process, special attention must be given to avoid spatial320

aliasing. Spatial aliasing arises as a result of spatially under-sampling the321

aperture of the array. To avoid aliasing in time domain signal processing, it is322

essential to sample the signal at a rate of at least twice the highest frequency.323

This sampling rate, known as the Nyquist rate [48], can also be applied in324

spatial domain signal processing by ensuring that the sampling interval does325

not exceed one-half wavelength [32]326

ksample = 2kmax =
2π

∆x
. (11)
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This equation indicates a direct relationship between the Nyquist wave-327

form frequency and the sampling interval ∆x. This interval, as determined328

by the Nyquist principle, sets a limit on the maximum distance that can329

exist between microphone positions. As mentioned above, a criterion of 1.2330

times of the convective wavenumber is considered for the highest waveform331

frequency in measuring the pressure with a microphone array. This criterion332

is taken into account in Eq. (11), so the minimum distance between the333

microphone positions is obtained as ∆x = π/kmax. If this criterion is not334

fulfilled, then the aliasing can be observed in the low-wavenumber domain,335

which is the region of interest.336

In this section, an equidistant cross-array pattern with the fixed size of337

Lx = 455 mm and Ly = 375 mm is assumed to demonstrate the aliasing338

phenomenon and the effects of sensor spacing on the estimated TBL WPF.339

The study considers a minimum of 16 sensors, with the number of sensors340

increased by 4 until the maximum of 68 sensors is reached (as shown in the341

supplementary document). Fig. 5 presents the results for only four selected342

cases, namely those with 16, 32, 48, and 68 sensors. As an additional feature,343

Figs. 5 (c), (g), (k), and (o) demonstrate all possible vector spacings between344

all pairs of sensors, along with the co-array factors corresponding to each case345

study. In the upcoming section (Section 3.1.2), the impact of this parameter346

will be discussed. Fig. 5 (b), (f), (j), and (n) show the color map and347

Figs. 5 (d), (h), (l), and (p) show the corresponding cross-section view of348

the estimated WPF obtained by RFBA, respectively, for different number349

of sensors of cross-array pattern. The color maps in the Fig. 5 include a350

rectangular area which is surrounded by flexural wavenumber of the assumed351

plate and denoting the range of low-wavenumber domain which needs to be352

evaluated (−kb ≤ kx, ky ≤ kb). This range is shown in the cross-section view353

of the results with the red dashed-line.354

To quantify the performance of the proposed method in the estimation355

of the TBL WPF, the mean absolute error (MAE) of the estimated WPF in356

the low-wavenumber domain is calculated for each case with respect to the357

reference input TBL model based on the Goody and Mellen Models [49, 10]358

in the corresponding low-wavenumber domain. The following formula is used359

to compute the MAE of the estimated WPF in the low-wavenumber domain360

MAE =
1

NkLW

NkLW∑
l=1

|10log10ϕ
e
pp(kx,l, ky,l, ω)− 10log10ϕ

r
pp(kx,l, ky,l, ω)|, (12)
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where NkLW
corresponds to the total number of grid points in the low-361

wavenumber domain. ϕe
pp(kx,l, ky,l, ω) and ϕr

pp(kx,l, ky,l, ω) are the estimated362

and reference wavenumber-frequency spectrum of the WPF, respectively. It363

can be observed from Fig. 5 that by increasing the number of sensors, the es-364

timated WPF is improved, and it gradually converges towards the reference365

input TBL model (see, Fig. 4).366

It is clear from Figs. 5 (f) and (h) that RFBA struggle to provide rea-367

sonable estimation of the WPF due to the presence of aliasing phenomenon368

when Ns < 48. For the given array size, the aliasing effect is mitigated by369

increasing the number of sensors to 48. This is consistent with Nyquist crite-370

rion, as for the considered array size, according to Eq. (11) at least 24 sensors371

are required along the x-axis and 20 sensors along the y-axis to satisfy the372

Nyquist criterion and avoid aliasing effect. Assuming that the number of373

sensors is the same in both the streamwise and spanwise directions, the min-374

imum number of sensors required to satisfy the criterion is Ns = 48 which is375

what we observed in Figs. 5 (j) and (i). An interactive plot demonstrating376

the impact of increasing the number of sensors on reducing the aliasing effect377

is shown in Fig. S1 of the supplementary document.378

As illustrated by Figs. 5 (j) and (n) and their corresponding MAEs, the379

accuracy of estimated results is improved by increasing the number of sensors380

from 16 to 48, but adding more sensors does not significantly enhance the381

estimated WPF in the low-wavenumber domain (see Figs. 5 (j) and (n)).382

This suggests that respecting the Nyquist criterion alone is not sufficient for383

obtaining accurate estimation of the low-wavenumber WPF. However, this384

does not hold true for the convective region. Fig. 5 (h) shows that estimation385

of the convective region is much easier than the low-wavenumber domain as it386

has the highest amplitude in the domain. Moreover, a good estimation of this387

region is achieved using only 24 sensors which does not satisfy the Nyquist388

criterion (see Fig. S1) and the estimated result in this region is quite accurate389

when the Nyquist criterion is fulfilled. Therefore, unlike the low-wavenumber390

region, accurate estimation of the convective region is possible by fulfilling391

only the Nyquist criterion.392

Figs. 5 (c), (g), (k), and (o) also show that the co-array factor F is always393

below 0.4 for all the sensor spacing using the equidistant cross array. The394

effect of this parameter is examined in the following section.395
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Fig. 5 - Part 1. Comparison of the estimated WPF using RFBA for equidistant cross-array
pattern with 16 (a-d) and 32 (e-h) sensors, respectively. Equidistant cross arrays for each
case are shown in (a) and (e) and associated set of distinct vector spacings between sensors
are presented in (c) and (g). Co-array factor (F ) are displayed for each case and MAEs
calculated between the reference input TBL model and the estimated low-wavenumber
WPF shown in (b) and (f) are 13.48 dB and 5.67 dB, respectively. 2D wavenumber-
frequency spectra for ky = 0 are plotted against longitudinal wavenumber in (d) and (h).
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Fig. 5 - Part 2. Comparison of the estimated WPF using RFBA for equidistant cross-
array pattern with 48 (i-l) and 68 (m-p) sensors, respectively. Equidistant cross arrays
for each case are shown in (i) and (m) and associated set of distinct vector spacings
between sensors are presented in (k) and (o). Co-array factor (F ) are displayed for each
case and MAEs calculated between the reference input TBL model and the estimated
low-wavenumber WPF shown in (j) and (n) are 1.81 dB and 1.49 dB, respectively. 2D
wavenumber-frequency spectra for ky = 0 are plotted against longitudinal wavenumber in
(l) and (p).
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3.1.2. Effect of Co-array Factor396

In terms of array performance, in addition to the minimum distance be-397

tween sensors, the size of co-array is an important factor to be considered.398

Co-array describes the number of different distances between every pair of399

sensors in the array [3]. Given an array of Ns sensors whose locations are400

given by401

xm, m = 1, 2, . . . , Ns. (13)

The associated set of vector spacing between all pairs of elements in the array402

can be expressed as403

Xp = xm − xn, m = 1, 2, . . . , Ns, n = 1, 2, . . . , Ns. (14)

The set of points Xp is called the co-array of the array xm [50]. To evaluate404

the efficiency of the different periodic array pattern with respect to aperi-405

odic ones, the F factor is introduced below, which show the ratio of the406

actual number of unique vector spacings of an array, P , to the corresponding407

maximum number of spacings, Pmax408

F =
P

Pmax

≤ 1. (15)

Since there are N2
s vectors, and Ns of these are zero, the maximum possible409

unique vector spacings in an array consisting of Ns sensors can be calculated410

as follow411

Pmax = N2
s − (Ns − 1) . (16)

An optimal array maximizes the number of unique vector spacings, re-412

sulting in F = 1. The low value of F means that there will be a large number413

of duplicate distances between the sensors, which usually can be seen in the414

periodic pattern. For instance, in Figs. 5 (c), (g), (k) and (o), the F fac-415

tor decreases with an increase in the number of sensors. This indicates that416

when more sensors are added in a cross-array pattern at equal distances, the417

size of P will not increase as much as Pmax (Eq. (16)) due to the repetitive418

occurrence of the same distances. Thus, it can be inferred that improper419

sensor positioning can lower the F factor. This is one of the reasons why an420

accurate WPF estimate in the low-wavenumber domain cannot be obtained421

by equidistant cross array pattern even with 68 sensors (see Figs. 5 (n) and422

(p)).423
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To maximize the co-array size while using a fixed number of sensors, it424

is generally preferable to opt for a non-equidistant arrangement of the array.425

This will result in a relatively low level of secondary lobes on the estimated426

WPF, which appear due to the aliasing effect [32]. In the following, the427

effect of the non-equidistant cross-array pattern on estimation of the WPF428

is studied.429

To maximize F factor in the cross-array pattern, the position of sensors430

are arranged non-equidistantly on the two cross lines, and the same study as431

above (Section 3.1.1) has been carried out again. Fig. 6 presents the results432

with the same number of sensors as studied in Section 3.1.1. Similar to433

the equidistant-array pattern, the convective region is the first region where434

the estimated WPF converges to the reference model. However, in the non-435

equidistant array pattern, only 16 sensors are required to identify this region436

(Figs. 6 (b) and (d)), whereas in the equidistant array pattern, it takes at437

least 24 sensors (see Fig. S1). Moreover, the estimated WPF obtained by438

the RFBA in each case (Figs. 6 (b), (f), (j), and (n)) is more accurate than439

corresponding case in the equidistant cross-array pattern (Figs. 5 (b), (f), (j),440

and (n)), which is evident by the lower MAE for the non-equidistant array.441

As it can be seen from Figs. 6 (f) and (h), in this case the aliasing effect is less442

profound for the array with 32 sensors when compared to the corresponding443

case shown in Figs. 5 (f) and (h). Consequently, this improvement results in444

a decrease in the MAE from 5.07 dB to 3.03 dB.445

In the supplementary document, readers can access an interactive plot446

(Fig. S2) that showcases how WPF estimation in the low-wavenumber do-447

main is affected by 14 arrays of non-equidistant cross-array patterns. The448

plot includes the results for different arrays from 16 to 68 sensors, with in-449

crements of 4.450

Comparing the results presented in Figs. 5 and 6, it can be concluded that451

respecting the Nyquist criterion and the maximum co-array factor can result452

in a better estimation of the WPF. In the next section, it is demonstrated453

that in addition to sensor spacing and co-array factor, sensor distribution454

plays a key role in accurate estimation of the TBL WPF. Effect of this factor455

has been investigated using a random array pattern in the following section.456

19



Fig. 6 - Part 1. Comparison of the estimated WPF using RFBA for non-equidistant
cross-array pattern with 16 (a-d) and 32 (e-h) sensors, respectively. Non-equidistant cross
arrays for each case are shown in (a) and (e) and associated set of distinct vector spacings
between sensors are presented in (c) and (g). Co-array factor (F ) are displayed for each
case and MAEs calculated between the reference input TBL model and the estimated
low-wavenumber WPF shown in (b) and (f) are 10.63 dB and 3.03 dB, respectively. 2D
wavenumber-frequency spectra for ky = 0 are plotted against longitudinal wavenumber in
(d) and (h).
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Fig. 6 - Part 2. Comparison of the estimated WPF using RFBA for non-equidistant
cross-array pattern with 48 (i-l) and 68 (m-p) sensors, respectively. Non-equidistant cross
arrays for each case are shown in (i) and (m) and associated set of distinct vector spacings
between sensors are presented in (k) and (o). Co-array factor (F ) are displayed for each
case and MAEs calculated between the reference input TBL model and the estimated
low-wavenumber WPF shown in (j) and (n) are 1.45 dB and 1.31 dB, respectively. 2D
wavenumber-frequency spectra for ky = 0 are plotted against longitudinal wavenumber in
(l) and (p).
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3.1.3. Effect of Sensor Distribution457

As discussed above, the half-wavelength criterion is the main constraint458

of regular array patterns. Failure to meet this criterion, results in spatial459

aliasing, which produces secondary lobes on the estimated WPF as it was460

illustrated in Figs. 5 (b) and (f). It is possible to diminish these secondary461

lobes by removing all periodicities from the microphone array. This results462

in a class of arrays known as irregular or aperiodic arrays [32].463

In order to design an irregular array, a random process can be used to464

determine sensor locations. Another option would be to use an algorithm465

that ensures a certain degree of irregularity in sensor positions. The latter466

should be used whenever a sensor location can be specified and controlled467

because a knowledge-based sensor location approach outperforms a random468

algorithm [32]. In this work, the second approach is employed for distributing469

the sensors and creating a random-array pattern. Fig. 7 shows the estimated470

WPF using the RFBA for four random array patterns with the number of471

sensors of 16, 32, 48, and 68. For additional visualization, an interactive plot472

(Fig. S3) containing 14 random array patterns with sensors ranging from 16473

to 68 in increments of 4 is available in the supplementary document. All the474

configurations meet the Nyquist criterion and have the maximum possible475

co-array factor (i.e. F = 1). For example, for the first irregular array of 16476

sensors, the sensor arrangement was designed such that at least one pair of477

sensors satisfied the Nyquist criterion in both the streamwise and spanwise478

directions. Following this, in each subsequent step, four new sensors were479

added to the previous arrangement in such a way that at least one existing480

sensor could meet the minimum distance required by the Nyquist criterion481

for each new sensor. This process was repeated up to the fourteenth array482

of 68 sensors. Also, the position of sensors was chosen in a manner that the483

F factor was always maximi and equal to 1. The obtained results in Fig. 7484

show that using the irregular array with above conditions will avoid spatial485

aliasing and also generate a more coherent vector spacing separation of ξ and486

η which lead to the better estimation of the WPF compared with the regular487

array patterns.488

Fig. 7 shows that using the irregular array the estimated WPF converges489

to the reference WPF much faster than that using the regular array. For490

example, Figs. 7 (j) and (l) show that applying RFBA to a random array with491

48 sensors provides excellent estimations of the WPF in the low-wavenumber492

domain with a mean absolute error of less than 1 dB. Moreover, RFBA493
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provides an accurate result in the entire considered wavenumber domain using494

68 sensors (shown in Figs. 7 (n) and (p)). Therefore, employing a random495

array pattern while adhering to the Nyquist criterion and optimizing the496

co-array factor yields improved WPF estimations in comparison to the other497

array patterns investigated in Sections 3.1.1 and 3.1.2. In Section 3.1, we used498

a closed-from semi-empirical TBL model for computing the CSM. However, in499

practice, only limited number of samples/snapshots of the WPF is available.500

To investigate the impact of this factor on the proposed RFBA method, we501

introduce a virtual acoustic experiment, which we examine in detail in the502

subsequent section.503
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Fig. 7 - Part 1. Comparison of the estimated WPF using RFBA for irregular-array pattern
with 16 (a-d) and 32 (e-h) sensors, respectively. Irregular arrays for each case are shown in
(a) and (e) and associated set of distinct vector spacings between sensors are presented in
(c) and (g). Co-array factor (F ) are displayed for each case and MAEs calculated between
the reference input TBL model and the estimated low-wavenumber WPF shown in (b) and
(f) are 10.08 dB and 2.68 dB, respectively. 2D wavenumber-frequency spectra for ky = 0
are plotted against longitudinal wavenumber in (d) and (h).
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Fig. 7 - Part 2. Comparison of the estimated WPF using RFBA for irregular-array pattern
with 48 (i-l) and 68 (m-p) sensors, respectively. Irregular arrays for each case are shown in
(i) and (m) and associated set of distinct vector spacings between sensors are presented in
(k) and (o). Co-array factor (F ) are displayed for each case and MAEs calculated between
the reference input TBL model and the estimated low-wavenumber WPF shown in (j) and
(n) are 0.61 dB and 0.09 dB, respectively. 2D wavenumber-frequency spectra for ky = 0
are plotted against longitudinal wavenumber in (l) and (p).
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3.2. Virtual Acoustic Experiments504

In the previous sections, the CSM was calculated from a closed-from semi-505

empirical TBL model. It was then utilized to investigate the effects of sensor506

spacing, co-array factor and sensor distribution on the performance of the507

RFBA in estimation of the WPF in the low-wavenumber domain. However,508

the theoretical TBL models cannot realistically simulate an experimental509

situation. Since the TBL pressure fluctuation is a random process, if several510

records of these pressure fluctuations are taken under the same experimental511

conditions, they would not be identical due to the random nature of the512

excitation. Each outcome of an experiment, in the case of a random process,513

is called a sample function. If n experiments are conducted, all the n possible514

outcomes of a random process constitute what is known as the ensemble of515

the process.516

In this section, this process is simulated using a virtual acoustic experi-517

ment where different deterministic realizations of the TBL pressure fluctua-518

tions are computed, and the CSM is then estimated from ensemble average519

of these realizations.520

3.2.1. Wall Pressure Field Snapshots using the UWPW Technique521

Simulation of random TBL with deterministic loading is the main concept522

of the UWPW technique [37]. This approach mimics experimental conditions523

and calculates the WPF underneath of a TBL by ensemble averaging of the524

different realization of wall pressure at each frequency. The pressure beneath525

the TBL for the rth realization can be represented by a set of UWPWs at526

the qth sensor of the array pattern as follows [46, 37, 51]527

pr(xq, ω) =

Nk∑
l=1

√
ϕpp(kx,l, ky,l, ω)δkxδky

4π2
ej(kx,lx

q+ky,ly
q+θrl ), (17)

where θ is a random phase uniformly distributed in [0, 2π]. Similar to Eq.528

(5), Nk corresponds to the total number of grid points in the truncated529

wavenumber space. It is important to note that a cut-off wavenumber of 1.2kc530

was employed in both the streamwise and spanwise directions to consider531

the convective contributions of the TBL WPF. As an illustration, Fig. 8532

displays the representation of four realizations of the surface pressure filed533

at a frequency of 1000 Hz and a flow velocity of 50 m/s. These realizations534

are employed in ensemble averaging of different realizations to compute the535

CSM of the WPF. Fig. 9 shows a flowchart describing the implementation536
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Fig. 8. (a)-(d): Four different realizations of the WPF synthesized by the UWPW tech-
nique using the Goody and truncated Mellen models for a flow speed of 50 m/s at 1000 Hz.

of the UWPW technique in the virtual acoustic experiment for estimation of537

the WPF in the low-wavenumber domain.538

Herein, three patterns (equidistant-cross array, non-equidistant-cross ar-539

ray, and irregular array) with 68 sensors are analyzed, and the impact of vary-540

ing the number of realizations on estimating the WPF in the low-wavenumber541

domain using the RFBA is evaluated. The supplementary document contains542

an interactive plot showcasing 19 case studies for the three array patterns,543

highlighting the impact of varying numbers of realizations on estimation of544

the WPF in the low-wavenumber domain (see Fig. S4). Besides, for each545

array pattern, the MAE is shown to help quantifying the accuracy of the546

estimated WPF for different realizations. Fig. 10 only shows some selected547

results for four different number of realizations. The obtained results shown548

���

���

Fig. 9. Simulation process in the virtual acoustic experiments using the UWPW technique.
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in Figs. 10 (f1) and (i1), indicate that a relatively small number of realiza-549

tions is sufficient to identify the convective zone of the WPF in this virtual550

experiment and the random array pattern exhibits a better performance com-551

pared with the other two arrays shown in Figs. 10 (d1), (g1), (e1) and (h1).552

However, for the estimation of the WPF in the low-wavenumber domain, a553

considerable number of realizations is necessary. For example, Fig. 10 (f2)554

shows that after 50000 realizations, the estimated results has a MAE of ap-555

proximately 4.5 dB. Moreover, increasing the number of realizations from556

50000 to 200000 reduces the MAE by only 1 dB (see Fig. 10 (l2)). This557

can be attributed to the fact that in the virtual experiment an approximate558

CSM is used which struggles to realise the pressure fluctuations in this region559

due to their low amplitudes compared to the convective region. Moreover,560

the MAE values for three different patterns indicate that the irregular-array561

pattern performs better than the equidistant and non-equidistant cross array562

patterns when evaluating the WPF in the low-wavenumber domain.563

To analyze the WPF synthesized with Eq. (17), the coherence obtained564

from the WPF of NR realizations are compared with the coherence obtained565

from the Mellen+Goody model’s analytical formula in Fig. 11. By using566

NR realizations, the coherence between point x and x′ can be estimated as567

follows568

Γ(x,x′, ω) =

∣∣∣∣E [
pr(x, ω)pr(x′, ω)

]
r∈{1,...NR}

∣∣∣∣√
E
[
|pr(x, ω)|2

]
r∈{1,...NR}E

[
|pr(x′, ω)|2

]
r∈{1,...NR}

, (18)

where pr(x, ω) is given by Eq. (17).569

Fig. 11 shows the results of Eq. (18) for NR = 50, 500, 5000, and570

NR = 50000 when applied to the 34 equidistant sensors positioned in the571

streamwise direction. It can be observed that a relatively small number of572

realizations is sufficient to estimate the coherence of the WPF between closely573

spaced sensors, which plays a vital role in calculating the convective peak in574

the WPF. However, there are significant discrepancies between the estimated575

coherence and the analytical one for sensors that are spaced far apart. By in-576

creasing the number of realizations, the estimated coherence for sensors with577

larger spatial separation approaches the analytically calculated coherence,578

which is crucial for accurate WPF estimation in the low-wavenumber range.579

This behaviour clarifies why a large number of realizations is necessary to580

estimate the WPF in the low-wavenumber range.581
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Fig. 10 - Part 1. Comparison of the estimated WPF using the UWPW technique for three
different array patterns, each comprising 68 sensors shown in (a1)-(c1) for 500 realizations
(d1-i1) and 5000 realizations (j1-o1). The color maps depicting the estimated WPF are
presented in (d1), (e1), (f1), (j1), (k1), and (l1), with respective MAEs between the
reference input TBL model and the estimated low-wavenumber WPF of 26.86 dB, 16.20
dB, 12.90 dB, 20.12 dB, 8.01 dB, and 7.48 dB. The cross-section view of the estimated
low-wavenumber WPF are illustrated in (g1), (h1), (i1), (m1), (n1), and (o1).

582
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Fig. 10 - Part 2. Comparison of the estimated WPF using the UWPW technique for
three different array patterns, each comprising 68 sensors shown in (a2)-(c2) for 50000 re-
alizations (d2-i2) and 200000 realizations (j2-o2). The color maps depicting the estimated
WPF are presented in (d2), (e2), (f2), (j2), (k2), and (l2), with respective MAEs between
the reference input TBL model and the estimated low-wavenumber WPF of 10.80 dB,
4.65 dB, 4.55 dB, 8.37 dB, 4.22 dB, and 3.39 dB. The cross-section view of the estimated
low-wavenumber WPF are illustrated in (g2), (h2), (i2), (m2), (n2), and (o2).
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Fig. 11. The TBL pressure filed coherence as a function of the spatial separation in the
streamwise direction. Solid line, analytical formula of the Mellen+Goody model; dashed
lines, numerical estimation considering 50, 500, 5000 and 50000 realizations.

3.2.2. Effect of the Convective Ridge on the Estimation of the583

Low-wavenumber WPF584

In previous Sections, we exclusively utilized the Mellen model as the585

input TBL model. Since the levels of the WPF between the convective peak586

and the low-wavenumber domain are different for different semi-empirical587

models (see Fig. 2), in this section we investigate how this difference will588

affect the estimated low-wavenumber WPF. Hence, we have implemented two589

additional models: the Chase model [11, 44] and the Corcos model [9, 44], as590

input TBL models. As can be seen from Fig. 2, among these three models,591

the levels of low-wavenumber WPF are the highest for Corcos model and the592

lowest for Chase model while they are somewhere in between for the Mellen593

model. The disparities between the convective peak level and the mean value594

of the WPF within the low-wavenumber domain are approximately 19 dB,595

27 dB and 33 dB for the Corcos, Mellen and Chase models, respectively. In596

both the Corcos and Chase models, the convective peak occurs at a similar597

level as observed in the Mellen model [44].598

For the estimation of the WPF, we employed a random array pattern with599

68 sensors, as shown in Fig. 10 (c1). We calculated the MAE for the three600

TBL models with different numbers of realizations, and the results are sum-601

marized in Table 2. The findings indicate that when using the Corcos model,602

fewer realizations are required for an accurate estimation of the WPF within603

the low-wavenumber domain. In fact, with just 50,000 realizations, we can604

achieve WPF estimation with a MAE of approximately 2 dB. This number605
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Table 2. MAE of the low-wavenumber WPF for multiple numbers of realizations using
three closed-form semi-empirical models as reference input TBL models.

Semi-empirical models
Number of Realizations

500 5,000 50,000 200,000 500,000 700,000 1,000,000 2,000,000

MAE (dB) - Corcos Model 6.19 3.39 2.18 1.36 0.60 0.51 0.48 0.32

MAE (dB) - Mellen Model 12.90 7.48 4.55 3.39 2.72 2.61 2.19 2.03

MAE (dB) - Chase Model 26.06 20.31 15.97 13.87 11.27 11.14 10.59 9.34

of realizations is significantly fewer than what is needed for the Mellen model606

(nearly 1,000,000 realizations) to reach the same level of accuracy. This can607

be attributed to the fact that the difference between the convective peak and608

the low-wavenumber levels in the Corcos model is smaller than that in the609

Mellen model. Therefore, the low-wavenumber components of the WPF are610

less contaminated by the convective ridge. Consequently, a lower number of611

realizations is necessary to attain an accurate estimation of the WPF within612

the low-wavenumber domain.613

This has been further confirmed by the results for the Chase model where614

its MAE exceeds that of the Mellen model. For example, when using the615

Chase model, to achieve WPF estimation with approximately 9 dB error, al-616

most 2,000,000 realizations are required. Since the disparity in the WPF lev-617

els between the convective peak and the low-wavenumber domain is the high-618

est for the Chase model among the considered models, the low-wavenumber619

components of the WPF are mostly masked by the large-amplitude compo-620

nents of the WPF in the convective ridge. This is one of the main challenges621

of measuring the low-wavenumber pressure fluctuations using a microphone622

array in real-world scenarios as the difference between the convective peak623

and low-wavenumber levels of the WPF is not known. This means it is not624

clear how many snapshots of the measured signal is required to achieve an625

accurate estimation of the low-wavenumber region.626

It should be noted that in this virtual experiment the effect of data sam-627

pling and using an approximate CSM on the estimation of the TBL pressure628

field is demonstrated which is only one aspect of a real experiment. How-629

ever, other common sources of error including instrumental, environmental,630

procedural, and human errors exist in practice. These errors can be either631

random or systematic, impeding the accurate estimation of the WPF in the632

low-wavenumber domain.633
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4. Conclusions634

In this work, the efficacy of using a microphone array on the estimation635

of the TBL WPF in the low-wavenumber domain was studied. A regularized636

Fourier-based approach was proposed to identify the low-wavenumber levels637

of the WPF. Effects of three array parameters, namely sensor spacing, co-638

array factor and sensor distribution on the performance of each method were639

examined. It was shown that to achieve accurate estimation of the WPF all640

the three factors should be considered. It was found that to obtain accurate641

results, in addition to the Nyquist criterion, one needs to use an irregular642

array pattern with the maximum possible co-array factor (F = 1). It was643

also observed that reasonable estimation of the WPF in the convective region644

is much easier than that in the low-wavenumber domain and can be achieved645

with relatively small number of sensors.646

Moreover, the effectiveness of using a microphone array to estimate the647

WPF in an experimental condition was evaluated using a virtual experiment648

where the CSM was approximated by an ensemble average of different re-649

alization of the WPF generated by the UWPW technique. This mimics an650

experimental measurement where many samples are collected from the ran-651

dom TBL pressure fluctuations. It was illustrated that increasing the number652

of realizations results in more accurate estimation of the wall pressure spec-653

trum. Although, with relatively small number of realizations the convective654

region can be identified, a significant number of realizations is required to655

well estimate the low-wavenumber levels in the TBL pressure field.656

To investigate the effect of the convective ridge on the identification of657

the low-wavenumber domain WPF, three different TBL models were used658

individually as input reference models. It was observed that the difference659

between the convective peak and the low-wavenumber levels significantly af-660

fects the accuracy of low-wavenumber WPF estimation. In other words, the661

greater this difference, the higher the number of realizations. This happens662

because the convective ridge obscures the low-wavenumber components of663

the TBL WPF. This underscores a key issue when trying to capture the low-664

wavenumber pressure fluctuations using a microphone array in real-world665

scenarios, as the exact difference between the convective peak and the low-666

wavenumber levels is unknown in practice. As a result, it remains unclear667

how many snapshots of the recorded signal are required to achieve an ac-668

curate estimation of the low-wavenumber region. Moreover, this highlights669

the challenges in estimation of this region in the experiments where not only670
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a limited number of data samples can be recorded but also there are many671

different sources of error and uncertainties such as background noise, instru-672

mental and human error.673
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Appendix A. TGSVD method677

Using Eqs. (5) and (8), one can calculate the vector Spp and matrix Q.678

To obtain the best estimation of the WPF components, the following steps679

from Ref. [38] are employed:680

Step 1: compute discrete first derivative operators;681

L=get_l(size(Q,2),1);682

Step 2: Compute the compact generalized SVD of a matrix pair;683

[UU,sm,XX]=cgsvd(Q,L)684

Step 3: Compute all TGSVD solutions;685

k_tgsvd=1:size(sm,1)686

[X_tgsvd,Rho,Eta]=tgsvd(UU,sm,XX,Sp,k_tgsvd);687

Step 4: Find the corner of a discrete L-curve via an adaptive pruning algo-688

rithm;689

k_corner=corner(Rho,Eta)690

Step 5: Find the estimated WPF components for the optimal regularization691

parameter obtained from the corner method;692

Phipp=X_tgsvd(:,k_corner)693

34



Appendix B. ASD function and normalized CSD function694

The Goody model: The empirical model of the ASD function of the695

pressure field is given by [49]696

Ψpp(ω) =
3τ 2ωδ

(
ωδ
Ue

)2

Ue

(
0.5 +

(
ωδ
Ue

)0.75
)3.7 (

1.1R−0.57
T

(
ωδ
Ue

))7
(B.1)

where RT = U2
τ δ/Ueν and Ue is the boundary layer edge velocity.697

The Mellen model: The Mellen normalized wavenumber-frequency model698

is given by [10]699

ϕ̃pp(kx, ky, ω) =
2π (αxαy)

2 k3
c

(αxαykc)
2 + (αxky)

2 +
(
α2
y (kx − kc)

2)3/2 (B.2)

where αx = 0.1 and αy = 0.77.700
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[27] É. Salze, C. Bailly, O. Marsden, E. Jondeau, D. Juvé, An experimental791
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